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Abstract

Use of zero-inflated count data models is common in applications where the number of zero
counts exceeds that predicted from a traditional count data model such as Poisson or negative
binomial. When count data exhibiting inflated zero counts are correlated among subjects, a natural
approach will be to fit a marginal model with the help of generalized estimating equations (GEE)
that can incorporate subject-to-subject correlations. A GEE based zero-inflated negative binomial
(ZINB) model is proposed to fit clustered counts with excessive zeros. However, the
corresponding sandwich variance estimator appears to underestimate the true variance. The
theoretical reasons for its failure are explained and a correction under additional modeling
assumptions is offered. In addition, a clustered resampling (bootstrap) procedure is proposed to
estimate the variance and it is shown that the bootstrap procedure captures the correct variance
under no additional model assumptions. Utility of this marginal GEE based ZINB model over two
other competing models has been assessed using a thorough simulation study. The resulting
inference procedure is applied to study the association between the dental caries and fluoride
exposures using a dataset extracted from the lowa Fluoride Study. A number of risk factors of
clinical significance are reliably identified using the proposed model.

Keywords

Zero-inflated models; Generalized estimating equations (GEE); Sandwich variance estimate;
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1. Introduction

Statistical methods for longitudinal/clustered data have been developed in the past two
decades. The longitudinal/clustered data have the feature that the observations from the
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same subject (or cluster) are correlated. Failure to consider the correlations of within-subject
(or within-cluster) observations could result in invalid statistical inferences (Hedeker and
Gibbons, 2006; Fitzmaurice et al., 2011). Many statistical methods have been developed for
longitudinal/clustered data. Among them, the marginal models, i.e., the generalized
estimating equations (GEES), have been applied to characterize the relationships between
responses and covariates at the population level (Hedeker and Gibbons, 2006; Fitzmaurice et
al., 2011). The GEE model is based on the first and second moments of the response
variable (Albert et al., 1988; Liang and Zeger, 1986). It has been shown that the GEE
estimators are consistent and asymptotically normally distributed as long as the first moment
is correctly specified. As a result, the GEE technique has been widely applied to
longitudinal/clustered data analyses. In particular, the GEE model has been applied to
correlated count data (Zeileis et al., 2008), where the log-link function and the quasi-Poisson
first and second moments are assumed for each individual observation. In the case where the
counts for zeros are above and beyond the number of sampling zeros expected by a quasi-
Poisson distribution, the standard Poisson GEE model is no longer sufficient.

Even for independent count data, zero-inflated negative binomial (ZINB) and zero-inflated
Poisson models have been developed to model excessive zero counts in the data (Zeileis et
al., 2008; Mwalili et al., 2008). Zero-inflated regression models consist of two regression
models: a logistic (or probit) regression model component for zero inflation and a count
model component following a generalized linear model. The logistic regression models the
probability of excess zeros in terms of available covariates. The count model relates the
mean of the counts with available covariates using the framework of a generalized linear
model when the response is not from the distribution degenerated at zero. As mentioned
earlier, in many applications, data come in clusters where the counts from a cluster are
correlated. The standard zero-inflated model cannot capture the correlation of the
observations within a cluster. Ignoring the correlations among the observations could result
in smaller variance estimates, thus leading to invalid statistical inferences. Although models
for correlated zero-inflated count data have been proposed in the literature (Dobble and
Welsh, 2001; Hall and Zhang, 2004), these methods have not specifically considered the
case of a ZINB marginal.

In the current paper, we consider a ZINB model for correlated counts and the related
inference. In order to distinguish it from the standard ZINB model, where the counts are
independent, we refer to this model as the GEE-based ZINB model (or GEE.ZINB for
short). This model allows for specifying a working correlation matrix along with the
marginal relationship. We follow Hall and Zhang’s (2004) adaptation of a general algorithm,
called the expectation solution (ES) algorithm, to estimate the model parameters. However,
when it came to estimating the variance of our parameter estimators, the sandwich formula
given by Hall and Zhang (2004) seemed not to account for the variability due to the
introduction of the latent variables which indicate whether each response variable is from a
zero-degenerated distribution or from the count model. Following the work of Satten and
Datta (2000), we introduce a correction term which substantially improves the situation in
several simulation scenarios. This correction term is based on estimation of quantities that
require additional modeling assumptions which could be difficult to verify and only hold
approximately. We finally settled for a non-parametric bootstrap-based variance estimator
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(Efron, 1979; Davison and Hinkley, 1997) which does not require any additional
assumptions. Furthermore, it provided accurate answers in all settings.

