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Abstract

Financial series occasionally exhibit large changes. To deal with
those events, we assume that the observed return series consists of a
conditionally Gaussian ARMA-GARCH (or -GJR) model contaminated
by an additive jump component. In this framework, we propose a new
test for additive jumps. The test is based on standardised returns, where
the first two conditional moments of the non-contaminated observations
are estimated in a robust way. Simulation results indicate that the
test has very good finite sample properties, i.e. correct size and high
proportion of correct jump detection. We apply our test on daily returns
and detect less than 1% of jumps for the three exchange rates and
between 1 and 3% of jumps for about 50 large capitalization stocks from
the NYSE. Once jumps have been filtered out, all series are found to be
conditionally Gaussian. We also find that simple GARCH-type models
estimated on filtered returns deliver better out-of-sample forecasts of
the conditional variance than GARCH and GAS models estimated on
raw data.
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1 Introduction

The distributional properties of speculative prices have been extensively stud-

ied in the finance literature. High frequency returns of most financial assets

exhibit volatility clustering and large jumps caused by the arrival of impor-

tant surprising news (e.g. news announcements). Daily stock prices are often

treated as discretely sampled observations from a jump-diffusion process with

time-varying volatility (often assumed to follow a GARCH-type model). Mix-

tures of normal distributions have been used to account for the effect of jumps.

For instance, Ball and Torous (1983) and Jorion (1988) use jump processes to

study the impact of big shocks in common stock prices or foreign exchange

rates while Vlaar and Palm (1993) propose Poisson or Bernoulli mixtures of

normal distributions. Such a parametric approach requires one to further spec-

ify and estimate a model governing the time-varying jump intensity and also

the jump size. Notice that those papers aim at accounting for jumps, not at

testing for jumps.

In this paper, we propose a new semi-parametric statistical procedure to

detect additive jumps in financial series. It is similar to the non-parametric

tests for jumps proposed by Lee and Mykland (2008) and Andersen, Bollerslev,

and Dobrev (2007b). However, in many cases, those tests are not applicable

because they require intraday data which are not always available and, if they

are, the asset might not be liquid enough for the test to be applicable. In

those cases a test for jumps based on daily returns is needed because, as

shown by Andersen, Bollerslev, and Diebold (2007), the largest shocks have

a relatively smaller effect on future volatility than smaller shocks. Therefore,

GARCH models neglecting jumps usually overestimate the volatility during

several days, if not several weeks, after the occurrence of those jumps.1

Similar to Lee and Mykland (2008) and Andersen, Bollerslev, and Dobrev

(2007b), who standardize their non-parametric test statistics by a robust to

jumps estimate of instantaneous volatility (based on realized bipower varia-

1See for instance the example of the stock price of Apple in Boudt, Dańıelsson, and
Laurent (2013).
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tion), we standardize our test statistic using the conditional volatility based

on a robustified GARCH volatility estimate and a robust conditional mean

estimate as daily data will likely have a non-zero mean. Our test therefore

incorporates the idea that when spot or instantaneous volatility is high (also

in absence of jumps), returns may also be high, even as high as those due to

jumps.

Franses and Ghijsels (1999) proposed a sequential test for jumps in a

GARCH framework. However, their critical values have to be simulated and

depend on some unknown parameter values of the GARCH model. This test

suffers from the so-called outlier masking problem because it is based on a

Quasi-Maximum Likelihood estimate of the GARCH model, which is know to

be non-robust to additive jumps (see our Monte-Carlo simulation). In our case,

critical values need not be simulated as the asymptotic distribution of the test

does not depend on nuisance parameters, its type-I error can be controlled for

and Monte-Carlo simulation results suggest that it is more powerful.

Our test builds upon the same theoretical framework as, for instance,

Franses and Ghijsels (1999), Lee and Mykland (2008) and Andersen, Boller-

slev, and Dobrev (2007b), i.e. that returns are conditionally Gaussian on days

without jumps. This assumption is however incompatible with, for instance,

the GARCH model with Student-t innovations (with finite degree of freedom)

of Bollerslev (1987), which is another way of accounting for the presence of

large unexpected shocks.2 To overcome the problem of overestimating volatil-

ity after the occurrence of extremely large shocks caused by once-off events,

Creal, Koopman, and Lucas (2012) and Harvey and Chakravarty (2008) in-

dependently proposed a novel way to deal with large returns in conditional

variance models. Their models rely on a potentially non-normal distribution

for the innovations and a GARCH-type equation for the conditional variance

derived from the conditional score of the assumed distribution with respect to

the second moment. Therefore, they are called respectively Generalized Au-

2GARCH-type models have been successfully combined with several fat-tail distributions.
Giot and Laurent (2003) show, for several assets, that GARCH-type models with skewed-
Student innovations outperform models based on normal and Student-t distributions when
forecasting the Value-at-Risk.
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toregressive Score (GAS) and Dynamic Conditional Score (DCS) models for

volatility.

Whether data are compatible with our theoretical framework or the one of

GARCH and GAS/DCS models with non-normal distributions is an empirical

question that we investigate in a comparison using simulated data and in an

application on 3 exchange rates and about 49 US stocks. If jumps are detected

by our test, we propose to filter out those jumps before forecasting volatility

using standard GARCH models. Results suggest that simple GARCH-type

models estimated on filtered returns deliver better out-of-sample forecasts of

the true variance (approximated by the realized variance computed from 5-

minute returns) than GARCH and GAS models estimated on raw data.

Interestingly, once jumps have been filtered out, all series are found to be

conditionally Gaussian. Importantly, a rejection of the conditional normality

of the jump-corrected data would be taken as an indication that our theoretical

framework is inappropriate. To investigate this issue, we simulated data follow-

ing a GAS model with Student-t innovations. This model is able to generate

volatility clustering and large once-off events that might be indistinguishable

from additive jumps. However, this model does not contain additive jumps

and therefore our test should not be applied in this case. Results suggest that

while a small proportion of jumps is detected by our test, a Jarque-Bera test

has very good power (greater than 95% for υ ≤ 7) to reject the assumption of

conditional normality of the jump-corrected data.

The rest of this article is organized as follows. In Section 2, the theoret-

ical framework and the model setting are described and the proposed semi-

parametric test and its asymptotic distribution are presented. In Section 3,

simulation results comparing our test with alternative tests in the literature

are presented. Section 4 contains the findings of an empirical study of jump

detection in daily data. Finally, Section 5 concludes the paper.

2 Model and test

Andersen, Bollerslev, and Diebold (2007), Harvey and Chakravarty (2008)
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and Muler and Yohai (2008) among others found that jumps affect future

asset return volatility less than what standard return volatility models predict.

Using realized volatilities Andersen, Bollerslev, and Diebold (2007) show that

conditioning also on past jumps in an autoregressive (AR) model tempers the

persistence in the volatility forecasts, indicating that jumps in asset prices

tend to lead the short-lived increases in volatility. In a univariate GARCH

setting, Sakata and White (1998), Franses and Ghijsels (1999), Carnero, Pena,

and Ruiz (2007, 2008), Charles and Darné (2005) and Muler and Yohai (2008)

show that, in the presence of additive jumps, the Gaussian Quasi-Maximum

Likelihood (QML) estimator of GARCH models tends to overestimate the

volatility for the days following a jump and to produce upward biased estimates

of the long-run volatility.3

In a recent paper, Nyberg and Wilhelmsson (2009) decompose the risk

measure Value-at-Risk (Var) of a portfolio of stocks into a jump and a con-

tinuous component. The continuous component is associated with market risk

and the jump component is assumed to measure (extreme) event risk. Using

the parametric Normal Inverse Gaussian (NIG) distribution combined with

the GARCH-Poisson-Jump model with autoregressive jump intensity (GARJI)

model proposed by Maheu and McCurdy (2004), Nyberg and Wilhelmsson

(2009) find that event risk constitutes 30% of the risk for a portfolio of small

cap stocks but less that 1% for a portfolio of large cap stocks.

These empirical findings about the nature of the impact of jumps in fi-

nancial asset prices stress the importance of reliable statistical methods for

jump detection. Relying on seminal work by Andersen and Bollerslev (1998b)

on realized volaltility and by Barndorff-Nielsen and Shephard (2004, 2006)

3The effects of jumps on multivariate GARCH models have also been investigated by
Boudt and Croux (2010) and Boudt, Dańıelsson, and Laurent (2013), respectively in BEKK
and dynamic conditional correlation (DCC) frameworks. Boudt, Dańıelsson, and Laurent
(2013) show that unconditional and conditional correlations from the constant conditional
correlation (CCC) model of Bollerslev (1990) and the DCC model of Engle (2002) are
strongly affected by the presence of jumps. They also find that conditional covariance fore-
casts obtained from various multivariate models, including the DCC model, are frequently
outperformed by their jump-robust version based on ex post realized covariance estimates
from high-frequency EUR-USD and YEN-USD exchange rates over the period 2004-2009.
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on bipower variation, an important segment of the literature uses realized

moments from high frequency data to estimate the jump component by sub-

stracting realized bipower variation from realized volatility and to provide

non-parametric jump detection statistics for testing its significance at a lower

observation frequency (see e.g. Andersen, Bollerslev, Frederiksen, and Nielsen,

2010). Multipower extensions have been considered by Barndorff-Nielsen and

Shephard (2006) and Huang and Tauchen (2006). Specification tests for volatil-

ity processes in the presence of jumps, (e.g. Lee and Mykland, 2008; Äıt-Sahalia

and Jacod, 2004, 2009) are indirect ways of checking for jumps. Äıt-Sahalia

and Jacod (2009) provide a test for semi-martingales which has different limits

depending on the presence or absence of jumps, as the sampling frequency de-

creases. Äıt-Sahalia and Jacod (2012b) provide a version of the previous test

that is robust to the presence of market microstructure noise in high-frequency

data. Finally, Äıt-Sahalia and Jacod (2012a) propose a simple yet powerful

methodology to decompose high frequency returns into drift, continuous, small

jumps and large jumps components and to analyse their characteristics such

as their relative magnitude and the degree of activity of the jumps.

2.1 Data generating process

One of the most popular model for financial return data sampled at say the

daily frequency is certainly the GARCH(1,1) of Bollerslev (1986).

A random variable rt follows a normal-ARMA(p,q)-GARCH(1,1) model if

it can be described by the system (2.1)-(2.3):

φ(L)(rt − µ) = θ(L)εt or rt = µt + εt (2.1)

εt ≡ σtzt and zt
i.i.d.∼ N(0, 1) (2.2)

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1, (2.3)

where L is the lag operator, φ(L) = 1 −
∑p

i=1 φiL
i and θ(L) = 1 −

∑q
i=1 θiL

i

are polynomials of orders p and q respectively (with roots outside the unit

circle) such that µt = µ+
∑∞

i=1 λiεt−i is the conditional mean of rt (where the

λi’s are the coefficients of λ(L) = φ−1(L)θ(L) = 1 +
∑∞

i=1 λiL
i) and σ2

t is the
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conditional variance of rt.

