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Abstract

The deviance information criterion (DIC) has been widely used for Bayesian model
comparison. However, recent studies have cautioned against the use of certain vari-
ants of the DIC for comparing latent variable models. For example, it has been
argued that the conditional DIC—based on the conditional likelihood obtained by
conditioning on the latent variables—is sensitive to transformations of latent vari-
ables and distributions. Further, in a Monte Carlo study that compares various
Poisson models, the conditional DIC almost always prefers an incorrect model. In
contrast, the observed-data DIC—calculated using the observed-data likelihood ob-
tained by integrating out the latent variables—seems to perform well. It is also the
case that the conditional DIC based on the maximum a posteriori (MAP) estimate
might not even exist, whereas the observed-data DIC does not suffer from this prob-
lem. In view of these considerations, fast algorithms for computing the observed-
data DIC for a variety of high-dimensional latent variable models are developed.
Through three empirical applications it is demonstrated that the observed-data
DICs have much smaller numerical standard errors compared to the conditional
DICs. The corresponding Matlab code is available upon request.

Keywords: Bayesian model comparison, state space, factor model, vector autore-
gression, semiparametric model.

∗Correspondence to: Research School of Economics, ANU College of Business and Economics,
LF Crisp Building 26, The Australian National University, Canberra ACT 0200, Australia. Email:
joshua.chan@anu.edu.au. Tel.: +61 2 612 57358; fax: +61 2 612 50182.

†Angelia Grant would like to acknowledge the Sir Roland Wilson Foundation for supporting her PhD
studies.



1 Introduction

Hypothesis testing, and more generally model comparison, has long been an important
problem in statistics and econometrics. Bayesian model comparison has traditionally
been performed using the Bayes factor, which is defined to be the ratio of the marginal
likelihoods of the two competing models. This model comparison criterion has a natural
interpretation and is often easy to compute for a wide range of simple models (see, e.g.,
Kroese and Chan, 2014, pp. 251-254). However, the development of Markov chain Monte
Carlo (MCMC) methods has made it possible to fit increasingly flexible and complex
models, and estimating the marginal likelihoods of these typically high-dimensional mod-
els is often difficult. In fact, there is a vast and growing literature on marginal likelihood
estimation using MCMC methods (see, e.g., Gelfand and Dey, 1994; Chib and Jeliazkov,
2001; Friel and Pettitt, 2008; Bauwens and Rombouts, 2012; Chan and Eisenstat, 2014,
among many others). Despite these recent advances, computing the marginal likelihood
remains a difficult problem in practice, which often involves nontrivial programming ef-
forts and heavy computation. In addition, the values of the Bayes factor are often found
to be sensitive to the choice of prior distributions.

These considerations have motivated the search for alternative model selection criteria.
In particular, since Spiegelhalter et al. (2002) introduced the concept in their seminal
paper, the deviance information criterion (DIC) has been widely used for Bayesian model
comparison. Its popularity is further enhanced by the introduction of a number of alter-
native definitions of the DIC—many of them easy to compute—for latent variable models
in Celeux et al. (2006).In addition, DIC computation is implemented in standard software
packages, including WinBUGS. The DIC has been successfully applied to a wide variety
of applications, such as comparing various stochastic volatility models in finance (see,
e.g., Berg et al., 2004; Abanto-Valle et al., 2010; Wang et al., 2013), testing functional
forms in energy modeling (see, e.g., Xiao et al., 2007), and discriminating between com-
peting models for inflation as well as other macroeconomic time series (see, e.g., Lopes
and Salazar, 2006; Chen et al., 2012; Mumtaz and Surico, 2012). A Monte Carlo study
comparing the DIC with other Bayesian model selection criteria can be found in Ward
(2008).

Nevertheless, some recent studies have cautioned against the use of the DIC for com-
paring latent variable models. For instance, Li et al. (2012) argue that the DIC should
not be used with data augmentation, as the complete-data likelihood of the augmented
data is nonregular and hence invalidates the standard asymptotic arguments that are
needed to justify the DIC. Moreover, the DIC based on the complete-data likelihood
is sensitive to transformations of latent variables and distributional representations. In
the context of comparing Poisson models, Millar (2009) provides a Monte Carlo study
which shows that the DIC based on the conditional likelihood—obtained by condition-
ing on the latent variables—almost always prefers the Poisson-gamma model instead of
the Poisson-lognormal model, even when data are simulated from the latter. The au-
thor concludes that “the DIC is a potentially dangerous tool in the present context.” In
contrast, he shows that the DIC calculated using the integrated likelihood—obtained by
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integrating out the latent variables—seems to perform well. This result is not surprising
since standard asymptotic arguments for justifying the DIC apply to the DIC based on
the integrated likelihood. However, evaluation of the integrated likelihood is typically
time-consuming, which is the main reason why it is rarely used in applied work. We
take a first step to address these issues by proposing fast methods for computing the
DIC based on the integrated likelihood for a variety of high-dimensional latent variable
models.

More specifically, the contribution of this paper is twofold. Firstly, we provide ana-
lytical expressions for the integrated likelihoods under three popular families of latent
variable models: factor models, linear Gaussian state space models and semiparametric
models. To evaluate these integrated likelihoods, we draw on recent advances in sparse
matrix algorithms, and the computational details are carefully discussed. Secondly, we
document the differences in variability of the DICs computed using the complete-data
likelihood, the conditional likelihood and the integrated likelihood in three empirical ex-
amples. We show that the DICs based on the complete-data and conditional likelihoods
generally have large numerical standard errors. On the other hand, the DICs based on
the integrated likelihoods are more accurately estimated. This result is intuitive since
integrating out the high-dimensional latent variables is expected to reduce the variance
in Monte Carlo simulation. Our results provide another practical reason for why DICs
based on conditional and complete-data likelihoods should not be used.

The rest of this paper is organized as follows. In Section 2 we introduce the concept
of deviance and several definitions of the DIC. Section 3 discusses fast algorithms for
computing the DIC based on the integrated likelihood for three classes of latent variable
models. In Section 4, the proposed methods are illustrated via three empirical applica-
tions, involving returns on stock portfolios, US macroeconomic time series and female
body mass index and wages.