We apply our GEE.ZINB model to analyze the caries scores at age five for children
participating in the lowa Fluoride Study (Levy et. al, 2001). For comparison, we also apply
the standard ZINB model that does not account for correlation and a GEE based zero-
inflated Poisson (GEE.ZIP) model that incorporates both the correlation and the zero
inflation. We show GEE.ZINB is better than ZINB and is similar to GEE.ZIP. Both
GEE.ZINB and GEE.ZIP identify a clinically relevant risk factor for dental caries in
children. Also noteworthy is that the estimated coefficient of the extra zero component of
the GEE.ZINB model was statistically significant indicating that a negative binomial model
would have been inadequate for these data. Next, we carry out extensive simulation studies
with realistic parameter choices guided by the real data.

The rest of the paper is organized as follows. In Section 2, we present the details of the
proposed models, the estimation of the parameters, and their variance estimators. In Section
3, we report our data analysis for the dental study. Simulation results are reported in Section
4. The paper concludes with a discussion in Section 5.

2. The model and statistical inference

2.1. GEE-based ZINB model and estimation of parameters

A GEE-based ZINB model (GEE.ZINB) is developed to handle correlated/clustered count
data, where the counts of zeros are above and beyond the number of sampling zeros
expected from a NB distribution. Without loss of generality, let us denote by Yjj, the number
of counts for the jt subject within the it cluster (i=1, -, N; j =1, ..., n;). The response
variable Yjj (i=1, -, N; j=1, -+, n;) follows a mixture of a degenerated distribution at zero
with mixing probability of pjj and a NB distribution with mean 4;; with mixing probability 1
= pjj- The probability mass function of a NB distributed random variable Wij; can be written
as

~ (wyi+L) 1 ox. Wi
PT’(W ij:wij):fNB (wijp\ijaT):I;y‘_:;?f) (1+71Ai7v)7(1+i;'7i7-) Zj’ @)
3! T . ;

where wj; = 0,1, --+; and 7(7>0) is a shape parameter that quantifies the amount of over-
dispersion. The mean and variance of Wj; are given by E(Wjj|4jj, 7) = 4j; and

Var(Wi;| Aij, 7):>\ij+7)\fj, respectively. Unless 7= 0, the variance is always larger than the
mean Ajj. Thus, the NB model adds a quadratic term TAfj to the variance of Poisson to
account for the extra-Poisson variation or over-dispersion (Wan et al., 2012). Considering Yijj
as the mixture of a zero-degenerated distribution with a probability pjj and a NB model
random variable Wjj with a probability 1 - pj;, the probability distribution of the response

variable Yijj can be written as:
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pij+(1—pij) Pr(W;;=0) if y=0,
Pr(Y,i=y)= J J v .
(¥i=9) { (1=pi;) Pr(Wy=y)  ify =1,
1

Pij(1—pij) (ﬁ) . ify=0, @

1
ry+2) (g Y
(1_pij) (L <1+rl>\,j) (1+r/\J,¢j) ify > 1.

()

It is easy to check that the mean and variance of Yj; are given by
E{Y;}=(1=-pij)Aijs (3
and

Var{Yi;}=1=pij) Nij (L+7Aij+pijAij).  (4)

When all observations are independent, the ZINB has been developed to model the zero-
inflated data. In a ZINB model, both pj; and 2;j are modeled as functions of explanatory
variables. The log link function is used to relate 4;j to the explanatory variables (say, Xjj), and
the logit link function is used to relate pjj to the explanatory variable (say, zjj). The
predictors (say, Xjj) for 4j can be different from the predictors (say, z;j) for pjj. Let us assume

that log(\i;)=2; 3 and logit(p;;)=2);y (i=1,2,--- , N3j=L1,--- ,n;). Thus, the mean of Yjj,
E{Yij} = wij = (1 - pjj)4ij, depends on the parameters fand y. To account for the correlations
for the observations within the same cluster, a correlation matrix, say R;(c) for it cluster is
introduced, and fand y can be obtained by applying the following generalized estimating
equations (GEE) (Hall and Zhang, 2004):