If we add an independent jump component atIt to rt with jump size at, we

obtain

r∗t = rt + atIt, (2.4)

where r∗t denotes observed financial returns and It is generated by some jump

process such as a Poisson process. Notice that more complicated mixture

distributions could be considered to generate the jumps and the ‘continuous’

components. As we focus on the testing for jumps and eliminating them, our

procedure will not suffer from the difficulty of getting reliable estimates for

the jump process from which mixture models suffer when only few jumps have

occurred.

The model for r∗t , resulting from (2.1)-(2.4), is a combination of an approxi-

mation of a smooth and slowly reverting continuous sample path process and a

much less persistent jump component, that according to Andersen, Bollerslev,

Frederiksen, and Nielsen (2010) best describes many (log-)return processes. It

is also an approximation of the decomposition of asset returns sampled at high

frequency into their base components (continuous, small jumps, large jumps)

proposed by Äıt-Sahalia and Jacod (2012a). The model for r∗t has the prop-

erties that a jump atIt will not affect σ2
t+1 (the conditional variance of rt+1),

and it allows for non-Gaussian fat-tailed conditional distributions of r∗t .

2.2 Jump detection tests

A popular method for additive jumps detection in a Data Generating Process

satisfying Equations (2.1)-(2.4) is the test proposed by Franses and Ghijsels

(1999). They adapt the procedure of Chen and Liu (1993) for additive outlier

detection in ARMA models to make it applicable for our DGP. To test H0 :

atIt = 0 for t = τ , they compute a sequence of t-statistics for t = 1, . . . , T ,

by running regressions of residuals v̂t = (r∗t − µ̂t)
2 − σ̂2

t (where µ̂t and σ̂2
t are

the QML estimates of µt and σ2
t obtained from r∗t ) on a quantity measuring

the impact of a potential jump aτIτ at time t on v̂τ+s, s ≥ 0, and compare

the maximum of the sequence of t-statistics with a critical value obtained by

7



simulation. See Appendix 1 for more details on Franses and Ghijsels’ test for

jumps.

Franses and Ghijsels (1999) propose to estimate µ̂t and σ̂2
t by Gaussian

QML which is not robust to additive jumps of the type (2.4) and therefore

their test is likely to suffer from the so-called outlier masking problem (as

illustrated in our Monte-Carlo experiment). Another drawback of this test is

that the critical values depend on the unknown parameters α1 and β1 of the

GARCH model and therefore the size of the test cannot be controlled.

Our test radically differs from the one described above and does not suffer

from those drawbacks. It is similar in spirit to the non-parametric tests for

jumps proposed simultaneously by Andersen, Bollerslev, and Dobrev (2007b)

and Lee and Mykland (2008) for high-frequency data.

Let us denote by µ̃t and σ̃2
t estimates of µt and σ2

t in model (2.1)-(2.4) that

are robust to the potential presence of the additive jumps atIt (i.e. estimated

on r∗t and not rt). Denote by

J̃t =
r∗t − µ̃t

σ̃t
, (2.5)

the standardised return on day t. If atIt = 0 on day t, J̃t follows a standard

normal distribution and thus standardised returns J̃t that are too large to

plausibly come from this distribution must reflect jumps.4

This suggests the following jumps detection rule:

Ĩt = I
(

|J̃t| > k
)

, (2.6)

where I(·) is the indicator function and k is a suitable critical value defined

below. The rule described in (2.6) implies that Ĩt = 1 when a jump is detected

at observation t and Ĩt = 0 otherwise. Ĩt is thus an estimate of the unknown

quantity It in Equation (2.4). Given µ̃t and Ĩt, detected jumps can be filtered

4Note that since one single very large jump can artificially blow up the conditional vari-
ance during several weeks after its occurrence, it is crucial to use jump-robust estimators of
both µt and σ2

t .
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out from r∗t as follows

r̃t = r∗t − (r∗t − µ̃t)Ĩt, (2.7)

where filtered returns r̃t should be conditionally Gaussian under Model (2.1)-

(2.4). Note here the crucial role of the assumption of conditional normality of

rt. However nothing guarantees to find conditional normality of the filtered

returns after applying our jump removing procedure on real data. We will show

in the section devoted to the Monte-Carlo simulation that a simple Jarque-Bera

test of conditional normality of r̃t (i.e. test of normality on the standardized

residuals of a normal-ARMA-GARCH model estimated on r̃t) has very good

power to reject conditional normality (e.g. when the DGP has no jumps but

Student-t innovations) and thereby to reject model (2.1)-(2.4). But when we

do not reject conditional normality of r̃t, the loop is closed and the procedure

is consistent with the data which assume the continuous component to follow

a Gaussian Brownian motion.

A straightforward jump detection rule is that return r∗t is taken as being

affected by a jump if |J̃t| exceeds the 1 − λ quantile (> .5) of the standard

Gaussian distribution. This rule has a probability of type I error of λ (i.e. of

detecting that r∗t is affected by jumps, if in reality r∗t = rt, ∀t = 1 . . . , T ). But

its disadvantage is that the expected number of false positives over the whole

estimation sample is equal to λT under the null of no jump which can be large

when the sample size is large. For instance, with T = 1000 and λ = 0.05,

50 spurious jumps are expected under the null of no jump. Lee and Mykland

(2008) call these false positives “spurious jump detections”.

Andersen, Bollerslev, and Dobrev (2007b) use a Bonferroni correction to

control for the number of spurious jumps detected. This corresponds to choos-

ing a higher quantile of the standard normal distribution, e.g. λ = 0.001 or

0.0001. Instead, we propose to follow Lee and Mykland (2008) and control

for the size of the multiple jump tests using the extreme value theory result

that the maximum of T i.i.d. realizations of the absolute value of a standard

normal random variable is asymptotically (for T → ∞) Gumbel distributed.

More specifically, in the absence of jumps, the probability that the maximum
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of any set of T independent J-statistics |J̃t| exceeds

gT,λ = − log(− log(1 − λ))bT + cT , (2.8)

with bT = 1/
√

2 logT and cT = (2 logT )1/2− [log π+log(logT )]/[2(2 logT )1/2],

equals λ. Therefore, following (2.6), all returns for which |J̃t| > gT,λ should be

declared as being affected by jumps.

As mentioned above, our statistic for jumps is similar to the non-parametric

tests of Andersen, Bollerslev, and Dobrev (2007b) and Lee and Mykland (2008)

but our estimates of the conditional moments differ because our test is designed

for data sampled at a daily or lower frequency while their test is applied on

intraday-data (e.g. 5-minute returns). The price to pay is therefore that µ̃t

and σ̃2
t have to be estimated parametrically.

For the variance, they rely on the (non-parametric) bipower variation es-

timator of Barndorff-Nielsen and Shephard (2004) computed on returns be-

longing to a local window around the tested time (e.g. they assume that the

spot volatility is constant during a period ranging from a few minutes to about

one day). Obviously one cannot make similar assumptions on daily data, rea-

son why a parametric model is needed to estimate the first two conditional

moments “in a robust way”.

For the conditional mean µ̃t, Andersen, Bollerslev, and Dobrev (2007b)

and Lee and Mykland (2008) use the trivial estimator µ̃t = 0 ∀t because

at high frequencies, the drift is negligible. In our case the problem lies in

the fact that µt is not necessarly 0, follows an ARMA model as in Equation

(2.1) and importantly that this model is specified for the non-contaminated

observations rt while one observes the (potentially) contaminated series r∗t . A

robust estimate of µ̃t is therefore needed.

Muler, Pena, and Yohai (2009) (MPY) introduce a new class of estimates

for ARMA models that is robust to additive jumps. They downweight the effect

of past values of r∗t in the infinite MA representation of the conditional mean

of the ARMA model. This leads to the following specification to approximate
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the conditional mean of r∗t :
5

µ̃t = µ+

∞
∑

i=1

λiw
MPY
kδ

(J̃t−i), (2.9)

where J̃t−i is given in Equation (2.5), while σ̃t−i will be defined below.

The weight function wMPY

kδ
(·) in Equation (2.9) plays a key role in the ro-

bustification of the ARMA model. To obtain robust and efficient estimates of

the ARMA coefficients, MPY show that wMPY

kδ
(·) needs to be bounded. More

specifically, they propose the following weight function

wMPY

kδ
(u) = sign(u) min (|u|, kδ) . (2.10)

The auxiliary model underlying (2.9) with weight function (2.10) is called

Bounded Innovation Propagation (BIP)–ARMA since the effect of jumps (i.e.

atIt) on future values of µt is bounded.

Using the same argument as above, J̃t−i follows a standard normal distri-

bution in absence of jumps at time t− i. It is natural to suspect the presence

of a jump in r∗t−i when |J̃t−i| exceeds kδ, the δ quantile of the standard normal

distribution. Typical values for δ are 0.95 and 0.975. Note that we expect

T (1 − δ) residuals in each sample of size T to be downweighted even if there

is no jump.6

A similar idea is used by Muler and Yohai (2008) (MY) to limit the effect

of atIt on the estimation of the parameters of the GARCH model. In this case

the Gaussian QML is not appropriate because at−1It−1 has no impact on σ2
t

in Equation (2.3) while assuming a GARCH(1,1) for r∗t would imply (if for

simplicity µt = 0) σ2
t = ω + α1(rt−1 + at−1It−1)

2 + β1σ
2
t−1, i.e., a large and

slowly decaying effect of at−1It−1 on future volatility predictions.

5Note that in MPY, σ̃t−i is assumed to be constant and replaced by a robust M-scale
estimate of εt.

6An alternative would be to compare |J̃t−i| with the critical value of the Gumbel distri-
bution (2.8) like in (2.6). This would naturally lead to a smaller number of observations
that are falsely downweighted. However, Monte-Carlo simulation results (not reported here
to save space) suggest that, for the purpose of estimating the parameters, downweighting
too many observations is less damageable for the efficiency of this method than neglecting
small jumps.
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MY propose the following auxiliary GARCH(1,1) model with weights on

extremes:

σ̃2
t = ω + α1σ̃

2
t−1cδw

MPY

kδ

(

J̃t−1

)2

+ β1σ̃
2
t−1. (2.11)

The factor cδ has been proposed by Boudt, Dańıelsson, and Laurent (2013) to

ensure the conditional expectation of the weighted squared unexpected shocks

to be the conditional variance of rt in absence of jumps. Note that cδ = 1.0185,

1.0465, 1.0953, 1.2030 respectively for δ = 0.99, 0.975, 0.95, and 0.90.

Equation (2.11) corresponds to Equation (??) with w(zt−1) = cδw
MPY

kδ

(

J̃t−1

)2

and is called Bounded Innovation Propagation (BIP)–GARCH(1,1).

As for the BIP-ARMA, (squared) residuals that are suspected to be con-

taminated by additive outliers are downweighted in the BIP-GARCH equation.