2 Deviance Information Criterion

In complex hierarchical models, basic concepts like parameters and their dimension are
not always clear and they may take several equally acceptable definitions. In their seminal
paper, Spiegelhalter et al. (2002) introduce the concept of effective number of parameters

and develop the theory of deviance information criterion (DIC) for model comparison.
The model selection criterion is based on the deviance, which is defined as

D(θ) = −2 log f(y |θ) + 2 log h(y),

where f(y |θ) is the likelihood function of the parametric model and h(y) is some fully
specified standardizing term that is a function of the data alone. Then the effective
number of parameters pD is defined as

pD = D(θ)−D(θ̃),
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where
D(θ) = −2Eθ[log f(y |θ) |y] + 2 log h(y)

is the posterior mean deviance and θ̃ is an estimate of θ, which is typically taken as the
posterior mean or mode. Then, the deviance information criterion is defined as

DIC = D(θ) + pD.

The posterior mean deviance can be used as a Bayesian measure of model fit or ade-
quacy. Hence, the deviance information criterion, which is the sum of the posterior mean
deviance and the effective number of parameters, can be viewed as a trade-off between
model adequacy and complexity. For model comparison, we set h(y) = 1 for all models.
Therefore, the DIC becomes

DIC = D(θ̃) + 2pD

= −4Eθ[log f(y |θ) |y] + 2 log f(y | θ̃).

Given a set of competing models for the data, the preferred model is the one with the
minimum DIC value.

In a subsequent paper, Celeux et al. (2006) point out that there are a number of alter-
native, yet natural, definitions of the DIC in latent variable models. To set the stage,
suppose we augment the model f(y |θ) with a vector of latent variables z such that

f(y |θ) =

∫
f(y, z |θ)dz,

where f(y, z |θ) is the complete-data likelihood. To avoid ambiguity, we refer to the
likelihood f(y |θ) as the observed-data likelihood or the integrated likelihood. In what
follows, we discuss three distinct definitions of the DIC, the naming of which follows
Celeux et al. (2006). One of the definitions is based on the integrated likelihood, one
is based on the complete-data likelihood and one is based on the conditional likelihood.
These definitions are chosen given that one goal of this paper is to show that the DICs
based on the complete-data and conditional likelihoods have larger numerical standard
errors relative to the DIC based on the integrated likelihood. The readers are referred to
Celeux et al. (2006) for discussion of other variants.

When the integrated likelihood can be evaluated quickly, one can use the original defini-
tion of the DIC. In particular, consider

DIC2 = −4Eθ[log f(y |θ) |y] + 2 log f(y | θ̂), (1)

where the estimate θ̃ of θ is set as the posterior mode θ̂. The first term on the right-
hand side of (1), i.e., the expectation Eθ[log f(y |θ) |y], can be estimated by averaging
the log-integrated likelihoods log f(y |θ) over the posterior draws of θ. Since we have
analytically “integrated out” the typically high-dimensional vector of latent variables z,
this expectation can often be estimated precisely. In addition, to avoid the potentially
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difficult optimization problem involved in locating the posterior mode θ̂, one often ap-
proximates it by the draw that has the highest value of f(y |θ)f(θ) among the posterior

draws, where f(θ) is the prior density. Once we have obtained an approximation of θ̂,
the second term on the right-hand side of (1) can be readily computed.

However, it is often time-consuming to compute the integrated likelihood in a wide variety
of latent variable models. In those cases, one often considers alternative definitions of
the DIC that are based on the complete-data likelihood, f(y, z |θ), or the conditional

likelihood, f(y |θ, z). For example, consider

DIC5 = −4Eθ,Z[log f(y,Z |θ) |y] + 2 log f(y, ẑ | θ̂), (2)

where (ẑ, θ̂) is the joint maximum a posteriori (MAP) estimate of the pair (z,θ) given
the data y. The latent variable structure is usually chosen so that the joint distribution
f(y, z |θ) is available in closed form. Hence, the first term on the right-hand side of
(2) can be estimated by averaging the log-complete-data likelihoods log f(y, z |θ) over
the posterior draws of the pair (z,θ). However, even though this expectation can be
consistently estimated via simulation, its variance is likely to be large since we need to
average over the typically high-dimensional vector of latent variables z. To compute the
second term, we can again approximate the MAP estimate by the best pair among the
posterior draws, i.e., the pair that has the highest value of f(y, z |θ)f(θ).

The last alternative definition of the DIC that we consider is based on the conditional
likelihood, which can typically be evaluated quickly:

DIC7 = −4Eθ,Z[log f(y |θ,Z) |y] + 2 log f(y | ẑ, θ̂), (3)

where (ẑ, θ̂) is the joint MAP estimate. As before, the first term on the right-hand side
of (3) can be estimated by averaging the log-conditional likelihoods log f(y |θ, z) over
the posterior draws of (z,θ). This estimate is also expected to be imprecise due to the
high-dimensional latent variable vector z.

For the three definitions of the DIC discussed in this section, the estimate θ̃ of θ is
set as the posterior mode θ̂. Additional variants can be obtained by choosing different
estimates of θ. For example, if we set θ̃ to be the posterior mean in (1), we obtain what
Celeux et al. (2006) call DIC1. We refer the readers to Celeux et al. (2006) for further
discussion of other variants. Our conclusion—that the DICs based on the conditional
and complete-data likelihoods have large numerical standard errors—remains the same
when they are alternatively defined using the posterior mean. While DICs based on the
MAP are widely used in applied work, care must be taken when one uses DIC5 and DIC7:
the joint MAP estimator might not exist even for models with proper priors. That is, a
proper prior ensures a proper posterior, but not the existence of a posterior mode. This
is a potentially serious issue as using only a posterior sample to estimate the joint MAP
might lead to a spurious answer, with no indication that there is a problem. (We are
grateful to an anonymous referee for pointing out this issue). The priors in the three
applications in this paper are chosen to ensure the existence of the joint MAP estimator.
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3 Fast Computation of the Observed-Data DIC

In this section we discuss fast methods—building upon recent advances in sparse matrix
algorithms—for computing the observed-data DICs under three families of latent variable
models: factor models, linear Gaussian state space models and semiparametric models.
In particular, we derive analytical expressions for the integrated likelihoods under these
models and discuss the computational details of implementing the integrated likelihood
evaluation.

3.1 Factor Model

Factor models have been used in many areas including psychology, genomics, epidemi-
ology, economics and finance. They are particularly useful for modeling the dependence
structure of high-dimensional data. One central interest in factor analysis is to determine
the number of latent factors. In this section we consider the following k-factor model,
where the n× 1 vector of observations yt depends on a vector of k latent factors ft:

yt = Xtβ +Aft + εt, (4)

where ft ∼ N (0,Ω), A is the associated n × k loading matrix, Xt is an n × m design
matrix, β is the m × 1 vector of coefficients and εt ∼ N (0,Σ) with Σ assumed to
be diagonal, i.e., Σ = diag(σ2

1, . . . , σ
2
n). For the purpose of identification, we assume

Ω = diag(ω2
1, . . . , ω

2
k) is diagonal and A is lower triangular where the diagonal elements

are unity. In addition, we also require n > 2k + 1 (see, for example, the discussion in
Geweke and Zhou, 1996).

