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Abstract

Use of zero-inflated count data models is common in applications where the number of zero 

counts exceeds that predicted from a traditional count data model such as Poisson or negative 

binomial. When count data exhibiting inflated zero counts are correlated among subjects, a natural 

approach will be to fit a marginal model with the help of generalized estimating equations (GEE) 

that can incorporate subject-to-subject correlations. A GEE based zero-inflated negative binomial 

(ZINB) model is proposed to fit clustered counts with excessive zeros. However, the 

corresponding sandwich variance estimator appears to underestimate the true variance. The 

theoretical reasons for its failure are explained and a correction under additional modeling 

assumptions is offered. In addition, a clustered resampling (bootstrap) procedure is proposed to 

estimate the variance and it is shown that the bootstrap procedure captures the correct variance 

under no additional model assumptions. Utility of this marginal GEE based ZINB model over two 

other competing models has been assessed using a thorough simulation study. The resulting 

inference procedure is applied to study the association between the dental caries and fluoride 

exposures using a dataset extracted from the Iowa Fluoride Study. A number of risk factors of 

clinical significance are reliably identified using the proposed model.
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1. Introduction

Statistical methods for longitudinal/clustered data have been developed in the past two 

decades. The longitudinal/clustered data have the feature that the observations from the 
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same subject (or cluster) are correlated. Failure to consider the correlations of within-subject 

(or within-cluster) observations could result in invalid statistical inferences (Hedeker and 

Gibbons, 2006; Fitzmaurice et al., 2011). Many statistical methods have been developed for 

longitudinal/clustered data. Among them, the marginal models, i.e., the generalized 

estimating equations (GEEs), have been applied to characterize the relationships between 

responses and covariates at the population level (Hedeker and Gibbons, 2006; Fitzmaurice et 

al., 2011). The GEE model is based on the first and second moments of the response 

variable (Albert et al., 1988; Liang and Zeger, 1986). It has been shown that the GEE 

estimators are consistent and asymptotically normally distributed as long as the first moment 

is correctly specified. As a result, the GEE technique has been widely applied to 

longitudinal/clustered data analyses. In particular, the GEE model has been applied to 

correlated count data (Zeileis et al., 2008), where the log-link function and the quasi-Poisson 

first and second moments are assumed for each individual observation. In the case where the 

counts for zeros are above and beyond the number of sampling zeros expected by a quasi-

Poisson distribution, the standard Poisson GEE model is no longer sufficient.

Even for independent count data, zero-inflated negative binomial (ZINB) and zero-inflated 

Poisson models have been developed to model excessive zero counts in the data (Zeileis et 

al., 2008; Mwalili et al., 2008). Zero-inflated regression models consist of two regression 

models: a logistic (or probit) regression model component for zero inflation and a count 

model component following a generalized linear model. The logistic regression models the 

probability of excess zeros in terms of available covariates. The count model relates the 

mean of the counts with available covariates using the framework of a generalized linear 

model when the response is not from the distribution degenerated at zero. As mentioned 

earlier, in many applications, data come in clusters where the counts from a cluster are 

correlated. The standard zero-inflated model cannot capture the correlation of the 

observations within a cluster. Ignoring the correlations among the observations could result 

in smaller variance estimates, thus leading to invalid statistical inferences. Although models 

for correlated zero-inflated count data have been proposed in the literature (Dobble and 

Welsh, 2001; Hall and Zhang, 2004), these methods have not specifically considered the 

case of a ZINB marginal.

In the current paper, we consider a ZINB model for correlated counts and the related 

inference. In order to distinguish it from the standard ZINB model, where the counts are 

independent, we refer to this model as the GEE-based ZINB model (or GEE.ZINB for 

short). This model allows for specifying a working correlation matrix along with the 

marginal relationship. We follow Hall and Zhang’s (2004) adaptation of a general algorithm, 

called the expectation solution (ES) algorithm, to estimate the model parameters. However, 

when it came to estimating the variance of our parameter estimators, the sandwich formula 

given by Hall and Zhang (2004) seemed not to account for the variability due to the 

introduction of the latent variables which indicate whether each response variable is from a 

zero-degenerated distribution or from the count model. Following the work of Satten and 

Datta (2000), we introduce a correction term which substantially improves the situation in 

several simulation scenarios. This correction term is based on estimation of quantities that 

require additional modeling assumptions which could be difficult to verify and only hold 

approximately. We finally settled for a non-parametric bootstrap-based variance estimator 
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(Efron, 1979; Davison and Hinkley, 1997) which does not require any additional 

assumptions. Furthermore, it provided accurate answers in all settings.

We apply our GEE.ZINB model to analyze the caries scores at age five for children 

participating in the Iowa Fluoride Study (Levy et. al, 2001). For comparison, we also apply 

the standard ZINB model that does not account for correlation and a GEE based zero-

inflated Poisson (GEE.ZIP) model that incorporates both the correlation and the zero 

inflation. We show GEE.ZINB is better than ZINB and is similar to GEE.ZIP. Both 

GEE.ZINB and GEE.ZIP identify a clinically relevant risk factor for dental caries in 

children. Also noteworthy is that the estimated coefficient of the extra zero component of 

the GEE.ZINB model was statistically significant indicating that a negative binomial model 

would have been inadequate for these data. Next, we carry out extensive simulation studies 

with realistic parameter choices guided by the real data.

The rest of the paper is organized as follows. In Section 2, we present the details of the 

proposed models, the estimation of the parameters, and their variance estimators. In Section 

3, we report our data analysis for the dental study. Simulation results are reported in Section 

4. The paper concludes with a discussion in Section 5.

2. The model and statistical inference

2.1. GEE-based ZINB model and estimation of parameters

A GEE-based ZINB model (GEE.ZINB) is developed to handle correlated/clustered count 

data, where the counts of zeros are above and beyond the number of sampling zeros 

expected from a NB distribution. Without loss of generality, let us denote by Yij, the number 

of counts for the jth subject within the ith cluster (i = 1, ···, N; j = 1, …, ni). The response 

variable Yij (i = 1, ···, N; j = 1, ···, ni) follows a mixture of a degenerated distribution at zero 

with mixing probability of pij and a NB distribution with mean λij with mixing probability 1 

− pij. The probability mass function of a NB distributed random variable Wij can be written 

as

(1)

where wij = 0,1, ···; and τ (τ >0) is a shape parameter that quantifies the amount of over-

dispersion. The mean and variance of Wij are given by E(Wij|λij, τ) = λij and 

, respectively. Unless τ = 0, the variance is always larger than the 

mean λij. Thus, the NB model adds a quadratic term  to the variance of Poisson to 

account for the extra-Poisson variation or over-dispersion (Wan et al., 2012). Considering Yij 

as the mixture of a zero-degenerated distribution with a probability pij and a NB model 

random variable Wij with a probability 1 − pij, the probability distribution of the response 

variable Yij can be written as:
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(2)