N —
ZH( out ) Vi a, 8,7, 7) (Yi—pi)=0. (5)

Here Y; = (Yig, -, Yini)Tv Hi = (Hig, -~ Uini)Tv Vile, 8,7, 7)= Var(Yg):A%Ri(a)Ai% with A; =
Diag{Var(Yijj)lj=1, -, nj}- This direct application of GEE to the clustered zero-inflated models
may not be identifiable because fand y are typically confounded (e.g., share information) in
equation (5) (Hall and Zhang, 2004). It has been recommended to estimate fand yin two
separate equations by introducing latent variables ujj (i = 1, -+, N; j = 1, -, nj), which
indicate whether the random variable Yj; is from a zero-degenerated distribution or NB
distribution.

Let ujj = 0 if Yjj ~ fxg(4ij, 7), and ujj = 1 if Yjj is from a zero-degenerated distribution. We
have Pr(ujj = 1) = pjj. The GEE for y can be written as:

N T _
Zizla%’{‘/vi} Y(ui—pi)=0. (6)
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Here uj = (Ujy, - Uini)Tv piT:(Pih S Ding ) and pij(w Ltexp (:? implying

ops; exp (=10)
T —7<1+exp< T2 Vyi= A Rh(al)A is the variance matrix for u;, where A; =
Diag{pi1(1 - p,l) Pi2(1 = Pi2), = Pin;(1 — Piny)} with the j" entry being the variance of Uijs
and R1j(@) is the correlation matrix for u;. Similarly, the GEE for £ can be written as

N T —1 -
> 5 (Vi) T Diag(1—wi) (yi=2)=0 ()

Here A\T=(\i1, -+ - , Ain, ), Where log()\i_j):xz;ﬂ, which implies that A;j=exp (xz;ﬂ) and

%L_x”exp( «T.3). As before, Vi ( D3/2R2¢(a2)D3/2> is the variance matrix for Y;, where
= Diag{/i1(1 + #i1), dia(1 + T4i2), -, Ainj(1 + #hin;)} and Ryj(ay) is the correlation matrix
for Yj. The diagonal matrix Diag{1 - uj} = Diag(1 - ujy, -+, 1 — Ujp;) in equation (7)
indicates that only Yj; from the NB distribution (i.e., ujj = 0) contributes the estimating
equation (7). Given uj (i=1, -+, N; j=1, -, nj), fand yare estimated by the Fisher-scoring
method, which is an iterative algorithm for solving the estimating equations such as (6) and
(7). However, since ujj (i=1, -, N; j =1, -, nj) are latent (unobserved) variables, the
solutions are not directly usable. Instead the expectation-solution algorithm (Hall and Zhang,
2004; Rosen et al., 2000) can be applied, where in each iteration, uj; in (6) and (7) is
replaced by the conditional mean of ujj given Yj; and the current estimates for y, fand =.

Suppose that, in the bt iteration, the estimates for y, 4 and zare 1), /), and «?), then the
conditional mean of ujj can be obtained as

(b)—Pr(uZ-—l\y ’Y(b (b) T b))
{Pr (us;=1,ys;=0[y* ,8® r<b> }
Pr (y;; =07 ®),80), T<b> {yij=0} @
1 _
®) 0]
( _pij )(m) (b)

:{1+ »® : } l{yij:()}:
ij

b)_ exp (T4®)

where Pij —Hexp(, ) and AU =exp(z U,B )). Thus, combining this with (6) and (7),
estimates of yand ﬂcan be updated by the following iterated formulas:

b+1)_ —1 op, N opT ®_, ®
(JF "Y +{ZI 197 da,yT} Z 1 37 (u,l —p; )‘('y,al):(’y“),a(lb))’ 9

and

/B(b+1) :/B(b)""{zz

b
i}~ Diag (1 —u )) aﬁr} Sﬂ|([5,7’a2 =(8®) (1) ay®))s  (10)

