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Abstract

The main result of this paper is a new exact algorithm computing the estimate given by
the Least Trimmed Squares (LTS). The algorithm works under very weak assumptions. To
prove that, we study the respective objective function using basic techniques of analysis and
linear algebra.

1 Introduction

In general, (linear) regression analysis is concerned with problems of the following type.
One random variable Y called response variable is supposed to fit linear regression model
Y = xTβ0 + e, where x ∈ Rp is a vector1 of explanatory variables (random or not), β0 ∈ Rp
is a vector of regression coefficients and e is an error term. The aim of regression analysis
is to estimate β0 having n measurements of Y and x. These measurements will be denoted
as vector Y = (Y1, . . . , Yn) and as a design matrix

X =


x11 x21 . . . xp1
x12 x22 . . . xp2
...

...
...

x2n x2n . . . xpn

 , (1)

vector xi stands for a transposition of i-th row of the matrix X.
The best known estimate of β0 is the estimate given by the (ordinary) least squares

method (OLS estimate)

β̂(OLS,n) = (XTX)−1XTY, (2)

which is in fact the projection of Y into the linear envelope of the columns of X. Unfortu-
nately, the OLS estimate was shown to be very sensitive with respect to data contamination
of many kinds (for more see [5]). Therefore, other estimates which are less sensitive or, in
other words, more robust were introduced. One of such estimates is the estimate given by
the Least Trimmed Squares method (LTS estimate) proposed by Rousseeuw in 1984 [4].

OLS estimate (2) is actually obtained as a minimum of the OLS objective function
(OLS-OF) defined as a sum of squares of residuals ri(β) = Yi−xTi β, i.e., the OLS-OF reads

OF (OLS,X,Y )(β) =

n∑
i=1

(Yi − xTi β)2. (3)

The basic idea of the LTS method is that the contaminating data points lay out of the main
bulk of data and hence their residuals are bigger. It means that in order to obtain a more
robust estimate of regression coefficients we ignore (trim) some portion of data points with

1All vectors in this text are treated as column vectors.
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biggest residuals. Formally, the LTS estimate is defined as a minimum of the LTS objective
function (LTS-OF)

OF (LTS,n,h)(β) =

h∑
i=1

r2(i)(β), (4)

where h is a parameter which determines how many (n − h) data points is to be trimmed
and r(i)(β) stands for the i-th smallest residuum at β. Since it is not reasonable to ignore
more than a half of data points, h usually takes values between n/2 and n.

1.1 Algorithms

As we will see in the following section, there exists a straightforward algorithm always giving
the exact value of the LTS estimate, but it requires

(
n
h

)
computations of OLS estimates for

h not trimmed data points. As this algorithm (and its modifications, see [1]) has been the
only known exact algorithm, another faster ways how to obtain the LTS estimates were
introduced. All these faster algorithms are probabilistic, i.e., it is not sure they return the
exact value of the LTS estimate. There exist two kinds of probabilistic algorithms which may
be described, using terminology from [2], as algorithms finding β satisfying the weak and
strong necessary condition respectively. In fact, β satisfies the weak necessary condition if,
and only if, it is a local minimum of the LTS-OF. Algorithms finding β’s satisfying the weak
conditions have been proposed independently several times, first such algorithm is from [7],
its modification by the same author can be found in [8], another algorithm of this type was
introduced along with the notion of weak necessary condition in [2], and a version for large
data sets is described in [6]. In the case of the strong condition the situation is simple as
there is only one representative: Feasible Solution Algorithm [3].

Since we are going to study an algorithm solving the problem of minimizing of the
LTS-OF, we can forget the complex statistical background and formulate it as follows:

Problem 1. Find the LTS estimate

β̂(LTS,n,h) = arg min
β∈Rp

h∑
i=1

r2(i)(β) = arg min
β∈Rp

h∑
i=1

(yi − βxTi )2, (5)

where n > p ≥ 1, Y = (y1, . . . , yn)T , X = (x1, . . . , xn)T is a matrix from Rn,p, and h is an
integer such that p ≤ h ≤ n.

Further, let us denote the data for which the problem is defined by

D = {(yi, xTi ) | i ∈ n̂}.

Prior to introduction of the new exact algorithm, we need to study the LTS-OF as the
algorithm is based on some special properties of it. Having described these properties, we
will first propose one-dimensional version of the algorithm which is easier to demonstrate,
then the general case will be given.

2 Objective function

2.1 Discrete reformulation of LTS-OF

For every β ∈ Rp only h data with least squared residuals appear in (4). Every such h-
element subset of all data D can be unambiguously determined by 0-1 vector w ∈ Rn, where
wi = 1 if (yi, x

T
i ) is an element of this subset and wi = 0 otherwise – in this sense we will

be speaking about a subset w. For any element of the set of all such vectors

Q(n,h) = {w ∈ Rn| wi ∈ {0, 1}, i ∈ n̂, w1 + . . .+ wn = h}, (6)
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we define two sets

Iw = {k ∈ n̂ |wk = 1}, (7)

Ow = {k ∈ n̂ |wk = 0}.

Clearly, for any β there exists at least one w ∈ Q(n,h) so that
∑h
i=1 r

2
(i)(β) =

∑n
i=1 w

ir2i (β).
Employing this fact we get:

min
β∈Rp

h∑
i=1

r2(i)(β) = min
β∈Rp,w∈Q(n,h)

n∑
i=1

wir2i (β) (8)

= min
w∈Q(n,h)

(
min
β∈Rp

(WY −WXβ)T (WY −WXβ)

)
(9)

= min
w∈Q(n,h)

‖WY −WX(XTWX)−1XTWY )‖2, (10)

where W = diag(w). Having this equation, we can propose a new objective function of the
LTS defined on Q(n,h)

J(w) = ‖W (Y −X(XTWX)−1XTWY ))‖2. (11)

It is straightforward that J(w) is the minimum of the OLS-OF for the subset w, i.e.
minβ∈Rp OF (OLS,WX,WY )(β). Finally, we can also reformulate (5) to the following form

β̂(LTS,n,h) = (XTW ∗X)−1XTW ∗Y, (12)

where
w∗ = arg min

w∈Q(n,h)

J(w) and W ∗ = diag(w∗). (13)

2.2 Domain of LTS-OF

The discrete version of the LTS-OF proposed in the previous paragraph is well known and
has already been described in many articles dealing with the LTS, especially with computing
the LTS estimate. In the present paragraph we shall discuss the non-discrete LTS-OF, i.e.
OF (LTS,n,h)(β), where β ∈ Rp. Several of the features, we are going to propose, were already
mentioned in [9]. We will reprove them and broaden them somewhat.