It is easy to check that the mean and variance of Yij are given by

(3)

and

(4)

When all observations are independent, the ZINB has been developed to model the zero-

inflated data. In a ZINB model, both pij and λij are modeled as functions of explanatory 

variables. The log link function is used to relate λij to the explanatory variables (say, xij), and 

the logit link function is used to relate pij to the explanatory variable (say, zij). The 

predictors (say, xij) for λij can be different from the predictors (say, zij) for pij. Let us assume 

that  and . Thus, the mean of Yij, 

E{Yij} = μij = (1 − pij)λij, depends on the parameters β and γ. To account for the correlations 

for the observations within the same cluster, a correlation matrix, say Ri(α) for ith cluster is 

introduced, and β and γ can be obtained by applying the following generalized estimating 

equations (GEE) (Hall and Zhang, 2004):

(5)

Here Yi = (Yi1, ···, Yini)
T, μi = (μi1, ··· μini)

T,  with Ai = 

Diag{Var(Yij)|j=1, ···, ni}. This direct application of GEE to the clustered zero-inflated models 

may not be identifiable because β and γ are typically confounded (e.g., share information) in 

equation (5) (Hall and Zhang, 2004). It has been recommended to estimate β and γ in two 

separate equations by introducing latent variables uij (i = 1, ···, N; j = 1, ···, ni), which 

indicate whether the random variable Yij is from a zero-degenerated distribution or NB 

distribution.

Let uij = 0 if Yij ~ fNB(λij, τ), and uij = 1 if Yij is from a zero-degenerated distribution. We 

have Pr(uij = 1) = pij. The GEE for γ can be written as:

(6)
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Here ui = (ui1, ···, uini)
T, , and  implying 

 is the variance matrix for ui, where Ai = 

Diag{pi1(1 − pi1), pi2(1 − pi2), ···, pini(1 − pini)} with the jth entry being the variance of uij, 

and R1i(α1) is the correlation matrix for ui. Similarly, the GEE for β can be written as

(7)

Here , where , which implies that  and 

. As before,  is the variance matrix for Yi, where 

Di = Diag{λi1(1 + τλi1), λi2(1 + τλi2), ···, λini(1 + τλini)} and R2i(α2) is the correlation matrix 

for Yi. The diagonal matrix Diag{1 − ui} = Diag(1 − ui1, ···, 1 − uini) in equation (7) 

indicates that only Yij from the NB distribution (i.e., uij = 0) contributes the estimating 

equation (7). Given uij (i = 1, ···, N; j = 1, ···, ni), β and γ are estimated by the Fisher-scoring 

method, which is an iterative algorithm for solving the estimating equations such as (6) and 

(7). However, since uij (i = 1, ···, N; j = 1, ···, ni) are latent (unobserved) variables, the 

solutions are not directly usable. Instead the expectation-solution algorithm (Hall and Zhang, 

2004; Rosen et al., 2000) can be applied, where in each iteration, uij in (6) and (7) is 

replaced by the conditional mean of uij given Yij and the current estimates for γ, β and τ.

Suppose that, in the bth iteration, the estimates for γ, β, and τ are γ(b), β(b), and τ(b), then the 

conditional mean of uij can be obtained as

(8)

where  and . Thus, combining this with (6) and (7), 

estimates of γ and β can be updated by the following iterated formulas:

(9)

and

(10)

where .
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Note that the parameter τ is only related to the variance function of the NB part. To estimate 

τ, let us introduce , and . If β is set at the 

correct value, we have  provided uij = 1, where vij = λij(1 + τλij). Thus, 

we propose estimating τ by solving the following equations:

(11)

Here , Hi = Diag(1 − ui) and vi(τ) = (vi1, ···, vini)
T. Given β and γ, τ 

can be obtained by solving equation (11), which results in:

(12)

Now we come to estimating α1 and α2. To estimate α1, let us set

which has the expected value of ργist, the correlation coefficient between uis and uit. Denote 

Uγi = (Uγi12, Uγi13, ···, Uγini−1,ni)
T, and ργi(α1) = E{Uγi} = (ργi12, ργi13, ···, ργini−1,ni)

T. The 

parameter α1 can be estimated by solving the following equation:

(13)

where , and Wγi is a working variance covariance matrix for the Uγi. If we set 

Wγi to be the identity matrix, and assume a symmetric compound structure for Rγi(α1), an 

estimate of the common correlation parameter α1 can be obtained as:

(14)

where . Standardizing it, we get our final estimator of α1:

(15)

where .

Similarly, to estimate α2, we set
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(16)

and E{Uβist} = ρβist, the correlation coefficient between yis and yit when they follow NB 

distributions. Denote Uβi = (Uβist, Uβist, ···, Uβini−1,ni)
T, and ρβi(α1) = E{Uβi} = (ρβist, ρβist, ···, 

ρβini−1,ni)
T when each component of Yi follows a NB distribution. Thus, α2 can be estimated 

by the following equation:

(17)

Here , Wβi ≅ Cov(Uβi), and Hβi = Diag{(1 − ui1)(1 − ui2), ···, (1 − uini−1)(1 − 

uini)}. In the case that Wβi is the identity matrix and Rβi(α2) is the symmetric compound 

structure, α2 could be obtained as follows:

(18)

Here . As before, an alternative range preserving 

(standardized) estimate for α2 is

(19)

where . In this paper, the range preserving estimates for α1 and 

α2 given by (15) and (19) are used.

To obtain the final parameter estimates for β, γ, τ, α1 and α2, an iterative method is required 

to iterate between estimating β and γ (given the current estimate of τ, α1 and α2) as the 

solution of equation (6) and (7), and estimating τ, α1 and α2 (given the current estimate of β 

and γ) as the solution of (11), (13) and (17) until convergence.

2.2. Variance estimation

Liang and Zeger (1986) showed that the GEE estimators are consistent and asymptotic 

normal for any choice of working correlation matrix, provided that the regression model for 

the mean response has been correctly specified. However, the standard GEE model does not 

involve any latent variables. When the latent variables do exist, the expectation-solution 

algorithm replaces the latent variables by their conditional mean given the response variable 

and current estimates of regression parameters. However, ignoring the variation due to the 

replacement of each latent variable with its conditional mean can result in smaller estimated 

variance as compared to the true variance of the regression parameter estimators.

