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Abstract

The use of the multinomial logit model is typically restricted to applications with few
predictors, because in high-dimensional settings maximum likelihood estimates tend to
deteriorate. In this paper we are proposing a sparsity-inducing penalty that accounts for
the special structure of multinomial models. In contrast to existing methods, it penalizes
the parameters that are linked to one variable in a grouped way and thus yields variable
selection instead of parameter selection. We develop a proximal gradient method that
is able to efficiently compute stable estimates. In addition, the penalization is extended
to the important case of predictors that vary across response categories. We apply our
estimator to the modeling of party choice of voters in Germany including voter-specific
variables like age and gender but also party-specific features like stance on nuclear energy
and immigration.

Keywords: Logistic regression, Multinomial logit model, Variable selection, Lasso, Group
Lasso, CATS Lasso.

1. Introduction

The multinomial logit model is the most frequently used model in regression analysis for un-
ordered multi-category responses. The maximum likelihood (ML) method, which is typically
used for estimation, has the drawback that it requires more observations than parameters to
be estimated. The amount of parameters, however, increases rapidly when the number of
predictors grows, as multinomial logit models employ several coefficients for each explanatory
variable. Therefore, ML estimates tend to deteriorate quickly and interpretability suffers as
well, so that the number of predictors in the model is severely limited. For these reasons,
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variable selection is necessary to obtain multinomial logit models that are both interpretable
and reliable.
To illustrate these points, we consider data from the German Longitudinal Election Study

(GLES) about party choice of voters during the 2009 parliamentary elections for the German
Bundestag. Modeling the decision of voters for specific political parties and determining the
major factors behind their preference are of great interest in political sciences. The available
parties to choose from are the Christian Democratic Union (CDU), the Social Democratic
Party (SPD), the Green Party (Bündnis 90/Die Grünen), the Liberal Party (FDP) and the
Left Party (Die Linke). As explanatory variables, various individual characteristics of the voter
are considered, like, for example, gender, age or education, see Section 5 for a complete list.
The main goal of our analysis is to select those predictors that influence party choice and to
remove the rest. Besides improving interpretability, this is beneficial for polling firms and in
opinion research. If, for example, gender was found to be irrelevant for party preference, one
could save time and money while performing opinion polls as one would not have to care about
a representative gender ratio among the interviewed persons.
While variable selection for such individual-specific predictiors requires new methodology due

to the particular structure of multinomial logit models, this dataset offers another challenge in
the form of predictors that are party-specific. For various topics like immigration or nuclear
energy, participants of the study were asked how they perceive the parties’ stance on this
issue. Additionally, they stated their personal position on the topic. From this information,
the distance between the personal point of view and the perceived position of the parties can
be computed. These distances are then included into the model and are an example of so-called
category-specific predictors. To be able to deal with the challenges of such a dataset, a method
for variable selection in multinomial logit models is developed in this paper that accounts for
the categorical and multivariate structure of these models and that works with both global
and category-specific predictors.
The standard method for variable selection are forward/ backward strategies which have

been used for a long time, but are notoriously unstable and thus cannot be recommended,
see, for example, Hastie et al. (2009). An established alternative are penalty approaches for
regularized variable selection. For linear and generalized linear models (GLMs), a variety
of such methods has been proposed. The most prominent example is the Lasso (Tibshirani,
1996) and its extensions to Fused Lasso (Tibshirani et al., 2005) and Group Lasso (Yuan &
Lin, 2006). Alternative regularized estimators that enforce variable selection are the Elastic
Net (Zou & Hastie, 2005), SCAD (Fan & Li, 2001), the Dantzig selector (Candes & Tao, 2007)
and boosting approaches (Bühlmann & Yu, 2003; Bühlmann & Hothorn, 2007; Tutz & Binder,
2006).
These methods, however, were developed for models with univariate response. Because the

multinomial logit model is not a common univariate GLM, these methods cannot be applied
directly. As mentioned previously, the effect of one predictor variable is represented by sev-
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eral parameters. Therefore, one has to distinguish between variable selection and parameter
selection, where variable selection is only achieved if all effects/ parameters that belong to one
variable are simultaneously removed from the model. The available methods for multinomial
logit models (Krishnapuram et al., 2005; Friedman et al., 2010) use L1-type penalties that
shrink all the parameters individually. Thus, they do not use the natural grouping of coeffi-
cients that is available, with each group containing the parameters that belong to the same
explanatory variable. In particular, they pursue the goal of parameter selection and cannot
directly promote variable selection.
In Section 2 we briefly introduce the multinomial logit model and propose a novel penalty

that yields proper variable selection. Extensions to incorporate category-specific variables
and categorical predictors both in the model and in the penalization are discussed separately.
Regularized estimation is considered in Section 3, where a proximal gradient algorithm is
derived that efficiently solves the corresponding estimation problem. The performance of our
estimator is investigated in a simulation study in Section 4. Then, in Section 5, the real
data example from the German Longitudinal Election Study is analysed using the developed
methodology.

2. Model and Regularization

2.1. The Multinomial Logit Model with Category-Specific Covariates

For data (yi,xi), i = 1, . . . , n, with yi denoting an observation of the categorical response
variable Y ∈ {1, . . . , k} and xi the p-dimensional vector of predictors, the multinomial logit
model in its generic form specifies

πir = P (Y = r|xi) = exp(βr0 + xTi βr)∑k
s=1 exp(βs0 + xTi βs)

= exp(ηir)∑k
s=1 exp(ηis)

, (1)

where βTr = (βr1, . . . , βrp). Since parameters β10, . . . , βk0, β1, . . . ,βk are not identifiable, ad-
ditional constraints are needed. Typically, one of the response categories is chosen as reference
category. We use category k as the reference category by setting βk0 = 0, βk = 0. With this
choice, the linear predictors ηir, r = 1, . . . , k−1, correspond to the log odds between category
r and the reference category k.
The model given in (1) is the most commonly used form of the multinomial logit model.

