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Abstract

The nonparametric smoothing technique with mixed discrete and continuous regressors is considered. It is generally admitted

that it is better to smooth the discrete variables, which is similar to the smoothing technique for continuous regressors but using

discrete kernels. However, such an approach might lead to a potential problem which is linked to the bandwidth selection for the

continuous regressors due to the presence of the discrete regressors. Through the numerical study, it is found that in many cases, the

performance of the resulting nonparametric regression estimates may deteriorate if the discrete variables are smoothed in the way

previously addressed, and that a fully separate estimation without any smoothing of the discrete variables may provide significantly

better results. As a solution, it is suggested a simple generalization of the nonparametric smoothing technique with both discrete

and continuous data to address this problem and to provide estimates with more robust performance. The asymptotic theory for the

new nonparametric smoothing method is developed and the finite sample behavior of the proposed generalized approach is studied

through extensive Monte-Carlo experiments as well an empirical illustration.

Keywords: Discrete regressors, Nonparametric regression, Kernel smoothing, Cross-validation, Local linear smoothing

1. Introduction

Rapid advance of computing power and wide availability of large data sets encourage many researchers to sub-

stantially increase their attention to various nonparametric methods for estimating nonlinear regression relationship.

One of the most popular nonparametric methods appears to be the local polynomial least squares method, considered

by Stone (1977), Cleveland (1979), Cleveland and Delvin (1988), Fan (1992, 1993), Fan and Gijbels (1992), Ruppert

and Wand (1994) and popularized by Fan and Gijbels (1996). This method has received even greater appeal when

it is substantially empowered by the seminal work of Racine and Li (2004), which suggests a neat way to deal with

discrete regressors in the context of nonparametric regression. Racine and Li’s work has inspired many interesting ap-

plications in a wide range of areas, for example, by Stengos and Zacharias (2006), Maasoumi et al. (2007), Parmeter

et al. (2007), Eren and Henderson (2008), Walls (2009), Hartarska et al. (2010), Henderson (2010), to mention just a

few. In these works where Racine and Li (2004)’s approach is used, researchers are able to obtain new insights with

much more confidence, as their approach is free from imposing any parametric form on the regression relationship,

while using both continuous and discrete regressors without splitting the sample into sub-samples for each value of

1Corresponding author. E-mail address: v.zelenyuk@uq.edu.au.
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the discrete variables. In most of the empirical as well as theoretical studies and software codes using the Racine and

Li (2004)’s approach that we are aware of, the way this approach is applied is in the “default” or simple form that we

will describe below.

Indeed, it became somewhat common to smooth the discrete regressors in local polynomial least squares almost

automatically, perceiving that one should obtain better results than if the nonparametric estimator is applied to each

group separately (see Li and Racine, 2007; and the references therein). While this perception appears to hold in

various cases and is supported by the simulations conducted by Racine and Li (2004) for the case of local constant

fitting, in this article we illustrate that in some cases it may not be the case and smoothing the discrete variables can

actually deteriorate substantially the resulting estimator of the regression function. In some situations, even, a fully

separate estimation for each group identified by the discrete (or categorical) variable may give more accurate results

(e.g., in terms of Mean Squared Error, MSE) than the approach with smoothing over the discrete variable. In these

cases, the reduction in variance, or the efficiency gain due to smoothing of the discrete regressors, can be outweighed

by a substantial bias introduced due to this smoothing. This may happen in both the small and relatively large samples,

and so, for such cases, it may be preferable to make a fully separate estimation for each group.

We will see below that the source of the problem comes from the bandwidth structure suggested by the basic or

default method appearing in the existing literature which we are aware of (see, for example, some references listed

above). In this bandwidth selection procedure, a “simple” bandwidth scheme is proposed for the continuous variables,

in the sense that the same bandwidth vector is taken across the various subgroups determined by the discrete variables,

and then the bandwidths for the continuous and for the discrete variables are simultaneously determined. Hence, even

if the resulting estimator of the bandwidth for a discrete variable takes the value of zero (i.e., no smoothing of this

discrete variable with separate estimation by groups), the resulting bandwidths for the continuous variables are still

restricted to be common to the various categories of the associated discrete variables. This may lead in some cases to

“over-smoothing” in some groups and “under-smoothing” in the others.

To fix the ideas, suppose that we use the local constant kernel method (Nadaraya-Watson) and that we have two

groups of observations (determined by one discrete variable) and only one continuous variable. Suppose in addition

that in one group, the variable is relevant (the derivative of the regression function with respect to this variable is not

zero), and in the other it is not relevant. In the latter group, the optimal bandwidth would converge to infinity as shown

by Hall et al. (2007), whereas in the first group, it may converge to zero. A fully separate analysis which indicates

“non-smoothing” on the discrete variable would capture this feature whereas the “simple-smoothing” would miss such

a feature. The latter approach will provide a common bandwidth for the continuous variable that will under-smooth

the regression in the group where the variable is irrelevant and over-smooth the regression in the group where it is

relevant. This extreme case seems obvious but apparently it has been overlooked in the existing literature. We can also

imagine less extreme situations where the phenomenon would be similar: small influence of the continuous variable

in one group and a more complex structure in the other. When the local polynomial smoothing is used, the same

problem would also appear if in one group the local polynomial approximation is not far from the true regression, but

the structure in the other is globally much more complex. For example, for the local linear case, the optimal bandwidth

would converge to infinity if the true regression is linear, or converge to zero if the true regression function is highly-

nonlinear (Li and Racine, 2004). Obviously, the problem can even be more severe when estimating the derivative

of the nonparametric regression function. We will briefly illustrate this point in one example below, showing the

consequences which the simple-smoothing method could lead to. To the best of our knowledge, this phenomenon has

never been analyzed in the literature using smoothing techniques for discrete variables. It is one of our objectives to

investigate the consequence of such issue.

In this paper, we introduce a simple way to generalize and improve the commonly used smoothing methods and

overcome the potential difficulties mentioned above. Specifically, in the bandwidth selection procedure, we allow

different bandwidth parameters for the continuous variables in different categories of the discrete variables. We call

this method the “complete-smoothing” approach in contrast to the simple-smoothing approach used in most of the

existing literature and to the non-smoothing approach where the groups are treated fully separately. This smoothing

approach is, of course, at a cost of somewhat higher computational complexity, but we will see later that the gain in

precision of the regression estimate can be substantial. We will limit the presentation to the case of categorical discrete

variables where each value of the discrete variables determines a group.

More generally and beyond the extreme cases described above, whether the bias beats the variance or not essen-

tially depends on the degree of difference of curvatures of the regression relationship pertinent to each group identified
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by the discrete variable and to some extent also depends on other aspects of the Data Generating Process (DGP) such

as the size of the noise. Thus, in general, a priori it is not clear whether it is better to smooth the discrete variables

or to do a fully separate estimation (unless the latter is hardly reliable or impossible due to very small data in a given

group) and, so far, there appears to be no formal rule of thumb for deciding on this dilemma. The complete-smoothing

approach, that we suggest below, not only allows for smoothing the discrete variables, but also uses different band-

widths for each group for the continuous variables. Since this encompasses both the non-smoothing approach and

the simple-smoothing technique as special cases, we can expect more robust performance of the complete-smoothing

approach, which will be investigated later in the paper.

One of the main messages of our paper is that when using the simple-smoothing approach, an additional as-

sumption on “similar degree of smoothness” with respect to continuous variables is implicitly imposed for different

categories of the discrete variables, and one should recognize or acknowledge it explicitly. Moreover, we show that

such an additional assumption can distort the estimates substantially. While many examples can be used to illustrate

the problem, we will deliberately take simple examples (a univariate continuous and univariate discrete variable to

avoid the potential curse of dimensionality problem), to vividly illustrate the point. We will also suggest a way to

overcome this problem, whenever it is numerically doable, and point out the numerical difficulties involved there as

well as open questions that still remain.

The rest of this paper is organized as follows. Section 2 recalls the basic methodologies of the local linear least-

squares method; Section 3 introduces the local linear complete-smoothing method and establishes the asymptotic

theory; Section 4 illustrates how severe the problem can be through some extensive Monte-Carlo experiments and

how the proposed complete-smoothing approach outperforms the simple-smoothing approach; Section 5 illustrates

the issue with a real data set and Section 6 concludes and summarizes our main findings. Some technical assumptions

and proofs of the theoretical results are given in Appendix A–C.

