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Abstract: In this paper, we study the constrained estimation in Cox’s model for the right-

censored survival data and derive asymptotic properties of the constrained estimator by using

the Lagrangian method based on Karush–Kuhn–Tucker conditions. A novel minorization–

maximization (MM) algorithm is developed for calculating the maximum likelihood estimates

of the regression coefficients subject to box or linear inequality restrictions in the proportional

hazards model. The first M-step of the proposed MM algorithm is to construct a surrogate

function with a diagonal Hessian matrix, which can be reached by utilizing the convexity

of the exponential function and the negative logarithm function. The second M-step is to

maximize the surrogate function with a diagonal Hessian matrix subject to box constraints,

which is equivalent to separately maximizing several one-dimensional concave functions with

a lower bound and an upper bound constraint, resulting in an explicit solution via a median

function. The ascent property of the proposed MM algorithm under constraints is theoretically

justified. Standard error estimation is also presented via a non-parametric bootstrap approach.

Simulation studies are performed to compare the estimations with and without constraints.

Two real data sets are used to illustrate the proposed methods.

Keywords: Asymptotic properties; Bootstrap approach; Constrained estimation; Karush–

Kuhn–Tucker conditions; MM algorithm; Proportional hazards model.

1



1. Introduction

Survival data arise in a number of fields such as reliability engineering, economics, sociology,

public health, epidemiology and medicine (especially, clinical trials). Survival analysis is used to

model the relationship between the time-to-event (e.g., death or disease) and a set of covariates

or predictors. When the period of observation expires, or an individual is removed from or

drops out the study prior to the event occurs, survival data are considered as right-censored.

The proportional hazards model originally introduced by Cox (1972) may be the most widely

used method for analyzing survival data with censoring. Since the publication of Cox (1972),

numerous extensions and developments in various aspects have been proposed during the past

40 years by many authors including Cox (1975), Andersen and Gill (1982), Bickel et al. (1993),

Lin and Ying (1993), Lin (1994), Huang (1996), Chen and Little (1999), and Chen and Lo

(1999). A comprehensive review was given by Kalbfleisch and Prentice (2002).

In many practical problems, it may be available as prior information that restrictions on

some model parameters would result in a more reasonable interpretation. Such restrictions

cannot be ignored; otherwise the statistical inference may be misled and an underestimate of the

effect may be caused (Tan et al., 2005; Fang et al., 2006). Therefore, it is reasonable to expect

that the analysis would perform better if parameter constraints are taken into account in the

modeling process. However, the complication resulting from such restrictions raises statistical

challenges. Statistical inferences on constrained problems have been studied by many authors

(e.g., Liew, 1976; Nyquist, 1991; Silvapulle, 1997). For example, Wang (1996, 2000) studied

asymptotic properties of constrained estimators in nonlinear regressions. Moore and Sadler

(2006) and Moore et al. (2008) discussed the asymptotic theory for the constrained maximum

likelihood estimator (MLE) and presented a constrained Cramér–Rao bound. However, to our

knowledge, asymptotic properties of constrained estimators for the regression coefficients in

Cox’s model have never been studied.

The first objective of this paper is to derive two asymptotic properties of the constrained

MLEs for the regression coefficients in the proportional hazards model with right-censored data.

These asymptotic results are useful in statistical inferences for Cox’s model with box and linear

inequality constraints. We use the Karush–Kuhn–Tucker conditions, a well-known approach in

optimization with inequality constraints, to overcome the difficulty caused by the constraint.

Similar techniques were adopted by Wang (2000), Xu and Wang (2008) for constrained least-
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squares estimator, and Moore and Sadler (2006), Moore et al. (2008) for constrained Cramér–

Rao bound in parametric models.

Böhning and Lindsay (1988) developed a quadratic lower bound (QLB) algorithm with

monotone convergence like the EM algorithm for the Cox model without constraints. Since

the construction of the quadratic surrogate function in the QLB algorithm is based on the

second-order Taylor expansion of the partial log-likelihood function in the neighborhood of the

maximum likelihood estimate, this QLB algorithm cannot be applied to the Cox model with

box and/or linear inequality constraints. Note that the QLB algorithm is a special case of

minorization–maximization (MM) algorithms (Becker et al., 1997; Hunter and Lange, 2004;

Lange 2004, 2010). In addition, the existing MM algorithms (Lange et al., 2000) such as De

Pierro’s algorithm (De Pierro, 1995) cannot be applied to the Cox model even for the case

without constraints. Hunter and Lange (2002) proposed an MM algorithm for finding the

MLEs of the regression coefficients in the semiparametric proportional odds model just for the

case without constraints.

Thus, the second objective of this paper is to develop a novel MM algorithm for calculating

the MLEs of the regression coefficients with box or linear inequality restrictions in the pro-

portional hazards model. The key to the proposed MM algorithm is to construct a surrogate

function Q(β|β(m)) with a diagonal Hessian matrix, which can be reached by utilizing the con-

vexity of the exponential function ex and the negative logarithm function − log x. Maximizing

this surrogate function with a diagonal Hessian matrix subject to box constraints is equivalent

to separately maximizing several one-dimensional concave functions with a lower bound and

an upper bound constraint, which has an explicit solution via a median function.

The rest of the article is organized as follows. In Section 2, we formulate the proportional

hazards model with constraints and derive two asymptotic properties for the constrained esti-

mator. In Section 3, we develop a new MM algorithm for calculating the constrained estimation

in Cox’s model. The ascent property of the proposed MM algorithm under constraints is de-

rived. Standard error estimation is also presented via a non-parametric bootstrap approach.

We conduct several simulation studies in Section 4 to compare the estimations with and with-

out constraints. In Section 5, two real data sets are used to illustrate the proposed methods.

A discussion is presented in Section 6. Detailed proofs on asymptotic properties are put in the

Appendix.

3



2. Constrained estimation in Cox’s model

2.1 The formulation of the constrained Cox model

Consider Cox’s proportional hazards model with constrained regression coefficients. Suppose

that there are n subjects drawn randomly from the population of interest. For the i-th subject

(i = 1, . . . , n), let T̃i, Ci, Ti = min(T̃i, Ci) and Zi denote the failure time, the censoring time, the

observed time and the covariate vector of p dimension, respectively. We assume that given the

covariate vector Zi, the failure time T̃i and the censoring time Ci are conditionally independent.

Furthermore, let ∆i = I(Ti 6 Ci), Yi(t) = I(Ti > t) and Ni(t) = ∆iI(Ti 6 t) respectively

denote the right censoring indicator, at-risk process and counting process for subject i, where

I(·) is the indicator function.

The proportional hazards model specifies the hazard function of the failure time conditional

on covariates taking the following form:

λ(t|Z) = λ0(t) exp{β⊤Z(t)}, (2.1)

where λ0(t) is an unspecified baseline hazard function, Z(t) is a p-dimensional vector of time-

varying covariates, and β = (β1, . . . , βp)
⊤ is a p-dimensional vector of regression coefficients. We

are interested in estimating the unknown parameter vector β subject to the following equality

and inequality constraints:

β ∈ S(f , g) = {β: f(β) = 00r, g(β) 6 00s}, (2.2)

where both f(β) = (f1(β), . . . , fr(β))
⊤ and g(β) = (g1(β), . . . , gs(β))

⊤ are assumed to have con-

tinuous second-order partial derivatives, and functional constraints are consistent; i.e. S(f , g)

is a non-empty convex set. Note that if r = 0, then there is no equality constraint; if s = 0,

there is no inequality constraint.