By integrating out the factors ft, we have

(yt |β,A,Ω,Σ) ∼ N (Xtβ,AΩA′ +Σ).

Evaluating the integrated likelihood for this model would involve computing the n × n
inverse (AΩA′+Σ)−1, which is a time-consuming operation when n is large. As pointed
out in Geweke and Zhou (1996), one can ameliorate this computation problem by using
the Woodbury matrix identity:

(AΩA′ +Σ)−1 = Σ−1 −Σ−1A(Ω−1 +A′Σ−1A)−1A′Σ−1, (5)

which only requires computing the k×k inverse (Ω−1+A′Σ−1A)−1. In typical situations
where n is much larger than k, the computation saving is substantial. We further improve
the efficiency of this approach by vectorizing the operations and by implementing sparse
matrix routines.

To that end, we stack the observations over t and write (4) as:

y = Xβ + (IT ⊗A)f + ε,
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where y = (y′

1, . . . ,y
′

T )
′, f = (f ′1, . . . , f

′

T )
′, ε = (ε′1, . . . , ε

′

T )
′ and X is similarly defined. It

follows that unconditional on f , y is jointly distributed as:

(y |β,A,Ω,Σ) ∼ N (Xβ, IT ⊗ (AΩA′ +Σ)).

Finally, the log-integrated likelihood of this model is given by

log f(y |β,A,Ω,Σ) =−
Tn

2
log(2π)−

T

2
log |AΩA′ +Σ|

−
1

2
(y −Xβ)′

(
IT ⊗ (AΩA′ +Σ)−1

)
(y −Xβ).

(6)

We comment on a few computational details in evaluating the log-integrated likelihood
given in (6). First, the inverse (AΩA′ +Σ)−1 can be obtained by the Woodbury matrix
identity in (5). In computing this quantity, note that Σ−1 is an n × n diagonal matrix
and is thus sparse. Using sparse matrix routines to compute (5) can therefore further
speed up the calculations. Similarly, the quadratic term in (6) can be obtained by using
fast sparse matrix routines since IT ⊗ (AΩA′ +Σ)−1 is a block-diagonal matrix. Lastly,
to compute the log-determinant quickly and accurately, we can first obtain the Cholesky
factor Cy of AΩA′ +Σ. Since Cy is lower triangular, we can return log |AΩA′ +Σ| =
2 log |Cy| = 2

∑n

i=1 log cii, where cii, i = 1, . . . , n are the diagonal elements of Cy.

3.2 Linear Gaussian State Space Model

A wide variety of popular macroeconometric models can be written in state space form.
These include autoregressive moving average models, time-varying parameter vector au-
toregressions (VARs) and factor-augmented VARs, among many others. In this section
we consider the following linear Gaussian state space model, where the n × 1 vector of
observations yt depends linearly on the q × 1 latent state vector βt according to the
hidden Markov structure

yt = Wtγ +Xtβt + εt, (7)

βt = βt−1 + ζt, (8)

where εt ∼ N (0,Σ) and ζt ∼ N (0,Ω) are independent for all leads and lags, γ is a k×1
vector of time-invariant parameters, Wt and Xt are respectively n×k and n×q covariate
matrices and the state equation (8) is initialized with β1 ∼ N (b0,Q0) for constant
matrices b0 and Q0. We note that instead of the random walk transition equation in (8),
one can assume a stationary transition equation and estimation follows similarly; see, e.g.,
Chan and Jeliazkov (2009). For later reference, let y = (y′

1, . . . ,y
′

T )
′, β = (β′

1, . . . ,β
′

T )
′

and ε = (ε′1, . . . , ε
′

T )
′.

The linear Gaussian state space model (7)–(8) can be estimated using forward-filtering
and backward-smoothing methods such as those in Carter and Kohn (1994) and Durbin
and Koopman (2002). Recently, more efficient algorithms that exploit the band structure
of the precision matrix of p(β |y,γ,Σ,Ω)—the joint density of the states given the data
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and other model parameters—are considered in Chan and Jeliazkov (2009) and McCaus-
land et al. (2011); see also McCausland (2012) and Chan et al. (2013) for extensions to
nonlinear models. In addition, for linear Gaussian state space models, p(β |y,γ,Σ,Ω) is
a Gaussian density that can be evaluated quickly using fast band matrix routines. Hence,
the integrated likelihood can also be evaluated quickly via the identity

f(y |γ,Σ,Ω) =
f(y |β,γ,Σ)p(β |γ,Σ,Ω)

p(β |y,γ,Σ,Ω)
,

where f(y |β,γ,Σ) is the complete-data likelihood function and p(β |γ,Σ,Ω) = p(β |Ω)
is the conditional prior density for β. Here we continue the line of research on efficient
algorithms by deriving an explicit expression for the integrated likelihood of the model
in (7)–(8) by analytically integrating out the states. By eliminating redundant terms,
evaluating the integrated likelihood using the new expression will be faster.

To that end, we stack the measurement equation (7) over t:

y = Wγ +Xβ + ε, (9)

where ε ∼ N (0, IT ⊗Σ),

W =




W1

W2
...

WT


 , X =




X1 0 . . . 0

0 X2 . . . 0
...

. . . . . .
...

0 0 . . . XT


 .

It follows from (9) that (y |β,γ,Σ) ∼ N (Wγ + Xβ, IT ⊗ Σ) and hence the sampling
density f(y |β,γ,Σ) is given by

f(y |β,γ,Σ) = (2π)−
Tn
2 |Σ|−

T
2 e−

1
2
(y−Wγ−Xβ)′(IT⊗Σ−1)(y−Wγ−Xβ). (10)

Since X and IT ⊗ Σ−1 are band matrices, the sampling density f(y |β,γ,Σ) can be
evaluated quickly using band matrix routines.

Next, let H denote the first difference matrix, i.e.,

H =




Iq 0 · · · 0

−Iq Iq
. . .

...
...

. . . . . .
...

0 · · · −Iq Iq


 .

Then, we can rewrite (8) as
Hβ = α̃+ ζ,

where α̃ = (b′

0,0, . . . ,0)
′, ζ = (ζ ′

1, . . . , ζ
′

T )
′ ∼ N (0,S) and S = diag(Q0,Ω, . . . ,Ω).