2. Local linear simple-smoothing

The point we aim to stress in this paper is a general phenomenon linked to nonparametric kernel-based regression,

but we illustrate it through a method that appears to be the most popular in practice: the local linear least squares

(LLLS) which is a particular case of local polynomial least squares (LPLS). Our remarks and suggestions could ob-

viously be applied to other nonparametric kernel-based estimation methods such as the local non-linear least squares,

and local linear quasi-likelihood methods (see, for example, Gozalo and Linton, 2000; Frölich, 2006; Park et al.,

2010). We summarize here the basic idea of the LLLS method, and can refer to Fan and Gijbels (1996), Pagan and

Ullah (1999), and Li and Racine (2007) for details. This method allows flexible form through approximating locally

the true unknown regression. Assume that the dependent variables Yi ∈ R, i = 1, . . . , n, are generated by the following

regression model:

Yi = m(Zi) + εi, (1)

where Zi = (Zc
i
,Zd

i
) with Zc

i
∈ R

p being continuous and Zd
i

being a q-dimensional discrete vector. We next focus

on the presentation for categorical unordered variables, but the same could be done for naturally ordered variables

with slight modifications, see Racine and Li (2004) for details. In addition, we make the standard assumptions on the

errors, εi, that they are independent random variables with

E(εi | Zi) = 0 and Var(εi | Zi) < ∞ a.s.,

although the methodology we will discuss may also apply to more sophisticated setups. The flexibility of the model

is related to the fact that the unknown regression function m(·) is not specified. No particular parametric assumptions

are made on m(·) itself except for some smoothness properties on m(·, zd). For the sake of simplicity, we assume

that m(·, zd) is twice continuously differentiable with respect to its first p continuous arguments. Finally, we need

also some regularity condition on the smoothness of the conditional density f (zc|zd) with respect to the p continuous

arguments.

The main idea of LPLS is to approximate m(u, v) for all (u, v) in a neighborhood of a given point z = (zc, zd)

by a local polynomial function of degree r in the direction of zc and then obtain the LPLS estimate by minimizing

the resulting weighted sum of the squared errors. A degree r = 0 would result in the local constant estimator. As
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mentioned above, we will limit our presentation to the case of local linear approximation (r = 1). Extension to higher

orders follows the same ideas but at a cost of more notational complexity. Consider the following local approximation:

m(u, v) ≈ αzc,zd + βτ
zc,zd (u − zc), (2)

where αzc,zd ∈ R and βzc,zd ∈ R
p are quantities to be estimated that, in general, vary with (zc, zd). To take only

neighboring observations around (zc, zd), or to give more weights to them, when evaluating the least-squares criterion,

the kernel approach is used. For the continuous variables we use a product kernel (but other multivariate kernels may

also work), i.e.,

Kh(Zc
i − zc) =

p∏

j=1

1

h j

K j

(
Zc

i j
− zc

j

h j

)
, (3)

where h = (h1, . . . , hp) is a vector of bandwidths, K j(·) is a standard univariate kernel function such as the univariate

standard Gaussian density, zc
j

is the jth component of zc and Zc
i
= (Zc

i1
, · · · ,Zc

ip
)τ. For the discrete vectors, we use the

discrete kernel introduced by Racine and Li (2004), i.e.,

Λλ(Zd
i , z

d) =

q∏

ℓ=1

λ
I(Zd

iℓ
,zd

ℓ )
ℓ

, (4)

where I(A) is the indicator function, with I(A) = 1 if A holds, and 0 otherwise, λℓ ∈ [0, 1] are bandwidths for the

discrete variables ℓ = 1, . . . , q, and Zd
i
= (Zd

i1
, · · · ,Zd

iq
)τ. The LLLS or weighted least squares criterion at a given point

(zc, zd) measuring the quality of the approximation is thus given by

Cn(αzc,zd , βzc,zd ; zc, zd) =

n∑

i=1

[
Yi − αzc,zd − βτ

zc,zd (Zc
i − zc)

]2

Kh(Zc
i − zc)Λλ(Zd

i , z
d). (5)

We note that if for a particular ℓ, we have λℓ = 0 (with the convention that 00 = 1), then there is no smoothing of

this ℓth discrete variable; i.e., the evaluation in (5) is done separately for each subsample determined by this discrete

variable, with a common h. At the other limit, if λℓ = 1, we do not take into account the discrete variable Zd
iℓ

in

the analysis, i.e., all the sample points have weight in (5) which is independent from the value of Zd
iℓ

. Let α̂zc,zd and

β̂zc,zd minimize the criterion Cn(·, ·; z) with z = (zc, zd), then the proposed estimated value of the regression function

at the point (zc, zd), denoted by m̂(zc, zd), is given by α̂zc,zd whereas β̂zc,zd gives the estimated value of the first partial

derivative of m(·) with respect to the continuous variables zc evaluated at (zc, zd). As a common bandwidth is used to

smooth over the continuous variables for different subgroups, we call such a method local linear simple-smoothing.

The bandwidth selection is a very important issue in nonparametric kernel-based estimation. The selection of

appropriate bandwidths (h, λ) in (5) can be done by the cross-validation (CV) method, although many other approaches

can be adopted such as the corrected AIC method. When adopting the CV approach, the values ĥ and λ̂ are chosen to

minimize

CV(h, λ) =

n∑

i=1

[
Yi − m̂(−i)(Z

c
i ,Z

d
i

∣∣∣h, λ)
]2

M(Zc
i ,Z

d
i ), (6)

where M(Zc
i
,Zd

i
) is a weight function trimming out boundary observations and m̂(−i)(Z

c
i
,Zd

i
|h, λ) is the leave-one-

out kernel estimator of m(Zc
i
,Zd

i
) with bandwidths h and λ, i.e., estimated by minimizing (5), but leaving the ith

observation out of the sample. The properties of the resulting estimator m̂(zc, zd) by using the CV bandwidth selection

method have been described in the seminal paper by Racine and Li (2004) for the local constant case (r = 0), and

in Li and Racine (2004) for the local linear case. It is important to notice that, as is common in the nonparametric

smoothing approaches, these results assume that h j → 0 for all j = 1, . . . , p, and nh1 . . . hp → ∞ as n → ∞. The

argument generally admitted in the existing literature is that it is better to smooth the discrete variable in (5), because

the separate analysis on each separate subsample defined by the categorial variables Zd would correspond to the

particular case when all λℓ = 0, ℓ = 1, . . . , q. However, we indicate in the next section that it might not be the case in

some situations.
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3. Local linear complete-smoothing

To simplify the argument, let us suppose that we have a univariate discrete variable defining two groups of obser-

vations (the argument would be the same when considering all the subgroups defined by the multivariate categorical

vector Zd). The DGP in the two groups may have different characteristics (shape of the regression function, curva-

ture, or size of the noise). Extreme cases of such differences have been briefly described in the introductory section.

Unless the sample size within one of the groups is very small, the CV bandwidth selection procedure described above

would provide a small value of the tuning parameter λ for a relevant discrete regressor, resulting in the frequency

method in the limiting case where λ = 0, and a common h for different groups. Furthermore, we suppose that the

continuous variable Zc is also univariate. Extension to the case of multivariate continuous and discrete variables is

straightforward. However, such extension may not be so useful because of the curse of dimensionality problem.

As pointed out above for the extreme cases, the simple-smoothing based CV method might be inappropriate in

many situations where some important characteristics of the DGP are quite different between the two subgroups. In

such instances, having a common bandwidth h for different groups may lead to under-smoothing (over continuous

variables) for one group while over-smoothing for the other. While this may not matter asymptotically as long as

the common bandwidth has the proper order, it happens to matter in the finite sample case (small and even relatively

large ones), sometimes substantially, as illustrated in our examples in the next section. To address this issue, it might

be better to do fully separate estimation within each subgroup, allowing the bandwidth over continuous variable to

vary across different groups without smoothing for the discrete variable. Although, as pointed out by Li and Racine

(2004), this may increase the variance, the bias could be lowered substantially, which would lead to the estimation

with smaller MSE than the simple-smoothing method. We will show in the next section, through the Monte-Carlo

simulations, that the loss in accuracy of the default simple-smoothing estimation method may be dramatic. However,

it is well-known that if the sample size in one group is too small, one cannot hope to get sensible results with the

separate local linear estimation. We next give a solution to address this problem.