Definition 1. We define a relation Z ⊂ Rp ×Q(n,h) by

(β,w) ∈ Z ⇔
h∑
i=1

r2(i)(β) =

n∑
i=1

wir2i (β).

Further, we define a set U ⊂ Rp as the set where Z is a mapping from Rp to Q(n,h).
Complement of U to Rp is denoted by H.

Assertion 1. For β ∈ Rp there exists only one w ∈ Q(n,h) so that (β,w) ∈ Z, i.e., β ∈ U ,
if, and only if, r2(h)(β) < r2(h+1)(β).

Indeed, if r2i (β) = r2(h)(β) = r2(h+1)(β) = r2j (β) and (β,w) ∈ Z then also (β, ŵ) ∈ Z
where ŵ is created from w by swopping the i-th and j-th elements.

Corollary 2. The following holds:

H = {β ∈ Rp | r2(h)(β) = r2(h+1)(β)}.
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For every β ∈ H there exist i, j ∈ n̂ such that r2(h)(β) = r2i (β) = r2j (β) = r2(h+1)(β), this

equality is equivalent to ri(β) = ±rj(β)⇔ yi ∓ yj + (xTi ∓ xTj )β = 0.

Assumption 1. Let us assume that for Problem 1 that

1. (∀i, j ∈ n̂, i 6= j)(xi 6= ±xj),

2. (∀i ∈ n̂)(||xi|| 6= 0).

If Assumption 1 is fulfilled, then yi ∓ yj + (xi ∓ xj)β = 0 is represents a hyperplane,
i.e., a closed set having Lebesgue measure 0. Since H is a finite union of such sets, it is also
closed and of Lebesgue measure 0.

Assertion 3. If Assumption 1 is fulfilled, we get

1. µL(H) = 0, i.e. the Lebesgue measure of H is zero,

2. the set U is open.

Assume that for two different β1, β2 ∈ U

{β ∈ Rp |β = β1 + t(β2 − β1), t ∈ [0, 1]} ∩ H = ∅,

i.e., the line between β1 and β2 does not cross the set H, then on this line we must have
r2(h)(β) < r2(h+1)(β) and so Z(β1) = Z(β2). In words, the space Rp is “divided” by the set

H into a finite2 number m of open disjoint subsets of U .

Definition 2. For Problem 1 we define a sequence of m ∈ N sets U (seq) = {Ui}mi=1 such
that

1. Ui is open and connected3, for all i = 1, . . . ,m,

2. Ui ∩ Uj = ∅, for all i, j, i 6= j,

3. ∪mi=1Ui = U ,

4. ∪mi=1∂Ui = H.

We say that Ui, Uj ∈ U (seq) are neighbours if i 6= j and ∂Ui ∩ ∂Uj 6= ∅. Further, we define
a set W (min) of m vectors from Q(n,h)

W (min) = {w1, . . . , wm |wi = Z(β), where β ∈ Ui, i ∈ m̂}.

The sequence U (seq) is uniquely determined by conditions 1, 2 and 3, condition 4 is
implied by condition 3. The elements of W (min) are correctly defined due to the fact that
Z(β) = Z(β̂) for all β, β̂ ∈ Ui where i ∈ m̂ arbitrary.

2.2.1 One-dimensional example

As the above introduced definitions and assertions are crucial for understanding all the
results of the following paragraphs, we will demonstrate their meaning on an example. The
simplest instance of Problem 1 is the case of p = 1 when the argument of the LTS-OF is a
real number β ∈ R1.

Let us assume that Assumption 1 is fulfilled. Then all residuals r2i = (yi − xiβ)2, as
well as an arbitrary sum of them, are sharply convex parabolas. Thus, for every subset
w ∈ Q(n,h) the function OF (OLS,WX,WY )(β) =

∑n
i=1 w

i(yi−xiβ)2 is also an sharply convex
parabola and the value of the discrete function J(w) is a minimum of it.

2The finiteness of the number of the subsets will be proved later; we will prove that m ≤
(

n
p+1

)
2p.

3By definition, an open set A is connected if it cannot be represented as the disjoint union of
two or more nonempty open sets.
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Example 1. Find the LTS-estimate of Problem 1 for the following settings:

• n = 9, p = 1, h = 5,

• Y = (−0.90,−0.80, 33.32,−27.23, 12.63,−14.18,−3.79,−8.66,−16.45)T ,

• X = (1.39,−2.25, 6.10,−8.50, 8.26,−8.67, 10.87, 13.70, 13.05)T .

As β is a scalar, it is easy to draw the graph of OF (LTS,n,h)(β) for Example 1. What
we need is to know is how to determine the value OF (LTS,n,h)(β) for a given β. It can be
easily done by evaluating and ordering the squared residuals r2i (β) for all i. Employing the
definition of the relation Z, we can say that we need to find a subset w such that (β,w) ∈ Z
– in other words, we need to find the parabola OF (OLS,WX,WY )(β), corresponding to the
subset w, such that OF (OLS,WX,WY )(β) = OF (LTS,n,h)(β) for the given β. The sector of
the graph of OF (LTS,n,h)(β) for Example 1 containing all the local minima is depicted in
Figure 1.

Figure 1: The bold line is the graph of the LTS-OF, the other parabolas (thin lines)
are graphs of OLS-OF corresponding to various data subsets w ∈ Q(9,5).