Let us stack the estimating equations (6) and (7) to write , where

Kong et al. Page 7

Comput Stat Data Anal. Author manuscript; available in PMC 2016 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(20)

When the latent variables are replaced by their conditional means, the estimating equations 

become , where

(21)

The asymptotic covariance for the estimator of θ is given by the following sandwich form

(22)

where , and

Here the parameters for equation (22) have been replaced by their final estimates. In order to 

obtain the Hessian matrix , Satten and Data (2000) provided the following formula 

for the marginal Hessian matrix, where Fθ(ui|yi) is the conditional CDF of ui given yi:

In the present context, the first term turns out to be

(23)

and the second term turns out to be

(24)
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where Var{ui|yi} = ∫(ui − E{ui|yi})(ui − E{ui|yi})T dFθ(ui|yi), the conditional variance of ui 

given yi. Recall that uij is a latent variable, indicating whether the observation yij is from 

zero-degenerated distribution, the conditional mean E(uij|yij) is estimated by  as defined 

in equation (8), and the conditional variance of Var(uij|yij) is estimated by . We 

assume the conditional correlation matrix for ui given yi is the same as its marginal 

correlation matrix, say Rγi. Thus, Var{uij|yij} in equation (24) could be estimated by 

. Thus, our sandwich 

estimator the variance of θ̂ is B̂−1M̂B̂−1 = (B̂
1 + B̂

2)−1M̂(B̂
1 + B̂

2)−1, where B1 = ΣB1i, B2 = 

ΣB2i, and the estimates are obtained by replacing all quantities with the corresponding 

estimates at convergence.

It should be noted that the proposed sandwich estimate (B̂
1 + B̂

2)−1M̂(B̂
1 + B̂

2)−1 accounts 

for the variation of the latent variables, which is captured in B̂
2. We expect the performance 

of the proposed sandwich estimator to be better than the traditional sandwich estimator (Hall 

and Zhang, 2004) that ignores the variation from the latent variable and has the form of 

B̂
1
−1M̂B̂

1
−1. However, when the counts are correlated, neither can the conditional 

distribution of yi given ui, nor the distribution of ui be exactly specified from the marginal 

model. Thus, the proposed sandwich estimate can still fall short of the true variance when 

the counts are highly correlated; we have observed this in our simulation studies in Section 

4.

To remedy the situation, we also consider a non-parametric alternative. We adapt the non-

parametric bootstrap technology (Efron, 1979; Davison and Hinkley, 1997) to the clustered 

data setup to obtain this variance estimates. To do the bootstrap resampling, we draw a 

random sample (with replacement) of clusters from the collection of all clusters in the 

observed dataset. Note that resampling this way preserves the correlation structure that was 

present in the original sample. We refit the GEE.ZINB model to the resampled clustered 

data. This process is repeated 200 times, and the variance for each variable is calculated by 

the empirical variance of the 200 sets of estimated parameters. Note that covariances 

between parameter estimators can also be calculated this way. We show in Section 4 that 

these resulting variance estimators capture the correct variances in all simulation settings. 

However, first we apply our model to infer the risk factors for childhood caries and to guide 

our simulation setup.

3. An application of GEE.ZINB inference to Iowa Fluoride Study data

We illustrate our method using a dataset extracted from the Iowa Fluoride Study (Levy et 

al., 2001). The goal of our analysis will be to identify risk factors for childhood caries 

experience (CE). Dental caries, also known as tooth decay or cavities, is an infection that 

causes demineralization and destruction of the dental hard tissues. The Iowa Fluoride Study 

(http://www1.dentistry.uiowa.edu/preventive-fluoride-study) is an ongoing study of a cohort 

of Iowa children (mostly white, non-Hispanic, and middle or upper class socio-economic 

status) that began in 1992. Substantial dietary data, including data on fluoride intake, were 

obtained longitudinally through periodic questionnaires sent to parents every 1.5–6 months. 
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Surface-specific assessments of dental fluorosis and caries were made through dental 

examinations at the ages of 5 years, 9 years, 13 years and 17 years.

For this illustration, we focus on the caries data at the age of 5 years from the Iowa Fluoride 

Study. There was a small fraction of children with missing covariates; we assume that such 

missingness was completely at random and these children were dropped from our analysis. 

We score each dental surface with a value of 0, 1 or 2 depending on the caries severity, and 

these scores were then added to get overall caries experience scores (CESs) for each tooth of 

each child. Note that, in the general terminology of Section 2, each child is a “cluster” and 

the CES for various teeth for a child are the “subjects” in a cluster.

We analyze the CES treating them as count data. Figure 1A shows the marginal histogram 

of CES (averaged over all teeth and children in our sample), and Figure 1B shows the 

marginal histogram of CES excluding zeros. It is clear that the zeros dominate in the dataset, 

and the excessive zeros provide evidence of zero inflation. This was more formally validated 

in our subsequent analysis.

Since the CES for different teeth within a child are potentially correlated, a GEE-based 

model to analyze whether the dental caries is associated with different exposures and 

treatments seems appropriate. The potentially useful covariates from a clinical standpoint 

included daily fluoride intake (AUCmgF0_5yrs), daily soda pop intake 

(AUCSodaOz0_5yrs), average of tooth brushing frequencies 

(ToothBrushingFreqPerDayAvg), the average proportion of times a dental visit was 

conducted with each individual point assessing the previous 6 months 

(DentalVisitPast6moAvg), the average proportion of times a professional dental fluoride 

treatment was received with each individual point assessing the previous 6 months 

(FluorideTreatmentPast6moAvg), and the average home tap water fluoride level for all the 

returned questionnaires (HomeFluorideppmAvg). We also included gender and the exact age 

as covariate in our models. After removing the observations with missing covariates, the 

study subset included 8189 data values (CES) grouped into 414 clusters (children) in total. 

The minimum size of the clusters (i.e., number of teeth per child) was 13, and the maximum 

size was 20. Indeed 90% of clusters had size of 20.

We have fitted a GEE.ZINB model to these data. A compound symmetric correlation 

structure is assumed for each of the two components (i.e., count component and zero-

inflation component) of the model and the two correlation coefficients are estimated using 

formulas (15) and (19), respectively. The parameter estimates, their various estimated 

standard errors and p-values from two-sided Wald tests are reported in Table 1. We use the 

sandwich variance estimator (B̂
1 + B̂

2)−1M̂(B̂
1 + B̂

2)−1 that accounts for the variability due to 

estimating the latent variables u. The estimated S.E. and the resulting p-values are listed 

under the column “S.E. (SW)” and the next column, respectively. For comparison, we also 

report the results both from using the sandwich variance estimator B̂
1
−1M̂B̂

1
−1 as prescribed 

by Hall and Zhang (2004) and the non-parametric cluster bootstrap-based variance 

estimators. These values are indicated by “S.E. (HZ)” and “S.E. (BS)”, respectively (see 

Table 1A).
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For the sake of comparison, we also fit a GEE based zero-inflated Poisson (GEE.ZIP) model 

and an independent ZINB model to these data. The implementation of GEE.ZIP is similar to 

GEE.ZINB, where the parameter τ in the variance component of NB is set zero. The ZINB 

is implemented using the existing R package pscl (http://cran.rproject.org/web/packages/

pscl/pscl.pdf; also see Zeileis et al., 2008). The initial values for regression parameters β and 

γ in the GEE.ZINB and GEE.ZIP were those obtained from ZINB. These results obtained 

from GEE.ZIP and ZINB models are reported in Table 1B and 1C respectively. As can be 

seen from Table 1, the magnitude and the direction (i.e., the sign of the estimates) of the 

estimates based on the three different models are similar. The correlation coefficient for the 

observations within the same child was 0.165 for the count data component in the 

GEE.ZINB model. The small correlation coefficient indicates that the point estimates from 

ZINB will be similar to those from GEE.ZINB for this count data part, which indeed 

happens to be the case to a large extent. The DentalExamAge effect is positive and declared 

to be statistically significant by all three models, which makes clinical sense since waiting 

longer for the dental examination increases the severity of CE. Both ZINB and GEE.ZINB 

models indicate that AUCmgFO_5yrs is negatively associated with CES, which also makes 

clinical sense since fluoride acts to prevent or slow subsequent caries development.