Nax

where Sg= Z S AVai}~ ' Diag (1 u( >> (yi—Agb)).
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Note that the parameter zis only related to the variance function of the NB part. To estimate
7, let us introduce £2;(5)=(Y;j—Ay;(8))% and 2(8)=(%,(8), - - - ,¢2,.(8))" . If Bis set at the

correct value, we have £ (E?j(ﬁ)) =vi;(T) provided uj; = 1, where vij = 4ij(1 + ;). Thus,
we propose estimating z by solving the following equations:

ZLFZTHi(&?(ﬁ)—Ui(T)):O- (11)

5
Ii=(2uy = | ...
Here A? ), Hi=Diag(l - uj) and vj(7) = (Viz, - vini)T. Given fand y, 7
can be obtained by solving equation (11), which results in:

ZL 12] 1>\” (- u”>(52 (B)=Ai5) ZL 1ZJ11/\?7(1 ui) (s —2i)%=Aij)
n n 1
21:123:1 l’“w”ij Z,:lzjzl L—ui) Ay

=

(12)

Now we come to estimating a; and ay. To estimate a4, let us set

Usiy— (s =Pis) (uiy —pyt)
yist VPis(1—pis)pit(1—pig) |

which has the expected value of p,is, the correlation coefficient between ujs and ujt. Denote

Usi = (Ui12, Usiaz, -~ Uinern) T and pyiCar) = E{U,i} = (0412, ji13. = Oyini-1np) - The
parameter a; can be estimated by solving the following equation:

S LW Uy pyian)=0, (3)

where £ ;=271 and W,; is a working variance covariance matrix for the U;. If we set
5}

W, to be the identity matrix, and assume a symmetric compound structure for R,i(a), an

estimate of the common correlation parameter a; can be obtained as:

(“15_1’“) Uit pzt)
Zl (D e (14)

N - . . .
where N*:§ , 1% Standardizing it, we get our final estimator of a;:
1=

_ (wis—Pis) (Wip—Pst)
N* Zl ]Zs‘<t

Pis(1=Pis)Pit (1—=Pit)

SNy e
i=144j=1p;;(1-p;;)

a1=

(15)

Nmf

N
where &V, totzzizlni.

Similarly, to estimate a,, we set
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(Wis—Xis) Wit —Nit)
Vs T AN i (T Ag) (16)

Ugist=

and E{U st} = psist, the correlation coefficient between yjs and yj; when they follow NB
distributions. Denote Uz = (Ugist, Ugist: -, Uﬁini_l,ni)T, and pg(a1) = E{Uz} = (ogist Ofist:
pﬁini—l,ni)T when each component of Y; follows a NB distribution. Thus, a, can be estimated
by the following equation;

N 77—
> EEW Hy (Usi—ppi(az)) =0. a7

Here Eﬁi:apgiT(:ﬁ, Wy & Cov(Ug), and Hg = Diag{(1 - ui1)(1 - uip), -, (1 = Ujn;-1)(1 =
Uin;)}- In the case that Wy is the identity matrix and R(a) is the symmetric compound
structure, a;, could be obtained as follows:

A — = “Ls)(] “u)(y“—)\“)(,lzt )‘It)
Qo= E g 18
=1 s<t Vs CFTX )X (147 X¢) (18)

* N . .
Here N*=) .~ > _ (1-uis)(1—uit), As before, an alternative range preserving
(standardized) estimate for a is

(i) A —ui) (Y5 =Xis) (Yig = Nig)

N
Qo=-L \/Azs 1H7Xi ) Xie (I+T A1)
2= N+ E i:lE s<t (i) 20,22 (19)

NLLZI 127 17N (1+m )

where Ntot= Z Z 7 (1- “w . In this paper, the range preserving estimates for a; and
ay given by (15) and (19) are used.

To obtain the final parameter estimates for £, 7, 7, a1 and ap, an iterative method is required
to iterate between estimating fand y (given the current estimate of 7, @; and ) as the
solution of equation (6) and (7), and estimating 7, a; and ap (given the current estimate of S
and y) as the solution of (11), (13) and (17) until convergence.