It is clear that for data X Assumption 1 is fulfilled. The second part tells us that all
squared residuals have parabolas as a graph and the first part that for any two parabo-
las the intersection of their graphs is a set of Lebesque measure 0 (a point, in the case
of p = 1). Using our notation, we can reformulate the last sentence in this way: the
set H is the set of β for which more than one parabola coincides with the graph of the
LTS-OF or, equivalently, the set of β for which more than one subset w is in the re-
lation Z with β. Denote H = {h1, . . . , hm−1}, where m = #U (seq). For Example 1
H = {−8.16,−7.44,−6.99,−3.92,−0.18, 0.25, 1.21, 3.20, 3.84}.

Regarding the set U , we know that U = R1 \ H, thus the set U is a union of m open
intervals U1, . . . , Um. It is obvious that the sequence U (seq) equals to the sequence of these
intervals, i.e. U (seq) = {Ui}mi=1. All the sets Ui and all the corresponding vectors wi ∈W (min)

are given in Table 1.
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i Ui {j ∈ 9̂ |wj
i = 1} i Ui {j ∈ 9̂ |wj

i = 1}
1 (−∞,−8.16) 1,2,3,5,6 6 (−0.18,0.25) 1,2,5,7,8

2 (−8.16,−7.45) 1,2,3,5,7 7 (0.25,1.21) 1,2,5,6,7

3 (−7.45,−6.99) 1,2,5,6,7 8 (1.21,3.20) 1,2,4,5,6

4 (−6, 99,−3.92) 1,2,5,7,9 9 (3.20,3.84) 1,2,3,4,6

5 (−3.92,−0.18) 1,2,7,8,9 10 (3.84,+∞) 1,2,3,4,5

Table 1: The sets Ui and the corresponding wi for Example 1.

Note that in general we have

i 6= j ; wi 6= wj .

For our example data w3 = w7. Note also that not all sets Ui must contain a local minimum.
For us there are only 4 local minima: (1) in β = −0.77, value 71.96 (2) in β = 0.14, value
242.42 (3) in β = 0.70, value 246.87 and (4) in β = 2.06, value 156.15.

2.3 Local minima of LTS-OF

Now we will try to append to hitherto shown features and proposed notation some others,
which will be useful from the point of view of the minimization of the objective function
OF (LTS,n,h)(β). Without doubt it would be very useful to know if there exists a global
minimum or if there could be more than one local minimum. Taking into account simulta-
neously the discrete form of the LTS-OF, (12) and (13) we have the proof of the existence
of the global minimum and also the alternative formula for it.

As for the local minima, we have to employ the notation and facts from the previous
paragraphs. We know that the domain of the LTS-OF can be written as a union of the open
sets U (seq) = {Ui}mi=1 and the set of measure zero H. We also proved that for all i = 1, . . . ,m

and for all β ∈ Ui we have OF (LTS,n,h)(β) = OF (OLS,W iX,W iY )(β)) where W i = diag(wi)
and wi ∈W (min) (see Definition 2). This fact has an important consequence.

Definition 3. We say that a matrix X ∈ Rn,p, n ≥ p, has h-full rank if a rank of the matrix
WX is p for all w ∈ Q(n,h), W = diag(w).

It is well known that the OLS estimate is unique if, and only if, the design matrix
has rank p. As we compute the OLS estimate for h-element subset, we need the previous
definition.

Assertion 4. The objective function of Problem 1 OF (LTS,n,h)(β) has a local minimum in

β0 ∈ Ui ∈ U (seq) if, and only if, the function OF (OLS,W iX,W iY )(β)) has a local minimum in
β0 ∈ Ui, i ∈ m̂.

Moreover, if X has h-full rank, then

OF (LTS,n,h)(β) has a local minimum at β ∈ Ui ⇔ β = β̂(OLS,W iX,W iY ),

where W i = diag(wi).

How strong is the assumption that X has h-full rank? It depends on the values of
parameters p and h which determine the dimensions of the sub-matrixes of X. If h � p
(usually true), then the assumption is very weak.

Assertion 4 tells us how to find local minima located in the open set U . What if a local
minimum is in the set H? In what follows, we will prove that even if a local minimum is in
the set H, it can be still found as the OLS estimate for some subset w ∈ Q(n,h).
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Lemma 5. 1. Function f : Rn → R1, f ∈ C(2) is a strictly convex function if and only
if ∇2f(x) is a positive-definite matrix.

2. A strictly convex function has maximally one strict minimum.

This Lemma is a classical result of mathematical analysis.

Lemma 6. For Problem 1 and every subset w ∈ Q(n,h) it holds that if the matrix WX has
full rank (W = diag(w)), then the function OF (OLS,WX,WY )(β) is strictly convex.

The proof follows from from Lemma 5 and from the fact that ∇2OF (OLS,WX,WY )(β) =
XTWX, where XTWX is positive-definite.

Lemma 7. Let functions f1, . . . , fk be continuous having unique strict minimum, fi : Rp →
R1, and let h(x) = min{f1(x), . . . , fk(x)} for all x ∈ Rp. Define a set S = {x ∈ Rp | f1(x) =
· · · = fk(x)}. If h has a local minimum at x0 ∈ S, then fi has the strict global minimum at
x0 for all i = 1, . . . , k.

Proof
If h has a local minimum at x0 ∈ S, then there exists a neighbourhood U(x0) of x0 such

that
(∀x ∈ U(x0))(h(x) ≥ h(x0) = f1(x0) · · · = fk(x0)).

The same inequality is clearly true on U(x0) for all fi(x) (note that h(x) ≤ fi(x)), and hence,
due to the fact that all fi(x) have only one strict minimum, x0 has to be also the point of
the global minima of the functions fi, i = 1, . . . , k.

Q.E.D

Now we can propose the following not-surprising but important theorem.

Theorem 8. If the matrix X from Problem 1 has h-full rank, then for every local minimum
at a point β0 of the objective function OF (LTS,n,h)(β) there exists a vector w ∈W (min) such
that

β0 = (XTWX)−1XTWY,

where W = diag(w).