For the zero inflation part, the GEE.ZINB and GEE.ZIP are quite similar, while the 

GEE.ZINB and ZINB model inferences differ somewhat. In particular, the variables 

DentalExamAge and ToothBrushingFreqPerDayAvg are both deemed to be statistically 

significant (at p<0.05) by the ZINB model, but not by the GEE.ZINB model using the 

proposed sandwich estimate of variance. While the signs of the corresponding parameter 

estimates make good clinical sense, the ZINB model estimates (including the variance 

estimates) are based on the maximum likelihood estimation theory for independent data. 

Consequently, the estimated standard errors are incorrect, since there was a modest within-

cluster correlation of 0.266 for the zero-inflated part of the data. The estimated standard 

error for ZINB could be underestimating the true standard error and, hence, the p-values 

could be too optimistic. We have verified this in the simulation studies presented in Section 

4. Comparing the three sets of standard error estimates for the GEE.ZINB model in Table 1, 

we see that our sandwich estimate lies between that using the HZ recipe and the bootstrap-

based estimate in all cases. The extensive simulation studies performed and reported in the 

next section show that the bootstrap version is most accurate. On the other hand, the HZ 

estimates could severely underestimate the true values, leading to optimistic p-values and 

potentially false positive results.

4. Simulation

We conducted an extensive simulation study to evaluate the performance of the estimators 

obtained from GEE.ZINB and ZINB under the general setting where both within-cluster 

correlation and zero inflation are present in the data. While the parameter choices in the 

simulation studies were guided by the data analysis section, we varied the amount of within-

cluster correlation as high, medium and absent.

Data for the count model were generated from the following log-linear model:
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(25)

and the probability pij of a data value coming from the zero component was controlled via 

the following logistic regression model:

(26)

Note that just like the real data, the covariates used in the model were cluster (child) level 

covariates. We used the same number of clusters (=414) and the corresponding covariates as 

in our dental dataset analyzed in the previous section. However, for simplicity we take the 

cluster size to assume a constant value of 20. To generate the indicators uij of zero inflation 

of subjects in each cluster, we start from a sample of 20 correlated normal variates, each 

with zero mean and unit variance, and with a constant pairwise correlation coefficient, say 3, 

and convert them into 20 correlated binary random variables using appropriate 

transformations while maintaining the marginal success probabilities equal to (26).

Meanwhile, we also generated 20 correlated negative binomial random variables for each 

subject via quantile-probability transformations starting from another (independent) set of 

20 normal variates, each with zero mean and unit variance, and with a constant pairwise 

correlation coefficient of α. We ensured that marginally these NB variates have means 

specified by the log-linear model (25) and dispersion τ=0.347. Note that, for simplicity, we 

have used the same correlation coefficient α in both parts of the model. However, since the 

nonlinear transformations were different, the magnitude of the induced correlation in two 

pieces of the generated data was different. If for a subject, uij =1, we set the corresponding 

CES equal to zero; otherwise, we assign the corresponding NB variate to its CES.

A total of 1000 datasets were generated for each of three scenarios determined by amount of 

correlation. For each dataset, parameter estimates and their estimated standard errors were 

computed from GEE.ZINB and ZINB respectively. These values were averaged over the 

1000 runs and reported along with the empirical standard deviations of the parameter 

estimates. The main results are presented in Table 2.

4.1 Comparison of estimators from GEE.ZINB and ZINB

Based on the simulation results, we conclude that (i) the biases of the estimators based on 

GEE.ZINB and ZINB are similar, and all the estimated coefficients in the GEE.ZINB are 

asymptotically normally distributed (see Q-Q plots in Figure 2); (ii) when the correlation of 

within-subject counts is high (Table 2), the ratios of the sandwich SE and the true SE of 

regression parameter estimators for the count model lie between 0.691 and 0.798 for 

GEE.ZINB. The same ratios for ZINB are between 0.339 and 0.378, indicating that, while 
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both large sample estimators (SW for GEE.ZINB and inverse Fisher information for ZINB) 

underestimate the true variance, the degree of underestimation for ZINB is more severe; (iii) 

for the zero inflation model in GEE.ZINB, the ratio of the estimated standard error from the 

proposed sandwich estimator and the true SE is close to 1 regardless of the magnitude of the 

within cluster correlation, for that reason we only showed the simulation results for the case 

of high correlation for zero inflation model in Table 2; (iv) for ZINB model, the ratios of the 

estimated SE and the true SE are about 0.35 under high correlation (see Table 2), 0.50~0.70 

under medium correlation (see Table S1 in Supplementary materials), and 1 under 

independence (see Table S2 in Supplementary materials), indicating that the standard ZINB 

inference may not be suitable for clustered data.

4.2 Comparisons of the three variance estimators for GEE.ZINB

It is noticed that the proposed sandwich variance estimator for GEE.ZINB is 

underestimating the true variance for the count model part, although we have accounted for 

the variation of the latent variables, and the degree of underestimation is more severe when 

the correlation is high. A plausible explanation for its less than perfect behavior is that 

estimation of this additional part B2 is not possible without making some crude 

approximation (e.g., the conditional correlation matrix for ui given yi is the same as the 

marginal correlation matrix). There does not seem to be a natural (e.g., model-free) closed 

form estimator for this part. It should be noted, however, that this estimator is still preferable 

over the HZ estimator in all cases. The estimator based on the non-parametric bootstrap 

(each based on a BS replication of size 200) seems to be most accurate in all cases, as shown 

by the ratio comparison with the true values.

The proposed sandwich variance estimator provides correct estimates for the zero-inflation 

part of the model regardless of the magnitude of the correlation. In real data analysis, it may 

be safer to use the bootstrap method for valid statistical inference for the GEE.ZINB, even 

though it is computationally a bit more intensive and does not offer a fixed answer due to 

resampling.