However, it only uses “global” predictors that do not vary over response categories, a restric-
tion that is not always appropriate in practice. In particular in the modeling of choice, when
an individual chooses among alternatives 1, . . . , k, one wants to model the effects of charac-
teristics of the individual like age and gender, but also account for measured attributes of the
alternatives 1, . . . , k. In the modeling of preference for parties the alternatives are character-
ized by positions on policy dimensions. When the choice refers to transportation mode, the
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potential attributes are price and duration, which vary across the alternatives and therefore
are category-specific. Then, in addition to the global predictors xi, a set of category-specific
predictors wi1, . . . ,wik is available, where wir contains the attributes of category r.
With k as the reference category, the set of linear predictors generalizes to

ηir = βr0 + xTi βr + (wir −wik)Tα, r = 1, . . . , k − 1. (2)

The second term specifies the effect of the global variables, and the third term specifies the
effect of the difference wir −wik on the choice between category r and the reference category.
For the interpretation of parameters it is often useful to consider the link between the latent
utilities and the linear predictor. Let the latent utility of person i be specified by uir =
γr0 + xTi γr + wT

irα and the corresponding random utility be given as Uir = uir + εir, where
εir follows the Gumbel distribution, which has distribution function F (ε) = exp(− exp(−ε)).
It is assumed that each individual chooses the alternative that yields maximum utility, that
is, the link between the observable choice Yi and the unobservable random utility is given by
Yi = r ⇔ Uir = maxj=1,...,k Ujr. For the probabilities of the alternatives, one then obtains
the multinomial logit model with predictor

ηir = uir − uik = (γr0 − γk0) + xTi (γr − γk) + (wir −wik)Tα,

which has the form given in (2) with βr0 = (γr0 − γk0), βr = (γr − γk) (see Yellott, 1977;
McFadden, 1973). An extensive discussion of the multinomial logit model as a multivariate
GLM is given in Tutz (2012).

2.2. Regularization: the Categorically Structured Lasso

We first focus on regularization in multinomial logit models with only global predictors in
which the overall parameter vector is given by βT = (β10, . . . , βk−1,0,β

T
1 , . . . ,β

T
k−1). A common

way to regularize a model are penalty approaches in which one maximizes the penalized log-
likelihood

lp(β) = l(β)− λJ(β),

where l(β) denotes the usual log-likelihood, λ is a tuning parameter and J(β) is a functional
that typically penalizes the size of the parameters. While the tuning parameter determines
the strength of the regularization, the functional determines the properties of the penalized
estimator. Tibshirani (1996) introduced the Lasso that penalizes the L1-norm of coefficients,
that is, J(β) = ||β||1, and showed that it facilitates sparse solutions in which coefficients of
weak predictors are set to exactly zero. For the multinomial logit model without category-
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specific predictors, direct application of the Lasso yields the L1-norm of β:

J(β) = ||β||1 =
k−1∑

r=1
||βr||1 =

k−1∑

r=1

p∑

j=1
|βrj |. (3)

Friedman et al. (2010) used the slightly more general Elastic Net penalty, which is an adaptation
of the original Elastic Net (Zou & Hastie, 2005) to multinomial response models. In terms of
variable selection, Elastic Net and Lasso both share the same drawback that selection focuses
on parameters but not on variables. In univariate regression models, for which these penalties
were developed, this distinction is irrelevant if only continuous or binary predictors are used
because then each predictor influences the response through only one coefficient. By contrast,
multinomial logit models use a whole vector βT•j = (β1j , . . . , βk−1,j) of parameters to capture
the influence of predictor xj . The ordinary Lasso penalty from equation (3), however, only
encourages selection of single parameters βrj . Thus, variable selection is only achieved if k−1
coefficients are simultaneously shrunk to zero, but the Lasso does not enforce such behaviour.
Therefore, the ordinary Lasso is not ideal for variable selection in multinomial models.

Although one might suspect that setting many coefficients to zero still improves interpretability,
it is seen from equation (1) that the probability of all response categories is influenced by a
predictor xj if just one of the corresponding coefficients βrj , r = 1, . . . , k−1 is non-zero.
Hence, there is a strong incentive in multinomial models to perform true variable selection by
simultaneously removing all effects of a predictor from the model.
The alternative penalty that we propose penalizes the groups β•j of parameters that are

linked to one variable. For simplicity, we assume all predictors to be metric, standardized
and centered around zero. Extensions to categorical predictors follow in Section 2.3. If no
category-specific predictors are included, we will use the penalty

J(β) =
p∑

j=1
||β•j || =

p∑

j=1
(β2

1j + · · ·+ β2
k−1,j)1/2, (4)

where ||u|| = ||u||2 =
√
uTu denotes the L2-norm. The penalty enforces variable selection,

that is, all the parameters in β•j are simultaneously shrunk toward zero. It is strongly related
to the Group Lasso (Yuan & Lin, 2006; Meier et al., 2008). However, in the Group Lasso the
grouping refers to the parameters that are linked to a categorical predictor within a univariate
regression model whereas in the present model grouping arises from the multivariate response
structure. In other words: the use of Group Lasso is sometimes necessary in regression models
if the predictors have a specific structure. In multinomial logit models, on the other hand, it
is the multivariate nature of the response that always leads to a model in which a grouped
penalization across response categories is required for variable selection - irrespective of the
structure of the predictors. In this sense, the penalty in (4) is the result of combining the
idea of the original Lasso with the penalization across response categories that is mandatory
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for variable selection in multi-category response models. Therefore, we call the corresponding
penalized estimator Categorically Structured Lasso (CATS Lasso).
It should be noted that variable selection in multinomial logit models could also be achieved

by other penalties as long as they adequately account for the inherent structure of this model
class. For example, the methodology that was developed for multivariate linear regression in
Turlach et al. (2005) could be extended to multinomial logit models, even though the technical
details would be cumbersome. Overall, each penalty term that yields direct variable selection
in multinomial logit models must penalize the parameter vectors β•j in a groupwise fashion.
We believe that CATS Lasso, given by (4), is the most simple and intuitive way to construct
such a penalty.
In the previous discussion, we showed that CATS Lasso induces explicit variable selection

while the ordinary Lasso does not, but there is another advantage of our approach: the sparsity
induced by the Lasso depends on the choice of the reference category while that of CATS
Lasso does not. As all coefficients βrj in multinomial logit models are related to the log odds
between category r and the reference category, shrinking one coefficient to zero actually means
that xj has the same effect on both category r and the reference category. If one changes the
reference category, the coefficient βrj may switch from zero to non-zero or vice versa. Therefore,
interpretability and sparsity of Lasso solutions depend on the choice of the reference category,
which often times is completely arbitrary. It is easy to see that the variable selection induced
by (4) does not suffer from this drawback.
If category-specific predictors are present, the parameter vector α has to be included in the

penalty. For category-specific predictors there is one coefficient for each predictor, so that an
ordinary Lasso penalty is appropriate for α. For a simple notation, let the overall parameter
vector of the model be given by θT = (βT•0,βT•1, . . . ,βT•p,αT ), where βT•0 = (β10, . . . , βk−1,0)
denotes the intercept vector. The parameter θ has length d =

(
(p+ 1)(k − 1) +L

)
in a model

with an intercept, p global and L category-specific predictors. For this general case, we extend
the CATS Lasso penalty to