Again, typical values for δ are 0.95 and 0.975.

Extensions of the BIP–GARCH to higher GARCH orders or other GARCH-

type specifications (e.g. FIGARCH) are possible but not discussed in detail

here to save space. The only extension we consider is the BIP–GJR(1,1), i.e.

the robust version of the GJR(1,1) model of Glosten, Jagannathan, and Runkle

(1993) that accounts for the so-called leverage effect, i.e.

σ̃2
t = ω+α1σ̃

2
t−1cδw

MPY

kδ

(

J̃t−1

)2

+ γ1Dt−1σ̃
2
t−1cδw

MPY

kδ

(

J̃t−1

)2

+ β1σ̃
2
t−1, (2.12)

where Dt−1 = 1 if J̃t−1 < 0 and 0 otherwise.

For a comparison between the GARCH(1,1), GAS(1,1) with (Skewed) Student-

t innovations and the BIP-GARCH(1,1) model, see Figure 1. To make the

comparison with the other models, cδw
MPY

kδ
(zt)

2 − 1 is plotted as a function

of zt for zt ∈ (−5; 5). Figure 1 suggests that the downweighting mechanism

in a GAS model with ST(0,1,5) innovations is very similar to the one of a

BIP-GARCH specification with δ = 0.975.

MPY and MY show respectively that QML estimation of a BIP–ARMA

model with constant variance and a BIP–GARCH model with zero conditional

mean are not efficient in the presence of large outliers (jumps). They recom-

mend using a M–estimator that minimizes the average value of an objective

function ρ(·), evaluated at the log–transform of squared standardised returns,
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i.e. in our case

θ̂M = argminθ∈Θ

1

T

T
∑

t=1

ρ

(

2 log

∣

∣

∣

∣

r∗t − µ̃t

σ̃t

∣

∣

∣

∣

)

, (2.13)

where µ̃t and σ̃2
t are given respectively in (2.9) and (2.11).

For robustness, this ρ–function needs to downweight the extreme obser-

vations and hence the jumps. The choice of ρ(·) trades off robustness vs.

efficiency. MY recommend ρ1(z) = 0.8m(g0(z)/0.8), where the m–function

is a smoothed version of m1(x) = xI(x ≤ 4) + 4I(x > 4) and g0(z) =
1√
2π

exp[−(exp(z) − z)/2]. Based on a comparison of several candidate ρ–

functions for (2.13), Boudt, Dańıelsson, and Laurent (2010, 2013) recommend

the one associated with the Student-t density function with 4 degrees of free-

dom (t4):

ρt4(z) = −z + 0.8260 (1 + ν) log

(

1 +
exp(z)

ν − 2

)

.

It is important to highlight that we do not assume the innovations to follow

a Student-t4 but assume that in absence of jumps zt ∼ N(0, 1). The t4 is only

used in (2.13) to downweight the extreme observations and hence the jumps

in the objective function (2.13).

To sum up, we perform the estimation of the BIP–ARMA-BIP–GARCH

(or GJR) model in one step by minimising the objective function (2.13) with

δ = 0.975 in the weight function wMPY

kδ
(·) and ρ(·) = ρt4(·). We denote by µ̃t

and σ̃2
t the robust estimates of µt and σ2

t obtained by this method. They are

used in Equation (2.6) with critical value k given by (2.7) to test the presence

of jumps in the sample. Then, jumps (if detected) are filtered out from the

returns using (2.8) to finally obtain r̃t.

For the M-estimators for GARCH models which minimize the objective

function in (2.13), MY have shown consistency for stationary GARCH-processes.

Normality of the data is not required. These M-estimates are less sensitive to

outliers than the QML-estimate and they satisfy Huber (1981)’s first require-

ment for a robust estimate, that is the estimate should be highly efficient when

the observations are not subject to outliers. MY propose a modification of the
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M-estimator, called bounded M-estimator (BM). The BM-estimator includes

an additional mechanism that bounds the propagation of the effect of an outlier

on the subsequent predictions of the conditional variance. The BM-estimator

is also consistent and asymptotically normally distributed. In addition to sat-

isfying Huber (1981)’s first requirement for M-estimators, it also satisfies his

second requirement that replacing a small fraction of observations by outliers

should produce a small change in the estimator. Therefore, as shown by MY,

the BM-estimator has a high efficiency. In view of their findings, the second

robust method that we propose is expected to be more efficient that our first

method.

MPY propose robust (M-) estimates for ARMA models. On p. 826, they

write ‘We conjecture that similar results, consistency and asymptotic normal-

ity, hold when the observations follow a BIP-ARMA model.’ Similar properties

are expected to be found for the BIP-GARCH process. They would underpin

the proposed use of an ARMA-GARCH model for filtered return.

In the next section we shall provide simulation results for our test and

compare it with the test procedure of Franses and Ghijsels (1999) and with

the GAS approach.

3 Simulation

3.1 Data Generating Processes

In the Monte-Carlo simulation we simulate 1000 samples of size T = 2000 fol-

lowing a normal-AR(1)-GARCH(1,1) model with additive jumps as described

in Equations (2.1)-(2.4), with p = 1 and q = 0, µ = 0.05, φ1 = 0.3, ω = 0.05,

and α1 = 0.02, 0.03, . . . , 0.1 and β1 = 0.95 − α1.
7

The size of the jump process at in Equation (2.4) is specified as follows:

at = sign(rt)mσt, (3.1)

7Similar results have been obtained for other sample sizes, i.e. T = 500, 1000 and 3000
but results are not reported to save space.
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i.e. m times the conditional standard deviation of rt (i.e., σt), where m takes

any integer value between 0 and 6 to simulate very small jumps to large jumps.

Note that either m = 0 or It = 0 ∀t correspond to the case of no jump.

For the dummy variable It determining the arrival time of the jumps, we

consider either a Poisson distribution with constant intensity or fixed the ar-

rival times ex-ante such that jumps are equidistant and do not happen at the

very beginning or the end of the sample. Results being similar we only report

those for the equidistant jumps in order to save space. The number of jumps

per sample of T observations is set to 1, 2, 5, 10, 20 or 40 respectively.

3.2 Global spurious detection of jumps

Table 1 reports the rejection frequencies of the null that there is no jump in a

sample of T observations, i.e.

H0 : atIt = 0 ∀t for t = 1, . . . , T,

for the nine combinations of α1 and β1 parameter values. The percentage of

global spurious detection under the null of no jump (type I error) is expected

to be close to the nominal size λ.

Column labelled FG corresponds to Franses and Ghijsels’ test while those

labelled LLP correspond to our test. The value in parenthesis is the nominal

size of the test. We consider λ = 5% for both tests but also λ = 25% and 50%

for our test. Note that values of λ = 25% and 50% imply that one spurious

jump is expected to be found respectively every fourth and every second sample

of size T .

The critical values (C) of Franses and Ghijsels’ test have been obtained

by Monte-Carlo under the unrealistic assumption that α1 and β1 are known.8

8The main drawback of their approach is that the critical values depend on T (which
is known) but also on unknown parameters (α1 and β1 in the GARCH(1,1) case) with
the undesirable consequence that on real data one cannot control the type I error (false
detections). Using the true values of α1 and β1, the simulated critical values for C we
obtained for a sample of T = 2000 observations and a nominal size of 5% are 12.2373,
12.8625, 13.2743, 14.064, 14.7861, 15.7598, 16.5336, 18.2659, 18.7718, respectively for the
nine combinations of α1 and β1 parameters considered in the Monte-Carlo experiment.
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Recall that critical values for our test are obtained using Equation 2.8.

Results suggest that both tests do not suffer from large size distortions

irrespectively of the values of α1 and β1.
9

3.3 Ability to detect actual jumps

Another issue of interest is the power of the test. We define the proportion

of correct (resp. false) jump detections as the average number (over the 1000

replications) of correctly (falsely) detected jump days.

Figure 2 plots the proportion of correct jump detections as a function of m

(proportionality factor of the magnitude of jumps) for T = 2000. The critical

level of the tests is set to 5%. Recall that jumps are equally spaced and the

number of jumps per sample equals 1, 2, 5, 10, 20 or 40.

This figure clearly suggests that our test (bottom) has a much higher power

to detect the actual jumps than Franses and Ghijsels’s (1999) test. For in-

stance, the proportions of correct jump detection in presence of 20 additive

jumps of magnitude 4 and 5 conditional standard deviations equal respectively

18.29% and 55.17% for Franses and Ghijsels’s (1999) test while they are equal

to 71.12% and 99.67% for our test (at the 5% level).

Furthermore, it emerges from these figures that unlike Franses and Ghi-

jsels’s (1999) test, our test is not sensitive to percentage of jumps in the sam-

ple. Indeed, the proportion of correct jump detections of Franses and Ghijsels’s

(1999) test declines sharply with the number of jumps in the sample and even-

tually tends to zero when the number of jumps is sufficiently large (problem

known in the robust statistics literature as outlier masking as in the presence

of jumps the estimated standard-errors are large compared to the estimate of

at rendering the test insignificant).

The power of the test is of course a function of its critical level. However, as

explained in the previous sub-section, the expected number of spurious jumps

in a sample of T observations equals λ and is therefore necessarily smaller than

1 (irrespectively of the sample size).

9Results reported in this paper were obtained using the programming language Ox version
6.0 (Doornik, 2009) and G@RCH version 6.0 (Laurent, 2009).
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Figure 3 plots the power of our proposed test for 1, 2, 10 or 40 jumps for

the following critical levels: 5, 25 and 50%. This figure suggests that power

indeed increases substantially with λ, reason why in the application we choose

λ = 50% (or even more) and not the more conventional value of 5%.

3.4 Normality of innovations

Our test for additive jumps is based on the assumption that on days without

jumps, returns are conditionally Gaussian. It is thus important to use a test

for conditional normality on the filtered returns in addition to our test for

jumps. Indeed, a rejection of this assumption might invalidate our postulated

DGP and therefore our test.

Recall that in absence of jumps (i.e. r∗t = rt ∀t), the expected number

of spurious jumps for a sample of T observations equals λ < 1 and therefore

r̃t = rt almost surely for t = 1, . . . , T . Consequently, the standardized returns,

obtained by re-estimating on r̃t the postulated model for rt (e.g. ARMA-

GARCH(1,1)) by Gaussian maximum likelihood, should be i.i.d.N(0, 1) under

the assumption of correct specification for rt. Similarly, in the presence of

jumps, and under the assumption that jumps have been correctly detected,

filtered returns r̃t (see Equation (2.7)) should approximately follow the postu-

lated model for rt.

Table 2 reports the rejection frequencies (over 1,000 replications) of the

normality test of Jarque and Bera (1987), denoted JB hereafter. The DGP

corresponds to the one presented in Section 3.2 but, to save space, we only

report results for α1 = 0.02 and β1 = 0.93. Jumps are tested using Franses

and Ghijsels’ test with λ = 5% (column FG(5%)) and our test with λ =

5, 25 and 50% (columns LLP (5%), LLP (25%) and LLP (50%) respectively).