Proof
If β0 ∈ U , the proof follows directly from Assertion 4.
Let us assume that β0 ∈ H. It means that there exist more than one subset being in

relation Z with β0. Let us denote these subsets by wi1 , . . . , wik , k ≥ 2. Now employing the

previous lemma – putting fj = OF (OLS,Wij
X,Wij

Y )(β) for all j – and Lemma 6 we can be
sure that β0 is a point of global minima of all functions fj . From Definition 2 we also know
that H = ∪i∈m̂∂Ui. Thus, taking into account that β0 ∈ H, there are at least two of the
subsets wi1 , . . . , wik , k ≥ 2 (corresponding to two neighbours from U (seq) – see Definition 2)
which are elements of W (min).

Q.E.D

3 Borders Scanning Algorithm – BSA

In the present section we shall propose a new algorithm for solving Problem 1. A principle
of the algorithm is quite simple. It is based on the fact that

OF (LTS,n,h)(β) = min
w∈Q(n,h)

OF (OLS,WX,WY )(β)

= min
i=1,...m

OF (OLS,W iX,W iY )(β),
(14)
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where W = diag(w),W i = diag(wi) and m and wi ∈ W (min) are defined in Defini-
tion 2. This equation claims that to get complete knowledge of the complicated function
LTS-OF, it is enough to evaluate only m sharply convex objective functions of the OLS
estimate OF (OLS,WiX,WiY )(β). Taking into account (10), (11) and Theorem 8, we can
reformulate (14) as

min
β∈Rp

h∑
i=1

r2(i)(β) = min
w∈Q(n,h)

J(w) = min
i∈m̂

J(wi),

i.e. the LTS estimate for Problem 1 can be obtained by evaluating J(wi) for all i ∈ m̂. More
or less, most of algorithms take advantage of this fact. The question is how to determine
(all) subsets wi ∈W (min) most effectively. At first, we illustrate how the BSA does it in the
one-dimensional case.

3.1 One-dimensional case

As written above, for Example 1 the set W (min) consists of m = 10 elements and the set
H contains 9 points h1, . . . , h9. For each point hk, k ∈ 9̂ there exist exactly two subsets
wk1 and wk2 from W (min) such that (hk, wk1) ∈ Z and (hk, wk2) ∈ Z. These two subsets
correspond to two parabolas whose intersection has a coordinate hk and that can be easily
determined for a given hk using the following algorithm (which works for arbitrary p).

Program 1. How to find all w ∈ Q(n,h) such that (β,w) ∈ Z for a given β ∈ Rp:

1. For all i ∈ n̂ evaluate squared residual r2i (β) and order them.Define ik ∈ {1, . . . , n}
by r2ik(β) = r2(k)(β) for all k = 1, . . . , n.

2. If r2(h)(β) < r2(h+1)(β) then return the unique subset w such that (wi = 1 ⇔ r2i (β) ≤
r2(h)(β)).

If r2(h)(β) = r2(h+1)(β), let us suppose that

r2i1(β) ≤ · · · ≤ r2il(β) < r2il+1
(β) = · · · = r2ih(β) =

= r2ih+1
(β) = · · · = r2il+t

(β) < r2il+t+1
(β) ≤ · · · ≤ r2in(β).

Then return all the subsets wsuch that Iw (see (7)) contains l indices corresponding to
i1, . . . , il and arbitrary (h− l)-element subset of indices corresponding to il+1, . . . , il+t.
Hence, there are

(
t
h−l
)

subsets in relation Z with β.

In general, if Assumption 1 is fulfilled in the case of p = 1, that for every wi ∈ W (min)

there exists at least one point h ∈ H such that (wi, h) ∈ Z. Taking this into account, we
can state: if the set H = {h1, . . . , hm−1} is known, all the subsets W (min) can be obtained
by performing Program 1 for each hk ∈ H.

Only remaining task is how to determine the set H. According to its definition, a point
β is an element of H if and only if r2(h)(β) = r2(h+1)(β), i.e. this equality is sufficient and
necessary condition. Since the condition contains ordered residuals, it can not be used
directly – at first we need to find some candidates for which we will perform ordering of
residuals. These candidates can be determined by the following necessary condition: if
β ∈ H, then there are two distinct indices i, j such that r2i (β) = r2j (β). Let us denote the

set containing all β ∈ R1 satisfying this necessary condition by H, i.e.

H = {β ∈ R1 | r2i (β) = r2j (β), i 6= j}, (15)

8



obviously #H ≤ 2
(
n
p+1

)
= 2

(
n
2

)
= n(n − 1) (note that the equation is quadratic, i.e., it

has two solutions
yi−yj
xi−xj

and
yi+yj
xi+xj

– we still assume that Assumption 1 is fulfilled, hence

xi 6= ±xj).
Now we already have all necessary for proposing a one-dimensional version of BSA.

Program 2. BSA in the case of p = 1.
Denote the elements of the set Q(n,2) by {v1, . . . , v(n

2)
}.

1. Set k = 1 and Jmin = +∞.

2. Denote the indices of two data points from subset vk by i, j.
Save solutions of equation r2i (β) = r2j (β) as β1 and β2, i.e., β1 =

yi−yj
xi−xj

and β2 =
yi+yj
xi+xj

.

3. Evaluate and order residuals r2l (β1), l = 1, . . . , n.

4. If r2(h)(β1) = r2(h+1)(β1) (i.e., β1 ∈ H), find subsets w(1), w(2) ∈ Q(n,h) which are in

relation Z with β1 (use Program 1).

5. If J(w(1)) < Jmin, put Jmin = J(w(1)) and βmin = β1.
If J(w(2)) < Jmin, put Jmin = J(w(2)) and βmin = β2.

6. If β1 6= β2, repeat last two steps for β2 (modify Jmin and βmin accordingly).

7. If k <
(
n
2

)
, put k = k + 1 and go back to step 2.

8. Return βmin as the LTS estimate for Problem 1.

This algorithm works is finite if the H contains only a finite number of points. Assump-
tion 1 is a sufficient condition for this; it is not a necessary condition, but still it is very
weak and easily verifiable.

3.2 Multidimensional case

In the case of p > 1, the situation is more complicated. The source of complication is the
fact, that the set H contains infinitely many points. In order to resolve this problem, we
need to find some finite subset of H, let us denote it Hp, having the following property: for
every w ∈W (min) there exists β ∈ Hp such that (β,w) ∈ Z.