J(θ) = ψ
p∑

j=1
φj ||β•j || + (1− ψ)

L∑

l=1
ϕl |αl|, (5)

where ψ is an additional tuning parameter that balances the penalty on the global and the
category-specific variables. Unless stated otherwise, we always use ψ = 0.5. The parameters φj
and ϕl are weights that assign different amounts of penalization to different parameter groups.
Following the arguments of Yuan & Lin (2006), φj =

√
k − 1 and ϕl = 1 is used as a default,

which guarantees that it is “fair” to use the same λ for both the parameter groups β•j and the
single parameters αl despite their different size.
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2.3. Categorical Predictors

The general penalty (5), which enforces variable selection in multinomial logit models, was
constructed under the restriction that all predictors are metric - more generally, it is suitable
for all predictors that would enter a standard univariate GLM with one degree of freedom.
This includes metric predictors and binary ones with dummy coding. For the more general
case in which a predictor xj enters a GLM with pj parameters, extensions of our penalty are
needed. The most prominent example for this situation are categorical predictors with pj+1
categories which typically enter a GLM through pj dummy variables.
For this case, Yuan & Lin (2006) argued that a grouped penalization and thus selection is

more suitable than the selection of single coefficients performed by the ordinary Lasso. For
this purpose, they proposed the Group Lasso, which was extended to GLMs in Meier et al.
(2008). If such multi-category predictors are to be included in a multinomial logit model one
has a vector of parameters for each response category and each predictor, that is, for response
category r and variable j, one has βTrj• = (βrj1 , . . . , βrjpj

). Thus, there are two different kinds
of grouping to consider: First, all coefficients that belong to one actual predictor should enter
or leave the model jointly, that is, the whole vector βrj• should be set to zero if xj is found to
be irrelevant for category r. Second, the underlying principle of our categorically structured
approach says that all the influences βrj•, r = 1, . . . , k−1 of xj on the different response
categories must be penalized in a grouped way to obtain variable selection. This means that
the vector βT•j• = (βT1j•, . . . ,βTk−1,j•) of all coefficients that are linked to xj should be treated
as one big parameter group. Hence, for multi-category response models the concept of the
Group Lasso for univariate models has to be combined with the concept of our Categorically
Structured Lasso. The same idea applies to the vector of the category-specific variables α; if
the effect of variable l is determined by the parameter vector αTl• = (αl1 , . . . , αlpl

), the whole
vector is penalized.
Hence, including categorical predictors yields CATS Lasso in its most general form:

J(θ) = ψ
p∑

j=1
φj ||β•j•|| + (1− ψ)

L∑

l=1
ϕl ||αl•||, (6)

where the weights φj and ϕl now default to φj =
√

(k − 1)pj and ϕl = √pl. For notational
simplicity, we consider metric or binary predictors for the rest of this paper and focus our
exposition on the penalty from (5). However, software for the general case is available and has
been used in the application.

2.4. Improved Variable Selection

Like Lasso, Group Lasso, Fused Lasso and other estimators with sparsity-inducing penalties,
CATS Lasso is biased. In particular for large values of λ, the sparsity of solutions comes with
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biased estimates of selected variables. Since a suitable value of λ is usually unknown, it is
typically chosen by optimizing some appropriate criterion as, for example, cross-validation or
AIC. In practice, however, one can frequently observe that a tuning parameter is chosen for
which some weak predictors are not removed. In general, it is desirable to apply a high degree
of penalization to weak predictors and mild penalization to strong ones. Two approaches to
achieve this goal are discussed next.

Adaptive CATS Lasso

For the ordinary Lasso, Zou (2006) showed that the induced variable selection is inconsistent
in certain scenarios and offered a remedy called adaptive Lasso. The same issue and a similar
solution were discussed for the Group Lasso by Wang & Leng (2008). The CATS penalty from
(5) will suffer from the same problem if simple weights φj =

√
k − 1 and ϕl = 1 are employed.

Therefore, we use the idea of adaptive penalties to obtain adaptive CATS Lasso, in which the
weights φj and ϕl are replaced by

φaj =
√
k − 1
||β̂ ML
•j ||

, ϕal = 1
|α̂ ML
l | , (7)

where β̂ ML
•j and α̂ ML

l denote the respective ML estimates. The basic idea of this adaptive
penalization is that the norm of ML estimates of parameter groups belonging to irrelevant
predictors asymptotically converges to zero, yielding a strong penalization, while relevant pre-
dictors are penalized less severely. In the simulation studies in Section 4, we demonstrate that
these adaptive weights improve the quality of both variable selection and predictive perfor-
mance of CATS Lasso. It should be noted that the ML estimates can be replaced by arbitrary√
n-consistent estimates, for example an asymptotically vanishing ridge penalty. Such a ridge

penalty is used in our implementation whenever ML estimates do not exist, for example in the
d > n case. More technical details are given in the appendix.

Refitting

Another concept to improve the variable selection of penalized estimators is to use them for
selection purposes only and to perform an unpenalized refit on the set of active predictors,
that is, those with non-zero coefficients. This refitting technique was mentioned, for example,
in Efron et al. (2004) under the name “Lars-OLS hybrid” and in Candes & Tao (2007) as
“Gauss-Dantzig selector”. Our simulation studies show that the variable selection performance
of CATS Lasso can be improved drastically by such an ML refit. This can be explained
by the decoupling of bias and variable selection that is achieved via refitting: If the final
estimator is obtained by an unpenalized refit, λ only steers variable selection, so that it can
be chosen as large as necessary without having to worry about bias. If refitting is used, one
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therefore typically observes that higher values of λ are chosen than for estimators without refit.
The simulation study in Section 4 will investigate the improvement provided by refitting and
adaptive weights and also compare them with each other.