It is well known that the inference on β can be based on the partial likelihood function

(Cox, 1972)

L(β) =
n∏

i=1

(
eβ

⊤
Zi(Ti)

∑n
l=1 Yl(Ti) eβ

⊤
Zl(Ti)

)∆i

,

for which the corresponding partial log-likelihood function is

ℓ(β) =

n∑

i=1

∆i

{
β⊤Zi(Ti)− log

(
n∑

l=1

Yl(Ti) e
β⊤Zl(Ti)

)}
. (2.3)
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The constrained MLE β̂ is defined by

β̂ = arg max
β∈S(f ,g)

ℓ(β), (2.4)

which can be viewed as the solution to the following constrained optimization problem:

max
β

ℓ(β) subject to f (β) = 00 and g(β) 6 00. (2.5)

By allowing inequality constraints, the Karush–Kuhn–Tucker (KKT) approach to con-

strained optimizations generalizes the method of Lagrange multipliers, which allows only equal-

ity constraints. By using the KKT approach, we can build the Lagrangian of the optimization

problem in (2.5) as

H(β,µ,ν) = ℓ(β) +

r∑

j=1

µjfj(β) +

s∑

k=1

νkgk(β), (2.6)

where µ = (µ1, . . . , µr)
⊤ and ν = (ν1, . . . , νs)

⊤ are KKT multipliers. Any potential solution to

(2.5) must be a stationary point of (2.6); that is, it must be a point β∗ satisfying the following

KKT necessary conditions (Boyd and Vandenberghe, 2004; Madsen et al., 2004):




Stationarity: ∇βℓ(β
∗) +

r∑

j=1

µ∗
j∇βfj(β

∗) +

s∑

k=1

ν∗
k∇βgk(β

∗) = 00,

Primal feasibility: fj(β
∗) = 0, ∀ j = 1, . . . , r,

gk(β
∗) 6 0, ∀ k = 1, . . . , s,

Dual feasibility: ν∗
k > 0, ∀ k = 1, . . . , s,

Complementary slackness: ν∗
kgk(β

∗) = 0, ∀ k = 1, . . . , s,

(2.7)

where

∇βℓ(β
∗) =̂

∂ℓ(β)

∂β

∣∣∣∣
β=β∗

.

The k-th inequality constraint gk(β) 6 0 is referred to be active at a feasible point β if

gk(β) = 0; otherwise it is called inactive. For an equality constraint fj(β
∗) = 0, the µ∗

j can

have any sign. For an active inequality constraint, we have gk(β
∗) = 0 and ν∗

k > 0. For

an inactive inequality constraint gk(β
∗) < 0, we must have ν∗

k = 0 to confirm the last s

equations in (2.7), indicating that these inactive inequality constraints have no influence on the

stationarity equation. Due to these remarks, the stationarity equation in (2.7) can be simplified

by incorporating all active constraints into h(β) = (h1(β), . . . , hq(β))
⊤. Then, we can rewrite

the stationarity equation as

∇βℓ(β
∗) + µ∗⊤F(β∗) = 00, β∗ ∈ S(f , g), (2.8)
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where µ∗ = (µ∗
1, . . . , µ

∗
q)
⊤, F(β) = ∇βh(β) is the q×p gradient matrix of all q active constraints

and have full-row rank. By using the Lagrangian method based on KKT conditions, the

asymptotic properties of constrained estimator β̂ can be established.

2.2 Asymptotic properties of the constrained estimator

We now study asymptotic properties of the constrained estimator β̂. Inspired with the methods

developed by Moore and Sadler (2006) and Moore et al. (2008), we introduce a p×(p−q) matrix

U(β) whose elements being continuous of β such that for each β,

F(β)U(β) = 0 and U(β)⊤U(β) = Ip−q. (2.9)

That is, the columns of U(β) form an orthonormal null space of the range space of the row

vectors in F(β). To present asymptotic results, we define

S(j)(β, t) =
1

n

n∑

l=1

Yl(t)Zl(t)
⊗j eβ

⊤
Zl(t), j = 0, 1, 2,

where x⊗0 = 11, x⊗1 = x and x⊗2 = xx⊤ for a vector x. Let β0 be the true parameter

vector, and τ be the stoping time for the survival study. We make the following assumptions

throughout this paper.

(A1) The parameter space S(f , g) is a compact and convex set, and the space of covariate, Z,

is also compact;

(A2)
∫ τ

0
λ0(t) dt < ∞;

(A3) There exists a positive number δ such that

1√
n

sup
l=1,...,n; t∈[0,τ ]

|Zl(t)|Yl(t)I
(
β0⊤Zl(t) > δ|Zl(t)|

) P→ 0;

(A4) There exist three matrix functions s(0)(β, t), s(1)(β, t) and s(2)(β, t) defined on S(f , g)×
[0, τ ] which satisfy the following conditions:

(a) supβ∈S(f ,g); t∈[0,τ ] ‖S(j)(β, t)− s(j)(β, t)‖ P→ 0, j = 0, 1, 2;

(b) For j = 0, 1, 2, the functions β → s(j)(β, t) are continuous on S(f , g) uniformly in

t ∈ [0, τ ], and the equalities s(1)(β, t) = ∇βs
(0)(β, t) and s(2)(β, t) = ∇2

βs
(0)(β, t)

hold for any β ∈ S(f , g) and t ∈ [0, τ ];
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(c) s(0)(β, t) is bounded away from zero for any β ∈ S(f , g) and t ∈ [0, τ ];

(d) The matrix

Σ(β) =

∫ τ

0

v(β, t)s(0)(β, t)λ0(t) dt

is positive definite at β0, where

v(β, t) =
s(2)(β, t)

s(0)(β, t)
−
(
s(1)(β, t)

s(0)(β, t)

)⊗2

.

Under these conditions, we have the following results with detailed proofs given in Appendix.

Theorem 1 (Consistency). Under Assumptions (A1)–(A4), we have the consistency of the

constrained estimator β̂n; that is, β̂n
P→ β0 as n → ∞.

Theorem 2 (Asymptotic normality). Under Assumptions (A1)–(A4), we have the asymptotic

normality of β̂n; that is,
√
n(β̂n −β0)

D→ Np(00, Ω(β0)), where the asymptotic variance matrix

is Ω(β0) = U(β0)
[
U(β0)⊤Σ(β0)U(β0)

]−1
U(β0)⊤.

3. A new MM algorithm for constrained estimation

in Cox’s model

In Section 2, we obtained the large-sample theory for the constrained estimator β̂ of the re-

gression coefficients in Cox’s model by using the Lagrangian method based on KKT conditions.

However, in general, the computation of the optimization problem in (2.4) are very compli-

cated, which motivates the development of efficient algorithms to obtain the solution to the

constrained optimization problem. In this section, we propose a new MM algorithm for the

computation of the constrained estimation in Cox’s model. We transfer the constrained prob-

lem for maximizing the partial log-likelihood function ℓ(β) in (2.4) to maximizing a surrogate

function Q(β|β(m)) with a diagonal Hessian matrix subject to the constraints β ∈ S(f , g),

which has an explicit solution via a median function.

3.1 Construction of the surrogate function Q(β|β(m))

Since x → ex is a convex function, for any positive weights {αk}pk=1 satisfying
∑p

k=1 αk = 1, we

have

exp

(
p∑

k=1

αkxk

)
6

p∑

k=1

αk exp(xk). (3.1)
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Let Zl(Ti) = (Zl1(Ti), . . . , Zlp(Ti))
⊤ and β(m) = (β

(m)
1 , . . . , β

(m)
p )⊤denote them-th approximation

of the constrained MLE β̂ defined in (2.4). For the logarithm term in the partial log-likelihood

function (2.3), we have

n∑

l=1

Yl(Ti) e
β⊤Zl(Ti)

=
n∑

l=1

Yl(Ti) e
β(m)⊤

Zl(Ti) e(β−β(m))⊤Zl(Ti)

=
n∑

l=1

Yl(Ti) e
β(m)⊤

Zl(Ti) exp

{
p∑

k=1

λlk

[
λ−1
lk Zlk(Ti)(βk − β

(m)
k )

]}

(3.1)

6

n∑

l=1

Yl(Ti) e
β(m)⊤

Zl(Ti)

{
p∑

k=1

λlk exp
[
λ−1
lk Zlk(Ti)(βk − β

(m)
k )

]}

=
n∑

l=1

Yl(Ti)

{
p∑

k=1

λlk exp
[
λ−1
lk Zlk(Ti)(βk − β

(m)
k ) + β(m)⊤Zl(Ti)

]}
, (3.2)

for all β, β(m) ∈ S(f , g) and arbitrary positive weights {λlk}pk=1. In practice, similar to the

suggestion in Becker et al. (1997), for each l ∈ {1, . . . , n}, we can set

λlk =
|Zlk(Ti)|∑p

k′=1 |Zlk′(Ti)|
, k = 1, . . . , p. (3.3)

If Zlk(Ti) = 0, then λ−1
lk =̂ 0.