The number of jumps (in r∗t ) per sample of T = 2, 000 observations is set

to 1, 2, 5, 10, 20 or 40. Frequencies reported in this table correspond to the

rejection frequencies of the JB test on the standardized residuals of an AR(1)-

GARCH(1,1) model estimated by Gaussian maximum likelihood on the filtered

returns r̃t (using the corresponding jumps statistic). The critical level of the
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JB test is set to 5%.

Results suggest that the lack of power of Franses and Ghijsels’s test, at

the 5% level, translates into an over-rejection of the JB test in presence of

jumps in r∗t , compared to our test. Results also suggest that for 1, 2, 5 and

10 jumps per sample, the rejection frequencies of the JB test are very close to

the nominal size for LLP (50%). For 20 and 40 jumps in the sample, the null

of normality is rejected too often for rather small jumps (i.e. for m = 2 or

3). This is due to the fact that all tests have low power to detect jumps when

m ≤ 3 (see Figures 2 and 3). Indeed, unlike very small jumps (i.e. m = 1),

small jumps (i.e. m = 2 or 3) that have not been detected and therefore not

filtered out in r̃t, seem to have a strong impact on the assumption of normality

of the standardized residuals of the normal-AR(1)-GARCH(1,1). This result

might suggest considering even higher values for λ but this is beyond the scope

of this paper.

3.5 Non-normality of innovations

In this section we investigate the behaviour of our test in absence of jumps but

when innovations are non-Gaussian.

Non-normal distributions have also been used to account for the presence

of large shocks. For instance, Bollerslev (1987) proposed to extend the above

specification by assuming zt in (2.2) to follow a standardized Student-t distri-

bution, i.e. zt
i.i.d.∼ ST (0, 1, υ), where υ is the number of degrees of freedom

of the Student-t distribution. The main drawback of GARCH models (even

with non-normal innovations) is that they assume that each shock (i.e. ε2
t−1)

has the same relative impact on future volatility, regardless of its magnitude.

However, this assumption is at odds with an increasing body of evidence indi-

cating that the largest shocks have a relatively small effect on future volatility

than smaller shocks. Harvey and Chakravarty (2008) and Creal, Koopman,

and Lucas (2012) recently and independently proposed a modification to the

GARCH model derived from the conditional score of the assumed distribution

with respect to the second moment. Those models are called either Generalized
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Autoregressive Score (GAS) or Dynamic Conditional Score (DCS) models and

are described in Appendix 2. They assume that observed returns are described

by Equations (2.1)-(2.2), where zt is usually assumed to follow a non-normal

distribution and σ2
t = ω + α1w(z2

t−1)σ
2
t−1 + β1σ

2
t−1, where w(.) is a function

that possibly downweights and bounds the effect of past shocks. In the Gaus-

sian case, w(z2
t−1) = z2

t−1, their model reduces to the standard GARCH model

and therefore the impact of a shock is unbounded. However, for non-normal

distributions, large shocks are downweighted and have a smaller effect on fu-

ture volatilities than in GARCH models. For instance if zt ∼ ST (0, 1, υ), the

function w(z2
t−1) =

(ν+1)z2

t−1

ν−2+z2

t−1

downweights and bounds the effect of large shocks

(i.e. w(z2
t−1) < z2

t−1 and max[w(z2
t−1)] = ν + 1 < ∞ if ν < ∞). Several exten-

sions of the GAS model are discussed in Appendix 2, including the case with

Skewed-Student innovations and an EGARCH-type version with and without

leverage effect.

GAS-type models with non-normal distributions do not contain additive

jumps and therefore our test is not appropriate in this case. To investigate the

role of the JB test discussed in then previous section, we consider the AR(1)-

GAS(1,1) model of Harvey and Chakravarty (2008) with zt ∼ ST (0, 1, υ), as

described in Appendix 2, with the same parameter values as in Section 3.4

(with ψ1 = α1 + β1).

We simulated 1, 000 series of T = 2, 000 observations and applied our test

with λ = 50%, relying on the BIP–AR(1)-BIP–GARCH(1, 1) model to esti-

mate µ̃t and σ̃2
t . Recall that there is no additive jump in the DGP.

Results, reported in Table 3, suggest that, as expected, the proportion of

jumps detected by our test increases with 1/υ and is maximised for υ = 3 (i.e.

1.372% of jumps). The JB test presented in Section 3.4 has also been applied

to the standardized residuals of the AR(1)-GARCH(1, 1) model estimated by

Gaussian ML on the filtered returns r̃t. Interestingly, the rejection frequency

of the test of normality is very high and is close to 100% for values of υ < 7,

i.e. values that are commonly found for real data.

To conclude, our test is based on the assumption that the non-contaminated

returns rt are conditionally Gaussian and requires the use of a robust para-
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metric model to estimate the first two conditional moments of rt in the likely

presence of jumps. A misspecification of those conditional moments and/or a

violation of the assumption of conditional normality might distort the prop-

erties of our test. We investigated a procedure involving a test of normality

on the standardized returns of a model estimated on the filtered returns r̃t

and found it to have nice properties: relatively good size and very good power

against the GAS model of Harvey and Chakravarty (2008) with Student-t

innovations.

3.6 Bias, RMSE and 95% coverage probability

We now investigate the finite sample properties of three estimation methods,

i.e.

• Gaussian (Quasi-)ML (denoted QML in the graphs);

• M-estimator of the BIP-AR(1)–BIP-GARCH(1,1) as discussed in Section

2 of the paper (denoted BIP in the graphs);

• and Gaussian ML estimation on filtered returns r̃t using our proposed

detection rule, i.e. r̃t = r∗t − (r∗t − µ̃t)Ĩt, where Ĩt = I
(

|J̃t| > gT,λ

)

with

λ = 50% (denoted LLP(50%) in the graphs).

Figure 4 plots the empirical bias of µ, φ1, ω, α1 and β1 over the 1,000 repli-

cations as a function of the jump size m. In order to save space, we only

report the results for 10 jumps. The empirical bias of parameter θ is defined

as 1
1000

∑1000
i=1 (θ0 − θ̂i), where θ0 denotes the true parameter value and θ̂i its

estimate obtained from the ith sample. As expected, the Gaussian-ML esti-

mator of the AR(1)-GARCH(1,1) (denoted Gaussian-ML on r∗t in the graph)

is not robust to additive jumps and the bias increases with m.

We observe that the M-estimator of the BIP-ARMA–BIP-GARCH with

δ = 0.975 and ρ(·) = ρt4(·) (denoted BIP) and the Gaussian-ML on filtered

returns using our proposed jump test (denoted Gaussian-ML on r̃t with λ =

50%) are robust to jumps. Interestingly, for these two methods, the bias is
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found to be small for each parameter and independent of the magnitude of the

jumps.

Figure 5 plots the root mean square errors (RMSE) of the five parame-

ters. This figure also suggests that the M-estimator of the BIP-ARMA–BIP-

GARCH and the Gaussian maximum likelihood on filtered returns using our

proposed jump test perform very well. Furthermore, the loss of efficiency com-

pared to the Gaussian-ML is very small in absence of jumps.

Finally, Figure 6 plots the 95% coverage probabilities for the five param-

eters as a function of m for the case of 10 jumps in the sample. The 95%

coverage probability of parameter θ corresponds to the number of times the

true value θ0 falls within the confidence interval θ̂i ± 1.96

√

var(θ̂i) divided by

the number of replications. Muler and Yohai (2008) have proved the asymp-

totic normality of the M-estimator of the BIP-GARCH(1,1) model and derived

the asymptotic variance in the particular case of zero conditional mean and in

absence of jumps. Our simulation set-up includes an AR(1) in the conditional

mean as well as jumps and, as far as we know, the asymptotic distribution

of the M-estimator is unknown. Therefore, we do not report the 95% cover-

age probabilities for this estimation method but concentrate on the Gaussian

maximum likelihood on filtered returns (with λ = 50%).

Figure 6 suggests that this latter estimator has a 95% coverage probability

close to the theoretical value of 95% for each parameter, irrespective of the size

of the jumps.10 In absence of jumps, as expected the 95% coverage probabilities

of the Gaussian-ML on the raw returns deviate from their theoretical value

when m is large.

4 Application

In this section we perform two different applications. In Section 4.1, we apply

our test for additive jumps to exchange rate data and conduct an event study

on the days where jumps have been detected. In Section 4.2, we apply the test

to about 50 US stocks and filter out the detected jumps from the raw return

10We obtained similar figures for numbers of jumps different from those considered above.
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series. Then, we compare the forecasting performance of ARMA-GARCH(1,1)

and ARMA-GJR(1,1) models estimated on filtered returns with other models

(several GARCH but also GAS-type models) estimated on raw series.

4.1 Exchange rates

In the first application, we apply our test for additive jumps in ARMA-GARCH

models to the major exchange rates.11 Our objective is twofold. First, we

examine whether, once jumps have been filtered out from r∗t , the assumption

of conditional normality of r̃t holds for the exchange rate returns. Second, we

conduct an event study and check whether detected jumps have an economic

explanation.

This application is carried out on the US Dollar - Euro (USD-EUR), the US

dollar - British pound (USD-GBP) and the Japanese yen - US dollar (YEN-

USD) exchange rates over the period January 2005 - May 2011 (i.e. T = 1, 598

daily observations).12 We choose to apply our test to exchange rate returns for

two main reasons. First, exchange rates have known frequent and large dis-

continuities during the considered period and especially during the sub-prime

crisis in 2008-2009. Second, the literature on jumps and announcements (see

the survey of Neely, 2011 for this) concludes that many jumps appear to cor-

respond to macroeconomic announcement news. News on the occurrence of

central bank interventions in the FX market cause discontinuities in exchange

rate prices, as shown by Fair (2002) and Gnabo, Laurent, and Lecourt (2009).

Because this type of event is unexpected by the market, it leads market par-

ticipants to adjust their trading behaviour, conducting to some discontinuities

11For foreign exchange returns, symmetry (i.e. no leverage effect) is usually assumed (see
Hull, 2006 for instance). Bollerslev, Chow, and Kroner (1992) argue that “whereas stock
returns have been found to exhibit some degree of asymmetry in their conditional variances,
the two-sided nature of foreign exchange markets makes such asymmetries less likely”. In
most applications on exchange rate returns, the symmetric GARCH(1,1) is not rejected by
the data (both in-sample and out-of-sample) when compared to more sophisticated models
(of the same order) allowing for this asymmetric effect (e.g. GJR, EGARCH, TARCH). See
among others Hsieh (1989), Diebold and Nerlove (1989), Taylor (1986), Andersen, Bollerslev,
Diebold, and Labys (2001) and Hansen and Lunde (2005).