3. Estimation

For the computation of the estimator proposed in the previous section, we consider maximiza-
tion of the general penalized log-likelihood given by lp(θ) = l(θ)−λJ(θ) with a d-dimensional
parameter vector θ, a concave and continuously differentiable log-likelihood l(θ) and a convex
penalty term J(θ). The penalized maximum likelihood estimator is defined by

θ̂ = argmax
θ∈Rd

lp(θ) = argmin
θ∈Rd

(−l(θ) + λJ(θ)) . (8)

CATS Lasso estimates are obtained as a special case if the log-likelihood l(θ) is that of multi-
nomial logit models and the penalty term J(θ) has the form given in (5). In the following,
we briefly show how this general maximization problem can be solved with the fast iterative
shrinkage-thresholding algorithm (FISTA) of Beck & Teboulle (2009). Technically speaking,
FISTA belongs to the class of proximal gradient methods in which only the log-likelihood and
its gradient, but no higher-order derivatives are used.
This is particularly useful for multinomial models because they are inherently higher dimen-

sional than univariate GLMs of comparable size. Consider a multinomial logit model with
p = 100 and k = 10. Although this model is not excessively large compared to, for exam-
ple, gene expression data where p > 10000 is quite common, the corresponding Fisher matrix
would be of size 1000 × 1000. Inverting such a matrix or even storing it, as is required for
the traditional Fisher scoring method, is very costly and outright impossible for large mod-
els. Although the Fisher matrix is avoided and the problem is non-smooth, FISTA achieves
quadratic convergence, which is known to be optimal among black-box first-order methods
for smooth convex optimization (Nemirovski, 1994; Nesterov, 2004). Thus, it combines quick
convergence with cheap iterates that are well-suited for the specific challenges of multinomial
logit models. In particular, it turned out to be much faster than the block coordinate descent
algorithm of Meier et al. (2008) which we tested first, exploiting a complicated representation
of multinomial logit models as multivariate GLMs.
For a clearer presentation, we first review the proximal gradient method in the context of

the maximization of general penalized log-likelihoods. Then, we give an analytical and concise
form of the building blocks that are required to compute CATS Lasso with it. Technical details
of the algorithm and our implementation, which are not necessary for the underlying concept,
are relegated to the appendix.
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3.1. Proximal Gradient Methods for Penalized Log-likelihood Problems

With ν > 0 denoting an inverse stepsize parameter, the iterations of proximal gradient methods
are defined by (Beck & Teboulle, 2009)

θ̂
(t+1) = argmin

θ∈Rd

(
−l(θ̂(t))−∇l(θ̂(t))T (θ − θ̂(t)) + ν

2 ||θ − θ̂
(t)||2 + λJ(θ)

)
, (9)

which consists of a linear approximation of the negative log-likelihood at the current value θ̂(t),
a proximity term and the penalty. If one sets λ = 0, the scheme in (9) yields a sequence of
unpenalized estimators, denoted here by θ̃(t), for which the explicit form

θ̃
(t+1) = θ̃

(t) + 1
ν
∇l(θ̃(t)) (10)

is available. This is the standard formula for the iterates of gradient methods for smooth
optimization and intuitively appealing because of the interpretation of the gradient as the
direction of steepest ascent. Note that the sequence

{
θ̃

(t)} converges to the ML estimator.
Hence, the update in (10) can be considered a one-step approximation to the ML estimator
based on the current iterate.
However, we require solutions to (9) with an active penalty. To obtain these solutions it is

helpful to consider a more explicit and tractable formulation of (9) that can be derived using
standard convex optimization theory: Via Lagrange duality (Bertsekas et al., 2003), equation
(8) can equivalently be expressed by

θ̂ = argmin
θ∈C

(−l(θ)
)
, (11)

where C = {θ ∈ Rd | J(θ) ≤ κ(λ)} is the constraint region corresponding to J(θ) and κ(λ) is a
tuning parameter that is linked to λ by a one-to-one mapping. Given a search point u ∈ Rd,
the so-called proximal operator associated with J(θ) is defined by

Pλ
(
u
)

= argmin
θ∈Rd

(1
2 ||θ − u||

2 + λJ(θ)
)

(12)

and yields the projection of u onto C, that is, for any u ∈ Rd, one has Pλ
(
u
) ∈ C. Using this

notation and simple algebra, the proximal gradient iterates defined in (9) can also be expressed
by the projection

θ̂
(t+1) = Pλ

ν

(
θ̂

(t) + 1
ν
∇l(θ̂(t))

)
. (13)

Keeping equations (10) and (11) in mind, the basic idea of proximal gradient methods becomes
obvious: First, the penalty is ignored and a step toward the ML estimator via first-order
methods for smooth optimization creates a search point. This search point then is projected
onto the constraint region C in order to account for the non-smooth penalty term. As long as
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the computation of the proximal operator is cheap, this method has the potential to be highly
efficient. Beck & Teboulle (2009) proposed FISTA, a proximal gradient method that has the
optimal convergence rate for this kind of algorithm. In order to achieve this rate, it uses a
slightly different search point than the one in equation (13), but the core idea remains the
same. Further technical details of FISTA (and our implementation) are given in the appendix.

3.2. Log-likelihood, score function and proximal operator

The main building blocks required to apply any proximal method to a particular penalized
log-likelihood problem are formulas for the log-likelihood and its gradient as well as an efficient
way of computing the proximal operator associated with the chosen penalty. We now derive
them for the special case of CATS Lasso, that is, for multinomial logit models with the penalty
given in (5).

Log-likelihood of multinomial logit models

For each actual observation yi ∈ {1, . . . , k}, we define, for r = 1, . . . , k−1, a set of pseudo-
observations yir, given by yir = 1 if yi = r and yir = 0 otherwise. With linear predictors ηir of
the form

ηir = βr0 + xTi βr + (wir −wik)Tα, r = 1, . . . , k − 1,

the log-likelihood can conveniently be written as

l(θ) =
n∑

i=1

(
k−1∑

r=1
yirηir − log

(
1 +

k−1∑

s=1
exp(ηis)

)
)
. (14)

Note that the logit link used in multinomial logit models is the canonical link for the multi-
nomial distribution. Following arguments of Fahrmeir & Kaufmann (1985), this automatically
yields concavity of (14).

Score function

We partition the score function, which is defined as the gradient of the log-likelihood, in the
following way:

∇l(θ)T = s(θ)T =
(
s(β•0)T

∣∣ s(β•1)T
∣∣ . . .

∣∣ s(β•p)T
∣∣ s(α)T

)
.

To be able to give s(θ) in a concise form, we use the following notation: For r = 1, . . . , k − 1,
let yTr = (y1r, . . . , ynr) and πTr = (π1r, . . . , πnr) denote vectors that pool the observations
and estimated probabilities for category r across all observations. Additionally, let xTj =
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(x1j , . . . , xnj) denote the vector of all observations of the j-th predictor. Furthermore, define

V r
n×L

=




v11r · · · v1Lr
... . . . ...

vn1r · · · vnLr


 , y

n(k−1)×1
=




y1
...

yk−1


 and π

n(k−1)×1
=




π1
...

πk−1


 ,

where vilr = wilr − wilk, r = 1, . . . , k − 1 denotes the effect with which the category-specific
predictors enter the model. The overall model matrix of size n(k− 1)× ((p+ 1)(k− 1) +L

)
is

Z =




1n x1 xp V 1
. . . . . . · · · · · · . . . ...