Since the determinant of H is unity, it is invertible. Let α = H−1α̃. Then, we have
(β |Ω) ∼ N (α, (H′S−1H)−1), and therefore the prior density p(β |Ω) is given by

p(β |Ω) = (2π)−
Tq

2 |Q0|
−

1
2 |Ω|−

T−1
2 e−

1
2
(β−α)′H′S−1H(β−α). (11)
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Since both H and S−1 are again band matrices, this prior density f(β |Ω) can also be
evaluated quickly using fast routines for band matrices.

In Appendix A we show that the log-integrated likelihood log f(y |γ,Σ,Ω) is given by:

log f(y |γ,Σ,Ω)

=−
Tn

2
log(2π)−

1

2
log |Q0| −

T − 1

2
log |Ω| −

T

2
log |Σ| −

1

2
log |Kβ|

−
1

2

(
(y −Wγ)′(IT ⊗Σ−1)(y −Wγ) +α′H′S−1Hα− d′

βK
−1
β dβ

)
,

(12)

where Kβ = X′(IT ⊗Σ−1)X+H′S−1H and dβ = X′(IT ⊗Σ−1)(y −Wγ) +H′S−1Hα.

We comment on a few computational details in evaluating the log-integrated likelihood
given in (12). First, recall that S, H and X are all band matrices. Consequently, dβ

can be obtained quickly. Moreover, Kβ is also a band matrix. Second, to obtain the
product K−1

β dβ, one can simply solve the band linear system Kβx = dβ for x. This

avoids the time-consuming operation of computing the inverse K−1
β . Third, calculating

the log determinant log |Kβ| can be done quickly as follows: obtain the Cholesky factor
Cβ of Kβ, which can be completed quickly as Kβ is a band matrix. Since Cβ is lower

triangular, we can return log |Kβ| = 2 log |Cβ| = 2
∑Tq

i=1 log cii, where cii, i = 1, . . . , T q
are the diagonal elements of Cβ.

3.3 Semiparametric Regression

Another popular model used in economics is the semiparametric regression. Economic
theory rarely dictates a functional form for the regression relationship between the de-
pendent variable and the regressors, while a fully nonparametric regression suffers from
the curse of dimensionality. Hence, it is often desirable to consider the partial linear
regression or semiparametric regression, which can be written as follows:

yi = x′

iβ + f(zi) + εi (13)

for i = 1, . . . , n, where yi is a scalar dependent variable, zi is a scalar explanatory variable,
xi is a k× 1 vector of explanatory variables, β is a k× 1 vector of parameters, f(·) is an
unknown function and εi ∼ N (0, σ2). In other words, only zi is treated nonparametrically
and all other variables in xi enter the regression linearly. Also note that since the unknown
function f(·) plays the role of an intercept, xi does not include an intercept.

To estimate the semiparametric regression in (13), we follow Koop and Poirier (2004) and
specify a hierarchical prior on the functional values. For a textbook treatment, see, Koop
et al. (2007), pp. 187-190; for various extensions, see, e.g., Koop et al. (2005), Kline and
Tobias (2008) and Chib et al. (2009). We first sort the data by values of z such that
z1 < z2 < · · · < zm. Note that we allow for the possibility that different observations
may have the same values of z so that m 6 n. Next, let θi = f(zi) for i = 1, . . . ,m and
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stack y = (y1, . . . , yn)
′, θ = (θ1, . . . , θm)

′ and ε = (ε1, . . . , εn)
′. We can then rewrite the

semiparametric regression (13) as follows:

y = Xβ +Dθ + ε, (14)

where ε ∼ N (0, σ2In), X is an n× k matrix of regressors and D is an n×m matrix that
selects the appropriate element in θ, i.e., each row of D is a 1×m vector of zeros except
one unity entry that picks the appropriate element in θ. Hence, if we sort the data by
values of z, the associated matrix D is in fact a band matrix. See also the discussion in
Chib et al. (2009).

Define ∆i = zi − zi−1 > 0 for i = 2, . . . ,m and construct the m×m matrix G as follows:

G =




1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0

∆−1
2 −(∆−1

3 +∆−1
2 ) ∆−1

3 0 · · · 0 0 0
0 ∆−1

3 −(∆−1
4 +∆−1

3 ) ∆−1
4 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · ∆−1
m−1 −(∆−1

m +∆−1
m−1) ∆−1

m




.

It follows that

Gθ =




θ1
θ2

θ3−θ2
∆3

− θ2−θ1
∆2

θ4−θ3
∆4

− θ3−θ2
∆3

...
θm−θm−1

∆m
− θm−1−θm−2

∆m−1




,

where terms of the form (θi − θi−1)/∆i = (f(zi)− f(zi−1))/(zi − zi−1) can be interpreted
as pointwise derivatives of f(·) at zi−1.

We then consider the prior (Gθ | τ) ∼ N (0,Ωτ ), where Ωτ = diag(V1, V2, τ, . . . , τ), and
V1 and V2 are fixed constants. Since G is a lower triangular m×m matrix with positive
determinant, it is invertible regardless of the data. Therefore, we can equivalently write
the prior as

(θ | τ) ∼ N (0, (G′Ω−1
τ G)−1). (15)

Now, combining the complete-data likelihood (14) and the prior (15), we can obtain
an analytical expression for the integrated likelihood f(y |β, σ2, τ). More precisely, the
log-integrated likelihood of the semiparametric model is given by (see Appendix A for
details):

log f(y |β, σ2, τ) =−
n

2
log(2πσ2)−

1

2
log |Ωτ |+ log |G| −

1

2
log |Kθ|

−
1

2

(
1

σ2
(y −Xβ)′(y −Xβ)− d′

θK
−1
θ dθ

)
,

(16)
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where Kθ = D′D/σ2 + G′Ω−1
τ G and dθ = D′(y − Xβ)/σ2. Since G, Kθ and Ωτ are

band matrices, the log-integrated likelihood in (16) can be quickly evaluated using band
and sparse matrices routines; see the discussion on computations in Section 3.2.

4 Empirical Applications

In this section we illustrate the proposed algorithms introduced in Section 3 for computing
the observed-data DICs for three classes of latent variable models. The complete-data and
conditional DICs are also reported for comparison. The empirical applications involve
returns on stock portfolios, US macroeconomic time series data and female body mass
index and wages.