12Source: FRED (Federal Reserve Economic Data) website.
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in prices. Interestingly, unlike other central banks, the Bank of Japan has

continued to intervene actively during the last ten years.

Figure 7 plots the daily returns in % of the three exchange rates (solid line)

and the detected jumps. Three critical levels are considered, i.e. λ = 50, 75

and 95%. The critical values g1598,λ are respectively 3.52724, 3.34678 and

3.14617. Returns identified as being contaminated by an additive jump at

least at the 50, 75 and 95% levels are highlighted respectively by a square,

circle and triangle.

Table 4 reports the Jarque-Bera statistic (and its p-value in parentheses)

computed on the standardized residuals of an ARMA-GARCH(1,1) with Gaus-

sian innovations estimated on the raw returns and the filtered returns r̃t (for the

three critical levels). Not surprisingly, the assumption of conditional normality

is rejected in all cases for the models estimated on raw returns. Interestingly,

this assumption is not rejected at the 5% level when this model is re-estimated

on the filtered returns r̃t with λ ≥ 50% for the USD-EUR and for λ = 95% for

the other two series. The number of detected jumps (reported between squared

brackets) is very small, i.e. between 5 (i.e. 0.31%) and 15 (i.e. 0.94%). This

result suggests that the rejection of the assumption of conditional normality

in the three daily exchange rate returns is due to less than 1% of large jumps.

Tables 5-7 report the dates of all the detected jumps, our jump statistic

|J̃t| and in the last column, labelled ‘News’, real-time financial news and infor-

mation released around jump arrival days using the Factiva database in order

to examine their association with jump arrivals.13 Sources used in the Factiva

search include Dow Jones and Reuters newswires.

Importantly all the detected jumps have been largely documented by the

newswires services and all news reports extracted the same day as jump ar-

rivals correspond with economic events. One important event is for example

the intervention of the Japanese monetary authorities in the FX market, uni-

laterally the 15th of September 2010 and jointly with the G7 very recently,

13The purpose of this analysis is not to identify the direction of the causality between
jumps and these news. For this, we would need the timing of the discontinuities that create
jumps and compare it with the timing of the arrival of these news.
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on the 18th of March 2011. The largest jumps detected in 2008 and 2009 are

related to the global financial crisis. The jumps detected on the 19th of March

2009 are common to the three exchange rates. It is due to a fall of the US dol-

lar, consequence of a massive purchase of $300 billion of long-term Treasuries

securities by the US Federal Reserve.

4.2 US stocks

In this section, we apply our test on US stock return data and filter out the

detected jumps using Equation (2.7). Then, we compare the forecasting per-

formance of ARMA-GARCH and ARMA-GJR models estimated on filtered

returns r̃t with that of other models (GARCH-type models but also GAS-type

models) estimated on raw returns.

Data: The data (provided by TickData) consists of transaction prices at

the 5-minute sampling frequency for N = 49 large capitalization stocks from

the NYSE, AMEX NASDAQ, covering the period from January 4, 1999 to

December 31, 2008 (2,489 trading days). The trading session runs from 9:30

EST until 16:00 EST. Several models are estimated on daily log-returns in %

(obtained by summing 5-minute log-returns) on rolling windows of 980 obser-

vations.

Set of competing models: We consider M = 14 models in the set of com-

peting models, all estimated by ML.

The models are classified in three groups.

• Group 1: GARCH. The first group is made up of the following six

GARCH-type models: ARMA-GARCH(1,1) and ARMA-GJR(1,1) mod-

els with a Normal, Student-t and Skewed-Student distribution respec-

tively (see Appendix 1 for the Skewed-Student distribution).

• Group 2: GAS. The second group of six models consists of the ARMA-

GAS(1,1), ARMA-EGAS(1,1) and ARMA-AEGAS(1,1) models (see Ap-

pendix 1 for the models) with Student-t and Skewed-Student distribu-

tions.
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• Group 3: BIP. Finally, the third group consists of the following two mod-

els: ARMA-GARCH(1,1) and ARMA-GJR(1,1) models with a Normal

distribution estimated on the filtered returns r̃t, as given in Equation

(2.7), where jumps are obtained using (2.6). The conditional moments

µ̃t and σ̃2
t entering in the equation defining J̃t are estimated by mini-

mizing the objective function (2.13) of the BIP version of the model,

i.e. respectively a BIP–ARMA-BIP–GARCH(1,1) or BIP–ARMA-BIP–

GJR(1,1) model, on the raw returns r∗t (as described in Section 2.2). Like

in the simulation study, we set δ to 0.975 in the weight function wMPY

kδ
(·)

and choose ρ(·) = ρt4(·). The critical value (k) of our jump detection

rule is the one given in Equation (2.8), with λ = 0.5 meaning that the

probability of finding at least one spurious additive jump under the null

of no jump in the data equals 50%.

Models in Groups 1 and 2 (resp. 3) are estimated on the raw (resp. filtered)

return series.

Forecasting: The models are estimated on the first 980 observations. h-step-

ahead forecasts of the conditional variance are then computed for h = 1, . . . , 10.

Let us denote σ̂2
n,m,t+h|t, the h-step-ahead forecast of the conditional variance

of day t + h for series n = 1, . . . , N given all the information up to day t for

model m = 1, . . . ,M . The models are re-estimated every 50 days, on a rolling

window of 980 observations. The total number of h-step-ahead forecasts is

therefore about 1, 500 for every model. For the models belonging to Group 3

(i.e. estimated on filtered returns), each time a new observation comes in, our

test is applied to this new observation and it is filtered using Equation (2.7) if

|J̃t| > g980,0.5 before producing the forecasts.

Proxy: The evaluation of the forecasting performance of volatility models

is challenging since the variable of interest (i.e. the quadratic variation of day

t + h for series n, denoted σ2
n,0,t+h) is unobservable and therefore a proxy is

needed to rank the competing models. Given the widespread availability of

intraday prices of various financial assets, Andersen and Bollerslev (1998a)

have proposed to estimate the quadratic variation with the so-called realized
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volatility, computed as the sum of intraday squared returns (5-minute returns

in our case). The most fundamental feature of realized volatility is that it

provides, under some conditions, a consistent non-parametric estimate of the

price variability that has transpired over a given discrete interval.

Loss function: The h-step-ahead forecasts of the competing models are com-

pared with realized volatility (computed over the same time-horizon). In the

presence of outliers (or jumps), Preminger and Franck (2007) recommend us-

ing forecast performance evaluation criteria that are less sensitive to extreme

observations. For this reason we rely on the Mean Absolute Deviation (MAD),

defined as follows:

Ln,m,t+h|t =
∣

∣σ2
n,0,t+h − σ̂2

n,m,t+h|t
∣

∣ , (4.1)

where Ln,m,t+h|t is the MAD corresponding to the h-step-ahead volatility fore-

casts produced by model m for series n.

Hansen and Lunde (2006), Laurent, Rombouts, and Violante (2013) and

Patton (2011) show that the substitution of the underlying volatility by a

proxy may induce a distortion in the ranking i.e., the evaluation based on the

proxy might differ from the ranking that would be obtained if the true target

was used. However, such distortion can be avoided if the loss function has a

particular functional form or when the proxy is accurate enough. Monte-Carlo

simulation results reported in Laurent, Rombouts, and Violante (2013) sug-

gest that when the proxy is computed from sufficiently high frequency returns

(e.g., 5-minute returns like in our case), all loss functions deliver the expected

ranking (i.e., the one based on the true variance), which justifies our choice.

Statistical test on the loss differentials: The model confidence set (MCS)

approach of Hansen, Lunde, and Nason (2011) is used to compare the fore-

casts. Given a universe of model-based forecasts, the MCS allows us to identify

the subset of models that are equivalent in terms of forecasting ability (using a

certain loss function), but outperform all other competing models. Implemen-

tation of this test has been done using the Ox software package MULCOM

of Hansen and Lunde (2007). We set the confidence level of the MCS test
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to 10% and used 10,000 bootstrap resamples (with block length of 5 observa-

tions). On equity data, Laurent, Rombouts, and Violante (2012) find that the

relative performance of volatility models depends strongly on the state of the

market. We therefore distinguish between the calm period of 2002–2007 and

the full period 2002–2008 (that includes the more turbulent period 2007-2008).

Results: The proportion of jumps detected by our test, where µ̃t and σ̃t are

obtained using a BIP–ARMA-BIP–GJR(1,1) model14 and λ is set to 50% is

reported in Table 8. Recall that the parameters of the model are kept constant

during 50 days. The model is therefore re-estimated every 50 days on a rolling

window of 980 observations. The percentages reported in the table correspond

to the total number of detected jumps in the whole sample divided by the

total number of trading days (2,489). The percentage of detected jumps varies

between about 1 and 3%.

The assumption of conditional normality in absence of jumps is crucial for

our test to be applicable. Results not reported here to save space suggest that

the assumption of conditional normality is rejected for all stocks for the models

estimated on raw returns. Table 8 also reports the mean and variance of the p-

value of the Jarque-Bera test computed on the innovations of the ARMA-GJR

estimated on the filtered returns r̃t. Those descriptive statistics are computed

over the 1,500 p-values obtained from the innovations of the model used for

producing the h-step-ahead forecasts. Interestingly, the assumption of condi-

tional normality holds for all stocks because the means of the p-values are much

greater than the conventional significance levels (for instance 60% for AAPL)

and the variances of the p-values are rather small. Like for the exchange rate

series, this result suggests that the rejection of conditional normality in the raw

returns is due to a very small proportion of jumps that our test successfully

detected.

The GARCH models, provided they are correctly specified, should deliver

asymptotically unbiased forecasts of σ2
n,0,t+h, that is of the quadratic variation.

14We choose to report results based on the BIP–ARMA-BIP–GJR(1,1) and not the BIP–
ARMA-BIP–GARCH(1,1) because for most stocks, negative shocks have a deeper impact
on volatility than positive shocks of the same magnitude.
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To the extent that jumps are present and have been filtered out correctly, the

GARCH models estimated on filtered returns should provide asymptotically

unbiased forecasts of the conditional variance of the continuous component of

the process. From the results of the MCS test in Table 9 for the full period

and h = 1, it becomes apparent that GAS models estimated on the raw data

(Group 2) and GARCH-type models estimated on filtered returns (Group 3)

appear in the MCS with a much higher frequency than the GARCH-type

models estimated on the raw data (Group 1). Interestingly, the performance

of the GARCH-type and GAS-type models deteriorates when the forecasting

horizon h increases. Indeed, for h > 4, models estimated on filtered returns

belong to the MCS in about 94 to 98% of the time against 60 to 47% and

about 63% respectively for the GARCH and GAS models estimated on raw

data. The difference is even more striking for the period 2002-2007 for which

those models belong to the MCS in only 12 to maximum 30% of the time. The

GAS models might then suffer from some misspecification too but to a much

smaller extent than the GARCH model.

An issue for future research concerns the performance of volatility forecasts

at various horizons based on the sum of the forecast of the continuous and jump

components.