1n x1 xp V k−1


 .

With these definitions, the score function, partitioned as above, is given by

s(θ) = ZT (y − π). (15)

Proximal operator

Let θ̃ ∈ Rd denote a generic search point that is equivalently partioned as the overall parameter
vector θ of the considered multinomial logit model, that is, θ̃T = (β̃T•0, β̃

T
•1, . . . , β̃

T
•p, α̃

T ).
Additionally, define λ1 = λψ and λ2 = λ(1 − ψ). Then the CATS-penalty from (5) can be
written as

λJ(θ) = λ1

p∑

j=1
φj ||β•j || + λ2

L∑

l=1
ϕl |αl|.

The projection of the search point θ̃ on the constraint region belonging to this penalty is then
given by the proximal operator

Pλ
(
θ̃
)

= argmin
θ ∈ Rd

(1
2 ||θ − θ̃||

2 + λJ(θ)
)
.

Due to the block-separability of this specific penalty, the proximal operator can be written as
the sum

Pλ
(
θ̃
)

=
p∑

j=0
Pλ1(β̃•j) +

L∑

l=1
Pλ2(α̃l),
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where

Pλ1(β̃•0) = argmin
β•0∈Rk−1

1
2 ||β•0 − β̃•0||

2 = β̃•0,

Pλ1(β̃•j) = argmin
β•j∈Rk−1

(1
2 ||β•j − β̃•j ||

2 + λ1φj ||β•j ||
)
, j = 1, . . . , p, (16)

Pλ2(α̃l) = argmin
αl∈R

(1
2(αl − α̃l)2 + λ2 ϕl|αl|

)
, l = 1, . . . , L. (17)

With (u)+ = max(u, 0), the following analytic solutions to (16) and (17) can easily be derived
from the Karush-Kuhn-Tucker conditions:

Pλ1(β̃•j) =
(

1− λ1φj

||β̃•j ||

)

+
β̃•j , (18)

Pλ2(α̃l) =
(

1− λ2 ϕl
|α̃l|

)

+
α̃l. (19)

3.3. Choice of tuning parameters

We choose the main tuning parameter λ based on cross-validation. But in the general case, the
additional tuning parameter ψ, which balances the penalization between parameters belonging
to global and to category-specific predictors, has to be chosen for given λ. We performed
various simulation studies (not shown) in which we simultaneously cross-validated over both
λ and ψ. The ψ estimated by cross-validation always remained within the interval [0.35, 0.65].
In addition, the difference between the model with cross-validated ψ and the model using the
default value of ψ = 0.5 was very minor. It seems that the default values for the weights φj
and ϕl are already balancing out the penalty well enough. For efficiency reasons, we therefore
recommend to choose only λ via cross-validation and to keep ψ fixed at 0.5.
For all simulations and the real data example in this paper, we used 10-fold cross-validation

based on the deviance. Alternatively, model selection criteria like AIC can be employed, using
the effective degrees of freedom given in Yuan & Lin (2006). For CATS Lasso, the formula is

d̂f = (k−1) +
p∑

j=1


I(||β̂•j || > 0) +

||β̂•j ||
||β̂ML

•j ||
(k − 2)


+

L∑

l=1
I(|α̂l| > 0),

where the first term corresponds to the unpenalized intercept vector and I(·) denotes the
indicator function.

4. Simulation Study

Before analyzing the German Longitudinal Election Study, we first give the results of a small
simulation study which illustrates the performance of our approach. In particular, four different

13



versions of CATS Lasso can be derived by using or not using adaptive weights and/or ML
refitting. The simulations demonstrate the performance of these four variants under various
settings and provide a guideline on when to use which of the alternative versions. The second
aim of the simulation study is to compare our categorically structured approach with the
unstructured Lasso. In order to simplify the presentation, we always refer to CATS Lasso as
“CATS” and to the ordinary, unstructured Lasso as “Lasso” for the remainder of this section.
All simulations were performed in R (R Development Core Team, 2011) using a self-written
implementation that can be obtained from the authors.

4.1. Simulation Settings

Scenarios

We consider a small and a large model. The small model consists of 5 response categories
with 4 relevant and 4 noise variables, giving a total of 8 global predictors. Additionally, 4
category-specific predictors are available of which 2 are relevant. The large model consists of 10
response categories, 60 global and 20 category-specific predictors of which 20 and 8 are relevant,
respectively. For each model, the coefficients of the relevant predictors are independently drawn
at random from the set {−1,−0.5, 0.5, 1, 1.5, 2, 2.5, 3}, yielding a true coefficient vector θ∗. The
coefficients of noise variables are always zero.
The global and category-specific predictors were drawn from a multivariate Gaussian with

an equi-correlation of 0.2 (small model) or 0.6 (large model) between all predictors. Using
the predictors and true coefficient vector θ∗, the true probabilities for each observation were
computed and then used to draw the response from a multinomial distribution.
The small model is tested for n = 40 and n = 200, the large one for n = 500 and n = 3000.

Including intercepts, the size of the overall parameter vector to be estimated is d = 40 for
the small model and d = 569 for the large model. Hence, both models are tested for the two
cases of data-rich situations and of less observations than parameters. For all settings, the
true coefficient vector is drawn once, followed by 100 replications of data generation and model
estimation.

Comparison of Methods

To compare the methods, their estimation and prediction accuracy as well as variable selection
performance are evaluated. First, with θ̂(i) denoting the estimator for the i-th replication, we
define the squared error for this replication as (θ̂(i) − θ∗)T (θ̂(i) − θ∗)/d. From these squared
errors, we compute the mean squared error (MSE). Second, prediction accuracy is evaluated
by drawing a test set of ntest = 3n new observations from the true model and then computing
the predictive deviance on this test set. Third and last, we report the false positive and
false negative rates (in terms of variable selection). The false positive rate (FPR) for variable
selection is the percentage of noise variables whose coefficient vector is incorrectly estimated
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as non-zero. The false negative rate (FNR) for variable selection is the percentage of relevant
predictors whose estimated coefficient vector is falsely set to zero.