Furthermore, in the well-known inequality − log x > 1− log y − x/y, let

x =
n∑

l=1

Yl(Ti) e
β⊤Zl(Ti) and y =

n∑

l=1

Yl(Ti) e
β(m)⊤

Zl(Ti),

we obtain

− log

[
n∑

l=1

Yl(Ti) e
β⊤Zl(Ti)

]

> 1− log

[
n∑

l=1

Yl(Ti) e
β(m)⊤

Zl(Ti)

]
−

∑n
l=1 Yl(Ti) e

β⊤Zl(Ti)

∑n
l=1 Yl(Ti) eβ

(m)⊤
Zl(Ti)

(3.4)

(3.2)

> 1− log

[
n∑

l=1

Yl(Ti) e
β(m)⊤

Zl(Ti)

]

−
∑n

l=1

∑p
k=1 Yl(Ti)λlk exp

[
λ−1
lk Zlk(Ti)(βk − β

(m)
k ) + β(m)⊤Zl(Ti)

]

∑n
l=1 Yl(Ti) eβ

(m)⊤
Zl(Ti)

. (3.5)
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Based on the inequality (3.5), for a given vector β(m) ∈ S(f , g), we define a surrogate function

Q(β|β(m)) = c0+

n∑

i=1

∆i

[
β⊤Zi(Ti)−

∑n
l=1

∑p
k=1 Yl(Ti)λlk glk(βk|β(m))∑n
l=1 Yl(Ti) eβ

(m)⊤
Zl(Ti)

]
, β ∈ S(f , g), (3.6)

where

c0 =

n∑

i=1

∆i{1− log[
∑n

l=1 Yl(Ti) e
β(m)⊤

Zl(Ti)]} (3.7)

is a constant independent of β and

glk(βk|β(m)) = exp[λ−1
lk Zlk(Ti)(βk − β

(m)
k ) + β(m)⊤Zl(Ti)]. (3.8)

By combining (2.3), (3.5) and (3.6), we immediately obtain

ℓ(β) > Q(β|β(m)), ∀β, β(m) ∈ S(f , g). (3.9)

In addition, it is noted that the equality case in the inequalities (3.2) and (3.5) holds if and only

if β = β(m), resulting in ℓ(β(m)) = Q(β(m)|β(m)). Therefore, we can establish the following

MM algorithm for the case with constraints:

β(m+1) = arg max
β∈S(f ,g)

Q(β|β(m)). (3.10)

The first partial derivatives of Q(β|β(m)) with respect to the k-th component of β are

∂Q(β|β(m))

∂βk

=
n∑

i=1

∆i

[
Zik(Ti)−

∑n
l=1 Yl(Ti)Zlk(Ti) glk(βk|β(m))∑n

l=1 Yl(Ti)eβ
(m)⊤

Zl(Ti)

]
, k = 1, . . . , p.

Note that glk(β
(m)
k |β(m)) = exp[β(m)⊤Zl(Ti)], we have

∂Q(β|β(m))

∂βk

∣∣∣∣∣
β=β(m)

=

n∑

i=1

∆i

[
Zik(Ti)−

∑n
l=1 Yl(Ti)Zlk(Ti) e

β(m)⊤
Zl(Ti)

∑n
l=1 Yl(Ti)eβ

(m)⊤
Zl(Ti)

]
, k = 1, . . . , p.

In the vector form, we obtain the score vector of Q(β|β(m)) evaluated at β = β(m) as

∂Q(β(m)|β(m))

∂β
=

n∑

i=1

∆i

[
Zi(Ti)−

∑n
l=1 Yl(Ti)Zl(Ti) e

β(m)⊤
Zl(Ti)

∑n
l=1 Yl(Ti)eβ

(m)⊤
Zl(Ti)

]
. (3.11)

Similarly, the second partial derivatives of Q(β|β(m)) are given by

∂2Q(β|β(m))

∂β2
k

= −
n∑

i=1

∆i

∑n
l=1 Yl(Ti)[Z

2
lk(Ti)/λlk] glk(βk|β(m))∑n

l=1 Yl(Ti)eβ
(m)⊤

Zl(Ti)
, k = 1, . . . , p,

∂2Q(β|β(m))

∂βk∂βk′
= 0, k 6= k′; k, k′ = 1, . . . , p.
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The negative Hessian matrix of Q(β|β(m)) evaluated at β = β(m) is a diagonal matrix, i.e.,

−∂2Q(β(m)|β(m))

∂β∂β⊤
= diag

(
−∂2Q(β(m)|β(m))

∂β2
1

, . . . ,−∂2Q(β(m)|β(m))

∂β2
p

)
, (3.12)

where

−∂2Q(β(m)|β(m))

∂β2
k

=

n∑

i=1

∆i

∑n
l=1 Yl(Ti)[Z

2
lk(Ti)/λlk] e

β(m)⊤
Zl(Ti)

∑n
l=1 Yl(Ti) eβ

(m)⊤
Zl(Ti)

, k = 1, . . . , p.

3.2 Derivation of the MLE for a class of linear inequality constraints

Consider a class of linear inequality constraints of the form a 6 Aβ 6 b, where A is a known

r × p matrix, a and b are two known r × 1 vectors. Several typical order restrictions in

isotonic regression are special cases of such linear inequality constraints including the simple

ordering β1 6 · · · 6 βp, the tree ordering βk 6 βp (k = 1, . . . , p − 1), the umbrella ordering

β1 6 · · · 6 βh > βh+1 > · · · > βp and the increasing convex ordering

0 6
β2 − β1

d2 − d1
6

β3 − β2

d3 − d2
6 · · · 6 βp − βp−1

dp − dp−1
,

where {dk}pk=1 are known and d1 < · · · < dp. For example, the simple ordering β1 6 · · · 6 βp

can be converted into the box constraint of the form a 6 µ 6 b, where

µ = (µ1, . . . , µp)
⊤= A1β =




1 0 · · · 0 0
−1 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 1







β1

β2
...
βp


 ,

ap×1 = (−∞, 0, . . . , 0)⊤ and bp×1 = (+∞, . . . ,+∞)⊤. Similarly, we can convert the tree ordering

(corresponding to s = 2), the umbrella ordering (s = 3), and the increasing convex ordering

(s = 4) into box constraints of the form a 6 µ 6 b, where µ = Asβ and {As}4s=2 are

respectively given by (4.2), (4.3) and (4.4) of Tian et al. (2008). Furthermore, Tian et al. (2008)

obtained the following results.

Proposition 1 (Tian et al., 2008). Let a 6 Aβ 6 b where A is an r× p matrix. (i) If r = p

and A−1 exists, then β = A−1µ with µ ∈ [a, b]; (ii) If A is a full row-rank matrix, then there

exist two p× 1 vectors a∗, b∗ and a p× p nonsingular matrix A∗ such that β = (A∗)−1µ with

µ ∈ [a∗, b∗]; (iii) If A is a full column-rank matrix, then β = (A⊤A)−1A⊤µ with µ ∈ [a, b].
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Proposition 1 indicates that we could focus on the box constraint. Since (3.12) is a diagonal

matrix, the surrogate function Q(β|β(m)) is a separable function in the form Q(β|β(m)) =
∑p

k=1Qk(βk|β(m)), where Qk(βk|β(m)) is a one-dimensional concave function of βk given β(m)

for k = 1, . . . , p. Thus, solving the constrained optimization problem (3.10) with S(f , g) =

[a, b] =
∏p

k=1[ak, bk] is equivalent to separately maximizing Qk(βk|β(m)) with respect to βk

subject to a lower bound ak and an upper bound bk, resulting in an explicit solution via a

median function. In other words, we have the following MM algorithm:

β
(m+1)
k = arg max

βk∈ [ak,bk]
Qk(βk|β(m)), k = 1, . . . , p, (3.13)

or

θ
(m+1)
k = arg max

βk∈R

Qk(βk|β(m)), (3.14)

β
(m+1)
k = median(ak, θ

(m+1)
k , bk), k = 1, . . . , p,

where R is the real line. Note that (3.14) is an unconstrained optimization problem of one

dimension, the Newton–Raphson algorithm can be applied to obtain θ
(m+1)
k . In fact, two built

in R functions “optimize” (one dimensional optimization; this function searches the interval

from lower to upper for a minimum or maximum of a function with respect to its first argument)

and “nlm” (non-linear minimization; this function carries out a minimization of a function

using a Newton-type algorithm) can facilitate the programming of R. We summarize the MM

algorithm in the matrix form as follows and postpone the discussion of its convergence in the

next subsection.