4.1 Factor Models for Stock Portfolio Returns

In the first application we analyze monthly excess returns for 10 NYSE/AMEX/NASDAQ
market capitalization decile portfolios for the sample period January 1952 to December
2011. More precisely, the data are returns in excess of the one-month US Treasury bill
yield, and all data are obtained from the Center for Research in Security Prices (CRSP)
at the University of Chicago. A similar dataset is fitted using a variety of factor models
in Nardari and Scruggs (2007) (their sample period ends in December 2003) and they
find 3-factor models fit the data best using the Bayes factor as the model comparison
criterion. Here we perform a similar model comparison exercise with the three alternative
versions of the DIC.

More specifically, yt is a column vector of size n = 10 consisting of the monthly excess
returns of the decile portfolios, which we denote as Cap1 (the smallest size decile portfolio)
to Cap10 (the largest size decile portfolio). Following Nardari and Scruggs (2007), the
first two elements in yt are Cap6 and Cap10; other elements are the excess returns for
the remaining decile portfolios arranged from the smallest to largest. As such, the first
factor can be interpreted as a “stock market factor” and the second as a “size factor”;
see Nardari and Scruggs (2007) for further discussion. We also include an intercept in
the factor model (4), i.e., the design matrix Xt is the identity matrix of dimension n.

4.1.1 Priors and Results

We now discuss the specification of the priors for the k-factor model. Let a be the l × 1
vector with l = kn− k(k+ 1)/2 that contains the free elements in the factor loadings A.
Then, we consider the following independent priors:

β ∼ N (β0,Vβ), a ∼ N (a0,Va), σ2
i ∼ IG(νσ2

i
, Sσ2

i
), ω2

j ∼ IG(νω2
j
, Sω2

j
) (17)
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for i = 1, . . . , n and j = 1, . . . , k, where IG(·, ·) denotes the inverse-gamma distribution.
The hyperparameters are set as β0 = 0, Vβ = In, a0 = 0, Va = Il, νσ2

i
= 3, Sσ2

i
= 2,

νω2
j
= 3 and Sω2

j
= 2. These hyperparameters imply prior means Eσ2

i = Eω2
j = 1.

We consider four factor models with numbers of factors ranging from 1 to 4. (Recall that
for identification we require n > 2k+1. Hence, we can allow for at most four factors.) For
each model, we use the Gibbs sampler in Appendix B to construct 10 parallel chains each
of which is of length 10000 after a burn-in period of 1000. We then use the algorithms
described in Sections 2 and 3.1 to compute the three DICs. The results are reported in
Table 1.

Table 1: Estimated DICs, numerical standard errors and computation times (in seconds)
for the competing factor models.

DIC2 Time (s) DIC5 Time (s) DIC7 Time (s)
1-factor 26370 290 27059 327 23132 365

(0.56) (3.12) (2.97)
2-factor 22410 345 23265 387 16781 434

(0.43) (7.12) (13.2)
3-factor 22081 402 25336 452 15550 488

(0.88) (17.0) (34.5)
4-factor 22065 466 26309 527 15198 551

(0.88) (38.4) (86.5)

Among the factor models, both DIC2 and DIC7 indicate that the best model is the 4-
factor model, whereas DIC5 prefers the 2-factor model. This highlights the fact that
model comparison using different definitions of the DIC might select different models.
In addition, the results show that even with a moderate size of posterior draws (a total
of 100000), it is still difficult to estimate DIC5 and DIC7 accurately as indicated by the
relatively large numerical standard errors. These results are perhaps not surprising as
the computation of DIC5 and DIC7 involves the high-dimensional latent factors, which
increases variability of the Monte Carlo simulation. On the other hand, the DIC2 esti-
mates are more accurately estimated. It is also interesting to note that the computation
times for DIC2 are in fact less than those for DIC5 and DIC7.

4.2 Vector Autoregressions for the US Economy

In this empirical application we compare various popular VARs for fitting a US macroe-
conomic time series dataset, which is obtained from the US Federal Reserve Bank of St.
Louis. Specifically, the dataset consists of 260 quarterly observations from 1948Q1 to
2012Q4 on n = 4 variables: real GDP growth, 3-Month Treasury Bill rate, unemploy-
ment rate and CPI inflation rate. The main goal of this exercise is to investigate which
specification best models the evolution and interdependence among these macroeconomic

12



time series.

4.2.1 Time-Invariant and TVP-VARs

The first model we consider is a standard vector autoregression (VAR) model popularized
by Sims (1980). More specifically, we consider the first-order VAR

yt = µ+Πyt−1 + εt (18)

for t = 1, . . . , T , where εt ∼ N (0,Σ), yt is a vector containing measurements on the
aforementioned n = 4 macroeconomic variables, µ is an n× 1 vector of intercepts and Π

is an n × n matrix of VAR coefficients. For estimation (18) is often written in the form
of a seemingly unrelated regression (SUR) model:

yt = Wtγ + εt, (19)

where Wt = In ⊗ (1,y′

t−1), γ is a q × 1 vector with q = n(n + 1), obtained by stacking
the parameters in µ and Π equation by equation, i.e., γ = vec ((µ, Π)′).

Although the conventional constant coefficients VAR has enjoyed great success, recent
literature has highlighted the importance of allowing for potential structural instabilities
in time series via time-varying parameters. Consequently, we also consider the following
time-varying parameter vector autoregression (TVP-VAR) (e.g., Canova, 1993; Koop and
Korobilis, 2010):

yt = Xtβt + εt, (20)

where εt ∼ N (0,Σ). The vector of VAR coefficients βt evolves according to the random
walk process

βt = βt−1 + ζt (21)

for t = 2, . . . , T , where β1 ∼ N (b0,Q0), ζt ∼ N (0,Ω) and Ω = diag(ω2
1, . . . , ω

2
q ) is

assumed to be a diagonal matrix.

Empirically, the TVP-VAR in (20) that allows all VAR coefficients to change over time
is often found to perform better than a constant coefficients VAR. For example, Chan
and Eisenstat (2014) find that the TVP-VAR is preferred to the constant coefficients
VAR according to the Bayes factor. However, it is plausible that a TVP-VAR where only
some coefficients are time-varying while others are time-invariant will perform better
than both alternatives. This possibility has been investigated in, e.g., Belmonte et al.
(2014), Koop and Korobilis (2012) and Eisenstat et al. (2014). We follow this line of
research and consider four different restricted TVP-VARs. More specifically, we restrict
the coefficients in each of the n = 4 equations to be time-invariant, whereas coefficients
in the other n−1 equations are time-varying. Each of these restricted TVP-VARs can be
written in the form of (7). For example, if we restrict the coefficients in the first equation
to be constant, then

Wt =

(
(1,y′

t−1)
0

)
, Xt =

(
0

In−1 ⊗ (1,y′

t−1)

)
,

and γ and βt are appropriately defined.
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4.2.2 Priors and Results

We now specify the prior distributions under each of the models considered. For all cases,
we assume proper but relatively noninformative prior distributions. Moreover, since the
main goal of this exercise is to compare different specifications, we assume similar prior
distributions across models where possible.