5 Conclusion

It is well known that high-frequency returns of most financial assets exhibit

volatility clustering but also large jumps caused by big surprises. However,

these jumps affect future volatility less than what standard volatility mod-

els would predict (see Andersen, Bollerslev, and Diebold, 2007; Harvey and

Chakravarty, 2008; Muler and Yohai, 2008 among others).

Building upon the BIP-ARMA and BIP-GARCH models of respectively

Muler, Pena, and Yohai (2009) and Muler and Yohai (2008), and in line with

the proposal of Äıt-Sahalia and Jacod (2012a) to distinguish between a ‘contin-

uous’ and a jump component when modelling financial time series, we proposed

a new test for additive jumps in ARMA-GARCH models. The distribution un-
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der the null hypothesis of the proposed test follows from the consistency and

asymptotic normality of the parameter estimators as proved by Muler and

Yohai (2007). Our Monte-Carlo simulation study suggests that the test does

not suffer from any size distortion and has a very good power to detect the ac-

tual jumps in finite samples. Besides that, unlike Franses and Ghijsels’s (1999)

test, the critical values of our test do not depend on the unknown parameters

of the GARCH model and the power of the test does not seem to depend on

the number of jumps in the sample.

We highlighted the crucial role of the assumption of conditional normality

of the non-contaminated returns rt. However nothing guarantees to find con-

ditional normality of the filtered returns r̃t after applying our jump removing

procedure to real data. Our Monte-Carlo simulation results suggest that when

the DGP is a GAS or GARCH model with Student-t innovations, spurious

jumps are detected by our test and a Jarque-Bera test has very good power to

detect conditional non-normality of the filtered returns.

We applied our test on daily returns and detected less than 1% of jumps

for the three exchange rates and between 1 and 3% of jumps for all the stocks

considered in the application (about 50 large capitalization stocks from the

NYSE). Interestingly, we failed to reject the assumption of conditional nor-

mality of the filtered returns in all cases. For US stocks, we compared the

forecasting power of a group of GARCH-type models estimated on filtered re-

turns and two groups of models estimated on raw data. Using the MCS test of

Hansen, Lunde, and Nason (2011) and realized volatility to approximate the

true variance, the supremacy of the former group has been established. This

result suggests that standard-GARCH models estimated on filtered returns

outperform other models, including GAS-type models.

Appendix 1: Franses and Ghijsels’ Test for Jumps

Franses and Ghijsels (1999) adapt the procedure of Chen and Liu (1993) for

additive outlier detection in ARMA models to make it applicable for GARCH

models with additive jumps. They consider that if a jump occurs at time
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t, instead of observing rt, one observes the contaminated return r∗t , where

the contamination is defined through the squared error process, i.e. (ε∗t )
2 =

(ε2
t + wtIt), where wt, with −ε2

t < wt < +∞, is the size of the additive jump

in the squared residuals. From (ε∗t )
2 one can recover the contaminated returns

by taking its square root and by further imposing that ε∗t and εt have the same

sign, i.e. ε∗t = sign(εt)
√

ε2
t + wtIt, where sign(x) = 1 if x ≥ 0 and -1 otherwise.

This yields the following DGP for the observed return series r∗t :

r∗t = rt(1 − It) + (µt + ε∗t )It

= (µt + εt) + (µt + ε∗t − µt − εt)It

= rt + (ε∗t − εt)It, (5.1)

where rt is defined as in (2.1)-(2.3). Note that Equation (5.1) is a particular

case of Equation (2.4), where at = ε∗t − εt.

The procedure of Franses and Ghijsels (1999) to test for additive outliers

in GARCH models is summarised here below:

1. Estimate an ARMA-GARCH(1,1) model by (Quasi-)Maximum Likeli-

hood on the observed returns r∗t by neglecting the potential presence of

jumps in the data (i.e. by replacing rt in (2.1)-(2.3) by r∗t ) and compute

σ̂2
t and v̂t = (r∗t − µ̂t)

2 − σ̂2
t .

2. Compute tξ̂(τ), the t-statistic for the estimated slope coefficient ξ̂(τ) of

the regression of v̂t on xt, where xt = 0 for t < τ , xτ = 1 and xτ+k = −πk

for k = 1, . . . and π(L) = (1−β1L)−1(1− (α1 +β1)L) for a GARCH(1,1).

They use an estimate of the variance of the error term of this regression

that is robust to the potential jump occurring at time t = τ . See Franses

and Ghijsels (1999) for more details.

3. Obtain tmax(ξ̂) ≡ max
1≤τ≤T

|tξ̂(τ)| and compare it with a critical value de-

noted by C. If tmax(ξ̂) > C, the observation for which the t-statistic

corresponds to tmax(ξ̂) (say t = τ̂) is defined as contaminated by an

additive outlier and is cleaned in the next step.
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4. Clean the original series for the detected additive outliers by replacing

r∗τ̂ by µ̂τ + sgn(ε̂τ )

√

(r∗τ − µ̂τ )2 − ξ̂(τ), where sgn(x) = 1 if x ≥ 0 and -1

otherwise.

5. Return to step 1 and re-estimate model (2.1)-(2.3) on the cleaned returns.

6. Repeat steps 1-5 until tmax(ξ̂) no longer exceeds C.

Franses and Ghijsels (1999) recommend using C = 4 as critical value while

simulation results reported in Franses and van Dijk (2000) suggest that the

choice of C is not so trivial. Indeed, they show that the distribution of tmax(ξ̂)

under the null of no additive outliers varies not only with the number of obser-

vations T but also with the true but unknown values α1 and β1. For instance,

for T = 500, α1 = 0.1 and β1 = 0.5 the 95% quantile of tmax(ξ̂) (based on

1,000 replications) equals 10.94 while for α1 = 0.2 and β1 = 0.7 it is 16.93.

Note that Charles and Darné (2005) extend the above test for additive outliers

to take into account innovative outliers in a GARCH model, that is outliers

that reflect an endogenous change in a series and affect all future realizations

of the variable through the memory of its process.

Appendix 2: Generalized Autoregressive Score

(GAS) and Dynamic Conditional Score (DCS)

models

To present the new class of conditional variance models proposed by Harvey

and Chakravarty (2008) and Creal, Koopman, and Lucas (2012) (let us call

is GAS for simplicity), let us start with the model described in Equations

(2.1)-(2.2) and define Yt = {ε1, . . . , εt} a vector with the demeaned returns

up to time t. In GAS models, it is assumed that εt is generated by the very

general observation density f(εt|σ2
t , Yt−1; θ), t = 1, . . . , T , where θ is a vector

of unknown parameters describing the joint-distribution function of the data.

Note that in Model (2.1)-(2.2), and f(εt|σ2
t , Yt−1; θ) = 1√

2πσ2
t

exp(− ε2
t

2σ2

t

).

31



For a GAS(1,1) model, the updating equation for the conditional variance

σ2
t is not necessarily Equation (2.3) but the more general autoregressive up-

dating function:

σ2
t = ω +B1σ

2
t−1 + A1κt−1. (5.2)

Harvey and Chakravarty (2008) and Creal, Koopman, and Lucas (2012)

propose to update σ2
t with κt = St▽t, where ▽t is the score with respect

to the parameter σ2
t , i.e. ▽t = ∂ log f(εt|σ2

t , Yt−1; θ)/∂σ
2
t and St is a time

dependent scaling matrix.

Note that for Model (2.1)-(2.2), ▽t = ∂ − 0.5
(

log σ2
t + ǫ2tσ

−2
t

)

/∂σ2
t =

0.5(z2
t − 1)σ2

t which leads to Equation (2.3) if, in (5.2), κt−1 = St−1▽t−1

St−1 = 2, A1 = α1 and B1 = α1 + β1. The GARCH(1,1) is therefore a

GAS(1,1) when zt
i.i.d.∼ N(0, 1).

Indeed, let us rewrite the GARCH(1,1) model in (2.3) as follows:

σ2
t = ω + α1ut−1σ

2
t−1 + (α1 + β1)σ

2
t−1,

where ut−1 = z2
t−1−1 is proportional to the score of the conditional distribution

of εt with respect to σ2
t−1 and therefore is a natural choice of updating scheme

in a ‘Newton-Raphson’ sense.

The only difference between Harvey and Chakravarty (2008) and Creal,

Koopman, and Lucas (2012) is the choice of St. Creal, Koopman, and Lucas

(2012) recommend using St = 1 or St = (Et−1 ▽t ▽′
t)

−1 while Harvey and

Chakravarty (2008) set St to a constant. We follow Harvey and Chakravarty

(2008) and set St to 2.

This principle can be applied to any distribution. The specification of the

GAS(1,1) model of Harvey and Chakravarty (2008) combined with a normal,

Student-t (ST (0, 1, υ)) or Skewed-Student (SKST (0, 1, ξ, υ)) distribution15 is

given below:

σ2
t = ω + α1ut−1σ

2
t−1 + ψ1σ

2
t−1, (5.3)

15The log-likelihood of the standardized (zero mean and unit variance) skewed-Student of
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where

ut = z2
t − 1 if zt ∼ N(0, 1); (5.4)

ut =
(ν + 1)z2

t

ν − 2 + z2
t

− 1 if zt ∼ ST (0, 1, υ); (5.5)

ut =
(ν + 1)ztz

∗
t

(ν − 2)gtξLt

− 1 if zt ∼ SKST (0, 1, ξ, υ), (5.6)

where for the SKST,

z∗t = szt +m (5.7)

gt = 1 +
z∗2t

(ν − 2)ξ2Lt

(5.8)

m =
Γ
(

υ−1
2

)√
υ − 2

√
πΓ
(

υ
2

)

(

ξ − 1

ξ

)

(5.9)

s =

√

(

ξ2 +
1

ξ2
− 1

)

−m2. (5.10)

Bauwens and Laurent (2005), denoted SKST (0, 1, ξ, υ), is:

LSkSt = T

{

log Γ

(

υ + 1

2

)

− log Γ
(υ

2

)

− 0.5 log [π (υ − 2)] + log

(

2

ξ + 1

ξ

)

+ log (s)

}

− 0.5

T
∑

t=1

{

log σ2

t + (1 + υ) log

[

1 +
(szt + m)

2

υ − 2
ξ−2Lt

]}

,

where

Lt =

{

1 if zt ≥ −m
s

−1 if zt < −m
s

,

ξ is the asymmetry parameter, υ is the degree of freedom of the distribution,

m =
Γ
(

υ−1
2

)√
υ − 2

√
πΓ
(

υ
2

)

(

ξ − 1

ξ

)

,

and

s =

√

(

ξ2 +
1

ξ2
− 1

)

−m2.

Note that when ξ = 1, SKST (0, 1, 1, υ) = ST (0, 1, υ).
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Harvey and Chakravarty (2008) call the above GAS model with a Student-t

distribution ‘Beta-t-GARCH’ because, for this distribution, (ut + 1)/(ν + 1)

has a Beta distribution.