The mm algorithm for constrained estimation in cox’s model:

Step 1: Given β(m) ∈ S(f , g) = [a, b], calculate the score vector (3.11) and the negative

Hessian matrix (3.12) for the Q(β|β(m)) function;

Step 2: Update β(m+1) via the following iterations:

θ(m+1) = arg max
β∈Rp

Q(β|β(m)), (3.15)

β(m+1) = median
(
a, θ(m+1), b

)
, (3.16)

where R
p is the p-dimensional Euclidean space.
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Remark 1: In practice, alternatively, we suggest using a simple one-step Newton–Raphson

method to calculate θ
(m+1)
k in (3.14) as follows:

θ
(m+1)
k = β

(m)
k +

[
−∂2Q(β(m)|β(m))

∂β2
k

]−1
∂Q(β(m)|β(m))

∂βk
, k = 1, . . . , p, (3.17)

so that (3.15) can be replaced by

θ(m+1) = β(m) +

[
−∂2Q(β(m)|β(m))

∂β∂β⊤

]−1
∂Q(β(m)|β(m))

∂β
. (3.18)

The idea of the one-step Newton–Raphson method was also suggested by Becker et al. (1997,

p.49, p.51) in reformulating the De Pierro (1995) algorithm. It is noted that the one-step

Newton–Raphson update cannot guarantee the increase of the surrogate function Q(β|β(m))

(or the log-likelihood function) at each iteration. Thus, like Newton-type methods, the proposed

MM algorithm based on (3.18) does not possess the monotone convergence. In this sense, it

is not a real MM algorithm. However, based on our limited experience, the one-step Newton–

Raphson method does not affect the final convergence of the above MM algorithm.

3.3 The ascent property of the new MM algorithm

For the proposed MM algorithm for constrained estimation in Cox’s model, we have the fol-

lowing result.

Theorem 3 (The ascent property). Let the partial log-likelihood function ℓ(β) and the sur-

rogate function Q(β|β(m)) be given by (2.3) and (3.6), respectively. We have (i) ℓ(β) −
Q(β|β(m)) > 0 for all β,β(m) ∈ S(f , g) = [a, b], where the equality holds if and only if

β = β(m); (ii) increasing Q(β|β(m)) results in an increase in ℓ(β) for all β ∈ [a, b].

Proof. The assertion (i) is a special case of (3.9) when S(f , g) = [a, b]. Thus ℓ(β) −
Q(β|β(m)) > 0 for all β,β(m) ∈ [a, b], and ℓ(β) − Q(β|β(m)) achieves its minimum zero at

β = β(m). On the other hand, from (3.15) and (3.16), we have Q(β(m+1)|β(m)) > Q(β(m)|β(m))

for β(m+1),β(m) ∈ [a, b]. Combining the two facts, we obtain the following ascent property:

ℓ(β(m+1)) = [ℓ(β(m+1))−Q(β(m+1)|β(m))] +Q(β(m+1)|β(m))

> [ℓ(β(m))−Q(β(m)|β(m))] +Q(β(m)|β(m)) = ℓ(β(m))

12



where the inequality is strict if β(m+1) 6= β(m). ✷

The ascent property indicates that finding (2.4) with S(f , g) = [a, b] is equivalent to iter-

atively finding (3.10) or (3.15) and (3.16). Moreover, this ascent property guarantees not only

the convergence of β(m+1) → β̂ as m → ∞ but also the monotone convergence, namely, each

iteration must increase the partial log-likelihood ℓ(β).

3.4 Standard error estimation via a nonparametric bootstrapping

In the absence of constraints, the asymptotic variance matrix of the maximum likelihood es-

timator of β takes the form [Σ(β)]−1, defined in Assumption (A4) (Andersen and Gill, 1982;

Kalbfleisch and Prentice, 2002). Thus, the estimation of standard error can be calculated by

replacing the large-sample quantities in Σ(β) with their small-sample quantities. However,

in the presence of constraints, due to the complicated derivation of U(β) in the asymptotic

variance of constrained estimator β̂ in Theorem 2, there are no procedures available. We adopt

the nonparametric bootstrap approach (Hjort, 1985; Efron and Tibshirani, 1993; Burr, 1994)

to estimate the standard error of β̂.

The basic idea of the nonparametric bootstrap approach is to construct an empirical distri-

bution function by repeatedly sampling from the observed data. As a computer-based method,

it is widely used to estimate the standard error of an estimator, especially when the underlying

distribution is unknown.

Let Yobs = {X1, . . . ,Xn} denote the observed data for n subjects, where Xi =̂ (Ti,∆i,Zi)

denote the observed time, the right censoring indicator and the covariate vector for the i-th

subject. We randomly draw from Yobs = {X1, . . . ,Xn} with replacement to obtain a bootstrap

sample Y ∗
obs = {X∗

1, . . . ,X
∗
n}, where each X∗

i equals any one of the n values Xi with probability

1/n. In fact, we can use the built-in R function, sample(X, n, prob = rep(1/n, n), replace = T),

to produce a vector of length n randomly chosen from {X1, . . . ,Xn} with equal probabilities

{1/n, . . . , 1/n} with replacement. A bootstrap replication β̂
∗

can be obtained by using the

proposed MM algorithm based on Y ∗
obs. Independently repeating this process B times, we can

obtain B bootstrap replications {β̂∗

(b)}Bb=1, where β̂
∗

(b) = (β̂∗
1(b), . . . , β̂

∗
p(b))

⊤. Therefore, the

standard error of the k-th component of the constrained MLEs β̂ can be estimated by the
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following sample standard derivation

ŝe(β̂k) =

√√√√ 1

B − 1

B∑

b=1

[
β̂∗
k(b)−

1

B

B∑

b=1

β̂∗
k(b)

]2
, k = 1, . . . , p. (3.19)

When the constrained MLEs β̂ are located in the interior of the box constraints [a, b], based

on the result in Theorem 2 and (3.19), we can construct a Wald-type bootstrap confidence

interval (CI) of βk. In other words, if {β̂∗
k(b)}Bb=1 is approximately normally distributed, the

(1− α)100% Wald-type bootstrap CI of βk is given by

[β̂k − zα/2 · ŝe(β̂k), β̂k + zα/2 · ŝe(β̂k)], (3.20)

where zα denotes the upper α-th quantile of the standard normal distribution. When the

constrained MLEs β̂ are located on the boundaries of the box constraints [a, b], generally

speaking, the bootstrap replications {β̂∗
k(b)}Bb=1 are non-normally distributed. In this case, the

(1− α)100% bootstrap CI for βk can be constructed as

[β̂k,L, β̂k,U], (3.21)

where β̂k,L and β̂k,U are the 100(α/2) and 100(1− α/2) percentiles of {β̂∗
k(b)}Bb=1, respectively.

4. Simulation studies

As we mentioned before, evidences in some real-data analyses show that ignoring the restriction

on parameters may result in misleading inference (Tan et al., 2005; Fang et al., 2006). We will

conduct several simulation studies to compare the bias, MSE and variance for three estimators

(denoted by β̂UNR, β̂UMM and β̂CMM, respectively) of regression coefficients β in Cox’s model

with and without constraints, where β̂UNR denotes the unconstrained estimator calculated by

Newton–Raphson algorithm based on the partial likelihood function ℓ(β) in (2.3), β̂UMM denotes

the unconstrained estimator calculated by the MM algorithm based on the surrogate function

Q(β|β(m)) in (3.6), and β̂CMM denotes the constrained estimator calculated by the proposed

MM algorithm.

4.1 Experiments 1 and 2

We consider a proportional hazards model, where the hazard function of the failure time T̃

given covariates (Z1, Z2) is assumed to be

λ(t|Z1, Z2) = λ0(t) exp(β1Z1 + β2Z2).
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Furthermore, the regression coefficients β1 and β2 are assumed to be restricted by Case I: β1 6 0

(box constraint) and Case II: β1 6 β2 (simple ordering constraint).