Analogously to the case of p = 1, we will be looking for candidates for being an element
of Hp in the set H, namely in some suitable finite subset Hp for which Hp ⊂ Hp ⊂ H. In the
case of p = 1, the equality of the type r2i (β) = r2j (β) can have at most two solutions, in the
case of p > 1, this equality only “decrements” the dimension by 1, i.e., the dimension of its
solution is p−1. But we need the dimension to be zero, this can be reached by considering p
“independent” equations of the type r2i (β) = r2j (β), in other words, a system of p equations

with p unknowns β1, . . . , βp

r2i1(β) = r2i2(β)

...
...

r2ip(β) = r2ip+1
(β),

(16)

where i1, . . . , ip+1 corresponds to one of (p+1)-element subsets of n̂ = {1, . . . , n}, i.e., to one
element of Q(n,p+1). Unfortunately, as we will prove later on, the system (16) is equivalent
to 2p linear systems of p equations. If all these systems are regular, then original system
(16) can have up to 2p solutions. Taking into account this number and the fact that there
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are
(
n
p+1

)
= #Q(n,p+1) different systems of type (16), the set Hp, which is to be defined as

a set of solutions of all such systems, contains
(
n
p+1

)
2p points from Rp.

In the next section, all the sets introduced above (sets H, Hp and Hp) will be redefined
precisely and their mentioned (and some others) properties will be proved. In particular, we
will propose assumptions which allow us to prove that the set Hp is a suitable set for BSA.

3.3 Set Hp

The goal of this section is to find a set Hp for which it holds that for every w ∈W (min) there
exists at least one β ∈ Hp such that (β,w) ∈ Z. We will define it as it was hinted above,
therefor we will need to define the sets H and Hp containing candidates for being elements
of H and Hp.

The set H is to be defined as in (15). The quadratic equation of the type r2i (β) =
r2j (β), i, j ∈ n̂ is equivalent to two linear ones

(xi + xj)
Tβ = yi + yj

(xi − xj)Tβ = yi − yj ,
(17)

each defining p− 1-dimensional hyperplane.

Definition 4. Let us denote

H(i,j,±) = {β ∈ Rp | r2i (β) = r2j (β)} = {β ∈ Rp | yi − xTi β = ±(yj − xTj β)}

H(i,j,−) = {β ∈ Rp | yi − xTi β = (yj − xTj β)} = {β ∈ Rp | yi − yj = (xTi − xTj )β}

H(i,j,+) = {β ∈ Rp | yi − xTi β = −(yj − xTj β)} = {β ∈ Rp | yi + yj = (xTj + xTj )β}

for every i, j ∈ n̂, i 6= j and

H = ∪i,j∈n̂,i 6=jH(i,j,±) =
(
∪i,j∈n̂,i 6=jH(i,j,+)

)
∪
(
∪i,j∈n̂,i6=jH(i,j,−)

)
.

Obviously the set H from this definition is the same one as the definition given in (15).
It is apparent that H ⊂ H. We also know, that the sets Ui, i ∈ m̂ from Definition 2 are

separated by the set H. The hyperplanes H(i,j,+) and H(i,j,−) divide Rp into closed convex
sets, so-called polytops, let us denote them Pk, k ∈ K̂, where K is some finite number. We
get that ∪k∈K̂∂Pk = H ⊃ H = ∪i∈m̂∂Ui and it implies that for every Ui there exist convex
sets Pk1 , . . . Pkl , l ≥ 1 such that Ūi = ∪j∈l̂Pkj and also that m ≤ K.

It is well known fact, that a bounded polytop equals to a convex envelope of points
which are intersections of the hyperplanes bordering the polytop. The smallest number of
hyperplanes allowing their intersection to be a point (i.e. the set with dimension 0) equals
the dimension of the space. For us the space is Rp and the dimension is p. We propose some
more notation to express what this fact means for our particular case.

Let ◦ ∈ {+,−} represent one of the arithmetical operations, either an addition or a
subtraction, i.e. x ◦ y = x+ y if ◦ = + and x ◦ y = x− y if ◦ = −.

Let β ∈ H be an intersection of q + 1, q ≥ 1, sets of the type H(i,j,±) such that
β ∈ H(i1,i2,±) ∪ H(i2,i3,±) ∪ · · · ∪ H(iq,iq+1,±) where i1, . . . , iq+1 ∈ n̂ are distinct. It means
that β is a solution of the following system

r2i1(β) = r2i2(β)

...
...

r2iq (β) = r2iq+1
(β).

10



Note that if r2i1(β) = r2(h)(β) = r2(h+1)(β) then, moreover, β ∈ H. This system of equations
is equivalent to the following 2q systems

(xi1 ◦1 xi2)Tβ = yi1 ◦1 yi2
...

...

(xiq ◦q xiq+1)Tβ = yiq ◦q yiq+1 .

(18)

where (◦1, . . . , ◦q) is an arbitrary element of the set product ×qi=1{+,−}.
Definition 5. Let β ∈ H be a solution of system (18) of q equations where (◦1, . . . , ◦q) ∈
×qi=1{+,−}. Further, let us assume there exists no iq+2 ∈ n̂ \ {i1, . . . , iq+1} and ◦q+1 ∈
{+,−} so that (xiq+1 ◦q+1 xiq+2)Tβ = yiq+1 ◦q yiq+2 (i.e. r2i1(β) = . . . = r2iq+1

(β) = r2iq+2
(β)).

Then we define an order of β

Ord(β) = number of linearly independent equations in (18).

We also define a set of zero-dimensional intersections

Hp = {β ∈ H |Ord(β) = p}

and its subset Hp of such β ∈ Hp for which r2i1(β) = . . . = r2ip+1
(β) = r2(h)(β) = r2(h+1)(β),

where i1, . . . , ip+1 ∈ n̂ are indices from the system of p linearly independent equations of
type (18).

Now we have all the notation necessary for proposing the assertion which, despite being
very simple and natural, will be used as the basis of BSA. At first, let us prove the following
useful lemma – to be able to do it, we need this very weak assumption.