4.2. Results

Small Model

The simulation results for the small model are summarized in Figure 1. The methods compared
are the ML estimator, CATS in simple, adaptive (“ada”), refitted (“rf”) and adaptive plus
refitted form as well as the unstructured Lasso in the same four variants as CATS. The left
column of Figure 1 gives the results for the case with more observations than parameters, the
right column contains results for the n ≤ d case. The first row shows squared errors and the
second one the predictive deviance on a test set of, respectively, ntest = 600 (left column) and
ntest = 120 (right column) new observations. Both quantities are given as boxplots to visualize
variability and outlier behavior of these criteria for the various estimators. Extreme values
were omitted for better clarity of the plots. In the third row, false positve (gray) and false
negative (black) rates are shown.
For n = 200 (left column), one can clearly see that all regularized estimators perform better

than the ML estimator in terms of MSE. Moreover, the large box indicates that the ML
estimator is rather instable. For both CATS and Lasso, the adaptive version without refitting
performs best in terms of MSE and prediction accuracy. Comparing each of the four variants
between CATS and Lasso, CATS always comes out slightly ahead. However, the biggest
advantage of CATS over Lasso is visible in the false positive and false negative rates, shown
in the bottom left plot. While plain CATS performs quite poorly, both refitting and adaptive
weights improve the variable selection of CATS by a large margin. By contrast, Lasso shows
substantially worse variable selection properties. With refitting, the best method in terms
of variable selection for both Lasso and CATS, about 25% of irrelevant variables were not
detected by Lasso, while CATS missed only about 6%.
For n = 40 (right column), a model is fitted with as many parameters as observations. In

this case, “true” ML estimates do not exist anymore, so we added a very small ridge penalty
whenever an unpenalized fit for this model was required. This is the case for the ML estimator
as well as all methods with refit. It can immediately be seen from Figure 1 that for n = 40,
all these methods in which the final model is obtained by an unpenalized ML fit perform
significantly worse. In terms of MSE and prediction accuracy, differences between Lasso,
CATS and their respective adaptive versions are minor. When it comes to variable selection,
however, adaptive CATS shows by far the best performance of all considered methods and
includes only half as many noise variables as the best version of Lasso. It is noteworthy that
the false negative rates are much higher throughout all methods than for n = 200.
To sum up the results for the small model, CATS substantially outperforms Lasso in terms

of variable selection and is better or on par with Lasso in terms of estimation and prediction
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Figure 1: Simulation results for the small model: MSE, predictive deviance and False Positive
Rate (FPR, gray) & False Negative Rate (FNR, black) for n = 200 (left column) and
n = 40 (right column).

accuracy. The adaptively weighted estimator shows by far the best performance in the n ≤ d

case and also gave the highest estimation and prediction accuracy for the case with many ob-
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servations. Only in terms of variable selection in a data-rich environment, it was outperformed
marginally by refitting.

Large model

The results of the simulations for the large model are shown in Figure 2. The left column con-
tains the n = 3000 setting. The differences in MSE between the various regularized estimators
are rather small. However, the top left plot of Figure 2 shows that the ML estimator for each
coefficient has, on average, a distance of about 0.7 from the true value. Thus, unpenalized
estimation is unable to yield accurate estimates even though 3000 observations are available to
estimate 569 parameters. The second plot of the left column shows the predictive deviance on
ntest = 9000 observations. Once again, the ML estimator is vastly outperformed by all regular-
ized estimators. Among the different versions of Lasso and CATS, those with adaptive weights
and no refitting show the best prediction accuracy. Comparing these two methods, adaptive
CATS slightly outperforms adaptive Lasso. The biggest difference between CATS and Lasso
is again seen in their false positive and false negative rates. Unless one uses adaptive weights
and refitting, Lasso shows unacceptably high rates of false positives. Turning to CATS, this
plot confirms the bias issues of simple CATS that were discussed in Section 2.4 and emphasizes
that adaptive weights, refitting or both should be used. Once the bias is accounted for, CATS
shows extremely low error rates which are magnitudes below those of Lasso.
The right column of Figure 2 shows the results for the large model with n = 500, that

is, for a setting in which significantly less observations than parameters to be estimated are
available. Once again, a small ridge penalty is added to the ML estimator and during refitting
as an unregularized estimator does not exist in this scenario. In terms of MSE, the differences
between the regularized estimators are negligible while the ML estimator - as expected - shows
an extremely poor performance. When it comes to the predictive deviance on ntest = 1500
observations, the ML estimator was so bad that the axis had to be broken to show it within
one plot. Additionally, this plot shows that refitting techniques, in which the final model is
obtained by an unpenalized ML refit on the active set of the regularized estimator, perform
substantially worse. On top of that, one can see that adaptive CATS distinctly outperformed
Lasso. The plot on the bottom right of figure 2 shows that all methods with refitting had
very high false negative rates. Moreover, all versions of Lasso have both higher false positive
and false negative rates than their corresponding counterpart of CATS. For the considered
scenario, adaptive CATS offers the best variable selection properties by a large margin. It
never removed an important predictor from the model and is able to detect roughly 80% of
all noise variables - keeping in mind the massive size of the model and the low number of
observations, we consider this a very encouraging and satisfying result.
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Figure 2: Simulation results for the large model: MSE, predictive deviance and False Positive
Rate (FPR, gray) & False Negative Rate (FNR, black) for n = 3000 (left column)
and n = 500 (right column).
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Summary

To sum up the simulation study, regularized estimators offer more accurate estimates and
prediction than the unpenalized ML estimator - even if substantially more observations than
parameters to be estimated are available. CATS outperformed the ordinary Lasso in all settings
and in terms of all criteria that were used to compare them. The degree by which CATS
outperforms Lasso grows with the number of response categories, in particular in terms of
variable selection. Comparing the simple, adaptive and refitted version of CATS, adaptive
CATS is clearly recommended if few observations are available, relative to the size of the
model. In d > n situations, the ML estimator does not exist and we replace it by a ridge
estimate with small tuning parameter, see also Section A.2 in the appendix. This pseudo-
unpenalized estimator is used both in the adaptive weights and in the refit. Our simulation
results indicate that the adaptive version of CATS (and also Lasso) is less affected by an
instability of this estimator than refitting approaches.
In data-rich situations, refitting performed marginally better than adaptive weights when

it comes to variable selection, but slightly worse in terms of MSE and prediction accuracy.
The combination of adaptive weights and refitting did not offer an advantage, but was more
unstable in several cases and is therefore not recommended. Thus, prediction and variable
selection are conflicting in the n > d case and none of our considered methods can optimize
both at once. Even though the conflict between variable selection and estimation performance
is not very pronounced in our simulations, it is common for penalization approaches and was
already discussed in the literature, for example by Leng et al. (2006). However, from the
boxplots in the left columns of figures 1 and 2 one can see that the refitting approach does
not only perform worse than the adaptive one in terms of MSE and prediction but also has a
larger variability and produces more outliers. Due to this lower robustness of refitted CATS,
we also prefer the adaptive version of CATS for n > d settings.