For Case I, let β1 = −0.5 and β2 = 0.693. We generate Z1 ∼ Bernoulli(1, 0.5) and in-

dependently generate Z2 ∼ N(0, 1). For Case II, let β1 = 0.25 and β2 = 0.5. We generate

Z1 ∼ N(0, 1) and independently generate Z2 ∼ N(0.5, 1). For both cases, the baseline hazard

function λ0(t) is set to be 1 and 2t, respectively. Thus, the marginal distribution of failure

time T̃ is exponential with failure rate exp(β1Z1 + β2Z2) and Weibull distribution with shape

parameter 2 and scale parameter [exp(β1Z1+ β2Z2)]
−1/2, respectively. The censoring time C is

generated from uniform distribution U(0, c) with c chosen to depend on desired percentage of

censoring. Approximately 30%, 50% and 80% censoring rates ρ are considered. Sample size n

is set to be 50 and 100, respectively.

For each setting, we compare the estimators β̂UNR and β̂UMM (without constraints) with

the estimator β̂CMM (with constraints). Sample bias, sample MSE and sample variance of

each estimator are calculated based on 1000 independent simulated data sets. The stopping

criteria are specified by |ℓ(β(m+1)) − ℓ(β(m))| < 10−4 for all three estimation methods. The

corresponding simulation results are displayed in Table 1 and 2.

[Insert Tables 1 and 2 here]

Under all considered cases, estimators without constraints β̂UNR and β̂UMM show almost

identical results. As expected, the estimator with constraints performs better than estimators

without constraints, since the sample MSE and sample variance of β̂CMM are notably smaller

than the estimators β̂UNR and β̂UMM. This fact confirms that ignoring the constraints may

reduce the efficiency of estimation. In terms of bias, the three estimators are all biased under

all settings. However, the estimator with constraints sometimes may cause a larger bias than

estimators without constraints. For example, the estimator for β1 in Case I, for n = 50, ρ =

0.30, bias with and without constraints are −0.0302 and −0.0158, respectively.

4.2 Experiments 3 and 4

In this subsection, we would like to evaluate the performance of the proposed MM algorithm

when the constraints are wrongly chosen via simulations. For Case I in Table 1, we set the

constraint to be β1 > 0 when the true value of β1 is −0.5. For Case II in Table 2, we choose

the constraint to be β1 > β2 when the true values β1 = 0.25, β2 = 0.5. We consider λ0(t) = 1,
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ρ = 30%, 50%, 80%, and n = 100, respectively. The simulation results are reported in Tables

3 and 4.

[Insert Tables 3 and 4 here]

Under all the cases here, we note that the simulation results of the estimators without

constraints (i.e., β̂UNR and β̂UMM) remain to be consistent with those in Tables 1 and 2. However,

non-ignorable biases arise in the simulation results of the estimate with constraints (i.e., β̂CMM)

when the constraints are poorly imposed. For example, in Table 3, the estimates of β1 are close

to 0, which is on the border of the box constraint. While the results of the estimators of β2

are consistent with those in Table 1 since the constraint is only imposed on β1. In Table 4, the

estimators of both β1 and β2 are biased.

5. Numerical illustrations

In this section, we analyze two real data sets to illustrate the proposed method by comparing

the estimations with and without restrictions.

5.1 Breast cancer trial

The most important discriminant in staging breast carcinoma is the presence of positive axillary

lymph nodes. Sedmak et al. (1989) designed a study to determine if female breast cancer pa-

tients, originally classified as lymph node-negative by standard light microscopy (SLM), could

be more accurately classified by immunohistochemical (IH) examination of their lymph nodes

with an anticytokeratin monoclonal antibody cocktail. Identical section of lymph nodes were

sequentially examined by SLM and IH. Forty five breast cancer patients with negative axillary

lymph nodes by SLM examination and a minimum ten-year follow-up were selected from The

Ohio State University Hospitals Cancer Registry. Of these 45 patients, 9 were immunoperox-

idase positive and the remaining 36 were negative. Survival times in months for the patients

are given in Table 5, which are obtained from Table 1.3 in Klein and Moeschberger (2003, p.7).

[Insert Table 5 here]

We use a proportional hazards model with the following hazard function to model the above

16



data set:

λ(t|Z1) = λ0(t) exp(β1Z1), (5.1)

where Z1, as the unique covariate, denotes the immunoperoxidase status of these patients, and

Z1 = 1 if a patient’s immunoperoxidase status is positive and Z1 = 0 otherwise. Since the results

in Sedmak et al. (1989) showed that patients with IH-detected metastases had significantly

higher risk of death than that without IH-detected metastases, it is reasonable to impose a

non-negativity restriction on β1:

β1 > 0. (5.2)

To analyze the data, we apply the proposed MM algorithm to estimate the regression coef-

ficient β1 in model (5.1) with constraint specified by (5.2). The corresponding standard error

of β̂1 can be estimated by the non-parametric bootstrap approach as shown in (3.19). For the

purpose of comparison, we also compute the unconstrained MLE of β1 by using the Newton–

Raphson algorithm based on the partial likelihood function. The results are listed in Table 6

and show that immunoperoxidase positive significantly increases the risk of death under both

methods. In addition, the MLE β̂1 = 0.9802 indicates that a patient with positive immunoper-

oxidase could be exp(0.9802) = 2.67 times more likely to die than a patient with negative

immunoperoxidase. Table 6 also shows that the proposed MM algorithm with constraints has

a smaller standard error, resulting in a shorter confidential interval. This demonstrates that

ignoring the constraint would lower the analysis efficacy.

[Insert Table 6 here]

5.2 Bone marrow transplant study

Bone marrow transplant is a standard treatment for acute leukemia. Recovery following bone

marrow transplantation is a complex process. Prognosis for recovery may depend on risk factors

known at the time of transplantation, such as patient and donor’s age and gender, the stage

of initial disease, and so on. The final prognosis may change, such as development of acute or

chronic graft-versus-host disease (GVHD), return of the platelet count to normal levels, return

of granulocytes to normal levels, or development of infections, etc.. Copelan et al. (1991) studied

a multi-center trial of patients prepared for transplantation with a radiation-free conditioning

regimen to illustrate the recovery process. The preparative regimen used in this study of

allogeneic marrow transplants for patients with acute myelocytic leukemia (AML) and acute
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lymphoblastic leukemia (ALL) was a combination of 16 mg/kg of oral Busulfan (BU) and 120

mg/kg of intravenous cyclophosphamide. A total of 137 patients were treated at one of four

hospitals: The Ohio State University Hospitals, Hahnemann University, St. Vincent’s Hospital

and Alfred Hospital. The study consists of transplants conducted at these institutions from

March, 1984 to June, 1989. The maximum follow-up was 7 years.

Transplantation can be considered as a failure when a patient’s leukemia relapse or he/she

dies while in remission. Several potential risk factors were measured at the time of trans-

plantation. Disease groups were categorized based on the patients risk status as ALL, AML

low-risk first remission, and AML high-risk second remission or untreated first relapse or sec-

ond or greater relapse or never in remission. For AML patients, their French–American–British

(FAB) classification were based on standard morphological criteria. AML patients with an

FAB classification of M4 or M5 are considered to have a possible elevated risk of relapse or

treatment-related death. Patients at the two hospitals (St. Vincent’s Hospital and Alfred Hos-

pital) were given an GVHD prophylactic combining methotrexate (MTX) with cyclosporine and

possibly methylprednisolone. Patients at the other two hospitals were not given methotrexate

but rather a combination of cyclosporine and methylprednisolone. Other risk factors include

patient and donor’s gender, age, cytomegalovirus immune status (CMV) status, waiting time

from diagnosis to transplantation and so on.

Table 7 lists the demographic characteristics for all 137 patients, which are obtained from

Klein and Moeschberger (2003, p.483–487). There are 45 AML patients with FAB classification

of M4 or M5. The average ages of patient and donor are 28.36 and 28.33, respectively. CMV

status is positive in 49.64% patients and 42.34% donors, respectively.