2.2. Variance estimation

Liang and Zeger (1986) showed that the GEE estimators are consistent and asymptotic
normal for any choice of working correlation matrix, provided that the regression model for
the mean response has been correctly specified. However, the standard GEE model does not
involve any latent variables. When the latent variables do exist, the expectation-solution
algorithm replaces the latent variables by their conditional mean given the response variable
and current estimates of regression parameters. However, ignoring the variation due to the
replacement of each latent variable with its conditional mean can result in smaller estimated
variance as compared to the true variance of the regression parameter estimators.

N
Let us stack the estimating equations (6) and (7) to write Zizlsi(uia ¥i|0)=0, where
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apT -1
i {V.; U;—P;s
Si(ui,yil0)={ Bii”.} (_ 73)._. - @)
{Va:} " Diag(1—u;)(yi—X:)

2
98

When the latent variables are replaced by their conditional means, the estimating equations

N
become Y., Si(%il6)=0, where

2V} (Bluilyik—pi) )) (21)

Si(y:|0)=L1Si(ui, yi|9)|yi f= T —1 s
(4il0)=E{Si(ui, yil0)|y: } (8_&{‘,1} Diag(1— E{uily:}) (gi—A:

The asymptotic covariance for the estimator of 0 is given by the following sandwich form

A N
where B=) " 250, and
1=

61 2 -1, N T A -1, . T
V0 oY . S UEU NG L ) .
=\ B Ve Diag1-ai(yi—) | \ G5 {Veid  Diag(1-a:)(gi—)
Here the parameters for equation (22) have been replaced by their final estimates. In order to

obtain the Hessian matrix 251w,10), Satten and Data (2000) provided the following formula
for the marginal Hessian matrix, where Fguily;) is the conditional CDF of u; given y;:

9Si(yil9)
06T

= {20 (5 (s, 110) = S (3110)) (Si 0 110)=Si(wil0))T } dF ol

In the present context, the first term turns out to be

3;)T —1 Ops

~S(na () 0
l‘ 9S; (uiyil6) dF.g(U'y-): o .l =B1i, (23
e A 0 DLV} Diag-w) 2y )T

and the second term turns out to be

J{(SiCus, 4il0)=Si(5:10)) (Si(wi, yil6) = Si(il6) } dF(uilys)

apT -1 opT 1 T
i{V.; i V.. (24)
= ( AT o {7171}. > Va’r{ui[yi} ( axT o {,171} ) :BQi)

— 55 1Vai}  Diag(yi—N:) —=51{Vai}~ Diag(yi—Ni)
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where Var{uilyi} = Aui - E{uilyi})(ui — E{uilyi}) T dF «u;ly;), the conditional variance of u;
given y;. Recall that ujj is a latent variable, indicating whether the observation yjj is from

zero-degenerated distribution, the conditional mean E(uijjly;;) is estimated by ug? as defined

. . . . N b b
in equation (8), and the conditional variance of Var(uijlyjj) is estimated by Ugj) (1—“%)). We
assume the conditional correlation matrix for uj given y; is the same as its marginal
correlation matrix, say R,;. Thus, Var{uijlyjj} in equation (24) could be estimated by

v {uslyiy=Diag () (1=u)))"* {0} Diag (2 (1=u2))"” Thus, our sandwich
estimator the variance of 0is B-IMB™1 = (B + B,)"IM(B; + B,)~L, where By = 2By;, B, =
¥:B»j, and the estimates are obtained by replacing all quantities with the corresponding
estimates at convergence.

It should be noted that the proposed sandwich estimate (BlA+ BZS‘lM(ABﬁ 825‘1 accounts
for the variation of the latent variables, which is captured in BZT We expect the performance
of the proposed sandwich estimator to be better than the traditional sandwich estimator (Hall
and Zhang, 2004) that ignores the variation from the latent variable and has the form of
BlA‘lME:fl. However, when the counts are correlated, neither can the conditional
distribution of y; given u;, nor the distribution of u; be exactly specified from the marginal
model. Thus, the proposed sandwich estimate can still fall short of the true variance when
the counts are highly correlated; we have observed this in our simulation studies in Section
4,

To remedy the situation, we also consider a non-parametric alternative. We adapt the non-
parametric bootstrap technology (Efron, 1979; Davison and Hinkley, 1997) to the clustered
data setup to obtain this variance estimates. To do the bootstrap resampling, we draw a
random sample (with replacement) of clusters from the collection of all clusters in the
observed dataset. Note that resampling this way preserves the correlation structure that was
present in the original sample. We refit the GEE.ZINB model to the resampled clustered
data. This process is repeated 200 times, and the variance for each variable is calculated by
the empirical variance of the 200 sets of estimated parameters. Note that covariances
between parameter estimators can also be calculated this way. We show in Section 4 that
these resulting variance estimators capture the correct variances in all simulation settings.
However, first we apply our model to infer the risk factors for childhood caries and to guide
our simulation setup.