For the constant coefficients VAR, we assume the following independent prior distribu-
tions: γ ∼ N (γ0,Vγ), Σ ∼ IW(νΣ,SΣ), where IW(·, ·) denotes the inverse-Wishart
distribution. Specifically, we set γ0 = 0, Vγ = 5 × Iq, νΣ = n + 3 and SΣ = In so that
the prior means are Eγ = 0 and EΣ = 0.5 × In. Next, for the TVP-VAR where all the
VAR coefficients are time-varying, we assume ω2

i ∼ IG(νi, Si), i = 1, . . . , q, where IG(·, ·)
denotes the inverse-gamma distribution. We set the hyperparameters νΣ and SΣ to be
the same as in the constant coefficients VAR, i.e, νΣ = n + 3 and SΣ = In. Moreover,
we set b0 = 0,Q0 = 5 × Iq, νi = 5 and Si = 0.02, so that Eσ2

i = 0.005 for i = 1, . . . , q.
Lastly, for the four TVP-VARs where the coefficients in the first equation are constant,
we assume the same prior distributions for Σ and Ω as in the unrestricted TVP-VAR.
For the time-invariant VAR coefficients γ, we assume the prior γ ∼ N (γ0,Vγ), where
γ0 = 0 and Vγ = 5× Ik.
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Figure 1: Evolution of the VAR coefficients βt in the time-varying parameter VAR model.
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For each of the models, we obtain a total of 100000 posterior draws from 10 parallel chains
using the Gibbs sampler in Appendix B. The posterior estimates under the unrestricted
TVP-VAR are reported in Figure 1. On the whole, the estimates suggest that there
is substantial time-variation in the VAR coefficients. However, the parameters in the
unemployment equation seem to vary less than those in other equations.

To investigate the possibility that a TVP-VAR where only some coefficients are time-
varying while others are time-invariant is a better alternative, we estimate the three DICs
for various TVP-VARs and the results are reported in Table 2. VAR denotes the constant
coefficients VAR and TVP-VAR denotes the unrestricted TVP-VAR. We also consider
four other variants of the TVP-VAR. For example, Const-GDP denotes a TVP-VAR
where the coefficients of the GDP equation are constant, while those of the remaining
three equations are time-varying; the others are defined similarly. Since the constant
coefficients VAR does not involve any latent variables (states), its DIC is computed using
the (observed-data) likelihood and we classify this as DIC2. According to DIC2, the
best model is the variant of TVP-VAR with coefficients in the unemployment equation
fixed, followed by the constant coefficients VAR. However, according to both DIC5 and
DIC7, the best model is the TVP-VAR, followed by the TVP-VAR variant where the
coefficients in the GDP equation are constant. This gives another real data example of
where different models are considered “the best” according to different definitions of the
DIC.

Table 2: Estimated DICs, numerical standard errors and computation times (in seconds)
for the competing VAR models.

DIC2 Time (s) DIC5 Time (s) DIC7 Time (s)
VAR 3009.5 163 – – – –

(0.34) – – – –
TVP-VAR 3195.2 3020 -13007 1677 1917.2 1582

(4.54) (35.3) (25.0)
Const-GDP 3176.8 1819 -9690.0 1027 1985.5 1179

(2.99) (47.4) (18.3)
Const-Interest 3244.8 1833 -8439.7 1021 2572.4 1187

(2.27) (35.3) (17.8)
Const-Unemployment 2998.1 1823 -8042.7 1025 2168.9 1165

(2.42) (33.1) (16.4)
Const-Inflation 3204.1 1814 -9586.7 1022 2083.0 1160

(2.41) (29.4) (15.6)

Moreover, the results suggest that DIC2 estimates are the most accurate among the
three, but they also take more time to compute. However, DIC2 is still more accurately
estimated when the computation time is taken into account. For example, for computing
the DICs of the TVP-VAR, the estimate of DIC2 is about 58 times (252/1582×3020/4.542)
more accurate than that of DIC7 in terms of variance reduction; it is over 100 times more
accurate compared to the estimate of DIC5. Since the vector of latent variables is of
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high dimension in these TVP-VARs, even computing the complete-data likelihood-based
DICs takes a long time. To reduce the numerical standard error by half requires quadruple
computation time. Hence, discriminating between competing models using complete-data
likelihood-based DICs might be impractical. On the other hand, DIC2 can be computed
accurately using the computation methods described in Section 3.2.

4.3 Semiparametric Regression: The Wages of BMI

In this section we revisit an empirical application in Kline and Tobias (2008) that studies
the role of body mass index (BMI) in the production of log wages. More specifically, they
consider a semiparametric treatment-response model with a skewnormal error distribu-
tion. Here we abstract from the non-Gaussian assumption and the endogeneity issue; we
consider the semiparametric regression in (13) and investigate if the main conclusions hold
in this simplified framework. In particular, we compare different priors for the smooth-
ness parameter τ ; we also compare the semiparametric regression with a conventional
linear regression.

4.3.1 Data

The data are from the 1970 British Cohort Study that tracks the cohort of all people
born in Great Britain between 5–11 April, 1970. We use a subsample that contains
n = 1782 women with m = 672 unique values of BMI. The covariates that are treated
linearly (contained in xi) are individual and family background characteristics. Individual
characteristics include tenure on the current job, labor market experience, family income,
an indicator denoting the completion of a lower level of secondary education, an indicator
denoting the completion of a higher level of secondary education, an indicator for the
completion of a college degree program, an indicator denoting whether the individual is
married and an indicator denoting whether the individual has a union job.

For family background characteristics, we have an indicator denoting whether the in-
dividual’s mother or father held a college degree, an indicator denoting whether the
individual’s mother or father worked in a managerial or professional position, and the
BMIs of the individual’s mother and father. For a more detailed discussion of the dataset
and definitions of various variables, see Kline and Tobias (2008).

4.3.2 Priors and Results

For the semiparametric regression, we consider the following independent priors:

β ∼ N (β0,Vβ), σ2 ∼ IG(νσ2 , Sσ2), τ ∼ IG(ντ , Sτ ), (22)

where the hyperparameters are set as β0 = 0, Vβ = Ik, νσ2 = 3 and Sσ2 = 2. For τ ,
we consider three different sets of hyperparameters: ντ = 3 and Sτ = 10−4, 10−5 and
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10−6. These hyperparameters imply prior means Eτ = 5 × 10−5, Eτ = 5 × 10−6 and
Eτ = 5× 10−7, respectively. For the conventional linear regression, we simply append an
intercept and the individual’s BMI to the vector of covariates xi. The priors for β and
σ2 are the same as given in (22).