[Insert Table 7 here]

Following the analysis of Klein and Moeschberger (2003), we build the proportional hazards

model as follows:

λ(t|Z) = λ0(t)

× exp(β1 FAB + β2AMLlow + β3AMLhigh + β4DonAge + β5RecAge + β6DRAge), (5.3)

where FAB = 1 if FAB classification is M4 or M5 for AML patients, AMLlow = 1 if AML low-

risk, AMLhigh = 1 if AML high-risk, DonAge = donor age −28, RecAge = patient age −28,

and DRAge = DonAge×RecAge. Furthermore, as we mentioned before, AML patients with an
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FAB classification of M4 or M5 tend to have an increased risk of relapse or treatment-related

death, we focus on the effect of FAB and impose non-negativity restriction on β1:

β1 > 0. (5.4)

We calculate the constrained MLEs of the regression coefficients in model (5.3) with con-

straint specified by (5.4) by the proposed MM algorithm, and estimate the corresponding

standard error via the non-parametric bootstrap method. The results are listed in the third

column of Table 8, which suggests that FAB classification, risk groups and age have significant

effects on risk of relapse or treatment-related death. Unsurprisingly, patients whose FAB classi-

fication of M4 or M5 have a higher risk after the transplantation. In addition, we also calculate

the unrestricted MLEs of the regression coefficients by using the Newton–Raphson algorithm

based on the partial likelihood function, and list the results in the second column of Table 8. By

comparing the two columns, the evidence strongly supports that the estimation with constraint

performs better than the estimation without restrictions by providing a smaller standard error

and a shorter confidential interval. Figure 1 is a plot of the estimated survival function for two

FAB classifications. Again, this plot shows that patients with FAB classification of M4 or M5

have a worse survival curve. All analyses suggest that considering FAB effect with restriction

improves the efficiency of the study.

[Insert Table 8 and Figure 1 here]

6. Discussion

We studied the constrained estimation in the proportional hazards model with right-censored

survival data and derived two asymptotic properties (i.e., consistency and asymptotic normal-

ity) by using the Lagrangian method based on KKT conditions. We developed a new MM

algorithm for calculating the MLE of the regression coefficients with box or linear inequality

restrictions in the proportional hazards model, where a surrogate function with a diagonal Hes-

sian matrix is established, resulting in an explicit solution in the second M-step via a median

function. Standard error estimation is also introduced through a non-parametric bootstrap

approach. Simulation studies suggested that the proposed estimation provides a feasible and

efficient method for the inference of the regression coefficients with box constraints in Cox’s

model. We applied the proposed method to analyze data sets from a breast cancer trial and

19



a bone marrow transplant study, respectively. The gain in these analyses suggests that the

consideration of restrictions improves the efficiency of the study.

Merely based on (3.2), we can construct the second surrogate function, denoted by

Q2(β|β(m)) =

n∑

i=1

∆i

{
β⊤Zi(Ti)− log

[
n∑

l=1

p∑

k=1

Yl(Ti)λlk glk(βk|β(m))

]}
,

where glk(βk|β(m)) is given by (3.8). However, the Hessian matrix of Q2(β|β(m)) is not diagonal.

In other words, the MM algorithm with Q2(β|β(m)) as the surrogate function cannot be applied

to the proportional hazards model with box constraints but can be applied to the proportional

hazards model without constraints. Similarly, only based on (3.4), although we can establish

the third surrogate function

Q3(β|β(m)) = c0 +
n∑

i=1

∆i

[
β⊤Zi(Ti)−

∑n
l=1 Yl(Ti) e

β⊤Zl(Ti)

∑n
l=1 Yl(Ti) eβ

(m)⊤
Zl(Ti)

]
,

where c0 is given by (3.7), the Hessian matrix of Q3(β|β(m)) is also not diagonal. Up to

now, there are at least three algorithms (i.e., two MM algorithms based on Q2(β|β(m)) and

Q3(β|β(m)) and the QLB algorithm of Böhning and Lindsay, 1988) with monotone conver-

gence, which can be applied to Cox’s model without constraints. The comparison among the

convergence rates of the three algorithms is one of our research topics in the future.

As a general resampling statistical inference tool, the bootstrap method has many advan-

tages in practice. Many authors studied the bootstrap theory for parametric models (Bickel and

Freedman, 1981; Singh, 1981; Mason and Newton, 1992). However, theoretical studies on the

bootstrap inference in semi-parametric models are quite challenging. Hjort (1985) studied the

asymptotic properties of a bootstrap procedure under the Cox’s model. Burr (1992) assessed

bootstrap confidence intervals under the Cox’s model. Cheng and Huang (2010) showed the

consistency of the bootstrap method in semi-parametric models. However, all these papers only

considered the asymptotic theories of the bootstrap without parameter constraints. One of our

future researches includes the study of the asymptotic properties of the bootstrap procedure

for the Cox model under constraints.
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Appendix: Proofs of asymptotic properties

Proof of Theorem 1. Let A(β, t) be the logarithm of the Cox partial-likelihood function

evaluated at time t, i.e.

A(β, t) =

n∑

i=1

∫ t

0

β⊤Zi(s) dNi(s)−
n∑

i=1

∫ t

0

log

(
n∑

l=1

Yl(s) e
β⊤Zl(s)

)
dNi(s). (A.1)

Then, we have ℓ(β) = A(β, τ). Based on the discussions in Anderson and Gill (1982) regarding

asymptotic properties of Cox models, we observe that

C(β, τ) =
A(β, τ)− A(β0, τ)

n

uniformly converges to

D(β) =

∫ τ

0

{
(β − β0)⊤s(1)(β0, t)− log

[
s(0)(β, t)

s(0)(β0, t)

]
s(0)(β0, t)

}
λ0(t) dt,

which is a continuous and concave function of β and has a unique maximum at β0. That is,

D(β) 6 D(β0)

with equality if and only if β = β0.

Using the method of the contradiction, we assume that there is a set of positive probability

such that β̂n does not converge to β0. Then there exists a subsequence {β̂jn} of {β̂n} which

converges to β̃ not equal to β0. Since β̂jn is the maximum, we have C(β̂jn , τ) > C(β0, τ). By

the uniform convergency and continuity of limit, we obtain

D(β̃) > D(β0), for β̃ 6= β0.

By this contradiction, we have the convergency of β̂n to β0 in probability. ✷

By combining the method developed by Moore and Sadler (2006) and Moore et al. (2008)

in the proof of the asymptotic normality of constrained MLE in parametric model with the

asymptotic theory of Cox’s model without constraints, we can obtain the asymptotic normality

of the constrained estimator.

Proof of Theorem 2. Since β̂n is a stationary point of the ℓ(β), by Eq. (2.8) and the

definition of U(β), we have

[∇βℓ(β̂n)]
⊤U(β̂n) = 0.
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Define U(β) = (u1(β), . . . ,ud(β)), where uj(β) is the j-th column of U(β) and d = p− q, we

have

[∇βℓ(β̂n)]
⊤uj(β̂n) = 0, j = 1, . . . , d. (A.2)

The first-order Taylor expansion of the left-hand side of Eq. (A.2) around β yields

0 = [∇βℓ(β)]
⊤uj(β) + [uj(β)]

⊤∇2
β ℓ(β)(β̂n − β) + [∇βℓ(β)]

⊤∇βuj(β)(β̂n − β) + o
P
(1)

= [uj(β̂n)]
⊤∇βℓ(β) + [uj(β)]

⊤∇2
β ℓ(β)(β̂n − β) + o

P
(1),

where o
P
(1) vanishes as ‖β̂n − β‖ P→ 0. Thus, we have

[uj(β̂n)]
⊤∇βℓ(β

0) + [uj(β
0)]⊤∇2

β ℓ(β
0)(β̂n − β0) + o

P
(1) = 0. (A.3)

Since S(f , g) is connected, there exists a path-connected curve on the surface of h(β) = 00,

including the constrained estimators {β̂n} and β0. Let ϕ(w): R → S(f , g) be a continuously

differentiable map such that ϕ(0) = β0 and ϕ(1/n) = β̂n. Thus, we have

β̂n − β0 = ∇wϕ(an)
1

n
, where 0 < an <

1

n
.

Since h(ϕ(an)) = 0, we obtain

0 = ∇wh(ϕ(an)) = F(ϕ(an))∇wϕ(an). (A.4)

Thus, there exists bn ∈ R
d such that

∇wϕ(an) = U(ϕ(an)) · bn. (A.5)

Due to Eq.’s (A.2)–(A.5), we have

bn =

[
U(β0)⊤

(
−1

n
∇2

βℓ(β
0)

)
U(ϕ(an))

]−1

U(β̂n)
⊤∇βℓ(β

0) + o
P
(1).