3. An application of GEE.ZINB inference to lowa Fluoride Study data

We illustrate our method using a dataset extracted from the lowa Fluoride Study (Levy et
al., 2001). The goal of our analysis will be to identify risk factors for childhood caries
experience (CE). Dental caries, also known as tooth decay or cavities, is an infection that
causes demineralization and destruction of the dental hard tissues. The lowa Fluoride Study
(http://www1.dentistry.uiowa.edu/preventive-fluoride-study) is an ongoing study of a cohort
of lowa children (mostly white, non-Hispanic, and middle or upper class socio-economic
status) that began in 1992. Substantial dietary data, including data on fluoride intake, were
obtained longitudinally through periodic questionnaires sent to parents every 1.5-6 months.

Comput Stat Data Anal. Author manuscript; available in PMC 2016 May 01.
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Surface-specific assessments of dental fluorosis and caries were made through dental
examinations at the ages of 5 years, 9 years, 13 years and 17 years.

For this illustration, we focus on the caries data at the age of 5 years from the lowa Fluoride
Study. There was a small fraction of children with missing covariates; we assume that such
missingness was completely at random and these children were dropped from our analysis.
We score each dental surface with a value of 0, 1 or 2 depending on the caries severity, and
these scores were then added to get overall caries experience scores (CESs) for each tooth of
each child. Note that, in the general terminology of Section 2, each child is a “cluster” and
the CES for various teeth for a child are the “subjects” in a cluster.

We analyze the CES treating them as count data. Figure 1A shows the marginal histogram
of CES (averaged over all teeth and children in our sample), and Figure 1B shows the
marginal histogram of CES excluding zeros. It is clear that the zeros dominate in the dataset,
and the excessive zeros provide evidence of zero inflation. This was more formally validated
in our subsequent analysis.

Since the CES for different teeth within a child are potentially correlated, a GEE-based
model to analyze whether the dental caries is associated with different exposures and
treatments seems appropriate. The potentially useful covariates from a clinical standpoint
included daily fluoride intake (AUCmMgF0_5yrs), daily soda pop intake
(AUCS0da0Oz0_5yrs), average of tooth brushing frequencies
(ToothBrushingFregPerDayAvg), the average proportion of times a dental visit was
conducted with each individual point assessing the previous 6 months
(DentalVisitPastémoAvg), the average proportion of times a professional dental fluoride
treatment was received with each individual point assessing the previous 6 months
(FluorideTreatmentPastémoAvg), and the average home tap water fluoride level for all the
returned questionnaires (HomeFluorideppmAvg). We also included gender and the exact age
as covariate in our models. After removing the observations with missing covariates, the
study subset included 8189 data values (CES) grouped into 414 clusters (children) in total.
The minimum size of the clusters (i.e., number of teeth per child) was 13, and the maximum
size was 20. Indeed 90% of clusters had size of 20.