Assumption 2.
(∀β ∈ Rp)(r2(h)(β) > 0),

i.e.,
OF (LTS,n,h)(β̂(LTS,n,h)) > 0.

Lemma 9. Let us assume that Assumptions 1 and 2 are fulfilled and let B ⊂ Rp be a set
containing all solutions of the system of equations

(xi1 ◦1 xi2)Tβ = yi1 ◦1 yi2
...

...

(xiq ◦q xiq+1)Tβ = yiq ◦q yiq+1 ,

(19)

where i1, . . . , iq+1 ∈ n̂ are distinct, q ≥ 1, ◦1, . . . , ◦q ∈ {+,−} and r2i1(β) = · · · = r2iq+1
(β) =

r2(h)(β) = r2(h+1)(β). Then for all j, k ∈ q̂ + 1, j 6= k and ◦ ∈ {+,−} either

(∀β ∈ B)((xij ◦ xik)Tβ = yij ◦ yik) (20)

or
(∀β ∈ B)((xij ◦ xik)Tβ 6= yij ◦ yik)

is true.
Moreover, there exist ◦l1 , . . . , ◦lq ∈ {+,−} such that system (19) is equivalent to the

system

(xi1 ◦l1 xi2)Tβ = yi1 ◦l1 yi2
...

...

(xi1 ◦lq xiq+1)Tβ = yi1 ◦lq yiq+1 .

(21)

This holds even if r2i1(β) 6= r2(h)(β).
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Proof
Assumption 2 implies that for all s, t ∈ n̂, s 6= t the system

(xs + xt)
Tβ = ys + yt

(xs − xt)Tβ = ys − yt
(22)

has not any solution β ∈ Rp such that r2s(β) = r2t (β) = r2(h)(β). Indeed, if β0 is a solution of

both equations (22) and r2s(β) = r2t (β) = r2(h)(β), then rs(β0) = rt(β0) and simultaneously

rs(β0) = −rt(β0) and so r2(h)(β0) = 0, i.e. Assumption 2 is not fulfilled (if r(h)(β0) = 0 then

certainly β0 = β̂(LTS,n,h)).
Now, let us assume, without loss to generality, that j < k holds for j, k. Then for any

β ∈ B

(xij ◦j xij+1
)Tβ = yij ◦j yij+1

(xij+1
◦j+1 xij+2

)Tβ = yij+1
◦j+1 yij+2

.

If j+1 = k, then, according to Assumption 2 and the first paragraph of this proof, equation
(20) holds for all β ∈ B (when ◦ = ◦j) or it doesn’t hold for any of them (when ◦ 6= ◦j).
Further, let k be greater than j+1. By adding together the equations, in the case of ◦j = −,
or by subtracting them, in the case of ◦j = +, we get the equivalent system

(xij ◦j xij+1
)Tβ = yij ◦j yij+1

(xij ◦
′

j+1 xij+2
)Tβ = yij ◦

′

j+1 yij+2

(xij+2
◦j+2 xij+3

)Tβ = yij+2
◦j+2 yij+3

.

We can repeat this step r-times, r ≤ q, until j + r + 1 = k and finish the proof of the first
part of the lemma by employing again assumption 2 for the system

(xij ◦j xij+1
)Tβ = yij ◦j yik

(xij ◦
′

k−1 xik)Tβ = yij ◦
′

k−1 yik .

The second part of the lemma can be proved by repeating the same steps for j = 1 and
k = q + 1.

Q.E.D

The first part of the lemma tells us that each equation of the type (xij ◦ xij+2
)Tβ = yij ◦

yik , j, k ∈ q̂ + 1, ◦ ∈ {+,−} is either equivalent with system (19) or set of solutions of this
equation is disjoint with the set B (due to Assumption 2).

Now we can proceed to proving the most important assertion of this section – we shall
prove that Hp is suitable (in a sense of the previous section) set for BSA. Is it true in general
or we have to assume that the data from Problem 1 satisfies some condition? The answer
is that we have to propose some assumption which is, however, quite weak. The reason is
that it could happen that the set Hp is empty. For example, in the case of p = 2, if all
hyperplanes of the type H(i,j,◦) are parallel, then there is no zero-dimensional intersection.
It happens if and only if all vectors xi from Problem 1 are parallel. Then all systems of
equations of the type

(xi1 ◦1 x12)Tβ = yi1 ◦1 yi2
(xi1 ◦2 xi3)Tβ = yi1 ◦2 yi3

are linearly dependent and so they have either no solution or the set of all solutions is one-
dimensional hyperplane. To avoid such a situation we propose the following assumption.
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Assumption 3. For all (◦1, . . . , ◦n−1) ∈ ×ni=1{+,−} the matrix of the system of n − 1
equations

(x1 ◦1 x2)Tβ = y1 ◦1 y2
...

...

(x1 ◦n−1 xn)Tβ = y1 ◦n−1 yn

has rank p.

Obviously, it prevents the situation described above. This assumption has a consequence
which will be crucial for the proof of the main assertion. Let us formulate it as a lemma.

Lemma 10. Let us assume that data from Problem 1 satisfies Assumption 3. If p > 1, then
for

(∀l ∈ {2, . . . , p})(∀i1, . . . , il ∈ n̂)(∀◦1, . . . , ◦l−1 ∈ {+,−})

it holds that if the system of l − 1 equations

(xi1 ◦1 xi2)Tβ = yi1 ◦1 yi2
...

...

(xi1 ◦l−1 xil)Tβ = yi1 ◦l−1 yil

(23)

has rank l − 1, then there exist il+1 ∈ n̂ \ {i1, . . . , il} and ◦l ∈ {+,−} such that the system
of l equations

(xi1 ◦1 xi2)Tβ = yi1 ◦1 yi2
...

...