For each model, we use the Gibbs sampler in Appendix B to construct 10 parallel chains
each of which is of length 10000 after a burn-in period of 1000. The posterior draws are
then used to compute the three DICs, and the results are reported in Table 3. Among
the semiparametric regressions, both DIC2 and DIC7 indicate that the best model is the
one with a smoothness prior that implies Eτ = 5× 10−6, which is also the choice in Kline
and Tobias (2008). However, DIC5 prefers the model with prior mean Eτ = 5 × 10−7.
This again highlights the fact that different definitions of the DIC might prefer different
models. Compared with the semiparametric regressions, the conventional linear regression
has a slightly lower DIC (DIC2), indicating that the extra flexibility of the semiparametric
regressions does not seem to be justified by the better fit. Nevertheless, it may be justified
if the main interest is on the possibly nonlinear impact of BMI on log wages (the estimate
of f(·) does appear to be nonlinear; see Figure 2).

Table 3: Estimated DICs, numerical standard errors and computation times (in seconds)
for the competing semiparametric models.

DIC2 Time (s) DIC5 Time (s) DIC7 Time (s)
Linear regression 1362.0 38 – – – –

(0.20) – – – –
Semiparametric; 1397.3 171 -8566.8 128 1341.2 134
Eτ = 5× 10−5 (0.40) (23.0) (1.80)
Semiparametric; 1392.7 173 -9709.8 130 1340.5 132
Eτ = 5× 10−6 (0.41) (32.7) (1.49)
Semiparametric; 1426.6 172 -10894 132 1341.8 133
Eτ = 5× 10−7 (1.90) (40.0) (2.27)

As for the numerical standard errors of the different DICs, the DIC2 estimates are the
most accurate at a slightly higher computational cost as expected. For example, when
computing the DICs for the semiparametric regression with prior mean Eτ = 5 × 10−6,
the estimate of DIC2 is about 17 times ((1.49)2/132 × 173/(0.41)2) more accurate than
that of DIC7 after accounting for the computation times (in terms of variance reduction).
The estimates for DIC5 are quite inaccurate even though they are computed using a total
of 100000 posterior draws. It is also worth noting that even though the computation
times for calculating DIC5 and DIC7 are similar, the latter are about 300-500 times more
accurate than the former (in terms of variance reduction).

Finally, in Figure 2 we report the posterior means of the function f(·) with the prior
Eτ = 5× 10−6. The shape of the curve is qualitatively similar to that reported in Kline
and Tobias (2008). More specifically, the marginal increases in BMI incur little penalty
in terms of wages, if at all, for individuals with low values of BMI (18-22). But when the
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individual moves towards higher values of BMI, the penalty increases until it levels off
from about 28 (roughly the 85-th percentile of the BMI distribution).
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Figure 2: Posterior means of the function f(·) with the prior mean Eτ = 5× 10−6 (solid
line) and the corresponding 90% credible intervals (dotted lines).

5 Concluding Remarks and Future Research

We have derived analytical expressions for the integrated likelihoods under three classes
of latent variable models: factor models, linear Gaussian state space models and semi-
parametric models, with the goal of evaluating the observed-data DICs. In the empirical
examples, we found that given the same computation time (and with care taken to ensure
that the joint MAP estimator exists), complete-data and conditional DICs typically have
much larger numerical standard errors compared to the DICs based on the integrated
likelihoods. This highlights the need to report numerical standard errors of the DICs,
which is often not done in empirical research.

The analytical expressions for the integrated likelihoods derived in this paper can be used
to develop more efficient MCMC samplers for estimation and algorithms for computing
the marginal likelihood. We leave these possibilities for future research. In addition, we
have only considered models where the integrated likelihoods are available analytically.
One popular family of models that do not fit into this framework is stochastic volatility
models. However, it is still possible to quickly evaluate the integrated likelihood of
a certain subset of these models using importance sampling (e.g., McCausland, 2012,
is one such example). For models where the integrated likelihood cannot be quickly
evaluated, such as general nonlinear and non-Gaussian models, one could consider other
model selection criteria such as the marginal likelihood or the robust deviance information
criterion of Li et al. (2012), both of which require evaluating the integrated likelihood
only once.
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Appendix A: Derivation of the Integrated Likelihoods

In this appendix we provide the details of the derivation of the integrated likelihoods
of the linear Gaussian state space model in (7)–(8) and the semiparametric model in
(14)–(15).

We first consider the integrated likelihood for the linear Gaussian state space model in

(7)–(8). Let c1 = (2π)−
T (n+q)

2 |Q0|
−

1
2 |Ω|−

T−1
2 |Σ|−

T
2 . Then, it follows from (10) and (11)

that the integrated likelihood f(y |γ,Σ,Ω) is given by

f(y |γ,Σ,Ω) =

∫
f(y |β,γ,Σ)p(β |Ω)dβ

= c1

∫
e−

1
2
(y−Wγ−Xβ)′(IT⊗Σ−1)(y−Wγ−Xβ)e−

1
2
(β−α)′H′S−1H(β−α)dβ

= c1

∫
e−

1
2(β

′Kββ−2β′dβ+(y−Wγ)′(IT⊗Σ−1)(y−Wγ)+α′H′S−1Hα)dβ,

where Kβ = X′(IT ⊗Σ−1)X+H′S−1H and dβ = X′(IT ⊗Σ−1)(y −Wγ) +H′S−1Hα.
Now, complete the square:

β′Kββ − 2β′dβ = β′Kββ − 2β′dβ + d′

βK
−1
β dβ − d′

βK
−1
β dβ

= (β −K−1
β dβ)

′Kβ(β −K−1
β dβ)− d′

βK
−1
β dβ.

Hence,

f(y |γ,Σ,Ω)

= c1 e
−

1
2 [(y−Wγ)′(IT⊗Σ−1)(y−Wγ)+α′H′S−1Hα−d′

β
K−1

β
dβ]
∫

e−
1
2
(β−K−1

β
dβ)

′Kβ(β−K−1
β

dβ)dβ

= c1(2π)
Tq

2 |Kβ|
−

1
2 e−

1
2 [(y−Wγ)′(IT⊗Σ−1)(y−Wγ)+α′H′S−1Hα−d′

β
K−1

β
dβ]

= (2π)−
Tn
2 |Q0|

−
1
2 |Ω|−

T−1
2 |Σ|−

T
2 |Kβ|

−
1
2 e−

1
2 [(y−Wγ)′(IT⊗Σ−1)(y−Wγ)+α′H′S−1Hα−d′

β
K−1

β
dβ].