5. Discussion

We have developed a GEE-based ZINB model and associated inference procedures for 

analyzing count data that are correlated and zero-inflated. Utility of this model over existing 

models and software has been demonstrated in analyzing a dental dataset relating caries 

experience with clinical covariates. For the dataset extracted from the Iowa Fluoride Study, 

we found that dental examination age and daily fluoride intake were significant predictors of 

caries experience at age five. These findings may be limited to the population under the 

Iowa Fluoride Study and not generalizable to the entire US population. However, the 

underlying statistical methodology could be useful in analyzing other clustered count 

datasets encountered in different disciplines of biomedical and other scientific research. The 

associated R code (available under supplementary materials) will provide a useful data 

analysis tool to practicing statisticians and data analysts.

Another important purpose of this paper is to caution potential users about the danger of 

using incorrect variance formulas in making statistical inference. While sandwich variance 
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formulas related to estimating equations are regarded as robust against potential model 

misspecification, they are not without pitfalls. In case of complex model fitting procedures, 

a naïve sandwich variance formula could underestimate the true variance by failing to 

properly account for all sources of estimation errors. This, in turn, could inflate the power of 

test of significance of an effect, leading to false positive results. When in doubt, non-

parametric procedures such as the bootstrap should be used. Of course, for developing a 

proper resampling procedure, certain model structures should be respected. In particular for 

clustered data, resampling entire clusters of observation is warranted, rather than subject-

level resampling.

As stated earlier, we have compared the GEE.ZINB method developed here with the 

independent ZINB where an existing R-package was used to obtain the necessary inference 

for the later method. In our simulation study, we noticed that this method of estimation 

encountered convergence problems more often as compared to the GEE.ZINB method. In 

terms of the variance estimates, it may be possible to create a robust variance estimate for 

the ZINB likelihood scores that is valid under a clustered data setting. These issues may be 

investigated elsewhere.

The GEE.ZINB is a marginal model and is suitable for population level inferences. The 

multilevel zero-inflated NB and Poisson models (Lim et al., 2013; Moghimbeigi et al., 2008; 

Yau et al., 2003) have been proposed to analyze clustered count data with extra zeros. 

However, the regression coefficients in the multilevel models may not be interpreted as 

population level effects (Fitzmaurice et al., 2011). The comparisons between the multilevel 

ZINB models and GEE based ZINB may deserve further investigation. In addition, Bayesian 

zero-inflated Poisson (ZIP) model (Xia et al., 2014) has been proposed recently, and the 

estimation and influence diagnostics for ZINB (Garay et al., 2011) and Bayesian ZIP (Xia et 

al., 2014) have been studied. How to extend the estimation and influence diagnostics to GEE 

based ZINB model may be investigated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The marginal histogram of caries experience score (CES) summarized over all teeth and 

children in our sample (Fig. 1A), and the marginal histogram of CES excluding zero counts 

summarized over all teeth and children in our sample (Fig. 1B).
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Figure 2. 
The Q-Q plots for the estimated parameters for count model (Panels A1–A8) and for the 

zero-inflated model (Panels B1–B8) in the GEE-based ZINB model, each plot is based on 

the estimated parameters from 1000 simulated datasets. The x-axis shows the theoretical 

quantiles of standard normal distribution, and the y-axis is the quantiles of the 1000 

estimated parameters.

Kong et al. Page 17

Comput Stat Data Anal. Author manuscript; available in PMC 2016 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kong et al. Page 18

T
ab

le
 1

T
he

 a
na

ly
si

s 
re

su
lts

 f
or

 th
e 

ef
fe

ct
s 

of
 e

xp
os

ur
es

, t
re

at
m

en
ts

 a
nd

 o
th

er
 c

ov
ar

ia
te

s 
on

 c
ar

ie
s 

ex
pe

ri
en

ce
 (

C
E

) 
at

 a
ge

 f
iv

e 
fr

om
 th

e 
Io

w
a 

Fl
uo

ri
de

 S
tu

dy
 

da
ta

se
t b

as
ed

 o
n 

th
re

e 
di

ff
er

en
t m

od
el

s:
 th

e 
G

E
E

-b
as

ed
 Z

IN
B

 m
od

el
 (

se
e 

th
e 

re
su

lts
 u

nd
er

 th
e 

tit
le

 “
A

: G
E

E
.Z

IN
B

 M
od

el
”)

, t
he

 G
E

E
-b

as
ed

 z
er

o 
in

fl
at

ed
 

Po
is

so
n 

m
od

el
 (

se
e 

th
e 

re
su

lts
 u

nd
er

 th
e 

tit
le

 “
B

. G
E

E
.Z

IP
 M

od
el

”)
, a

nd
 th

e 
Z

IN
B

 m
od

el
 (

se
e 

th
e 

re
su

lts
 u

nd
er

 th
e 

tit
le

 “
C

: Z
IN

B
 M

od
el

”)
. H

er
e 

SW
 

in
di

ca
te

s 
ou

r 
pr

op
os

ed
 S

an
dw

ic
h 

es
tim

at
e,

 H
Z

 in
di

ca
te

s 
H

al
l &

 Z
ha

ng
 s

an
dw

ic
h 

es
tim

at
es

, B
S 

in
di

ca
te

s 
B

oo
ts

tr
ap

 e
st

im
at

es
.

A
: 

G
E

E
.Z

IN
B

 M
od

el

G
E

E
.Z

IN
B

 c
ou

nt
 c

om
po

ne
nt

E
st

im
at

e
S.

E
. (

H
Z

)
p-

va
lu

e
S.

E
. (

SW
)

p-
va

lu
e

S.
E

. (
B

S)
p-

va
lu

e

In
te

rc
ep

t
−

2.
71

3
0.

79
5

0.
00

1
0.

92
3

0.
00

3
1.

26
3

0.
03

2

G
en

de
r

−
0.

01
8

0.
13

1
0.

89
2

0.
16

0
0.

91
1

0.
22

8
0.

93
8

D
en

ta
l E

xa
m

A
ge

0.
69

6
0.

14
4

<0
.0

01
0.

16
6

<0
.0

01
0.

21
9

0.
00

1

A
U

C
m

gF
0_

5y
rs

−0
.8

56
0.

19
7

<0
.0

01
0.

25
4

0.
00

1
0.

43
5

0.
04

9

A
U

C
So

da
O

z0
_5

yr
s

0.
07

2
0.

04
3

0.
09

3
0.

05
4

0.
18

1
0.

07
3

0.
32

7

T
oo

th
B

ru
sh

in
gF

re
qP

er
D

ay
A

vg
−

0.
02

3
0.

11
9

0.
84

8
0.

15
2

0.
88

1
0.

25
5

0.
92

9

D
en

ta
l V

is
itP

as
t6

m
oA

vg
0.

74
0

0.
48

7
0.

12
9

0.
57

1
0.

19
5

0.
69

2
0.

28
5

Fl
uo

ri
de

T
re

at
m

en
tP

as
t6

m
oA

vg
0.

95
5

0.
62

0
0.