A natural way is to allow different bandwidths for the continuous variable in the different subgroups which address

the problem of over- or under-smoothing in subgroups, and allow smoothing over the discrete variable, as in Racine

and Li (2004), to circumvent the problem that the number of observations in one subgroup might be too small. We

call such method the complete-smoothing method. Formally, in the case of two subgroups defined by one discrete

variable, the equation (5) defining the estimator could be replaced by

Cn(αzc,zd , βzc,zd ; zc, zd) =

n∑

i=1

[
Yi − αzc,zd − βτ

zc,zd (Zc
i − zc)

]2

Λλ(Zd
i , z

d)

×
[
Kh(1)(Z

c
i − zc)I

{
Zd

i = zd(1)
}
+ Kh(2)(Z

c
i − zc)I

{
Zd

i = zd(2)
}]
, (7)

where zd(k), k = 1, 2, are the two possible values of zd. For simplicity, we use the same kernel function in the two

subgroups, but allow potentially different bandwidths h(1) and h(2) for these subgroups. Let m̃(zc, zd) be the local

linear estimated value of m(zc, zd) with complete-smoothing which minimizes Cn(αzc,zd , βzc,zd ; zc, zd) with respect to

αzc,zd and βzc,zd . It is clear that the general formulation we propose in (7) encompasses both the fully separate analysis

by groups (λ = 0), and the simple-smoothing approach (h(1) = h(2)).

Let µ j =
∫

u jK(u)du and ν j =
∫

u jK2(u)du. Define σ2
m(zc, zd) =

ν0σ
2(zc,zd)

f (zc |zd)P(Zd=zd)
and

bm,1(zc) =
1

2
µ2m′′(zc, zd(1))h2(1) + λ

(1 − p1) f (zc|zd(2))

p1 f (zc|zd(1))

[
m(zc, zd(2)) − m(zc, zd(1))

]
,

bm,2(zc) =
1

2
µ2m′′(zc, zd(2))h2(2) + λ

p1 f (zc|zd(1))

(1 − p1) f (zc|zd(2))

[
m(zc, zd(1)) − m(zc, zd(2))

]
,

where σ2(·, ·) and f (·|·) are defined in Assumption 3 in Appendix A and 0 < p1 = P(Zd = zd(1)) < 1. We next give

the asymptotic distribution theory for the local linear complete-smoothing estimator m̃(zc, zd).

Theorem 3.1. Suppose that Assumptions 1–4 in Appendix A are satisfied. If zd = zd(1), we have

√
nh(1)

[
m̃(zc, zd(1)) − m(zc, zd(1)) − bm,1(zc)

]
d−→ N

[
0, σ2

m(zc, zd(1))
]
. (8)
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If zd = zd(2), we have

√
nh(2)

[
m̃(zc, zd(2)) − m(zc, zd(2)) − bm,2(zc)

]
d−→ N

[
0, σ2

m(zc, zd(2))
]
. (9)

We next derive the optimal bandwidths for the local linear complete-smoothing estimator. Let m̃(−i)(Z
c
i
,Zd

i
|h(1), h(2), λ)

be the leave-one-out local linear complete-smoothing estimated value of m(Zc
i
,Zd

i
) with tuning parameters h(1), h(2)

and λ. Then, similarly to the CV method introduced in Section 2, we define

CV(h(1), h(2), λ) =

n∑

i=1

[
Yi − m̃(−i)(Z

c
i ,Z

d
i

∣∣∣h(1), h(2), λ)
]2

M(Zc
i ,Z

d
i ). (10)

The optimal bandwidths [ĥ(1), ĥ(2), λ̂] are the values which minimize CV(h(1), h(2), λ). Define

ψ1(h(1), λ) = p1

∫ {
b∗(z

c, zd(1))h2(1) +
λ(1 − p1) f (zc|zd(2))

[
m(zc, zd(2)) − m(zc, zd(1))

]

p1 f (zc|zd(1))

}2

×M(zc, zd(1)) f (zc|zd(1))dzc,

ψ2(h(2), λ) = (1 − p1)

∫ {
b∗(z

c, zd(2))h2(2) +
λp1 f (zc|zd(1))

[
m(zc, zd(1)) − m(zc, zd(2))

]

(1 − p1) f (zc|zd(2))

}2

×M(zc, zd(2)) f (zc|zd(2))dzc,

where b∗(z
c, zd) = 1

2
µ2m′′(zc, zd). Define

χ(h(1)) =
ν0

h(1)

∫
σ2(zc, zd(1))M(zc, zd(1))dzc,

χ(h(2)) =
ν0

h(2)

∫
σ2(zc, zd(2))M(zc, zd(2))dzc.

We next give the asymptotic expansion of CV(h(1), h(2), λ), which is critical to derive the asymptotic property of the

optimal bandwidths [ĥ(1), ĥ(2), λ̂].

Theorem 3.2. Suppose that the conditions in Theorem 3.1 and Assumption 4′ are satisfied. Then, we have

CV(h(1), h(2), λ) = CV1 + Φ(h(1), h(2), λ) + s.o., (11)

where CV1 :=
∑n

i=1 ε
2
i
M(Zc

i
,Zd

i
) is independent of the tuning parameters,

Φ(h(1), h(2), λ) = n
[
ψ1(h(1), λ) + ψ2(h(2), λ)

]
+ χ(h(1)) + χ(h(2)),

and s.o. represents some terms with smaller asymptotic order.

Define

MSE(h(1), h(2), λ) =

n∑

i=1

[
m(Zc

i ,Z
d
i ) − m̃(−i)(Z

c
i ,Z

d
i

∣∣∣h(1), h(2), λ)
]2

M(Zc
i ,Z

d
i ). (12)

In the proof of Theorem 3.2 in Appendix B, we show that

MSE(h(1), h(2), λ) = Φ(h(1), h(2), λ) + s.o. (13)

Letting [h∗(1), h∗(2), λ∗] be the minimizer to MSE(h(1), h(2), λ), by Theorem 3.2 and standard argument such as the

proofs of Theorems 3.1 and 3.2 in Li and Racine (2004), we have the following corollary.

6
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Corollary 3.1. Suppose that the conditions in Theorem 3.2 are satisfied. Then, we have

ĥ(1) − h∗(1)

h∗(1)
= oP(1),

ĥ(2) − h∗(2)

h∗(2)
= oP(1),

λ̂ − λ∗
λ∗

= oP(1). (14)

Furthermore, the asymptotic normal distributions in (8) and (9) still hold when [h(1), h(2), λ] are replaced by [ĥ(1), ĥ(2), λ̂].

We next compare the measurements of the MSEs between the local linear complete-smoothing and the local linear

simple-smoothing. Let

MSE(h, λ) =

n∑

i=1

[
m(Zc

i ,Z
d
i ) − m̂(−i)(Z

c
i ,Z

d
i

∣∣∣h, λ)
]2

M(Zc
i ,Z

d
i ). (15)

and [h0, λ0] be the minimizer to MSE(h, λ). Analogously, we can also show that

ĥ − h0

h0

= oP(1),
λ̂ − λ0

λ0

= oP(1). (16)

Noting that

MSE(h(1), h(2), λ) = MSE(h, λ) + s.o.

for the case of h(1) = h(2) = h and λ = o(h2), we may show that

min
h(1),h(2),λ

MSE(h(1), h(2), λ) ≤ min
h,λ

MSE(h, λ). (17)

Using (14), (16) and (17), we can easily prove the following corollary, which indicates that in the large sample case,

the MSE by using the optimal bandwidths chosen by our method is smaller than that by using the default optimal

bandwidths.

Corollary 3.2. Suppose that the conditions in Theorem 3.2 are satisfied. Then, we have

MSE(ĥ(1), ĥ(2), λ̂) ≤ MSE(ĥ, λ̂)

in probability.

In the next section, we will investigate the finite sample properties of the different approaches. This will fur-

ther confirm the expected theoretical performance of our complete-smoothing approach over the simple-smoothing

approach. In particular, we will find that the gain in precision may be substantial in practice.

4. Simulation studies

In this section, we present two simple examples that allow us to vividly illustrate the issue raised in the previous

sections. We provide some “typical” pictures resulting from these simulated samples generated according to the

scenario described below. We may not conclude general statements with one simulated sample, but the idea is to

provide visualization of the problem. Throughout the simulation, we considered the following regression relationship

Yi = a1 + a2Zd
i + b1Zc

i + b2Zd
i Zc

i + b3(Zc
i )2 + b4Zd

i sin(πZc
i ) + εi, i = 1, · · · , n. (18)

Varying the choice of the parameters in model (18) would lead to various examples explored in this section.

Example 4.1. (linear versus periodic regression)

Let a1 = 1, a2 = −1, b1 = 1, b2 = 0.1, b3 = 0, b4 = 2, with εi ∼ N(0, σε,i), where σε,i = 2 − Zd
i
. Here, for

each simulation, Zc
i
∼ U(−2, 2) for the continuous variable Zc and the discrete variable Zd was set randomly at 1 if

W > 0.25 and set at 0 if W ≤ 0.25, where W ∼ U(0, 1). So, we randomly obtained about 75% of observations for

group 1 (with Zd
i
= 1) and about 25% for group 2 (with Zd

i
= 0).