(xi1 ◦l−1 xil)Tβ = yi1 ◦l−1 yil
(xi1 ◦l xil+1

)Tβ = yi1 ◦l yil+1

has rank l.
Moreover, if β ∈ Rp is a solution of (23) such that r2i1(β) = r2(h)(β) = r2(h+1)(β) then

il+1 can be selected so that there exists β1 such that r2i1(β1) = · · · = r2il(β1) = r2il+1
(β1) =

r2(h)(β1) = r2(h+1)(β)

Proof
Let us denote the elements of the set of indices n̂ \ {i1, . . . , il} by {jl+1, . . . , jn} and let

us select signs ◦l, . . . , ◦n−1 arbitrarily. Then, due to Assumption 3, the system of equation

(xi1 ◦1 xi2)Tβ = yi1 ◦1 yi2
...

...

(xi1 ◦l−1 xil)Tβ = yi1 ◦l−1 yil
(xi1 ◦l xjl+1

)Tβ = yi1 ◦1 yjl+1

...
...

(xi1 ◦n−1 xjn)Tβ = yi1 ◦n−1 yjn

has rank p. We also know that l − 1 vectors

((xi1 ◦1 xi2), . . . , (xi1 ◦1 xil))

13



are linearly independent. Then, due to Steinitz Theorem, there exist indices jl+1, . . . , jp+1

and kl, . . . , kp (in other words, there exist p− l rows of the matrix of the system above) such
that p vectors

((xi1 ◦1 xi2), . . . , (xi1 ◦l−1 xil), (xi1 ◦kl xjl+1
), . . . , (xi1 ◦kl+1

xjp))

form a base of the vector space Rp. Obviously, as the index il+1 can be then taken each
index from {jl+1, . . . , jp+1}.

The second part of the lemma is a consequence of the first one and the continuity of
squared residuals. Let us denote the set of all solutions of the system (23) by B ⊂ Rp. We
know that there exist β, β1 ∈ B and jl+1 such that r2i1(β) = · · · = r2il(β) = r2(h)(β) and

r2i1(β1) = · · · = r2jl+1
(β1). Than, due to continuity of squared residuals, there must exists

β2 ∈ B and il+1 such that r2i1(β2) = · · · = r2il+1
(β2) = r2(h)(β2) = r2(h+1)(β2). Note that it

could happen that β2 = β or β2 = β1.
Q.E.D

Assertion 11. Let us assume that Assumptions 1, 2 and 3 are fulfilled. If for the set
Ui ∈ U (seq), i ∈ m̂ holds that ∂Ui 6= ∅, then

(∃β ∈ Rp)(β ∈ ∂Ui ∩Hp),

i.e. there exist i1, . . . ip+1 ∈ n̂ and ◦1, . . . , ◦p ∈ {+,−} such that β is the only one solution
of the system of p linearly independent equations

(xi1 ◦1 xi2)Tβ = yi1 ◦1 yi2
...

...

(xip ◦p xip+1)Tβ = yip ◦p yip+1 ,

where moreover r2i1(β) = r2(h)(β) = r2(h+1)(β) is true.

Proof
Within the proof we shall partially use a syntax of computer programming – q will be

treated as a variable which is a parameter of a loop, hence q = q + 1 means incrementing q
of 1. The instruction go to ♥ means “go back to the line beginning with the sign ♥”. Let
us also suppose that p > 1, if p = 1, then the assertion is trivial.

Put q = 1. As ∂Ui 6= ∅, there are β(1) ∈ ∂Ui, i1 ∈ Iwi
and i2 ∈ Owi

(see (7) and for wi
see Definition 2) so that r2(h)(β

(1)) = r2(h+1)(β
(1)) = r2i1(β(1)) = r2i2(β(1)), i.e. there exists ◦1

such that β(1) ∈ H(i1,i2,◦1), i.e. β(1) is a solution of equation

(xi1 ◦1 xi2)Tβ = yi1 ◦1 yi2 .

According to the previous lemma, there exist i3 ∈ n̂, ◦2 ∈ {+,−} and β(2) ∈ Rp such that
β(2) is a solution of the system

(xi1 ◦1 xi2)Tβ = yi1 ◦1 yi2
(xi1 ◦2 xi3)Tβ = yi1 ◦2 yi3 ,

where moreover r2i1(β(2)) = r2(h)(β
(2)) = r2(h+1)(β

(2)).

♥ Put q = q + 1. If q = p, the proof is completed. If it is not, the indices i1, . . . , iq,
signs ◦1, . . . , ◦q−1 satisfy the assumptions of the previous lemma. Hence, there is an index
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iq+1, a sign ◦q and β(q) such that

(xi1 ◦1 xi2)Tβ(q) = yi1 ◦1 yi2
...

...

(xiq ◦q xiq+1)Tβ(q) = yiq ◦q yiq+1

and r2i1(β(q)) = r2(h)(β
(q)) = r2(h+1)(β

(q))
Go to ♥. Q.E.D

The assertion ensures us that Hp is a suitable for BSA and so we can propose also the
multidimensional version of BSA. At the end of this section let us propose the following
corollary.

Corollary 12. Let us assume that Assumptions 1, 2 and 3 are fulfilled. For the number
m = #U (seq) (see Definition 2) we have

m ≤
(

n

p+ 1

)
2p.

Proof
Due to Assertion 11 we know that m ≤ #Hp. Then, the proof follows from the fact that

Hp ⊂ Hp, where #Hp ≤
(
n
p+1

)
2p.

Q.E.D

4 BSA– new exact algorithm

4.1 Description of algorithm

The multidimensional version of BSA is a straightforward generalization of Program 2. Note
that if Assumption 1 is satisfied, then in the case of p = 1 it holds that H = Hp. If p > 1
then Hp ( H. In short, BSA can be described as follows: find all β ∈ Hp, by ordering
the residuals verify whether β is also element of Hp. If it is, find all w ∈ Q(n,h) such
that (β,w) ∈ Z and evaluate J(w) (see (11)) for them. The minimal obtained value then
corresponds to w∗ (see (13)).

Program 3. BSA – generic definition for all dimensions.
Denote all the elements of the set Q(n,p+1) by {v1, . . . , v( n

p+1)
} and all the elements of the

cartesian product ×pj=1{+,−} by {◦(1), . . . , ◦(2p)}, where ◦(i) = (◦(i)1 , . . . , ◦(i)p ), i = 1, . . . 2p.

1. Set k = 1 and Jmin = +∞.

2. If k >
(
n
p+1

)
go to step 9.