12
3

0.
75

9
0.

20
8

1.
01

7
0.

34
8

H
om

eF
lu

or
id

ep
pm

A
vg

−
0.

06
2

0.
10

4
0.

55
4

0.
12

5
0.

62
2

0.
34

3
0.

85
7

τ 
(o

r 
1/

τ 
fo

r 
Z

IN
B

)
0.

32
7

 
C

or
re

la
tio

n 
α

2
0.

16
5

G
E

E
.Z

IN
B

 z
er

o 
in

fl
at

io
n 

co
m

po
ne

nt

In
te

rc
ep

t
3.

59
9

1.
34

6
0.

00
7

1.
61

3
0.

02
6

1.
81

3
0.

04
7

G
en

de
r

0.
20

1
0.

16
3

0.
21

8
0.

21
9

0.
35

9
0.

24
3

0.
40

8

D
en

ta
lE

xa
m

A
ge

−
0.

38
9

0.
25

1
0.

12
1

0.
29

5
0.

18
8

0.
34

4
0.

25
9

A
U

C
m

gF
0_

5y
rs

0.
39

2
0.

42
0.

35
1

0.
63

9
0.

54
0

0.
72

6
0.

58
9

A
U

C
So

da
O

z0
_5

yr
s

−
0.

01
0

0.
04

9
0.

84
0

0.
06

6
0.

87
9

0.
07

3
0.

89
1

T
oo

th
B

ru
sh

in
gF

re
qP

er
D

ay
A

vg
0.

50
3

0.
21

2
0.

01
8

0.
29

8
0.

09
2

0.
32

9
0.

12
7

D
en

ta
l V

is
itP

as
t6

m
oA

vg
0.

82
5

0.
69

3
0.

23
4

0.
92

8
0.

37
4

0.
92

3
0.

37
2

Fl
uo

ri
de

T
re

at
m

en
tP

as
t6

m
oA

vg
−

0.
87

5
0.

86
6

0.
31

2
1.

12
7

0.
43

8
1.

15
1

0.
44

7

H
om

eF
lu

or
id

ep
pm

A
vg

0.
04

6
0.

14
4

0.
74

7
0.

18
8

0.
80

5
0.

31
8

0.
88

4

 
C

or
re

la
tio

n 
α

1
0.

26
6

Comput Stat Data Anal. Author manuscript; available in PMC 2016 May 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kong et al. Page 19
B

: 
G

E
E

.Z
IP

 M
od

el
C

: 
Z

IN
B

 M
od

el

G
E

E
.Z

IP
 c

ou
nt

 c
om

po
ne

nt
Z

IN
B

 c
ou

nt
 c

om
po

ne
nt

E
st

im
at

e
S.

E
. (

H
Z

)
p-

va
lu

e
S.

E
. (

SW
)

p-
va

lu
e

E
st

im
at

e
S.

E
.

p-
va

lu
e

In
te

rc
ep

t
−

2.
05

6
0.

71
4

0.
00

4
0.

83
1

0.
01

3
−

3.
63

2
0.

88
6

<
0.

00
1

G
en

de
r

−
0.

01
6

0.
12

3
0.

89
6

0.
15

1
0.

91
6

−
0.

00
4

0.
14

9
0.

97
6

D
en

ta
l E

xa
m

A
ge

0.
59

0
0.

13
0

<0
.0

01
0.

15
0

<0
.0

01
0.

82
1

0.
16

0
<0

.0
01

A
U

C
m

gF
0_

5y
rs

−0
.7

49
0.

19
2

<0
.0

01
0.

24
9

0.
00

3
−0

.9
06

0.
30

8
0.

00
3

A
U

C
So

da
O

z0
_5

yr
s

0.
06

3
0.

04
2

0.
13

8
0.

05
3

0.
23

6
0.

07
8

0.
06

0
0.

19
4

T
oo

th
B

ru
sh

in
gF

re
qP

er
D

ay
A

vg
−

0.
00

8
0.

11
9

0.
94

8
0.

15
0

0.
95

8
−

0.
05

8
0.

20
1

0.
77

4

D
en

ta
lV

is
itP

as
t6

m
on

th
A

vg
0.

69
6

0.
45

0.
12

2
0.

52
8

0.
18

7
0.

83
3

0.
52

5
0.

11
2

Fl
uo

ri
de

T
re

at
m

en
tP

as
t6

m
oA

vg
0.

65
5

0.
55

2
0.

23
6

0.
65

0
0.

31
4

1.
23

4
0.

72
7

0.
09

0

H
om

eF
lu

or
id

ep
pm

A
vg

−
0.

05
6

0.
10

2
0.

58
6

0.
11

7
0.

63
4

−
0.

08
8

0.
17

6
0.

61
5

 
C

or
re

la
tio

n 
(o

r 
1/

τ 
fo

r 
Z

IN
B

)
0.

16
3

0.
92

8

G
E

E
.Z

IP
 z

er
o 

in
fl

at
io

n 
co

m
po

ne
nt

Z
IN

B
 z

er
o 

in
fl

at
io

n 
co

m
po

ne
nt

In
te

rc
ep

t
4.

09
3

1.
49

4
0.

00
6

1.
62

8
0.

01
2

2.
71

4
0.

77
8

<0
.0

01

G
en

de
r

0.
20

1
0.

18
9

0.
28

8
0.

21
8

0.
35

8
0.

21
0

0.
12

8
0.

10
0

D
en

ta
l E

xa
m

A
ge

−
0.

45
8

0.
27

7
0.

09
8

0.
29

8
0.

12
4

−0
.2

87
0.

13
7

0.
03

7

A
U

C
m

gF
0_

5y
rs

0.
48

0
0.

49
9

0.
33

6
0.

64
0

0.
45

3
0.

41
4

0.
29

4
0.

15
9

A
U

C
So

da
O

z0
_5

yr
s

−
0.

01
7

0.
05

7
0.

77
1

0.
06

5
0.

80
0

−
0.

00
8

0.
04

6
0.

85
6

T
oo

th
B

ru
sh

in
gF

re
qP

er
D

ay
A

vg
0.

50
2

0.
24

6
0.

04
1

0.
29

4
0.

08
7

0.
52

5
0.

17
2

0.
00

2

D
en

ta
lV

is
itP

as
t6

m
on

th
A

vg
0.

74
6

0.
80

3
0.

35
3

0.
92

5
0.

42
0

0.
89

1
0.

51
3

0.
08

2

Fl
uo

ri
de

T
re

at
m

en
tP

as
t6

m
oA

vg
−

1.
00

6
0.

98
0

0.
30

5
1.

11
3

0.
36

6
−

0.
67

6
0.

62
9

0.
28

3

H
om

eF
lu

or
id

ep
pm

A
vg

0.
05

2
0.

16
3

0.
74

9
0.

18
6

0.
78

0
0.