7
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In this example, for group 2 (zd = 0) we have a linear model with more noisy data and smaller sample size, and

for group 1 (zd = 1) we have a linear model (with different intercept and slope) plus a cyclical component. In Figure

1, we present typical results of the estimation by using the three approaches: the fully separate estimation of the two

subsamples (i.e., non-smoothing over the discrete variable, Approach 1), the simple-smoothing (i.e., smoothing the

discrete variable with common bandwidth for the continuous regressor, Approach 2), and the complete-smoothing

(i.e., smoothing the discrete variable and keeping potentially different bandwidths for the continuous variable, Ap-

proach 3). Only two cases of sample size are provided in Figure 1: n = 100 and n = 400 (similar pictures have been

obtained for other sizes).

From the left panels (n = 100), we can see that the simple-smoothing (Approach 2) suffers from a serious drawback

in this scenario and that the non-smoothing estimation (Approach 1) gives much better results both for n = 100

and n = 400. The complete-smoothing of Approach 3, encompassing the two preceding ones, does as well as the

fully separate analysis for these samples. The fully separate estimation substantially outperforms the estimation

with simple-smoothing over the discrete regressor, as the latter approach under-smoothes for group 2 and slightly

over-smoothes for group 1. Note that for this example, the under-smoothing is more pronounced because group 1

dominates in the pooled sample by its larger size and so the common bandwidth selected in the CV optimization

for (h, λ) is relatively close to what is optimal for group 1 in the separate estimation, while for the group 2, the

true optimal bandwidth must in fact go to infinity to attain the correctly specified parametric model. The complete-

smoothing (Approach 3) avoids such problem by allowing different bandwidths for the continuous regressor Zc in the

two groups.

The numerical results of the Monte-Carlo experiment summarized in Table 1 further confirm the above analysis

from Figure 1. With n = 50, 100, 200, 400, we conducted 500 Monte-Carlo replications for each case. The table

provides the mean of the Approximate Mean Squared Error (AMSE) for each sample, averaged over 500 Monte-

Carlo replications, i.e., AMSE = (1/M)
∑M

g=1 AMSEg, where the AMSE for each replication g (g = 1, . . . ,M with

M = 500) is defined as

AMSEg =
1

n

n∑

i=1

[
m(Zc

i,g,Z
d
i,g) − m̂(Zc

i,g,Z
d
i,g)

]2
,

where m̂(·, ·) is the estimate of the true regression function m(·, ·) by using the above three approaches, respectively.

Table 1 also gives the estimated standard deviation of AMSE defined as

stdMC =

√√√
1

M(M − 1)

M∑

g=1

(
AMSEg − AMSE

)2
,

This stdMC can be used to check if the differences observed in the table for the AMSE are significant. To save space,

“Split”, “Simpl” and “Compl” in the table represent Approach 1, Approach 2 and Approach 3, respectively.

Note that all the figures appearing in Table 1 vary as expected when n increases. It is worth noting that for all the

simulations in this scenario, the CV method yields λ̂ that is very close to zero for both Approach 2 and Approach 3,

and that Approach 3 gave systematically less weight in the smoothing of the discrete variable than Approach 2 (in

terms of medians over the 500 replications). In Table 1, we can also see that the AMSE of Approach 1 is always

smaller than that of Approach 2 (often about twice as small), and that this does not vanish when the sample size

increases. Note that the difference in AMSE is much larger for the smaller group, which has been explained above

based on the findings of Figure 1. Meanwhile, from the medians of the bandwidth selected by the different approaches,

we see clearly that Approach 2 under-smoothes continuous variable for Group 2. Furthermore, we can see that the

complete-smoothing approach is, as expected and explained above, very robust here since it gives almost the same

results as Approach 1. Note also that, as a consequence of the theory provided by Racine and Li (2004) and Li and

Racine (2004), in all the cases, the AMSE reduces as n increases and that the optimal bandwidths (except ĥ(2) when

computed separately) go to zero as n goes to infinity. On the other hand, ĥ(1) and ĥ(2) chosen by the CV method

using Approach 3 are similar to those obtained using Approach 1, and the optimal λ̂ by using Approach 3 is smaller

than that using Approach 2, indicating that Approach 2 suggests more similarities between groups than Approach 3.

Example 4.2. (quadratic versus periodic regression)

8
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Figure 1. Example 4.1: Left panel, n = 100 and right panel, n = 400. From top to bottom: Approach 1 (non-smoothing for the discrete variable),

Approach 2 (local linear simple-smoothing), Approach 3 (local linear complete-smoothing).

We next consider a quadratic versus a periodic regression in the two groups, which is similar to Example 4.1

except that now the linear model is wrong in both groups. We selected in equation (18) the values a1 = 1, a2 =

−1, b1 = 1, b2 = 0.1, b3 = 0.25, b4 = 2, with all the other assumptions remaining the same as in Example 4.1. The

9
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simulation results are given in Figure 2 and Table 2. We find that in this case the difference between Approach 2 and

the other two approaches is still present. From Table 2, we confirm the general comments given for Example 4.1:

Approach 1 has the better performance than Approach 2, and Approach 3 is the more robust way in this scenario (with

significantly better performances). In particular, note that even though the difference in curvatures between the two

groups is not so extreme as in Example 4.1, the difference of performances is still substantial: the overall AMSE for

Approach 2 is about 1.5 times larger than those for Approaches 1 and 3 when n = 50, and about twice as large for

n = 100 and larger samples.

Consequences on the estimation of derivatives

The estimation of derivatives also has the phenomenon similar to what we just described. To save space, we only

illustrate this for the case of the scenario described in Example 4.1. Figure 3 displays one typical sample and the

resulting estimates of the first partial derivatives using the three approaches. This figure shows that the estimation of

derivatives can be even more severely flawed by using the simple-smoothing approach. Indeed, as one can clearly see

from Figure 3, with simple-smoothing technique, one obtained radically varying estimated curves of the derivatives

for the group where their true values are constant. The problem sustains whether the total sample size is 100 or 400 (or

more). This means that research conclusions, policy implications and, consequently, the real policy decisions based

on such estimates may be misleading. Note that for the same example, the complete-smoothing approach produced

much better results which are very close to the true values.

The Monte-Carlo experiment results based on the regression model (18) with more different choices of parameters

can be found in working paper version of Li et al. (2013). As those results are similar, we omit them from the paper

to save space.

5. Empirical application

In this section, we make an illustration of the phenomenon discussed above in the context of a real data set from the

study by Kumar and Russell (2002), about patterns of convergence or divergence in economic growth in the World.2

We chose this data and the context because the topic of economic growth has remained interesting for a wide audience

for centuries.

This data set consists of observations in 57 countries, containing the variables such as GDP, labour and capital

of each country in 1965 and in 1990, and was originally extracted from the Penn World Tables. We will use this

data to estimate regression relationship between the growth in GDP per capita of countries between 1965 and 1990

(response variable) and the initial levels of GDP per capita of these countries (continuous explanatory variable). Such

a regression and many of its variations are often performed in empirical economic growth studies on convergence.

The interest of such studies often lies in that the growth rates of poorer countries are, on average, higher than

those of the richer countries, and thus the poorer countries would eventually catch up with or converge to the levels

of GDP per capita of the richer countries. This is often referred to as the (unconditional) “beta-convergence” phe-

nomenon. Earlier works on this issue employed the parametric regression models. Some studies found that the slope

coefficient (the “beta”) in such regressions is negative and significantly different from zero, which supports the “beta-

convergence” hypothesis. However, other studies found that the “beta” is insignificantly different from zero (i.e., no

convergence) or even positive (i.e., “beta-divergence”) and significantly different from zero for different samples or

for distinct groups of countries within a sample or when additional explanatory variables are accounted for.3 We next

use the nonparametric regression method, which may give some useful insights. In particular, we apply the LLLS

with the three approaches discussed above to the following regression relationship:

yi = m(zc
i , z

d
i ) + εi, i = 1, . . . , n

where yi is growth in GDP per capita of country i between 1965 and 1990, zc
i

is the natural log of GDP per capita

of country i in 1965, while zd
i

is a discrete variable which will be defined later and εi is a stationary noise satisfying

E(εi|zc
i
, zd

i
) = 0 and Var(εi|zc

i
, zd

i
) < ∞ a.s.

2This data set (or its extended version) was also used in many other applications, see, for example, Henderson and Russell (2005), Simar and

Zelenyuk (2006), Henderson and Zelenyuk (2007) and Badunenko et al. (2008).
3For a recent review of this topic, see, for example, Maasoumi et al. (2007), Weil (2008) and references cited therein.
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Figure 2. Example 4.2: Left panel, n = 100, and right panel, n = 400. From top to bottom: Approach 1 (non-smoothing for the discrete variable),

Approach 2 (local linear simple-smoothing), Approach 3 (local linear complete-smoothing).