Note that ut being a rescaled conditional score, it holds that Et−1(ut) =

0 for the four distributions because it is a martingale difference sequence.

Consequently, E(σ2
t ) = ω/(1 − ψ1).

Figure 1 plots the conditional score function, ut, against the shocks zt for

a GARCH model and a GAS with a Student-t distribution with υ = 5 and a

SKST(0, 1, exp(−0.3), 5) distribution. For the GARCH model or equivalently

for a GAS with a normal distribution (upper solid line), an extreme observation

has a huge impact on ut and therefore, since α1 is expected to be positive

and ψ1 is usually close to 1, this extreme event will have a large and slowly

decaying effect on future volatility predictions. For the T with 5 degrees of

freedom, the effect of an extreme observation is bounded and therefore has

only a moderate impact. Large shocks are downweighted since z2
t appears both

in the numerator and denominator of (5.5). For the GARCH, and GAS with

Student-t distribution, the effect of a shock zt on the conditional score function

is symmetric. Interestingly, for the SKST distribution with ξ = exp(−0.3)

(dashed line), negative shocks have a deeper impact on ut and therefore on

future volatility predictions than positive shocks, which is a kind of leverage

effect.

Harvey and Chakravarty (2008) also considered an EGARCH-type version

of this model (called Exponential GAS or EGAS). This model can be further

extended to account for leverage effect as follows,

log σ2
t = ω + α1ut−1 + γ1lt−1 + ψ1 log σ2

t−1, (5.11)

where lt = sgn(−zt)(ut + 1) for the three symmetric distributions and lt =

sgn(−z∗t )(ut+1) for the SKST. Therefore E(lt) = 0 for symmetric distributions

and E(lt) = 1−ξ2

1+ξ2 for the Skewed-Student. This model is called AEGAS (for

Asymmetric Exponential GAS).
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Figure 1: ut vs. zt for a GARCH, BIP-GARCH (with δ = 0.975) and GAS
models with a ST (0, 1, 5), and SKST (0, 1, exp(−0.3), 5)
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Figure 2: Proportion of correct jump detections in function of m for a nominal
size λ = 5% and T = 2, 000
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Figure 3: Proportion of correct jump detections in function of m for a nominal
size λ = 5, 25 and 50% and T = 2, 000
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Figure 4: Bias as a function of the jump size m for the AR(1)-GARCH(1,1)
with parameter values µ = 0.05, φ1 = 0.3, ω = 0.05, α1 = 0.02 and β1 = 0.93
and 10 jumps per sample of T = 2, 000 observations
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the 10 equidistant jumps. The estimation methods are: Gaussian-ML on r∗t , M-estimator

of the BIP-ARMA–BIP-GARCH with δ = 0.975 and ρ(·) = ρt4(·) (denoted BIP) and
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Figure 5: RMSE as a function of the jump size m for the AR(1)-GARCH(1,1)
with parameter values µ = 0.05, φ1 = 0.3, ω = 0.05, α1 = 0.02 and β1 = 0.93
and 10 jumps per sample of T = 2, 000 observations
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Figure 6: 95% coverage probabilities as a function of the jump size m for the
AR(1)-GARCH(1,1) with parameter values µ = 0.05, φ1 = 0.3, ω = 0.05, α1 =
0.02 and β1 = 0.93 and 10 jumps per sample of T = 2, 000 observations
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Figure 7: Daily returns in % of the three exchange rates over the period
January 2005 - May 2011 and detected jumps
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Table 1: Rejection frequencies under H0 of no jumps for T = 2000

α1 β1 FG(5%) LLP(5%) LLP(25%) LLP(50%)
0.02 0.93 7.4 5.3 26.3 48.8
0.03 0.92 7.7 4.9 25.4 49.3
0.04 0.91 5.6 4.0 26.0 49.0
0.05 0.90 7.8 3.7 25.6 49.0
0.06 0.89 6.5 4.4 22.6 47.0
0.07 0.88 7.5 5.3 24.8 50.0
0.08 0.87 6.2 5.0 24.6 48.4
0.09 0.86 8.3 4.4 25.6 48.9
0.10 0.85 6.0 3.9 25.2 49.1

Column labelled FG corresponds to Franses and Ghijsels’ test while those la-
belled LLP correspond to our proposed test. The value in parenthesis is the
nominal size (λ) of the test. The DGP is (1 − 0.3L)(rt − 0.05) = εt, where

εt ≡ σtzt, zt
i.i.d.∼ N(0, 1) and σ2

t = 0.05 + α1ε
2
t−1 + β1σ

2
t−1.
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Table 2: Rejection Frequencies of Jarque-Bera’s test on the standardized resid-
uals of a normal-AR(1)-GARCH(1,1) on r̃t. Nominal size = 5%

Jumps m FG(5%) LLP (5%) LLP (25%) LLP (50%)
1 1 4.8 4.5 3.7 3.7

2 5.1 5.1 3.5 3.3
3 7.0 6.4 4.2 3.8
4 7.1 6.4 3.8 3.7
5 5.3 4.9 3.8 3.8
6 5.2 4.9 3.8 3.8

2 1 5.5 5.2 4.1 4.3
2 6.1 6.0 4.2 3.7
3 10.5 8.8 4.2 3.3
4 10.1 8.6 3.9 3.9
5 5.6 5.1 3.9 3.9
6 6.0 5.1 3.9 3.9

5 1 5.0 4.4 3.7 3.6
2 8.0 7.1 4.1 3.5
3 34.8 30.0 8.1 4.1
4 23.8 18.3 3.8 3.5
5 9.1 5.4 3.7 3.6
6 8.3 5.3 3.8 3.6

10 1 5.1 5.1 4.0 3.7
2 20.6 18.8 8.3 3.7
3 83.5 78.4 27.7 8.9
4 67.2 44.9 4.7 3.0
5 9.4 5.2 3.2 3.2
6 13.5 4.8 3.2 3.2

20 1 5.8 5.5 3.0 3.2
2 51.0 47.9 24.2 10.9
3 99.9 99.8 87.8 44.7
4 100.0 91.3 11.8 4.4
5 53.5 6.9 3.9 3.6
6 52.3 6.5 4.0 3.7

40 1 6.5 6.2 3.8 3.7
2 91.1 89.8 69.6 45.8
3 100.0 100.0 100.0 99.3
4 100.0 100.0 57.9 9.5
5 100.0 13.0 6.2 5.0
6 100.0 9.1 6.1 4.8
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Table 3: Simulation results for an AR(1)-GAS(1,1) model with zt ∼
ST (0, 1, υ).

υ % Jumps Rej. Freq. JB(5%)
3 1.372 100.0
4 0.812 100.0
5 0.511 99.9
6 0.363 99.2
7 0.275 96.5
8 0.206 91.6
9 0.165 86.8
10 0.134 80.4
11 0.115 73.1
12 0.095 64.7
13 0.080 60.2
14 0.073 54.2
15 0.065 49.8

Column ‘% Jumps’ reports the %age
of spurious jumps detected by our test
LLP (50%) when the DGP is an AR(1)-
GAS(1,1) with ST (0, 1, υ) innovations.
Column ‘Rej. Freq. JB(5%)’ corre-
sponds to the rejection frequency of
the JB test (at the 5% critical level)
on the standardized residuals of an
AR(1)-GARCH(1,1) model estimated
by Gaussian ML on the filtered returns
r̃t (with λ = 50%).
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Table 4: Jarque-Bera test and number of detected jumps for the exchange rate
series

USD-EUR USD-GBP YEN-USD
Normal-ARMA-GARCH(1,1) 26.925 18.505 625.672
on raw data (0.0000) (0.0000) (0.0000)

Normal-ARMA-GARCH(1,1) 1.615 11.001 8.862
on r̃t with λ = 50% (0.4460) (0.0041) (0.0119)

[5] [6] [12]

Normal-ARMA-GARCH(1,1) 0.326 6.523 7.103
on r̃t with λ = 75% (0.8493) (0.0383) (0.0287)

[7] [8] [13]

Normal-ARMA-GARCH(1,1) 0.324 4.705 5.438
on r̃t with λ = 95% (0.8502) (0.0951) (0.0659)

[9] [10] [15]

Note: Jarque-Bera statistic computed on the standardized residuals of an
ARMA-GARCH(1,1) estimated on the raw data and the filtered returns r̃t

(using our test statistic with λ = 50, 75 and 95%). Numbers in parentheses are
the p-values based on the asymptotic distribution of the JB test while numbers
between squared brackets are the number of detected jumps.
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Table 5: Detected jumps and financial news on the USD-EUR exchange rate over the period January 2005 - May
2011

Date |J̃t| News
2005-05-31 3.77 The euro fell sharply on Wednesday as a report that the failure of European monetary union (EMU) had been discussed at a

meeting that included senior German policy makers jangled the market’s already frayed nerves (Reuters news, 31/05/2005).
2006-06-30 3.92 The dollar tumbled Thursday after the Federal Reserve surprised investors with a policy statement the market took as sign of a

pause in the central bank’s tightening cycle. While the Fed’s decision to raise its benchmark interest rate by 25 basis points to
5.25% was largely expected, the accompanying policy statement caused the dollar to drop immediately (Dow Jones, 30/06/2006).

2008-08-08 3.77 The euro extended losses versus a broadly stronger dollar on Friday to fall more than 1 percent as concerns about the region’s
growth outlook weighed on the European currency. The euro has been pressured after investors interpreted comments from
European Central Bank President Jean-Claude Trichet on Thursday that growth had slowed more than expected as a sign that
euro zone rates are unlikely to rise (Reuters news, 8/10/2008).

2008-09-22 3.22 The U.S. dollar tumbled, hitting multiweek lows against the euro and against sterling Monday as the U.S. government’s bailout
plan to ease a financial credit crisis reignited worries about the country’s massive budget deficit (Reuters news, 22/09/2008).

2008-12-17 3.16 The euro extended its decline against the dollar Thursday afternoon, dropping below $1.4200.The common currency fell under
pressure Thursday after the European Central Bank announced that it will cut the rate of interest on deposits held at the central
bank in an attempt to discourage inflows (Dow Jones, 18/12/2008).

2009-03-19 5.01 The U.S. dollar hit a two-month low on Thursday after its biggest one-day fall in at least 25 years when the U.S. Federal Reserve
announced it would buy long-dated debt, a move that also lifted stock markets sharply (Reuters news, 19/03/2009).

2011-01-13 3.43 The euro notched its biggest rise against the dollar in more than six months on Thursday following solid European debt auctions
and after the head of the European Central Bank cited risks of short-term inflation pressures (Reuters news, 13/01/2011).

2011-04-18 3.48 The euro fell one percent against the dollar on Monday, pressured by talk of possible debt restructuring in Greece and uncertainty
about Portugal’s bailout after a strong showing by a euro-sceptic party in Finnish elections (Reuters news, 18/04/2011).