01
1

0.
13

5
0.

93
5

C
or

re
la

tio
n

0.
24

4

Comput Stat Data Anal. Author manuscript; available in PMC 2016 May 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kong et al. Page 20

T
ab

le
 2

Si
m

ul
at

io
n 

re
su

lts
 r

el
at

ed
 to

 b
ia

s,
 s

ta
nd

ar
d 

er
ro

r 
an

d 
es

tim
at

ed
 s

ta
nd

ar
d 

er
ro

r 
of

 e
st

im
at

or
s 

in
 G

E
E

.Z
IN

B
 a

nd
 Z

IN
B

 w
he

n 
th

e 
in

te
r-

cl
us

te
r 

co
rr

el
at

io
n 

is
 h

ig
h,

 a
nd

 s
im

ul
at

io
n 

re
su

lts
 f

or
 G

E
E

.Z
IN

B
 c

om
po

ne
nt

 

m
od

el
 f

or
 c

ou
nt

s 
w

he
n 

th
e 

in
te

r-
cl

us
te

r 
co

rr
el

at
io

n 
is

 m
ed

iu
m

 a
nd

 a
bs

en
t. 

(S
W

=
 S

an
dw

ic
h,

 H
Z

 =
 H

al
l &

 Z
ha

ng
, B

S 
=

 B
oo

ts
tr

ap
)

G
E

E
.Z

IN
B

 M
od

el
 (

H
ig

h 
in

te
r-

cl
us

te
r 

co
rr

el
at

io
n)

Z
IN

B
 M

od
el

 (
H

ig
h 

in
te

r-
cl

us
te

r 
co

rr
el

at
io

n)

P
ar

am
et

er
G

E
E

.Z
IN

B
 c

ou
nt

 c
om

po
ne

nt
Z

IN
B

 c
ou

nt
 c

om
po

ne
nt

(1
)

T
ru

th
(2

)
M

ea
n

(3
)

B
ia

s

(4
)

S.
E

.
(T

ru
e)

(5
)

S.
E

.
(S

W
)

(6
)=

(5
)/

(4
)

R
at

io

(7
)

S.
E

.
(H

Z
)

(8
)=

(7
)/

(4
)

R
at

io

(9
)

S.
E

.
(B

S)

(1
0)

=
(9

)/
(4

)
R

at
io

(1
1)

M
ea

n
(1

2)
B

ia
s

(1
3)

S.
E

.
(T

ru
e)

(1
4)

S.
E

.

(1
5)

=
(1

4)
/(

13
)

R
at

io

In
te

rc
ep

t
−

2.
71

3
−

2.
44

2
0.

27
1

1.
40

6
0.

98
6

0.
70

2
0.

72
9

0.
50

9
1.

31
9

0.
92

1
−

2.
48

5
0.

22
8

1.
40

3
0.

49
1

0.
35

0

G
en

de
r

−
0.

01
8

−
0.

01
7

0.
00

1
0.

23
5

0.
18

7
0.

79
8

0.
14

2
0.

59
9

0.
22

5
0.

94
9

−
0.

01
6

0.
00

2
0.

23
5

0.
08

4
0.

35
7

D
en

ta
lE

xa
m

A
ge

0.
69

6
0.

64
9

−
0.

04
7

0.
25

5
0.

17
6

0.
69

1
0.

12
9

0.
50

2
0.

23
8

0.
92

6
0.

65
6

−
0.

04
0

0.
25

5
0.

08
9

0.
35

1

A
U

C
m

gF
0_

5y
rs

−
0.

85
6

−
0.

84
5

0.
01

1
0.

62
8

0.
46

2
0.

73
4

0.
33

3
0.

58
6

0.
56

8
1.

00
1

−
0.

85
6

0.
00

0
0.

63
1

0.
22

1
0.

35
1

A
U

C
So

da
O

z0
_5

yr
s

0.
07

2
0.

07
2

0.
00

0
0.

08
4

0.
06

3
0.

75
6

0.
04

5
0.

51
0

0.
07

9
0.

89
5

0.
07

3
0.

00
1

0.
08

4
0.

03
2

0.
37

8

T
oo

th
B

ru
sh

in
gF

re
qP

er
D

ay
A

vg
−

0.
02

3
−

0.
05

6
−

0.
03

3
0.

31
6

0.
24

5
0.

77
5

0.
18

3
0.

57
4

0.
30

7
0.

96
2

−
0.

05
7

−
0.

03
4

0.
31

8
0.

11
4

0.
35

9

D
en

ta
lV

is
itP

as
t6

m
oA

vg
0.

74
0

0.
69

3
−

0.
04

7
1.

03
9

0.
82

6
0.

79
5

0.
57

8
0.

56
8

0.
94

9
0.

93
3

0.
69

5
−

0.
04

5
1.

04
5

0.
35

9
0.

34
4

Fl
uo

ri
de

T
re

at
m

en
tP

as
t6

m
oA

vg
0.

95
5

0.
92

8
−

0.
02

7
1.

21
0

0.
92

5
0.

76
4

0.
69

2
0.

61
1

1.
13

4
1.

00
2

0.
94

1
−

0.
01

4
1.

22
0

0.
41

8
0.

34
3

H
om

eF
lu

or
id

ep
pm

A
vg

−
0.

06
2

−
0.

02
0

0.
04

2
0.

33
3

0.
24

5
0.

73
5

0.
16

3
0.

49
6

0.
31

8
0.

96
7

−
0.

02
4

0.
03

8
0.

33
6

0.
11

4
0.

33
9

τ 
(o

r 
1/

τ 
fo

r 
Z

IN
B

)
0.

32
7

0.
12

3
0.

07
7

M
ed

ia
n:

 9
.3

77
; I

Q
R

 (
5.

71
7,

 1
9.

67
)

G
E

E
.Z

IN
B

 z
er

o 
in

fl
at

io
n 

co
m

po
ne

nt
Z

IN
B

 z
er

o 
in

fl
at

io
n 

co
m

po
ne

nt

In
te

rc
ep

t
3.

59
9

3.
73

7
0.

13
8

1.
99

6
1.

81
1

0.
90

7
1.

43
0

0.
76

4
1.

90
7

1.
01

9
3.

71
3

0.
11

4
2.

00
1

0.
63

2
0.

31
6

G
en

de
r

0.
20

1
0.

22
1

0.
02

0
0.

30
5

0.
30

3
0.

99
5

0.
22

2
0.

75
2

0.
29

7
1.

00
9

0.
22

1
0.

02
0

0.
30

5
0.

10
5

0.
34

4

D
en

ta
lE

xa
m

A
ge

−
0.

38
9

−
0.

41
2

−
0.

02
3

0.
36

7
0.

33
3

0.
90

7
0.

26
6

0.
79

2
0.

34
8

1.
03

7
−

0.
40

8
−

0.
01

9
0.

36
9

0.
11

4
0.