The estimation results are shown in Figure 4 which also includes some information on the resulting bandwidths

chosen by different approaches. In panel (a) of Figure 4, we give the LLLS estimated curve without the discrete

variable with h chosen by the CV method. From this figure, one may conjecture that there might be different groups
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Figure 3. Derivative Estimates for Example 4.1: Left panel, n = 100 and right panel, n = 400. From top to bottom: Approach 1 (non-smoothing

for the discrete variable), Approach 2 (local linear simple- smoothing), Approach 3 (local linear complete-smoothing).

within the sample which have different regression relationships (in terms of intercept or slope or both). Indeed, in

various existing studies, researchers often distinguish various groups of countries, allowing them to have different

regression relationships. An objective grouping criterion often used in practice, for example, is an indicator whether
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Figure 4. Illustration with GDP data. From left to right and top to bottom, Panel (a): Approach 0 (without the discrete variable), Panel (b):

Approach 1 (non-smoothing for the discrete variable), Panel (c): Approach 2 (local linear simple-smoothing), Panel (d): Approach 3 (local linear

complete-smoothing).

a country is an OECD member or not (e.g., Racine et al., 2006; Simar and Zelenyuk, 2006; Maasoumi et al., 2007;

Henderson and Zelenyuk, 2007), and so we also use this as our discrete variable, zd
i
, which has the value 1 if country

i was a member of the OECD in the year 1965 and zero otherwise.4

In panel (b) of Figure 4, we give the LLLS estimated curves by using Approach 1 (i.e., separate estimation for

each group with h chosen via CV for each group separately), and one can see that the estimated relationships for the

two groups are very different not only in the intercept but also in the slope. Specifically, note that the relationship for

the larger non-OECD group is virtually flat, with very slight inverted-U-shape curvature. On the other hand, note that

the relationship for the smaller OECD group has a more pronounced inverted-U-shape curvature (or rather “inverted

hockey-stick” shape). Note that such curvature may suggest an important economic implication. It hints that the

OECD countries with very low initial GDP per capita are expected to have higher growth rates in GDP per capita than

those with very high initial GDP per capita, yet the highest rates are expected to be not at the lowest level of GDP per

capita but somewhat larger.

In panel (c) of Figure 4, we present the LLLS estimated curves by using Approach 2 (i.e., local linear simple-

smoothing with h and λ selected jointly via the CV method for the entire sample). One can see that the estimated

4In a detailed analysis, one may want to condition for many other potentially important explanatory variables, yet we will limit our illustration

to the case of one continuous and one discrete explanatory variable for the sake of ease of graphical representation of the phenomenon.
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relationships are also very different between the two groups. The relationship for the non-OECD group has a slightly

more pronounced inverted-U-shape curvature, although it still remains relatively flat. On the other hand, the rela-

tionship for the OECD group has much less curvature than that in panel (b), and it is not an inverted-U-shape at all.

Hence, Approach 2 suggests that for the OECD countries there is an almost linear and negative relationship between

the growth in GDP per capita and the initial level of GDP per capita. In other words, with the local linear simple-

smoothing approach, we get some under-smoothing for the larger group and over-smoothing for the smaller group

compared with panel (b) by the separate estimation approach. This is similar to what we have observed from the

simulated examples.

Some additional insight is provided by the local linear complete-smoothing method (Approach 3), where we allow

for each group identified by the discrete variable to have its own bandwidth but also smooth the discrete variable and

so use the full sample in one estimation. Panel (d) of Figure 4 visualizes the estimated curves by using Approach

3 and one can see that it gives almost identical results to those by using Approach 1, which is similar to what we

have observed from the simulation studies. In this small data set, we can also find that the left-most observation in

group 1 might be an outlier, and so omitting it when using Approaches 1 and 3 may produce results very similar to

Approach 2. However, it might be the case that there are other data points not available in our sample which are close

to this left-most observation in group 1 and including them would make the inverted U-shape curvature even more

pronounced. Since we do not know the true relationship, unlike in the simulated examples, it is difficult to judge

which of these two arguments is likely to be right or wrong, which is beyond the scope of this paper. Since Approach

3 encompasses the other two approaches by taking the best features from each, and that our simulations suggested

that Approach 3 was more robust than the other two, Approach 3 appears to be more reliable for a practitioner to trust

in this context and perhaps in general, whenever it is computationally feasible.

Finally, it might be worth emphasizing again that in this section we had not intended to resolve the puzzles of

economic growth across countries as such a study would require a larger data set and more variables. Our aim was

just to give a concise and vivid illustration of the phenomenon we discussed above and, in particular, to compare the

three approaches, not only for simulated data sets, but also for a real data set, in a context that appears to be interesting

for a wide audience.

6. Conclusion

In this article we have pointed out and illustrated that the reduction in variance or the efficiency gain due to smooth-

ing of the discrete regressors with common bandwidth for the continuous variables across groups, as is frequently done

in applied studies, can be well outweighed by the substantial bias introduced due to this simple-smoothing approach,

both for small and for relatively large sample cases. For such cases, even fully separate estimation for each group, if

feasible, might be preferred. We have shown that the complete-smoothing technique by allowing different bandwidths

for the continuous variables in each group, could overcome this difficulty and so is more robust than the existing

smoothing methods. In general, whether it is better to smooth or not to smooth the discrete variable, or whether “the

bias beats the variance”, essentially depends on the degree of difference of the DGPs in different groups: curvatures

of the regression relationship, variation in the error term for each group, variation in the continuous regressors, size or

proportion of one group relative to another in the sample, and so on. The more robust complete-smoothing approach

proposed in this paper is indeed a generalization of the seminal work by Racine and Li (2004), but at a cost of slightly

more computational complexity. When using the simple-smoothing method, one automatically (or implicitly) imposes

the assumption of a similar degree of smoothness of the regression relationships for different groups of the sample

identified by the discrete variables, which might be far from reality. As we illustrated in both simulated and empirical

examples, such a restriction can significantly deteriorate estimation results, increasing bias in the estimates of the true

regression relationship. Such a problem can also substantially or even radically distort estimates of derivatives and the

related estimates of marginal effects and elasticities, which are used to draw policy implications. It is also important

to recognize that even from a theoretical point of view, the simple-smoothing of the discrete variable is preferable and

offers a suitable solution to the problem, it is still an open question in practice for some real data sets, whether we have

to smooth or not to smooth the discrete variables, particularly when the computational cost of the extended method is

prohibitive.

A possible future topic is to extend the methodology to the case that the dimensions of both discrete and continuous

covariates are multivariate. To avoid the curse of dimensionality issue in nonparametric estimation, inspired by the
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recent work of Li et al. (2013), we may consider the following regression model with functional coefficients:

Yi = β
τ(Zi)Xi + εi = β

τ
1(Zi)X

c
i + β

τ
2(Zi)X

d
i + εi,

where Xi = (Xc
i
, Xd

i
) with Xc

i
∈ R

r1 being continuous and Xd
i

being a r2-dimensional discrete vector, β1(·) and β2(·)
are functional coefficients with dimensions r1 and r2, respectively, and Zi = (Zc

i
,Zd

i
) with Zc

i
being univariate contin-

uous covariate and Zd
i

being univariate discrete covariate. It would be interesting to apply the local linear complete

smoothing to estimate the functional coefficients in the above modelling framework and study its asymptotic theory

and empirical application.

Another possible future work is to develop and justify a method (a specification test or a rule of thumb) that

would help justifying a decision whether to smooth or not to smooth over some or all discrete variables. The issue of

relevance of some categorical predictors in nonparametric regressions has been analyzed in Racine et al. (2006) by

considering the hypothesis testing problem of λ = 1. However, to the best of our knowledge, nothing has been done

for the other extreme of the scale (λ = 0), including the issue of common bandwidths for the continuous variables. It

would be also interesting to investigate whether the complete-smoothing method we proposed in this paper can also

improve the performance of various tests that employ the simple-smoothing method (see, for example, Racine et al.,

2006; Hsiao et al., 2007).
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Appendix A. Assumptions

In this appendix, we give the regularity assumptions which are sufficient to derive the asymptotic theory of the

proposed approach in Section 3.

Assumption 1. Let {(Yi,Z
c
i
,Zd

i
)} be independent and identically distributed (i.i.d.) as (Y,Zc,Zd), and the error term

εi have the (2 + δ) moment with δ > 0.

Assumption 2. Let K(·) be a continuous and symmetric probability density function with a compact support.