5. Regularized Analysis of Party Choice in Germany

5.1. Data Description

The data we consider come from the German Longitudinal Election Study. We focus on a
dataset that contains the party on which 816 study participants intended to vote during the
2009 election for the German parliament, the Bundestag. To be able to explain their party
choice behavior, nine individual characteristics of the voters are available. These global pre-
dictor are gender (1: male, 0: female), regional provenance (west; 1: former West Germany, 0:
former East Germany), age (mean-centered), union (1: membership in a union, 0: otherwise),
high school degree (1: yes, 0: no), unemployment (1: currently unemployed, 0: otherwise),
political interest (1: less interested, 0: very interested), satisfaction with the functioning of
democracy (democracy; 1: not satisfied, 0: satisfied) and religion (0: Protestant, 1: Catholic,
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2: otherwise).
Additionally, the interviewed persons rated the position of the parties on political issues on a

scale from 1 to 11. They also rated their own position on these topics on the same scale. From
this information, the distance between the voters’ own position (the “ideal point”) and the
perceived position of the party was computed, that is, the absolute value of the difference of
the two variables. The resulting distances take values between 0 and 10 and can be considered
measures of agreement between voter and party and are used as category-specific predictors.
This approach has strong connections to spatial election theory which assumes that each party
is characterized by a position in a finite-dimensional space, with each dimension corresponding
to one political issue. Spatial election theory then explains the party choice of voters by a
utility function that depends on the distance between the voter’s own position and that of the
parties within the space of policy-dimensions. For further details on spatial election theory,
see, for example, Thurner & Eymann (2000). Here, four political issues were considered: the
so-called socioeconomic dimension (“do you prefer low taxes and few public spending or high
taxes with lots of public spending?”), the attitude toward immigration and nuclear energy as
well as the positioning on a political left-right scale.

5.2. Results and Interpretation

To model the party choice behavior of voters in Germany, a multinomial logit model with
the chosen party as response variable is used with the explanatory variables described in the
previous paragraph. Of the five available parties, the CDU was chosen as reference. We fitted
this model using adaptive CATS Lasso, that is, a penalized multinomial logit model with the
penalty from (5) and the weights given in (7). The only exception is the religion of the voter
which enters the model with two dummies, so that the advanced methodology from Section
2.3 is used to jointly penalize both dummies.
Figure 3 shows the resulting coefficient paths for those variables that were selected by CATS

Lasso. They show how the different coefficients change if the tuning parameter λ is varied
with λ plotted on a logarithmic scale. The left end of the coefficient paths corresponds to zero
penalization and thus shows the ML estimator. The vertical line marks the value of λ that was
chosen by 10-fold crossvalidation. The global predictors that were removed from the model are
gender, unemployment and political interest. One can immediately see the structured selection
performed by CATS Lasso. The variable high school was selected by our method, but appears
to be on the edge of being removed from the model. Removing the variables democracy, age,
west and union would require substantially more penalization. The estimated coefficients for
the global variables are given in Table 1.
While the FDP and the Left Party perform about as well as the CDU no matter if the

voter comes from former East or West Germany, both the SPD and the Green Party are much
stronger in the west. The coefficients of age are negative for all four parties, which means
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Figure 3: Coefficient buildups for the selected global variables of party choice data.

that the reference party, the CDU, is strongest among elderly people. Growing age is most
detrimental to the Green Party, which matches expectations as this party was founded in 1980,
so that many older people were already adults with a developed political preference before this
party even existed. Voters that are members in a labor union are distinctly more likely to vote
for the SPD or the Left Party, which again is expected as these parties are traditionally strong
among blue-collar workers. Voters with a high-school degree are more likely to vote in favor
of the FDP or the Green Party, which focus on liberal and environmental topics, respectively,
whereas the SPD and the Left Party have more success among voters without a high-school
degree. Not being satisfied with the functioning of democracy decreases the chances of voting
for the CDU, which is not surprising as the CDU is the most conservative party. The Left
Party, on the other hand, benefits strongly if the voter is discontent with democracy. Therefore,
the Left Party and, to a lesser degree, the FDP can be considered the parties of choice for
“protest voters”. Catholic people prefer the FDP or the CDU and are noticeably less likely to
vote for the SPD, Green Party or Left Party. The success of the CDU with Catholic voters was
expected as it is the most conservative among the major parties in Germany and defending
Christian values is a core part of the party agenda. It is slightly surprising, however, that the
FDP seems to be even more successful among Catholic voters. Being neither Protestant nor
Catholic increases the likelihood of voting for the FDP or the Green Party.
To interpret the effect of the category-specific predictors, it is helpful to recall the structure

of the linear predictor for party r, which has the form ηir = βr0 +xTi βr+(wir−wik)Tα, where
the vector xi collects the nine global predictors that characterize the ith voter. The vector wir

denotes the four-dimensional vector of distances between the positioning of the voter and the
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Table 1: Estimated regression coefficients for the global predictors of the party choice data.

SPD FDP Green Party Left Party
Intercept -0.821 -1.701 -1.645 -1.184
Gender 0 0 0 0
West 0.643 -0.034 0.615 -0.056
Age -0.005 -0.015 -0.030 -0.013
Union 0.493 -0.005 -0.200 0.866
High School -0.209 0.144 0.250 -0.376
Unemployment 0 0 0 0
Political Interest 0 0 0 0
Democracy 0.237 0.677 0.327 1.247
Religion Catholic -0.334 0.021 -0.179 -0.454
Religion other -0.280 0.464 0.116 -0.168

perceived position of party r for the socioeconomic dimension, immigration, nuclear energy and
the left-right scale. As a reference point, wik contains the distances on these issues between the
voter and the CDU. Hence, the variable wisl, s = 1, . . . , k measures the disagreement between
voter i and party s on the lth considered political topic, that is, low values correspond to high
agreement and vice versa. The coefficient αl is the effect of the quantity wirl − wikl, which
corresponds to the difference between the disagreement with the rth party and the reference
party. If this difference is positive, this means that the voter shows stronger agreement with
the CDU than with party r on the topic at hand, so that the odds of voting for this party
instead of the CDU should decrease. Therefore, we expect the coefficients for the political
issues to be negative.
All four political issues were selected by our method. The estimated parameters for the

socioeconomic dimension, immigration, nuclear energy and the left-right scale are given by
α̂T = (−0.156,−0.110,−0.182,−0.617), respectively. The signs are negative as expected,
meaning that the odds of voting for a party increase if the agreement between a voter and
this party on a particular issue is higher than the agreement with the reference party. The
corresponding coefficient paths are shown in Figure 4. The vertical line shows the λ chosen by
cross-validation. One can see that the left-right scale has the largest influence on party choice,
but it is also the most general of the four considered issues. Comparing Figures 3 and 4, one
sees that the voter-specific predictors are removed much earlier than the agreement on political
issues. The former are all removed from the model for any λ > 26, while λ > 63 is necessary
to remove the weakest issue, so that the agreement on political issues can be considered a
stronger predictor for party preference.
To conclude the analysis, we computed the AIC for both our regularized estimator and the
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ML estimator. The AIC for CATS Lasso is 1670.75, the ML estimator has an AIC of 1692.31.
Thus, our regularized method was able to find a model that performs significantly better than
the unpenalized one and, at the same time, uses 33% less global predictors.
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Figure 4: Coefficient buildups for category-specific variables of party choice data.