We have fitted a GEE.ZINB model to these data. A compound symmetric correlation
structure is assumed for each of the two components (i.e., count component and zero-
inflation component) of the model and the two correlation coefficients are estimated using
formulas (15) and (19), respectively. The parameter estimates, their various estimated
standard errors and p-values from two-sided Wald tests are reported in Table 1. We use the
sandwich variance estimator (BlA+ BZA)‘lM(AB1A+ 825‘1 that accounts for the variability due to
estimating the latent variables u. The estimated S.E. and the resulting p-values are listed
under the column “S.E. (SW)” and the next column, respectively. For comparison, we also
report the results both from using the sandwich variance estimator BlA‘lMBAlA‘1 as prescribed
by Hall and Zhang (2004) and the non-parametric cluster bootstrap-based variance
estimators. These values are indicated by “S.E. (HZ)” and “S.E. (BS)”, respectively (see
Table 1A).
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For the sake of comparison, we also fit a GEE based zero-inflated Poisson (GEE.ZIP) model
and an independent ZINB model to these data. The implementation of GEE.ZIP is similar to
GEE.ZINB, where the parameter zin the variance component of NB is set zero. The ZINB
is implemented using the existing R package pscl (http://cran.rproject.org/web/packages/
pscl/pscl.pdf; also see Zeileis et al., 2008). The initial values for regression parameters fand
yin the GEE.ZINB and GEE.ZIP were those obtained from ZINB. These results obtained
from GEE.ZIP and ZINB models are reported in Table 1B and 1C respectively. As can be
seen from Table 1, the magnitude and the direction (i.e., the sign of the estimates) of the
estimates based on the three different models are similar. The correlation coefficient for the
observations within the same child was 0.165 for the count data component in the
GEE.ZINB model. The small correlation coefficient indicates that the point estimates from
ZINB will be similar to those from GEE.ZINB for this count data part, which indeed
happens to be the case to a large extent. The DentalExamAge effect is positive and declared
to be statistically significant by all three models, which makes clinical sense since waiting
longer for the dental examination increases the severity of CE. Both ZINB and GEE.ZINB
models indicate that AUCmgFQO_5yrs is negatively associated with CES, which also makes
clinical sense since fluoride acts to prevent or slow subsequent caries development.

For the zero inflation part, the GEE.ZINB and GEE.ZIP are quite similar, while the
GEE.ZINB and ZINB model inferences differ somewhat. In particular, the variables
DentalExamAge and ToothBrushingFreqPerDayAvg are both deemed to be statistically
significant (at p<0.05) by the ZINB model, but not by the GEE.ZINB model using the
proposed sandwich estimate of variance. While the signs of the corresponding parameter
estimates make good clinical sense, the ZINB model estimates (including the variance
estimates) are based on the maximum likelihood estimation theory for independent data.
Consequently, the estimated standard errors are incorrect, since there was a modest within-
cluster correlation of 0.266 for the zero-inflated part of the data. The estimated standard
error for ZINB could be underestimating the true standard error and, hence, the p-values
could be too optimistic. We have verified this in the simulation studies presented in Section
4. Comparing the three sets of standard error estimates for the GEE.ZINB model in Table 1,
we see that our sandwich estimate lies between that using the HZ recipe and the bootstrap-
based estimate in all cases. The extensive simulation studies performed and reported in the
next section show that the bootstrap version is most accurate. On the other hand, the HZ
estimates could severely underestimate the true values, leading to optimistic p-values and
potentially false positive results.

4. Simulation

We conducted an extensive simulation study to evaluate the performance of the estimators
obtained from GEE.ZINB and ZINB under the general setting where both within-cluster
correlation and zero inflation are present in the data. While the parameter choices in the
simulation studies were guided by the data analysis section, we varied the amount of within-
cluster correlation as high, medium and absent.

Data for the count model were generated from the following log-linear model:
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log(Aij)=—2.713—-0.018 Gender+0.696 DentalExamAge—0.856 AUCMgFO0_ 5yrs
+0.072AUCS0da0z0_ 5yrs—0.023 ToothBrushingFreqPerDayAvg
40.740 Dental Visit Past 6 moAvg+0.955 Fluoride TreatmentPast 6 moAuvg
—0.062HomeFluorideppmAvg,

(25)

and the probability pj; of a data value coming from the zero component was controlled via
the following logistic regression model:

logit(p;;)=3.5994-0.201 Gender —0.389 Dental ExamAge+0.392AUCmgF0_ 5yrs
—0.010AUCS0da0z0- 5yrs+0.503 ToothBrushingFreqPerDayAvg
+0.825 Dental VisitPast 6moAvg—0.875 Fluoride TreatmentPast 6moAvg
40.046 HomeFluorideppmAvg.

(26)

Note that just like the real data, the covariates used in the model were cluster (child) level
covariates. We used the same number of clusters (=414) and the corresponding covariates as
in our dental dataset analyzed in the previous section. However, for simplicity we take the
cluster size to assume a constant value of 20. To generate the indicators uj; of zero inflation
of subjects in each cluster, we start from a sample of 20 correlated normal variates, each
with zero mean and unit variance, and with a constant pairwise correlation coefficient, say 3,
and convert them into 20 correlated binary random variables using appropriate
transformations while maintaining the marginal success probabilities equal to (26).