Assumption 3. The conditional density function of Zc for given Zd, f (zc|zd), is bounded away from infinity and zero

for zc ∈ Zc and zd = zd(1) or zd(2), where Zc is the compact support of Zc. Meanwhile, m(·, zd), σ2(·, zd) and

f (·|zd) are twice continuously differentiable onZc for zd = zd(1) or zd(2), where σ2(zc, zd) = Var[ε|Z = (zc, zd)].

Assumption 4. Let the bandwidths h(1), h(2) and λ satisfy

h(1) ∨ h(2)→ 0,
[
nh(1)

]
∧

[
nh(2)

]
→ ∞ and λ = O(h2(1) ∧ h2(2)).

Assumption 4′. Let the bandwidths h(1) and h(2) satisfy

[
n2ǫ−1h(1)

]
∧

[
n2ǫ−1h(2)

]
→ ∞, ǫ < (δ + 1)/(2 + δ),

where δ is defined in Assumption 1. Furthermore, [nh4(1)] ∧ [nh4(2)]→ ∞.
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In Assumption 1, we impose the i.i.d. condition on the observations, which has been widely used in the literature

on nonparametric estimation with both categorical and continuous data, see, for example, Li and Racine (2004) and

Racine and Li (2004). We conjecture that our asymptotic theory can be generalized to some stationary and weakly

dependent (such as β-mixing dependent) processes at the cost of more lengthy proofs. Assumption 2 imposes some

mild conditions on the kernel function, and several commonly-used kernel functions such as the uniform kernel

and the Epanechnikov kernel satisfy these conditions. Assumption 3 imposes some smoothness conditions on the

conditional density function, conditional regression function and conditional variance function, which are necessary

when the LLLS estimation approach is applied. Assumptions 4 and 4′ impose some restrictions on the bandwidths. In

particular, Assumption 4′ is critical to apply the uniform consistency results of the nonparametric kernel estimators.

Appendix B. Proofs of the asymptotic results

We next give the proofs of the asymptotic results stated in Section 3.

Proof of Theorem 3.1. Let

∆n(1) =

n∑

i=1

[
1 (Zc

i
− zc)

(Zc
i
− zc) (Zc

i
− zc)2

]
Λλ(Zd

i , z
d)Kh(1)(Z

c
i − zc)I

{
Zd

i = zd(1)
}
,

∆n(2) =

n∑

i=1

[
1 (Zc

i
− zc)

(Zc
i
− zc) (Zc

i
− zc)2

]
Λλ(Zd

i , z
d)Kh(2)(Z

c
i − zc)I

{
Zd

i = zd(2)
}
,

Ωn(1) =

n∑

i=1

(
1

Zc
i
− zc

)
ỸiΛλ(Zd

i , z
d)Kh(1)(Z

c
i − zc)I

{
Zd

i = zd(1)
}
,

Ωn(2) =

n∑

i=1

(
1

(Zc
i
− zc)

)
ỸiΛλ(Zd

i , z
d)Kh(2)(Z

c
i − zc)I

{
Zd

i = zd(2)
}
,

where Ỹi = Yi −m(zc, zd) −m′(zc, zd)(Zc
i
− zc), m′(zc, zd) is the first-order partial derivative of m(·, ·) with respect to zc,

and let e2(1) be a 2-dimensional column vector with the first element being 1 and elsewhere 0.

By some elementary calculations, we can show that

ζ(zc, zd) := m̃(zc, zd) − m(zc, zd) = eτ2(1)∆+nΩn, (B.1)

where ∆n = ∆n(1) + ∆n(2), Ωn = Ωn(1) + Ωn(2) and ∆+n is the Moore-Penrose inverse matrix of ∆n.

We first consider the case of zd = zd(1). Note that for this case,

∆n(1) =

n∑

i=1

[
1 (Zc

i
− zc)

(Zc
i
− zc) (Zc

i
− zc)2

]
Kh(1)(Z

c
i − zc)I

{
Zd

i = zd(1)
}
,

and

∆n(1) = E[∆n(1)] + ∆n(1) − E[∆n(1)].

By Assumptions 2–4 and standard argument, we can prove

1

n
H+1 E[∆n(1)]H+1 = p1 f (zc|zd(1))∆(K) + oP(1), (B.2)

where H1 = diag(1, h(1)), p1 = P(Zd = zd(1)), and ∆(K) = diag(1, µ2). Furthermore, we can show that

Var

[
1

n
H+1∆n(1)H+1

]
= O

( 1

nh(1)

)
= o(1),

as nh(1)→ ∞, which implies that
1

n
H+1

{
∆n(1) − E[∆n(1)]

}
H+1 = oP(1). (B.3)
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Equations (B.2) and (B.3) lead to

1

n
H+1∆n(1)H+1 = p1 f (zc|zd(1))∆(K) + oP(1). (B.4)

On the other hand, when zd = zd(1), note that

∆n(2) = λ

n∑

i=1

[
1 (Zc

i
− zc)

(Zc
i
− zc) (Zc

i
− zc)2

]
Kh(2)(Z

c
i − zc)I

{
Zd

i = zd(2)
}
.

By the condition λ = O(h2(1) ∧ h2(2)) in Assumption 4, following the proof of (B.4), ∆n(2) is dominated by ∆n(1),

which implies that
1

n
H+1∆nH+1 =

1

n
H+1∆n(1)H+1 + oP(1) = p1 f (zc|zd(1))∆(K) + oP(1). (B.5)

We next look into Ωn for the case of zd = zd(1). Observe that

Ωn(1) =

n∑

i=1

(
1

Zc
i
− zc

)
ỸiKh(1)(Z

c
i − zc)I

{
Zd

i = zd(1)
}
,

Ωn(2) = λ

n∑

i=1

(
1

(Zc
i
− zc)

)
ỸiKh(2)(Z

c
i − zc)I

{
Zd

i = zd(2)
}
.

Furthermore, by the definition of the model, we can show that

Ωn(1) =

n∑

i=1

(
1

Zc
i
− zc

)
ρ1(Zc

i )Kh(1)(Z
c
i − zc)I

{
Zd

i = zd(1)
}

+

n∑

i=1

(
1

Zc
i
− zc

)
εiKh(1)(Z

c
i − zc)I

{
Zd

i = zd(1)
}

=: Ωn(1, 1) + Ωn(1, 2),

where ρ1(Zc
i
) = m(Zc

i
, zd(1)) − m(zc, zd(1)) − m′(zc, zd(1))(Zc

i
− zc), and

Ωn(2) = λ

n∑

i=1

(
1

Zc
i
− zc

)
ρ2(Zc

i )Kh(2)(Z
c
i − zc)I

{
Zd

i = zd(2)
}

+λ

n∑

i=1

(
1

Zc
i
− zc

)
εiKh(2)(Z

c
i − zc)I

{
Zd

i = zd(2)
}

=: Ωn(2, 1) + Ωn(2, 2),

where ρ2(Zc
i
) = m(Zc

i
, zd(2))−m(zc, zd(1))−m′(zc, zd(1))(Zc

i
− zc). As E(ε|Z) = 0 a.s., Ωn(1, 1) and Ωn(2, 1) contribute

to the asymptotic bias of the local linear estimator with complete smoothing. By standard argument for the local linear

smoothing, we can show that

1

n
H+1Ωn(1, 1) =

1

2
p1 f (zc|zd(1))µ2m′′(zc, zd(1))h2(1)e2(1) + OP(h4(1)). (B.6)

On the other hand, notice that

ρ2(Zc
i ) = m(Zc

i , z
d(2)) − m(zc, zd(1)) − m′(zc, zd(1))(Zc

i − zc) ≈ m(zc, zd(2)) − m(zc, zd(1)).

We can thus prove that

1

n
H+1Ωn(2, 1) = λ(1 − p1) f (zc|zd(2))

[
m(zc, zd(2)) − m(zc, zd(1))

]
+ oP(λ). (B.7)
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As an additional factor λ is involved in Ωn(2, 2) and λ = O(h2(2)), Ωn(2, 2) would be dominated by Ωn(1, 2). Hence,

we next only need to prove the central limit theorem for Ωn(1, 2). Note that Ωn(1, 2) is a sum of i.i.d. random vectors

with E
[
Ωn(1, 2)

]
= 0 and

1

nh(1)
Var

[
H+1Ωn(1, 2)

]
= p1 f (zc|zd(1))σ2(zc, zd(1))Ω(K),

where Ω(K) = diag(ν0, ν2). By the classical central limit theorem and noting that

m̃(zc, zd) − m(zc, zd) = eτ2(1)(H1∆
+
n H1)(H+1Ωn), (B.8)

we can complete the proof of (8).