30
9

A
U

C
m

gF
0_

5y
rs

0.
39

2
0.

42
8

0.
03

6
0.

73
3

0.
69

3
0.

94
5

0.
45

2
0.

62
9

0.
72

2
1.

00
4

0.
42

3
0.

03
1

0.
73

9
0.

25
3

0.
34

2

A
U

C
So

da
O

z0
_5

yr
s

−
0.

01
0

−
0.

00
1

0.
00

9
0.

11
0

0.
10

5
0.

95
7

0.
07

8
0.

75
3

0.
10

6
1.

02
8

−
0.

00
1

0.
00

9
0.

11
0

0.
03

2
0.

28
9

T
oo

th
B

ru
sh

in
gF

re
qP

er
D

ay
A

vg
0.

50
3

0.
52

0
0.

01
7

0.
41

5
0.

40
2

0.
97

0
0.

28
6

0.
71

4
0.

39
4

0.
98

4
0.

51
9

0.
01

6
0.

41
6

0.
13

8
0.

33
1

D
en

ta
lV

is
itP

as
t6

m
oA

vg
0.

82
5

0.
80

2
−

0.
02

3
1.

27
9

1.
29

3
1.

01
0

0.
94

1
0.

73
2

1.
26

5
0.

98
3

0.
80

4
−

0.
02

1
1.

28
1

0.
44

3
0.

34
6

Fl
uo

ri
de

T
re

at
m

en
tP

as
t6

m
oA

vg
−

0.
87

5
−

0.
89

4
−

0.
01

9
1.

65
9

1.
60

7
0.

96
9

1.
23

8
0.

77
7

1.
56

1
0.

98
0

−
0.

88
6

−
0.

01
1

1.
66

1
0.

54
2

0.
32

6

H
om

eF
lu

or
id

ep
pm

A
vg

0.
04

6
0.

12
2

0.
07

6
0.

38
5

0.
33

8
0.

87
8

0.
23

2
0.

64
8

0.
40

7
1.

13
7

0.
09

5
0.

04
9

0.
39

2
0.

12
6

0.
32

2

G
E

E
.Z

IN
B

 z
er

o 
in

fl
at

io
n 

co
m

po
ne

nt
Z

IN
B

 z
er

o 
in

fl
at

io
n 

co
m

po
ne

nt

Comput Stat Data Anal. Author manuscript; available in PMC 2016 May 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kong et al. Page 21

G
E

E
.Z

IN
B

 M
od

el
 (

H
ig

h 
in

te
r-

cl
us

te
r 

co
rr

el
at

io
n)

Z
IN

B
 M

od
el

 (
H

ig
h 

in
te

r-
cl

us
te

r 
co

rr
el

at
io

n)

P
ar

am
et

er
G

E
E

.Z
IN

B
 c

ou
nt

 c
om

po
ne

nt
Z

IN
B

 c
ou

nt
 c

om
po

ne
nt

(1
)

T
ru

th
(2

)
M

ea
n

(3
)

B
ia

s

(4
)

S.
E

.
(T

ru
e)

(5
)

S.
E

.
(S

W
)

(6
)=

(5
)/

(4
)

R
at

io

(7
)

S.
E

.
(H

Z
)

(8
)=

(7
)/

(4
)

R
at

io

(9
)

S.
E

.
(B

S)

(1
0)

=
(9

)/
(4

)
R

at
io

(1
1)

M
ea

n
(1

2)
B

ia
s

(1
3)

S.
E

.
(T

ru
e)

(1
4)

S.
E

.

(1
5)

=
(1

4)
/(

13
)

R
at

io

(1
)

T
ru

th
(1

6)
M

ea
n

(1
7)

B
ia

s

(1
8)

S.
E

.
(T

ru
e)

(1
9)

S.
E

.
(S

W
)

(2
0)

=
(1

9)
/(

18
)

R
at

io

(1
)

T
ru

th
(2

1)
M

ea
n

(2
2)

B
ia

s

(2
3)

S.
E

.
(T

ru
e)

(2
4)

S.
E

.
(S

W
)

(2
5)

=
(2

4)
/(

23
)

R
at

io

In
te

rc
ep

t
−

2.
71

3
−

2.
53

4
0.

17
9

0.
80

1
0.

55
4

0.
69

1
−

2.
71

3
−

2.
59

5
0.

11
9

0.
51

7
0.

42
4

0.
81

9

G
en

de
r

−
0.

01
8

−
0.

01
3

0.
00

5
0.

13
9

0.
10

8
0.

77
5

−
0.

01
8

−
0.

01
6

0.
00

2
0.

09
8

0.
09

2
0.

94
3

D
en

ta
lE

xa
m

A
ge

0.
69

6
0.

67
2

−
0.

02
4

0.
14

8
0.

09
7

0.
65

4
0.

69
6

0.
68

0
−

0.
01

6
0.

09
0

0.
07

2
0.

80
3

A
U

C
m

gF
0_

5y
rs

−
0.

85
6

−
0.

84
3

0.
01

3
0.

36
5

0.
25

4
0.

69
8

−
0.

85
6

−
0.

83
6

0.
02

0
0.

23
8

0.
22

6
0.

95
1

A
U

C
So

da
O

z0
_5

yr
s

0.
07

2
0.

06
8

−
0.

00
4

0.
04

7
0.

03
6

0.
76

9
0.

07
2

0.
06

8
−

0.
00

4
0.

03
2

0.
02

9
0.

90
1

T
oo

th
B

ru
sh

in
gF

re
qP

er
D

ay
A

vg
−

0.
02

3
−

0.
04

0
−

0.
01

7
0.

19
6

0.
14

4
0.

73
5

−
0.

02
3

−
0.

02
8

−
0.

00
5

0.
13

3
0.

12
5

0.
94

0

D
en

ta
lV

is
itP

as
t6

m
oA

vg
0.

74
0

0.
73

3
−

0.
00

7
0.

58
5

0.
47

1
0.

80
5

0.
74

0
0.

71
2

−
0.

02
8

0.
43

0
0.

39
6

0.
92

2

Fl
uo

ri
de

T
re

at
m

en
tP

as
t6

m
oA

vg
0.

95
5

0.
89

7
−

0.
05

8
0.

69
6

0.
54

7
0.

78
6

0.
95

5
0.

94
6

−
0.

00
9

0.
48

3
0.

44
6

0.
92

5

H
om

eF
lu

or
id

ep
pm

A
vg

−
0.

06
2

−
0.

05
7

0.
00

5
0.

18
1

0.
12

5
0.

69
2

−
0.

06
2

−
0.

07
3

−
0.

01
1

0.
11

4
0.

09
7

0.
85

3

τ
0.

32
7

0.
17

7
0.

01
2

0.
32

7
0.

24
4

0.
02

8

Comput Stat Data Anal. Author manuscript; available in PMC 2016 May 01.