6. Concluding Remarks

In this paper, Categorically Structured Lasso (CATS Lasso), a new method for regularized
estimation in multinomial logit models, is proposed. Multinomial models are designed for
multi-category responses and thus are not ordinary but multivariate GLMs. CATS Lasso
deals with the specific challenges arising from the multivariate structure in interpretation and
model selection by exploiting the natural grouping within the coefficients of a multinomial logit
model, with all coefficients that are linked to one predictor forming their own group. We have
argued both theoretically and practically that all coefficients within such a parameter group
should enter or leave the model simultaneously, so that true variable selection is performed.
To achieve this, our procedure uses a structured penalization, in contrast to the unstructured
approach of existing methods.
CATS Lasso is also generalized to include the important cases of categorical predictors and

predictors that vary over response categories, so that it constitutes a conceptual extension of
both the Lasso and the Group Lasso to more general multivariate regression models. Our
R implementation uses an efficient algorithm and is the first to support the combination of
regularized estimation and category-specific predictors.
In a simulation study, we have shown that CATS Lasso outperforms alternative regular-

ization approaches for multinomial models in small and large as well as sparse and data-rich
models. The biggest advantage is the vastly improved performance in terms of variable selec-
tion, but CATS Lasso also improves the accuracy with which the regression coefficients are
estimated and future observations are predicted. An application on the modeling of party
choice in Germany demonstrates the success of CATS Lasso on real-world problems. It showed
that the gender, employment status and political interest of a voter do not influence his or her
party preference given all other predictors.
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A. Algorithmic details

A.1. The Fast Iterative Shrinkage Thresholding Algorithm (FISTA)

Recall that the iterates of proximal gradient methods for maximizing a penalized log-likelihood
lp(θ) = l(θ)− λJ(θ) are defined by

θ̂
(t+1) = argmin

θ∈Rd

(
Qν(θ, θ̂

(t)) := −l(θ̂(t))−∇l(θ̂(t))T (θ − θ̂(t)) + ν

2 ||θ − θ̂
(t)||2 + λJ(θ)

)
. (20)

As shown in Section 3.1, the proximal operator can be used to express the solutions to (20) by

θ̂
(t+1) = Pλ

ν

(
θ̂

(t) + 1
ν
∇l(θ̂(t))

)
.

This means that a gradient step toward the ML estimator is performed, starting from the
current iterate θ̂(t), to create a search point, which is then projected on the penalty region
by the proximal operator. The analysis in Beck & Teboulle (2009), however, showed that this
procedure does not reach the optimal convergence rate and can be accelerated. To achieve this
speed-up, the direction given by the current and the previous iteration is extrapolated with
the help of deliberately chosen acceleration factors at:

ϑ̂
(t) = θ̂

(t) + at−1 − 1
at

(
θ̂

(t) − θ̂(t−1))
.

Instead of the current iterate θ̂(t), this extrapolated point ϑ̂(t) is used as the starting point
from which the step toward the ML estimator is taken, yielding an “extrapolated search point”
which is then projected on the penalty region. Because in practice one does not know a suitable
value for the inverse stepsize parameter ν, it is determined by a standard backtracking line
search (see, e.g., Bertsekas et al., 2003). In detail, the FISTA method for minimizing (8) is
given by

FISTA for computing maximum penalized log-likelihood estimates

(0) Input: Formulas for l(θ), ∇l(θ), J(θ), Pλ(·); starting values θ̂(0), ν0 > 0; a tolerance ε.

(1) Initialize: Set θ̂(1) = θ̂
(0), a0 = 0, a1 = 1 and t = 1.

(2) Extrapolate: ϑ̂
(t) = θ̂

(t) + at−1− 1
at

(θ̂(t) − θ̂(t−1)).
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(3) Line search:

(i) Initialize: ν = νt−1

(ii) Projection: θ̂
(t+1) = Pλ

ν

(
ϑ̂

(t) + 1
ν∇l(ϑ̂

(t))
)
.

(iii) Armijo rule: End if

−lp(θ̂
(t+1)) ≤ Qν(θ̂

(t+1)
, ϑ̂

(t)),

else multiply ν by 2 and repeat.

(4) Update:

at+1 =
1 +

√
1 + 4a2

t

2 ,

νt = ν,

θ̂
(t+1) = P λ

νt

(
ϑ̂

(t) + 1
νt
∇l(ϑ̂(t))

)
.

(5) Convergence check: Stop if

||lp(θ̂
(t+1))− lp(θ̂

(t))||
||lp(θ̂

(t))||
≤ ε,

else increase t by 1 and repeat steps (2) - (5).

A.2. Implementation

Numerical threshold

When computing CATS Lasso with our self-written implementation, it sometimes happens
that the parameter estimates of some predictors are very small but non-zero - in such cases we
typically observe ||β̂•j || ∈ [0.001, 0.1] if the j-th predictor is among the variables affected by this
phenomenom. To prevent our estimator from being affected by this numerical inefficiency, we
use a very small and asymptotically diminishing threshold of order O(n−0.4), i.e. the estimates
of parameter groups with a norm below the threshold are set to zero.

Stabilizing ML estimates

ML estimates of the full model are required to compare our regularized estimator with the
unpenalized model and to compute the adaptive weights from (7). However, we frequently
observed a divergence of parameters to ±∞ even in the d < n case. Roughly speaking, this
happens when the data space allows for a perfect separation of the response categories. This is
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always the case for d > n, but can also happen if the number of observations per parameter to
be estimated is above 1, but rather small. The same problems were also observed and discussed
by Friedman et al. (2010).
It is obvious that any kind of p-norm penalization of the parameters (with p > 0) will

prevent this problem. Therefore, we propose to use a ridge penalty (Hoerl & Kennard, 1970)
with a very small tuning parameter (say between 0.01 and 0.1) if coefficients are detected to
be diverging:

JR(θ) = λR
2 ||θ||

2
2.

The proximal operator associated with this ridge penalty is given by

PλR
(θ̃) = θ̃

1 + λR
.
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