The proof of Theorem 3.1 for the case of zd = zd(2) is similar and thus the details are omitted here.

Proof of Theorem 3.2. To simplify the notations, we let

m̃(−i)(Z
c
i ,Z

d
i ) = m̃(−i)(Z

c
i ,Z

d
i

∣∣∣h(1), h(2), λ),

ζ(−i)(Z
c
i
,Zd

i
) = m̃(−i)(Z

c
i
,Zd

i
) − m(Zc

i
,Zd

i
) and fZ(zc, zd) = f (zc|zd)P(Zd = zd).

Note that

CV(h(1), h(2), λ) =

n∑

i=1

[
εi + m(Zc

i ,Z
d
i ) − m̃(−i)(Z

c
i ,Z

d
i )

]2
M(Zc

i ,Z
d
i )

=

n∑

i=1

ε2
i M(Zc

i ,Z
d
i ) − 2

n∑

i=1

εiζ(−i)(Z
c
i ,Z

d
i )M(Zc

i ,Z
d
i )

+

n∑

i=1

ζ2
(−i)(Z

c
i ,Z

d
i )M(Zc

i ,Z
d
i )

=: CV1 + CV2(h(1), h(2), λ) + CV3(h(1), h(2), λ). (B.9)

It is easy to see that CV1 =
∑n

i=1 ε
2
i
M(Zc

i
,Zd

i
) does not rely on the bandwidths h(1), h(2) and λ, which implies that

it would not play any role in choosing the optimal bandwidths.

We next derive the asymptotic order for CV2(h(1), h(2), λ). Define

∆(−i)(1) =

n∑

j=1,,i

[
1 (Zc

j
− Zc

i
)

(Zc
j
− Zc

i
) (Zc

j
− Zc

i
)2

]
Λλ(Zd

j ,Z
d
i )Kh(1)(Z

c
j − Zc

i )I
{
Zd

j = zd(1)
}
,

∆(−i)(2) =

n∑

j=1,,i

[
1 (Zc

j
− Zc

i
)

(Zc
j
− Zc

i
) (Zc

j
− Zc

i
)2

]
Λλ(Zd

j ,Z
d
i )Kh(2)(Z

c
j − Zc

i )I
{
Zd

j = zd(2)
}
,

Ω(−i)(1) =

n∑

j=1,,i

(
1

Zc
j
− Zc

i

)
Ỹ jΛλ(Zd

j ,Z
d
i )Kh(1)(Z

c
j − Zc

i )I
{
Zd

j = zd(1)
}
,

Ω(−i)(2) =

n∑

j=1,,i

(
1

(Zc
j
− Zc

i
)

)
ỸiΛλ(Zd

j ,Z
d
i )Kh(2)(Z

c
j − Zc

i )I
{
Zd

j = zd(2)
}
,

and ∆(−i) = ∆(−i)(1) + ∆(−i)(2), Ω(−i) = Ω(−i)(1) + Ω(−i)(2). It is easy to show that

ζ(−i)(Z
c
i ,Z

d
i ) = eτ2(1)∆+(−i)Ω(−i). (B.10)

By Lemma C.1 in Appendix C, we can prove that

sup
1≤i≤n

∣∣∣∣
1

n
H+∆(−i)H

+ − fZ(Zc
i ,Z

d
i )∆(K)

∣∣∣∣ = oP(1). (B.11)
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Furthermore, let Ω(−i) = Ω(−i)(1, 1) + Ω(−i)(1, 2) + Ω(−i)(2, 1) + Ω(−i)(2, 2), where Ω(−i)( j1, j2) are defined as Ωn( j1, j2)

in the proof of Theorem 3.1 with the i-th observation (Yi,Zi) left out in the summation. By Assumption 4, (B.11) and

Lemma C.1 again, we prove that

n∑

i=1

εie
τ
2(1)∆+(−i)

[
Ω(−i)(1, 1) + Ω(−i)(2, 1)

]
= OP

(√
nh2(1) +

√
nh2(2)

)
. (B.12)

By Lemma C.2 in Appendix C, we have

n∑

i=1

n∑

j=1,,i

εiK

(Zc
j
− Zc

i

h(k)

)
ε j = OP

(
n
√

h(k)
)
, k = 1, 2, (B.13)

which together with (B.11), leads to

n∑

i=1

εie
τ
2(1)∆+(−i)

[
Ω(−i)(1, 2) + Ω(−i)(2, 2)

]
= OP

( 1
√

h(1)
+

1
√

h(2)

)
. (B.14)

By (B.12) and (B.14), we have

CV2(h(1), h(2), λ) = OP

(√
nh2(1) +

√
nh2(2) +

1
√

h(1)
+

1
√

h(2)

)
. (B.15)

We next consider CV3(h(1), h(2), λ) and prove that it can dominate CV2(h(1), h(2), λ). LetΩ(−i)(·, 1) = Ω(−i)(1, 1)+

Ω(−i)(2, 1) and Ω(−i)(·, 2) = Ω(−i)(1, 2) + Ω(−i)(2, 2). As

ζ(−i)(Z
c
i ,Z

d
i ) = eτ2(1)∆+(−i)

[
Ω(−i)(·, 1) + Ω(−i)(·, 2)

]
,

we can show that
n∑

i=1

ζ2
(−i)(Z

c
i ,Z

d
i )M(Zc

i ,Z
d
i )

=

n∑

i=1

[
eτ2(1)∆+(−i)Ω(−i)(·, 1)

]2
M(Zc

i ,Z
d
i ) +

n∑

i=1

[
eτ2(1)∆+(−i)Ω(−i)(·, 2)

]2
M(Zc

i ,Z
d
i )

+2

n∑

i=1

[
eτ2(1)∆+(−i)Ω(−i)(·, 1)

]
·
[
eτ2(1)∆+(−i)Ω(−i)(·, 2)

]
M(Zc

i ,Z
d
i )

=: CV31(h(1), h(2), λ) + CV32(h(1), h(2), λ) + CV33(h(1), h(2), λ). (B.16)

By Taylor’s expansion for m(·, ·) and using the uniform consistency results such as Lemma C.1, we can prove that

sup
1≤i≤n

∣∣∣∣eτ2(1)∆+(−i)Ω(−i)(·, 1) − bm(Zc
i , h(1), h(2), λ)

∣∣∣∣ = OP

(
h4(1) + h4(2)

)
, (B.17)

where

bm(Zc
i , h(1), h(2), λ) =



b∗(Zc
i
, zd(1))h2(1) + λ

(1−p1) f (Zc
i
|zd (2))

p1 f (Zc
i
|zd (1))

[
m(Zc

i
, zd(2)) − m(Zc

i
, zd(1))

]
, Zd

i
= zd(1),

b∗(Zc
i
, zd(2))h2(2) + λ

p1 f (Zc
i
|zd (1))

(1−p1) f (Zc
i
|zd (2))

[
m(Zc

i
, zd(1)) − m(Zc

i
, zd(2))

]
, Zd

i
= zd(2),

and b∗(·, ·) is defined in Section 3. Then, by (B.17) and the Law of Large Numbers, we can show that

CV31(h(1), h(2), λ) =

n∑

i=1

b2
m(Zc

i , h(1), h(2), λ)M(Zc
i ,Z

d
i ) + s.o.

=

n∑

i=1

b2
m(Zc

i , h(1), h(2), λ)M(Zc
i ,Z

d
i )I

{
Zd

i = zd(1)
}

+

n∑

i=1

b2
m(Zc

i , h(1), h(2), λ)M(Zc
i ,Z

d
i )I

{
Zd

i = zd(1)
}
+ s.o.

= n
[
ψ1(h(1), λ) + ψ2(h(2), λ)

]
+ s.o., (B.18)
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where ψ1(h(1), λ) and ψ2(h(2), λ) are defined in Section 3. By Lemma C.3 in Appendix C and some tedious calcula-

tions, we can prove that

CV32(h(1), h(2), λ) =

n∑

i=1

[
eτ2(1)∆+(−i)Ω(−i)(·, 2)

]2
M(Zc

i ,Z
d
i )I

{
Zd

i = zd(1)
}

n∑

i=1

[
eτ2(1)∆+(−i)Ω(−i)(·, 2)

]2
M(Zc

i ,Z
d
i )I

{
Zd

i = zd(2)
}

= χ(h(1)) + χ(h(2)) + s.o., (B.19)

where χ(h(1)) and χ(h(2)) are defined in Section 3. Furthermore, by some standard but tedious calculations, we can

also show that CV33(h(1), h(2), λ) is dominated by CV31(h(1), h(2), λ) + CV32(h(1), h(2), λ). Hence, we have

CV3(h(1), h(2), λ) = n
[
ψ1(h(1), λ) + ψ2(h(2), λ)

]
+ χ(h(1)) + χ(h(2)) + s.o., (B.20)

which dominates CV2(h(1), h(2), λ) asymptotically by Assumption 4′. Then, by (B.9), (B.15) and (B.20), we can

complete the proof of Theorem 3.2.