Hence, we obtain

√
n(β̂n − β0) = U(ϕ(an))

[
U(β0)⊤

(
−1

n
∇2

βℓ(β
0)

)
U(ϕ(an))

]−1

U(β̂n)
⊤

(
1√
n
∇βℓ(β

0)

)

+ o
P
(1).

Under Assumptions (A1)–(A4) and the discussions in Anderson and Gill (1982), Kalbfleisch

and Prentice (2002), we have

−1

n
∇2

βℓ(β
0)

P→ Σ(β0), and

1√
n
∇βℓ(β

0)
D→ Np(00, Σ(β0)).
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By continuity, we have U(β̂n) → U(β0) and U(ϕ(an)) → U(β0), as n → ∞. Due to Slutsky’s

theorem, we can obtain
√
n(β̂n − β0)

D→ Np(00, Ω(β0)),

where

Ω(β0) = U(β0)
[
U(β0)⊤Σ(β0)U(β0)

]−1
U(β0)⊤,

which indicates the asymptotic normality. ✷
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Table 1: Simulation results based on the model λ(t|Z1, Z2) = λ0(t) exp(β1Z1 + β2Z2) with box
constraint β1 6 0, where Z1 ∼ Bernoulli(1, 0.5) is independent of Z2 ∼ N(0, 1)

λ0(t) = 1

n ρ Method β1 = −0.5 β2 = 0.693

Bias MSE Variance Bias MSE Variance

50 0.30 β̂UNR −0.0159 0.1492 0.1491 0.0355 0.0463 0.0451

β̂UMM −0.0157 0.1491 0.1490 0.0355 0.0463 0.0451

β̂CMM −0.0301 0.1310 0.1302 0.0348 0.0462 0.0450

0.50 β̂UNR −0.0341 0.1926 0.1916 0.0462 0.0706 0.0685

β̂UMM −0.0339 0.1925 0.1916 0.0462 0.0706 0.0685

β̂CMM −0.0570 0.1610 0.1579 0.0460 0.0699 0.0678

0.80 β̂UNR −0.0226 0.5929 0.5930 0.1147 0.2545 0.2416

β̂UMM −0.0225 0.5926 0.5927 0.1146 0.2539 0.2410

β̂CMM −0.1299 0.3913 0.3748 0.1079 0.2377 0.2263

100 0.30 β̂UNR −0.0105 0.0623 0.0623 0.0242 0.0222 0.0216

β̂UMM −0.0103 0.0623 0.0623 0.0242 0.0222 0.0216

β̂CMM −0.0125 0.0598 0.0597 0.0242 0.0222 0.0216

0.50 β̂UNR −0.0097 0.0905 0.0905 0.0110 0.0291 0.0290

β̂UMM −0.0095 0.0905 0.0905 0.0110 0.0291 0.0290

β̂CMM −0.0150 0.0835 0.0834 0.0109 0.0290 0.0289

0.80 β̂UNR −0.0457 0.2754 0.2736 0.0343 0.0726 0.0715

β̂UMM −0.0456 0.2753 0.2735 0.0343 0.0726 0.0715

β̂CMM −0.0834 0.2186 0.2118 0.0338 0.0723 0.0712

λ0(t) = 2t

n ρ Method β1 = −0.5 β2 = 0.693

Bias MSE Variance Bias MSE Variance

50 0.30 β̂UNR −0.0060 0.1610 0.1611 0.0478 0.0545 0.0523

β̂UMM −0.0057 0.1609 0.1610 0.0478 0.0545 0.0522

β̂CMM −0.0231 0.1372 0.1368 0.0472 0.0540 0.0518

0.50 β̂UNR −0.0255 0.2244 0.2240 0.0645 0.0851 0.0811

β̂UMM −0.0253 0.2243 0.2239 0.0645 0.0851 0.0810

β̂CMM −0.0575 0.1787 0.1756 0.0625 0.0826 0.0787

0.80 β̂UNR −0.0638 0.5937 0.5903 0.0827 0.2271 0.2205

β̂UMM −0.0637 0.5933 0.5899 0.0826 0.2270 0.2204

β̂CMM −0.1606 0.4281 0.4027 0.0808 0.2213 0.2150

100 0.30 β̂UNR −0.0025 0.0655 0.0655 0.0220 0.0235 0.0230

β̂UMM −0.0022 0.0654 0.0655 0.0220 0.0235 0.0230

β̂CMM −0.0038 0.0636 0.0636 0.0220 0.0234 0.0230

0.50 β̂UNR −0.0158 0.0988 0.0987 0.0236 0.0323 0.0318

β̂UMM −0.0155 0.0988 0.0986 0.0236 0.0323 0.0318

β̂CMM −0.0208 0.0922 0.0918 0.0236 0.0322 0.0316

0.80 β̂UNR −0.0235 0.2564 0.2562 0.0507 0.0854 0.0829

β̂UMM −0.0233 0.2563 0.2560 0.0507 0.0854 0.0829

β̂CMM −0.0626 0.1982 0.1944 0.0485 0.0834 0.0812

NOTE: β̂UNR denotes the unconstrained estimator calculated by Newton-Raphson algorithm based on the

partial likelihood function. β̂UMM denotes the unconstrained estimator calculated by MM algorithm based on

the surrogate function. β̂CMM denotes the constrained estimator calculated by the proposed MM algorithm.
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Table 2: Simulation results based on the model λ(t|Z1, Z2) = λ0(t) exp(β1Z1 + β2Z2) with
inequality constraint β1 6 β2, where Z1 ∼ N(0, 1) is independent of Z2 ∼ N(0.5, 1)

λ0(t) = 1

n ρ Method β1 = 0.25 β2 = 0.50

Bias MSE Variance Bias MSE Variance

50 0.30 β̂UNR 0.0187 0.0410 0.0407 0.0154 0.0403 0.0401

β̂UMM 0.0187 0.0409 0.0406 0.0153 0.0402 0.0400

β̂CMM 0.0033 0.0326 0.0326 0.0281 0.0358 0.0350

0.50 β̂UNR 0.0221 0.0551 0.0547 0.0311 0.0670 0.0661

β̂UMM 0.0222 0.0551 0.0546 0.0310 0.0669 0.0660

β̂CMM 0.0013 0.0448 0.0448 0.0499 0.0599 0.0575

0.80 β̂UNR 0.0283 0.1736 0.1729 0.0629 0.1870 0.1832

β̂UMM 0.0282 0.1733 0.1726 0.0626 0.1859 0.1822

β̂CMM −0.0274 0.1326 0.1320 0.1100 0.1614 0.1494

100 0.30 β̂UNR 0.0149 0.0185 0.0183 0.0113 0.0191 0.0190

β̂UMM 0.0150 0.0185 0.0183 0.0112 0.0190 0.0189

β̂CMM 0.0113 0.0172 0.0171 0.0146 0.0180 0.0178

0.50 β̂UNR 0.0107 0.0254 0.0254 0.0201 0.0275 0.0271

β̂UMM 0.0107 0.0254 0.0253 0.0199 0.0274 0.0270

β̂CMM 0.0034 0.0225 0.0225 0.0265 0.0254 0.0247

0.80 β̂UNR 0.0136 0.0663 0.0662 0.0246 0.0652 0.0647

β̂UMM 0.0136 0.0663 0.0662 0.0245 0.0651 0.0645

β̂CMM −0.0112 0.0528 0.0527 0.0476 0.0565 0.0542

λ0(t) = 2t

n ρ Method β1 = 0.25 β2 = 0.5

Bias MSE Variance Bias MSE Variance

50 0.30 β̂UNR 0.0096 0.0456 0.0456 0.0310 0.0463 0.0454

β̂UMM 0.0096 0.0456 0.0456 0.0309 0.0462 0.0453

β̂CMM −0.0050 0.0384 0.0384 0.0438 0.0415 0.0396

0.50 β̂UNR 0.0240 0.0659 0.0654 0.0462 0.0719 0.0698

β̂UMM 0.0240 0.0658 0.0653 0.0461 0.0717 0.0697

β̂CMM 0.0022 0.0531 0.0531 0.0645 0.0658 0.0617

0.80 β̂UNR 0.0210 0.1754 0.1751 0.0697 0.1894 0.1848

β̂UMM 0.0210 0.1753 0.1750 0.0694 0.1885 0.1839

β̂CMM −0.0355 0.1255 0.1243 0.1171 0.1628 0.1493

100 0.30 β̂UNR −0.0013 0.0175 0.0175 0.0256 0.0204 0.0198

β̂UMM −0.0012 0.0175 0.0175 0.0255 0.0204 0.0197

β̂CMM −0.0041 0.0164 0.0164 0.0281 0.0197 0.0189

0.50 β̂UNR 0.0168 0.0256 0.0254 0.0299 0.0275 0.0266

β̂UMM 0.0169 0.0256 0.0254 0.0298 0.0274 0.0265

β̂CMM 0.0095 0.0223 0.0223 0.0365 0.0255 0.0242

0.80 β̂UNR 0.0064 0.0643 0.0643 0.0216 0.0706 0.0702

β̂UMM 0.0064 0.0643 0.0643 0.0215 0.0705 0.0701

β̂CMM −0.0193 0.0506 0.0503 0.0437 0.0614 0.0596

NOTE: β̂UNR denotes the unconstrained estimator calculated by Newton-Raphson algorithm based on the