3. Denote the indices of data from subset vk by i1, . . . , ip+1, hence i1, . . . , ip+1 ∈ n̂ are

distinct and vi1k = · · · = v
ip+1

k = 1. Put l = 1.

4. If l > 2p, put k = k + 1 and go to step 2.

5. If the system of equations

(xi1 ◦
(l)
1 xi2)Tβ = yi1 ◦

(l)
1 yi2

...
...

(xi1 ◦(l)p xip+1)Tβ = yi1 ◦(l)p yip+1

(24)

is regular, then denote its solution by β0, if it is not, put l = l + 1 and go to step 4.

15



6. Evaluate and order residuals r2(β0).

7. If r2i1(β0) = r2(h)(β0) = r2(h+1)(β0), find subsets w(1), . . . , w(g) ∈ Q(n,h) which are in

relation Z with β0 (use Program 1).

8. For j = 1, . . . , g evaluate J(w(j)). If J(w(j)) < Jmin, put Jmin = J(w(j)) and wmin =
w(j).

9. Put l = l + 1 and go to step 4.

10. Return β = β̂(OLS,WminX,WminY ),Wmin = diag(wmin) as the LTS estimate for Prob-
lem 1.

Several of steps need to be commented on in details. Prior to that, let us prove that
BSA always find the exact LTS estimate for Problem 1.

Theorem 13. If data of Problem 1 satisfy Assumptions 1, 2 and 3, then BSA returns the
LTS estimate β̂(LTS,n,h).

Proof
The proof follows straightforwardly from equation (14) and Assertion 11, which tells us

that during BSA we evaluate J(w) for all w ∈W (min).
Q.E.D

Now, let us comment on the steps.

steps 2 – 5 The goal of the algorithm is to find all points of the set Hp and for every
β ∈ Hp find all Ui, i ∈ m̂ and the corresponding wi such that β ∈ ∂Ui. In order to
find all elements of Hp, it is necessary to find all elements of Hp and it requires to
resolve all possible systems of equations of type (24), i.e. it is necessary to go through
all
(
n
p+1

)
2p possibilities.

step 5 Due to assertion 11 we know that “in most cases” we can omit non-regular systems
without losing the assurance that we will find all the elements of Hp (see the proof).
Non-regularity would become a problem only if Assumption 3 is disrupted, i.e. at least
one matrix (n − 1 × p + 1) would not be regular. The assumptions will be discussed
later on.

step 7 In this step β0 is surely an element of Hp, to verify that β0 ∈ Hp it is necessary
to verify whether r2i1(β0) = r2(h)(β0) = r2(h+1)(β0). If r2i1(β0) 6= r2(h)(β0) = r2(h+1)(β0),

then either β0 /∈ Hp or it will be found during the loop for another value of the
parameter k.

If we assume that the equality r2i1(β0) = r2(k)(β0) has the same probability for all k ∈ n̂
and for all β0 ∈ Hp, then the probability that the algorithm will go to step 8 from
step 7 (i.e. that r2i1(β0) = r2(h)(β0) = r2(h+1)(β0) holds) is p/(n− p+ 1).

step 7 and 8 How many w can be in relation Z with β0? The number g depends on
l ∈ {0, 1, . . . , p− 2} for which r2i1(βt) = r2(h−l)(βt) and equals

(
p
l+1

)
. The worst case is(

p
[p/2]

)
and the best one is p (see also Program 1).

To conclude the basic description of the algorithm, we will calculate the complexity of
it.
In order to compute the exact LTS estimate β̂(LTS,n,h) by BSA it is necessary to

• successively select all
(
n
p+1

)
elements of the set Q(n,p+1),

•
(
n
p+1

)
· 2p times resolve system (24) of p equations,

•
(
n
p+1

)
· 2p times evaluate and order n residuals,
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•
(
n
p+1

)
· 2p · p

n−p+1 ·
(

p
[p/2]

)
times calculate the OLS estimate β̂(OLS,WX,WY ).

Of course, the complexity further depends on numerical methods used for ordering of the
residuals and solving the systems of equation (in step 4 and also during calculating the OLS
estimate in step 6) but such a discussion is beyond the scope of this work.

4.2 Assumptions – verification and disruption of them

As written above, Assumption 1 is quite weak and moreover easily verifiable. Assumption 2
is still weaker and we can rely on it without any doubt.

Concerning Assumption 3 the situation is a bit more complicated. To verify that all
2n−1 matrixes have full rank is too exhausting. On the other hand, an assumption that
(n− 1× p) matrix has rank p is quite weak (for n great enough) and we can rely on this is
fulfilled.

However, if an intercept is considered, Assumption 3 is always disrupted for ◦1 = · · · =
◦n−1 = − for the first column of the matrix contains only zeros and so the rank of the
matrix is less or equal to p − 1. Thus, if an intercept is considered, Assertion 11 (namely
Lemma 10) is not proved and we lose the certainity that BSA always finds the exact LTS
estimate. To resolve this problem, Assumption 3 has to be reformulated to the following
form.

Assumption 4. For all (◦1, . . . , ◦n−1) ∈ (×ni=1{+,−}) \ {(−, . . . ,−)} the matrix of the
system of equations

(x1 ◦1 x2)Tβ = y1 ◦1 y2
...

...

(x1 ◦n−1 xn)Tβ = y1 ◦n−1 yn

has rank p.

Assuming that this Assumption 4 is fulfilled instead of Assumption 3 we can reprove
Lemma 10 for models where an intercept is considered as follows.

Proof
The only difference between the proofs is selecting of the signs ◦l, . . . , ◦n−1. In the

original Lemma we can select them arbitrarily, here, if Assumption 4 is considered, we
demand (∃k ∈ {l, . . . , n− 1}(◦k 6= −). The rest of proof is completely the same.

Q.E.D

Conclusion

BSA proved to be quick enough to be usable for reasonably large data. Of course probabilistic
algorithms are faster and they have found the exact solution of Problem 1 as well in all
cases the author tested. BSA algorithm has been implemented in MATLAB and in C++
(by Roman Kápl) and is available by email.
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