Appendix C. Some auxiliary lemmas

In this appendix, we give some auxiliary lemmas which have been used to prove the main theoretical results in

Appendix B. The first lemma follows from a result in Mack and Silverman (1982).

Lemma C.1. Let (X1,Y1), · · · , (Xn,Yn) be i.i.d. random vectors where {Yi} is a real-valued random sequence. Assume

further that E|Yi|s < ∞ and sup
x

∫
|y|s f (x, y)dy < ∞, where f (·, ·) denotes the joint density function of (Xi,Yi). Let K(·)

be a bounded positive function with a compact support satisfying a Lipschitz condition. If, in addition, n2ǫ−1h → ∞
for some ǫ < 1 − s−1, then

sup
x∈S

∣∣∣∣∣∣∣
1

n

n∑

i=1

{Kh(Xi − x)Yi − E [Kh(Xi − x)Yi]}
∣∣∣∣∣∣∣
= OP(

√
log h−1

nh
),

where S is a compact support and Kh(u) = 1
h
K

(
u
h

)
.

Lemma C.2. Let (X1, u1), · · · , (Xn, un) be i.i.d. random vectors with

E(u1|X1) = 0 and 0 < E(u2
i |Xi) < ∞ a.s.

Assume further that K(·) is a continuous and symmetric probability density function with a compact support, h is a

bandwidth which tends to zero, and the density function of Xi is continuous and has a compact support. Then, we have

n∑

i=1

n∑

j=1,,i

uiK
(Xi − X j

h

)
u j = OP(n

√
h). (C.1)

Proof of Lemma C.2. Letting Vi =
∑

j<i K
(

Xi−X j

h

)
u j, we have

n∑

i=1

∑

j<i

uiK
(Xi − X j

h

)
u j =

n∑

i=1

uiVi.
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It is easy to see that E(uiVi|Fi−1) = 0 a.s., where Fi = σ
{
(Xk, uk), k ≤ i−1, Xi

}
. Hence, {(uiVi,Fi) : i ≥ 1} is a sequence

of martingale differences. Using this fact, we can prove

E

[( n∑

i=1

n∑

j<i

uiK
(Xi − X j

h

)
u j

)2
]
= E

[( n∑

i=1

uiVi

)2
]
=

n∑

i=1

E[u2
i V2

i ]

=

n∑

i=1

E[u2
i ]E

[∑

j<i

K2
(Xi − X j

h

)
u2

j

]

= O(n2h). (C.2)

Similarly, we can also prove

E

[( n∑

i=1

n∑

j>i

uiK
(Xi − X j

h

)
u j

)2
]
= O(n2h). (C.3)

By (C.2), (C.3) and the Markov inequality, we can complete the proof of Lemma C.2.

Lemma C.3. Let the assumptions in Lemma C.2 are satisfied. Then, we have

n∑

i=1

n∑

j=1,,i

n∑

k=1,,i

u jK
(Xi − X j

h

)
K
(Xi − Xk

h

)
uk = V∗n

2h + s.o. (C.4)

where V∗ = ν0

∫
E[u2

j
|X j = x] f 2(x)dx and ν0 =

∫
K2(x)dx.

Proof of Lemma C.3. Note that

n∑

i=1

n∑

j=1,,i

n∑

k=1,,i

u jK
(Xi − X j

h

)
K
(Xi − Xk

h

)
uk

=

n∑

i=1

n∑

j=1,,i

u2
j K

2
(Xi − X j

h

)
+

n∑

i=1

n∑

j=1,,i

n∑

k=1,,i, j

u jK
(Xi − X j

h

)
K
(Xi − Xk

h

)
uk.

By Lemma C.1 and the Law of Large Numbers, we can prove

1

n2h

n∑

i=1

n∑

j=1,,i

u2
j K

2
(Xi − X j

h

)
=

1

n

n∑

j=1

u2
j

[
1

nh

n∑

j=1,,i

K2
(Xi − X j

h

)]

=
1

n

n∑

j=1

u2
j f (X j)

∫
K2(x)dx

= ν0

∫
E[u2

j |X j = x] f 2(x)dx. (C.5)

Similarly to the proof of Lemma C.2, we can show that

n∑

i=1

n∑

j=1,,i

n∑

k=1,,i, j

u jK
(Xi − X j

h

)
K
(Xi − Xk

h

)
uk = OP(n3/2h). (C.6)

The proof of (C.4) can be completed by using (C.5) and (C.6).
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Table 1. Monte-Carlo results for Example 4.1, over 500 replications.

n = 50 n = 100 n = 200 n = 400

col# 1 2 3 4 5 6 7 8 9 10 11 12

Split Simpl Compl Split Simpl Compl Split Simpl Compl Split Simpl Compl

AMS E all 0.4556 0.6958 0.4707 0.2335 0.3889 0.2477 0.1230 0.2353 0.1305 0.0675 0.1353 0.0717

stdMC all 0.0123 0.0145 0.0119 0.0057 0.0069 0.0062 0.0031 0.0038 0.0034 0.0017 0.0022 0.0018

AMS E gr1 0.3053 0.4461 0.2999 0.1539 0.1907 0.1603 0.0837 0.1088 0.0853 0.0489 0.0628 0.0495

stdMC gr1 0.0103 0.0167 0.0081 0.0029 0.0041 0.0032 0.0015 0.0023 0.0016 0.0009 0.0011 0.0010

AMS E gr2 0.9631 1.5305 1.0371 0.4854 1.0114 0.5222 0.2440 0.6224 0.2713 0.1245 0.3540 0.1398

stdMC gr2 0.0410 0.0538 0.0434 0.0216 0.0298 0.0234 0.0121 0.0158 0.0137 0.0064 0.0083 0.0066

median ĥ(1) 0.2062 0.2529 0.1884 0.1682 0.2115 0.1599 0.1424 0.1872 0.1378 0.1197 0.1615 0.1176

median ĥ(2) 604.9 0.2529 2.532 3.174 0.2115 2.987 396.9 0.1872 4.05 177.5 0.1615 4.801

median λ̂ 0.0000 0.0770 0.0120 0.0000 0.0793 0.0059 0.0000 0.0545 0.0030 0.0000 0.0335 0.0022

median CVopt 2.0404 2.1390 1.9020 1.9019 2.0199 1.8534 1.8206 1.9284 1.8094 1.7975 1.8618 1.7918

2
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Table 2. Monte-Carlo results for Example 4.5, over 500 replications.

n = 50 n = 100 n = 200 n = 400

col# 1 2 3 4 5 6 7 8 9 10 11 12

Split Simpl Compl Split Simpl Compl Split Simpl Compl Split Simpl Compl

AMS E all 0.4547 0.6956 0.4740 0.2427 0.3871 0.2583 0.1342 0.2345 0.1396 0.0765 0.1352 0.0796

stdMC all 0.0114 0.0147 0.0122 0.0055 0.0070 0.0064 0.0033 0.0038 0.0035 0.0016 0.0022 0.0017

AMS E gr1 0.2951 0.4338 0.2978 0.1540 0.1923 0.1596 0.0837 0.1092 0.0857 0.0489 0.0630 0.0499

stdMC gr1 0.0089 0.0160 0.0086 0.0029 0.0041 0.0031 0.0015 0.0023 0.0016 0.0009 0.0011 0.0009

AMS E gr2 0.9938 1.5510 1.0549 0.5212 0.9992 0.5643 0.2889 0.6178 0.3059 0.1610 0.3528 0.1699

stdMC gr2 0.0410 0.0531 0.0442 0.0208 0.0296 0.0240 0.0127 0.0156 0.0140 0.0062 0.0083 0.0063

median ĥ(1) 0.2068 0.2493 0.1837 0.1680 0.2112 0.1604 0.1423 0.1869 0.1375 0.1198 0.1614 0.1169

median ĥ(2) 14.01 0.2493 2.201 2.172 0.2112 2.09 1.328 0.1869 1.25 1.135 0.1614 1.04

median λ̂ 0.0000 0.0809 0.0131 0.0000 0.0801 0.0081 0.0000 0.0549 0.0072 0.0000 0.0338 0.0056

median CVopt 2.0511 2.1565 1.8884 1.9094 2.0193 1.8636 1.8332 1.9283 1.8183 1.8046 1.8618 1.8009
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