partial likelihood function. β̂UMM denotes the unconstrained estimator calculated by MM algorithm based on

the surrogate function. β̂CMM denotes the constrained estimator calculated by the proposed MM algorithm.
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Table 3: Simulation results based on the model λ(t|Z1, Z2) = λ0(t) exp(β1Z1 + β2Z2) with box
constraint β1 > 0, where λ0(t) = 1, and Z1 ∼ Bernoulli(1, 0.5) is independent of Z2 ∼ N(0, 1)

β1 > 0

n ρ Method β1 = −0.5 β2 = 0.693

Bias MSE Variance Bias MSE Variance

100 0.30 β̂UNR −0.0105 0.0623 0.0623 0.0242 0.0222 0.0216

β̂UMM −0.0103 0.0623 0.0623 0.0242 0.0222 0.0216

β̂CMM 0.5022 0.2525 0.0003 −0.0034 0.0211 0.0211

0.50 β̂UNR −0.0220 0.0875 0.0871 0.0299 0.0306 0.0297

β̂UMM −0.0218 0.0875 0.0871 0.0298 0.0306 0.0297

β̂CMM 0.5050 0.2560 0.0010 0.0074 0.0288 0.0288

0.80 β̂UNR −0.0402 0.2501 0.2487 0.0462 0.0778 0.0758

β̂UMM −0.0401 0.2500 0.2486 0.0462 0.0778 0.0757

β̂CMM 0.5286 0.2904 0.0110 0.0310 0.0727 0.0718

NOTE: β̂UNR denotes the unconstrained estimator calculated by Newton-Raphson algorithm based on the

partial likelihood function. β̂UMM denotes the unconstrained estimator calculated by MM algorithm based on

the surrogate function. β̂CMM denotes the constrained estimator calculated by the proposed MM algorithm.

Table 4: Simulation results based on the model λ(t|Z1, Z2) = λ0(t) exp(β1Z1 + β2Z2) with
inequality constraint β1 > β2, where λ0(t) = 1, and Z1 ∼ N(0, 1) is independent of Z2 ∼
N(0.5, 1)

β1 > β2

n ρ Method β1 = 0.25 β2 = 0.50

Bias MSE Variance Bias MSE Variance

100 0.30 β̂UNR 0.0149 0.0185 0.0183 0.0113 0.0191 0.0190

β̂UMM 0.0150 0.0185 0.0183 0.0112 0.0190 0.0189

β̂CMM 0.1325 0.0277 0.0102 −0.1246 0.0257 0.0102

0.50 β̂UNR 0.0131 0.0254 0.0253 0.0131 0.0263 0.0262

β̂UMM 0.0132 0.0254 0.0253 0.0130 0.0262 0.0261

β̂CMM 0.1364 0.0322 0.0136 −0.1264 0.0289 0.0130

0.80 β̂UNR 0.0177 0.0629 0.0627 0.0160 0.0653 0.0651

β̂UMM 0.0177 0.0629 0.0627 0.0159 0.0652 0.0650

β̂CMM 0.1596 0.0597 0.0342 −0.1382 0.0519 0.0328

NOTE: β̂UNR denotes the unconstrained estimator calculated by Newton-Raphson algorithm based on the

partial likelihood function. β̂UMM denotes the unconstrained estimator calculated by MM algorithm based on

the surrogate function. β̂CMM denotes the constrained estimator calculated by the proposed MM algorithm.
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Table 5: Time to death for breast cancer patients with different immunohistochemical responses

Immunoperoxidase negative Immunoperoxidase positive

(n1 = 36) (n2 = 9)

19 25 30 34 37 46 22 23 38 42 73 77

47 51 56 57 61 66 89 115 144+

67 74 78 86 122+ 123+

130+ 130+ 133+ 134+ 136+ 141+

143+ 148+ 151+ 152+ 153+ 154+

156+ 162+ 164+ 165+ 182+ 189+

SOURCE: Data in this table are obtained from Table 1.3 in Klein and Moeschberger (2003, p.7).

NOTE: + denotes censored observation.

Table 6: Data analysis for the breast cancer trial

UNR method CMM method
Variable

Estimate std 95% CI Estimate std 95% CI

Immunoperoxidase 0.9802∗ 0.4367 [0.1243, 1.8361] 0.9802∗ 0.4193 [0.1583, 1.8021]

NOTE: UNR denotes the unconstrained estimator calculated by Newton–Raphson algorithm based on the

partial likelihood function. CMM denotes the constrained estimator calculated by the proposed MM algorithm.

“*” indicates that the parameter estimate is significant at 5% level.
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Table 7: Demographics and characteristics for the bone marrow transplant study

Variables % or mean ± std

FAB

FAB Grade 4 or 5 and AML 32.85 (45/137)

Otherwise 67.15 (92/137)

Disease Group

ALL 27.74 (38/137)

AML Low-risk 39.42 (54/137)

AML High-risk 32.85 (45/137)

Patient Age 28.36± 9.56

Donor Age 28.33± 10.18

Patient Sex

Male 58.39 (80/137)

Female 41.61 (57/137)

Donor Sex

Male 64.23 (88/137)

Female 35.77 (49/137)

Patient CMV Status

CMV Positive 49.64 (68/137)

CMV Negative 50.36 (69/137)

Donor CMV Status

CMV Positive 42.34 (58/137)

CMV Negative 57.66 (79/137)

Waiting Time to Transplant 275.09± 364.66

Hospital

The Ohio State University 55.47 (76/137)

Alfred Hospital 12.41 (17/137)

St. Vincent’s Hospital 16.79 (23/137)

Hahnemann University 15.33 (21/137)

MTX used as a GVHP

Yes 29.20 (40/137)

No 70.80 (97/137)

SOURCE: Data in this table are obtained from Klein and Moeschberger (2003, p.483–487).
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Table 8: Data analysis for the bone marrow transplant study

UNR method CMM method
Variables

Estimate std 95% CI Estimate std 95% CI

FAB 0.8364∗ 0.2721 [0.3031, 1.3698] 0.8374∗ 0.1252 [0.5920, 1.0828]

AMLlow −1.0898∗ 0.3826 [−1.8396, −0.3400] −1.0906∗ 0.1814 [−1.4462, −0.7351]

AMLhigh −0.4053 0.3781 [−1.1465, 0.3358] −0.4039∗ 0.0964 [−0.5928, −0.2150]

DonAge 0.0040 0.0201 [−0.0354, 0.0433] 0.0039 0.0184 [−0.0322, 0.0399]

RecAge 0.0069 0.0205 [−0.0333, 0.0470] 0.0068 0.0187 [−0.0299, 0.0435]

DRAge 0.0032∗ 0.0011 [0.0011, 0.0053] 0.0032∗ 0.0009 [0.0015, 0.0048]

NOTE: UNR denotes the unconstrained estimator calculated by Newton–Raphson algorithm based on the

partial likelihood function. CMM denotes the constrained estimator calculated by the proposed MM algorithm.

“*” indicates that the parameter estimate is significant at 5% level.
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Figure 1: Estimated survival function for patients in the study of the born marrow transplant

under different FAB levels.
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