Next, we derive the integrated likelihood of the semiparametric model in (14)–(15). Let

c2 = (2π)−n(σ2)−
n
2 |Ωτ |

−
1
2 |G|, Kθ = D′D/σ2 + G′Ω−1

τ G and dθ = D′(y − Xβ)/σ2.
Moreover, by completing the square we have

θ′Kθθ − 2θ′dθ =
(
θ −K−1

θ dθ

)′
Kθ

(
θ −K−1

θ dθ

)
− d′

θK
−1
θ dθ.
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Then the integrated likelihood is given by:

f(y |β, σ2, τ) =

∫
f(y |β,θ, σ2)f(θ | τ)dθ

= c2

∫
e−

1
2σ2 (y−Xβ−Dθ)′(y−Xβ−Dθ)e−

1
2
θ′G′Ω−1

τ Gθdθ

= c2

∫
e−

1
2(θ

′Kθθ−2θ′dθ+
1
σ2 (y−Xβ)′(y−Xβ))dθ,

= c2e
−

1
2(

1
σ2 (y−Xβ)′(y−Xβ)−d′

θ
K−1

θ
dθ)
∫

e−
1
2(θ−K−1

θ
dθ)Kθ(θ−K−1

θ
dθ)dθ

= c2(2π)
n
2 |Kθ|

−
1
2 e−

1
2(

1
σ2 (y−Xβ)′(y−Xβ)−d′

θ
K−1

θ
dθ)

= (2πσ2)−
n
2 |Ωτ |

−
1
2 |G||Kθ|

−
1
2 e−

1
2(

1
σ2 (y−Xβ)′(y−Xβ)−d′

θ
K−1

θ
dθ).

Appendix B: Gibbs Samplers

This appendix provides the estimation details of the models used in the empirical ap-
plications. Gibbs samplers are used to simulate from the posterior distributions of all
models in the empirical applications. All the full conditional distributions of each Gibbs
sampler are provided below.

The first is the Gibbs sampler for the factor models:

1. Draw from (f |y,β,A,Σ,Ω) ∼ N (f̂ ,Df ) using the precision sampler in Chan and
Jeliazkov (2009), where

D−1
f = IT ⊗Ω−1 + IT ⊗ (A′Σ−1A), f̂ = Df

(
(IT ⊗ (A′Σ−1))(y −Xβ)

)
.

2. Draw from (ai,βi |y, f ,Σ,Ω) ∼ N (α̂i,Dαi
), where α̂i and Dαi

depend on whether
i 6 k or i > k. For i 6 k,

D−1
αi

= V−1
αi

+
1

σ2
i

T∑

t=1

z′itzit, α̂i = Dαi

(
V−1

αi
α0i +

1

σ2
i

T∑

t=1

z′it(yit − fit)

)
,

where zit = (X′

it, f1t, . . . , fi−1,t)
′, α0i = (β′

0i, a
′

0i)
′ and Vαi

= diag(Vβi
,Vai

). For
i > k,

D−1
αi

= V−1
αi

+
1

σ2
i

T∑

t=1

z′itzit, α̂i = Dαi

(
V−1

αi
α0i +

1

σ2
i

T∑

t=1

z′ityit

)
,

where zit = (X′

it, f1t, . . . , fkt)
′.

3. Draw from (σ2
i |y, f ,A,β,Ω) ∼ IG

(
νσ2

i
+ T

2
, Sσ2

i
+ 1

2

T∑
t=1

s2it

)
, where sit is the i-th

element of st = yt −Xtβ −Aft.
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4. Draw from (ω2
j |y, f ,A,β,Σ) ∼ IG

(
νω2

j
+ T

2
, Sω2

j
+ 1

2

T∑
t=1

f 2
jt

)
, where fjt is the j-th

element of ft.

5. Repeat Steps (1)-(4) N times.

Next, we present the Gibbs sampler for the state space model in (7)–(8). Both the
constant coefficients VAR and TVP-VAR are special cases of this model.

1. Draw from (γ |y,β,Σ,Ω) ∼ N (γ̂,Dγ), where

D−1
γ = W′(IT ⊗Σ−1)W +′ V−1

γ , γ̂ = Dγ

(
W′(IT ⊗Σ−1)(y −Xβ) +V−1

γ γ0

)
.

2. Draw from (β |y,γ,Σ,Ω) ∼ N (β̂,Dβ), using the precision sampler in Chan and
Jeliazkov (2009), where

D−1
β = X′(IT⊗Σ−1)X+H′S−1H, β̂ = Dβ

(
X′(IT ⊗Σ−1)(y −Wγ) +H′S−1Hα

)
.

3. Draw from

(Σ |y,β,γ,Ω) ∼ IW

(
T + νΣ,SΣ +

T∑

t=1

(yt −Wtγ −Xtβt)(yt −Wtγ −Xtβt)
′

)
.

4. Draw from (ω2
i |y,β,γ,Σ) ∼ IG

(
νi +

T−1
2
, Si +

1
2

∑T

t=2(βit − βi,t−1)
2
)
.

5. Repeat Steps (1)-(4) N times.

Finally, the following is the Gibbs sampler for the semiparametric regression:

1. Draw from (θ |y,β, σ2, τ) ∼ N (θ̂,Dθ), using the precision sampler in Chan and
Jeliazkov (2009), where

D−1
θ =

1

σ2
D′D+G′Ω−1

τ G, θ̂ = Dθ

(
1

σ2
D′(y −Xβ)

)
.

2. Draw from (β |y,θ, σ2, τ) ∼ N (β̂,Dβ), where

D−1
β =

1

σ2
X′X+V−1

β , β̂ = Dβ

(
1

σ2
X′(y −Dθ) +V−1

β β0

)
.

3. Draw from

(σ2 |y,β,θ, τ) ∼ IG

(
νσ2 +

n

2
, Sσ2 +

1

2
(y −Xβ −Dθ)′(y −Xβ −Dθ)

)
.

4. Draw from (τ |y,β,θ, σ2) ∼ IG
(
ντ +

m−2
2

, Sτ +
1
2

∑m

i=3 η
2
i

)
, where ηi is the i-th

element of η = Gθ.

5. Repeat Steps (1)-(4) N times.
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