2011-05-05 3.76 The euro tumbled below $1.46 Thursday and was on track for its worst day against the dollar since November after the European
Central Bank signaled that interest rates were unlikely to rise next month (Reuters news, 05/05/2011).
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Table 6: Detected jumps and financial news on the USD-GBP exchange rate over the period January 2005 - May
2011

Date |J̃t| News
2006-06-30 4.14 Sterling rallied one percent on the day against the U.S. dollar on Friday, extending gains after the U.S. Federal Reserve reinforced

market expectations it may be nearing the end of its two-year tightening cycle (Reuters news, 30/06/2006).
2008-08-13 3.23 Sterling was set for its biggest daily percentage loss this year on Wednesday, tumbling to a 22-month low versus the dollar after

new Bank of England inflation forecasts raised expectations of an interest rate cut (Reuters news, 13/08/2008).
2008-09-02 3.20 A hefty fall in oil prices boosted the dollar to a seven-month high against a basket of currencies, putting the pound under more

selling pressure after weekend comments from the UK finance minister that economic conditions are at their worst in 60 years
(Reuters news, 02/09/2008).

2008-09-12 3.59 Sterling rose on Friday, bouncing off a 2 1/2-year low against the dollar as weak U.S. economic data stalled a broad rally in the
U.S. currency, while investors trimmed bets on an imminent UK interest rate cut (Reuters news, 12/09/2008).

2008-10-22 4.15 Earlier in the day, sterling fell to a low of $1.6510, its lowest since September 2003, after Bank of England Governor Mervyn King
said on Tuesday that Britain’s economy is probably entering its first recession in 16 years (Reuters news, 22/10/2008).

2008-10-24 3.38 The pound’s sharp fall against the dollar on Friday after British output shrank for the first time in 16 years is not a condemnation
of the country’s economic policy, a junior finance minister said (Reuters news, 24/10/2008).

2008-10-29 4.04 Sterling extended early gains against a broadly softer dollar on Wednesday, taking a lead from rising stock markets as investors
eased up on extreme risk aversion that had dominated sentiment recently (Reuters news, 29/10/2008).

2008-11-12 3.42 Sterling was pummelled broadly on Wednesday, sliding below $1.50 versus the dollar to a near 6-1/2 year low, as the Bank of
England’s inflation report showed a fast-shrinking UK economy, clearing a path to more rate cuts (Reuters news, 12/11/2008).

2009-01-20 3.74 Sterling fell sharply on Tuesday as Britain’s latest bank rescue plan did little to assure investors about the ailing banking sector
and raised concerns about the government’s ability to service its ballooning debt (Reuters news, 20/01/2009).

2009-03-19 3.68 Sterling rose to a three-week high against the dollar on Thursday, reversing early losses, as the U.S. currency weakened broadly
after the U.S. Federal Reserve’s surprise move to buy long-term Treasuries (Reuters news, 19/03/2009).
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Table 7: Detected jumps and financial news on the YEN-USD exchange rate over the period January 2005 - May
2011

Date |J̃t| News
2005-07-21 4.73 The dollar fell sharply against the yen in Europe Thursday on news that China has revalued its currency, the yuan (Dow Jones,

21/07/2005).
2005-12-14 6.12 The dollar tumbled after a shift in rhetoric by the Federal Reserve following its interest rate rise on Tuesday signaled that the central

bank was one step closer to ending its 18-month credit tightening streak. A slightly weaker-than-expected Bank of Japan tankan
survey of business confidence gave the dollar a slight boost at first, but then an array of investors stepped in to sell, particularly
against the yen (Reuters, 14/12/2005).

2006-04-24 3.60 The dollar fell to a fresh three-month low against the yen on Monday, extending losses after the Group of Seven powers stepped
up pressure on China to let its yuan currency appreciate (Reuters, 24/04/2006).

2007-02-27 3.75 Dollar/yen rebounds to Y118.20 after a massive yen short-covering sends the pair to Y117.50 in the previous session. Traders say
expectations for Japanese corporate month-end dlr buying make speculators to trim short positions in early Tokyo trading (Reuters
news, 27/02/2007).

2007-08-16 4.89 Yen vols soar as investors scramble for protection.edge funds and portfolio managers are flocking to currency options for protec-
tion against bigger yen gains as market players abandon carry trades on the deepening problems in the credit market (Reuters,
16/08/2007).

2008-03-17 4.32 Asia Forex:Dlr Falls Again As Fed Fails To Calm Markets. The dollar tumbled to its lowest point in more than 12 1/2 years, hitting
Y95.77 in Asia on Monday as the Fed’s discount rate cut failed to calm markets amid growing fears of more U.S. bank write-downs
to come (Dow Jones, 17/03/2008).

2008-10-06 6.09 Yen holds hits huge gains against major currencies – posting biggest 1-day rise vs USD since the 1998 carry trade unwind – as
the credit crisis reaches a panic stage across global markets, spurring a massive unwind of carry trades and rush to the safe-haven
currency (Reuters news, 7/10/2008).

2008-10-08 3.21 The safe-haven yen edged up against the euro and other major currencies on Wednesday in calmer trade as investors awaited a
coordinated response by major powers to help stem the deepening credit crisis (Reuters news, 08/10/2008).

2008-10-24 5.26 The yen jumped to a 13-year high against the U.S. dollar and a nearly six-year high versus the euro in Tokyo on Friday, as Asian
stocks tumbled on worries of a prolonged global recession, leading investors to buy back the yen in a hurry to offload high-risk
investments (Dow Jones, 24/10/2008).

2009-03-19 5.18 US dollar slides to 2-month low after Fed move. The U.S. dollar hit a two-month low on Thursday after its biggest one-day fall
in at least 25 years when the U.S. Federal Reserve announced it would buy long-dated debt, a move that also lifted stock markets
sharply (Reuters, 19/03/2009).

2009-07-08 3.21 Japan could be one step closer to intervening in the foreign exchange market for the first time in five years as a soaring yen further
jeopardizes the country’s chances of pulling out of recession (Reuters news, 08/07/2009).

2010-02-04 3.37 The dollar and yen soared Thursday as fears about the euro zone’s worsening fiscal problems and a less-than-stellar U.S. jobless
claims report drove investors to abandon riskier assets for traditional safe havens (Reuters news, 04/02/2010).

2010-05-06 3.67 The U.S. dollar extended losses against the Japanese yen Thursday to trade at a session low, amid persisting fears of financial
contagion in Europe (6/05/2010, Reuters news).

2010-09-15 5.24 The yen fell sharply against the dollar Wednesday after Japan intervened in currency markets for the first time in more than six
years (Dow Jones, 15/09/2010).

2011-03-18 4.37 The dollar spiked about 2 yen to above 81 yen on Friday, after the G7 agreed on joint intervention in the wake of the yen’s surge
to a record high the previous day (Reuters news, 18/03/2011).
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Table 8: Mean and variance of the p-value of the Jarque-Bera test for the
ARMA-GJR estimated on the filtered returns r̃t and %age of detected jumps
for the US stocks (for λ = 50%)

Ticker Mean Variance % Jumps Ticker Mean Variance % Jumps
AAPL 0.600 0.038 1.768 JNJ 0.685 0.020 2.170
ABT 0.646 0.033 2.009 KO 0.792 0.014 1.647
AXP 0.814 0.007 1.125 LLY 0.278 0.024 1.728
BA 0.464 0.014 1.607 MCD 0.477 0.024 1.527
BAC 0.116 0.004 1.808 MMM 0.667 0.033 1.848
BMY 0.667 0.012 2.089 MOT 0.634 0.022 1.487
BP 0.819 0.010 1.647 MRK 0.227 0.017 2.089
C 0.476 0.028 2.250 MS 0.690 0.015 2.049
CAT 0.822 0.027 2.049 MSFT 0.352 0.027 1.969
CL 0.079 0.002 1.687 ORCL 0.575 0.014 1.446
CSCO 0.378 0.046 1.888 PEP 0.319 0.021 2.933
CVX 0.697 0.016 1.687 PFE 0.722 0.016 1.125
DELL 0.580 0.021 1.366 PG 0.437 0.018 2.652
DIS 0.649 0.115 1.326 QCOM 0.429 0.024 1.969
EK 0.846 0.015 2.853 SLB 0.692 0.050 1.326
EXC 0.641 0.035 1.969 T 0.819 0.017 1.728
F 0.818 0.009 1.848 TWX 0.101 0.004 2.611
FDX 0.159 0.016 1.808 UN 0.377 0.076 1.406
GE 0.204 0.010 1.487 VZ 0.249 0.013 1.045
GM 0.454 0.029 2.933 WFC 0.793 0.030 2.290
HD 0.528 0.010 1.446 WMT 0.803 0.025 1.647
HNZ 0.828 0.015 1.326 WYE 0.585 0.005 1.728
HON 0.719 0.069 1.848 XOM 0.336 0.028 1.125
IBM 0.768 0.021 1.527 XRX 0.158 0.003 1.928
INTC 0.405 0.020 1.286

Note: The mean and variance of the p-value of the Jarque-Bera test are com-
puted from the 1,500 p-values obtained from the innovations of the sequence of
models, each based on 980 observations, and used to produce the h-step-ahead
forecasts. Recall that the parameters of the model are kept constant during 50
days and that the model is therefore re-estimated every 50 days on a rolling
window of 980 observations.
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Table 9: Results of the MCS test

Groups
Period / h GARCH GAS BIP

Full period (2002-2008)
1 75.510 87.755 85.714
2 65.306 73.469 89.796
3 57.143 67.347 89.796
4 57.143 65.306 93.878
5 59.184 63.265 93.878
6 57.143 63.265 89.796
7 53.061 63.265 93.878
8 48.980 61.224 97.959
9 48.980 63.265 97.959
10 46.939 63.265 95.918
Calm period (2002-2007)
1 24.490 30.612 97.959
2 16.327 18.367 100.000
3 16.327 16.327 100.000
4 14.286 16.327 100.000
5 14.286 14.286 100.000
6 14.286 14.286 100.000
7 14.286 14.286 100.000
8 16.327 14.286 100.000
9 14.286 14.286 100.000
10 12.245 16.327 100.000
Note: % of times that a model belonging to the corresponding group is part
of the MCS (with significance level of 10% and 10, 000 bootstrap resamples
with block length of 5 observations). The groups are defined as follows.
Group 1: GARCH = {ARMA-GARCH(1,1) and ARMA-GJR(1,1)
models with a Normal, Student-t and Skewed-Student distribution.}
Group 2: GAS = {ARMA-GAS(1,1), ARMA-EGAS(1,1) and ARMA-
AEGAS(1,1) models with a Student-t and Skewed-Student distribution.}
Group 3: BIP = {ARMA-GARCH(1,1) and ARMA-GJR(1,1) models with a
Normal distribution estimated on filtered returns (r̃t), as given in Equation (2.7),
where jumps are obtained using (2.6).}

56