Meanwhile, we also generated 20 correlated negative binomial random variables for each
subject via quantile-probability transformations starting from another (independent) set of
20 normal variates, each with zero mean and unit variance, and with a constant pairwise
correlation coefficient of a. We ensured that marginally these NB variates have means
specified by the log-linear model (25) and dispersion t=0.347. Note that, for simplicity, we
have used the same correlation coefficient a in both parts of the model. However, since the
nonlinear transformations were different, the magnitude of the induced correlation in two
pieces of the generated data was different. If for a subject, uj; =1, we set the corresponding
CES equal to zero; otherwise, we assign the corresponding NB variate to its CES.

A total of 1000 datasets were generated for each of three scenarios determined by amount of
correlation. For each dataset, parameter estimates and their estimated standard errors were
computed from GEE.ZINB and ZINB respectively. These values were averaged over the
1000 runs and reported along with the empirical standard deviations of the parameter
estimates. The main results are presented in Table 2.

4.1 Comparison of estimators from GEE.ZINB and ZINB

Based on the simulation results, we conclude that (i) the biases of the estimators based on
GEE.ZINB and ZINB are similar, and all the estimated coefficients in the GEE.ZINB are
asymptotically normally distributed (see Q-Q plots in Figure 2); (ii) when the correlation of
within-subject counts is high (Table 2), the ratios of the sandwich SE and the true SE of
regression parameter estimators for the count model lie between 0.691 and 0.798 for
GEE.ZINB. The same ratios for ZINB are between 0.339 and 0.378, indicating that, while
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both large sample estimators (SW for GEE.ZINB and inverse Fisher information for ZINB)
underestimate the true variance, the degree of underestimation for ZINB is more severe; (iii)
for the zero inflation model in GEE.ZINB, the ratio of the estimated standard error from the
proposed sandwich estimator and the true SE is close to 1 regardless of the magnitude of the
within cluster correlation, for that reason we only showed the simulation results for the case
of high correlation for zero inflation model in Table 2; (iv) for ZINB model, the ratios of the
estimated SE and the true SE are about 0.35 under high correlation (see Table 2), 0.50~0.70
under medium correlation (see Table S1 in Supplementary materials), and 1 under
independence (see Table S2 in Supplementary materials), indicating that the standard ZINB
inference may not be suitable for clustered data.

4.2 Comparisons of the three variance estimators for GEE.ZINB

It is noticed that the proposed sandwich variance estimator for GEE.ZINB is
underestimating the true variance for the count model part, although we have accounted for
the variation of the latent variables, and the degree of underestimation is more severe when
the correlation is high. A plausible explanation for its less than perfect behavior is that
estimation of this additional part B is not possible without making some crude
approximation (e.g., the conditional correlation matrix for uj given y; is the same as the
marginal correlation matrix). There does not seem to be a natural (e.g., model-free) closed
form estimator for this part. It should be noted, however, that this estimator is still preferable
over the HZ estimator in all cases. The estimator based on the non-parametric bootstrap
(each based on a BS replication of size 200) seems to be most accurate in all cases, as shown
by the ratio comparison with the true values.

The proposed sandwich variance estimator provides correct estimates for the zero-inflation
part of the model regardless of the magnitude of the correlation. In real data analysis, it may
be safer to use the bootstrap method for valid statistical inference for the GEE.ZINB, even
though it is computationally a bit more intensive and does not offer a fixed answer due to
resampling.

5. Discussion

We have developed a GEE-based ZINB model and associated inference procedures for
analyzing count data that are correlated and zero-inflated. Utility of this model over existing
models and software has been demonstrated in analyzing a dental dataset relating caries
experience with clinical covariates. For the dataset extracted from the lowa Fluoride Study,
we found that dental examination age and daily fluoride intake were significant predictors of
caries experience at age five. These findings may be limited to the population under the
lowa Fluoride Study and not generalizable to the entire US population. However, the
underlying statistical methodology could be useful in analyzing other clustered count
datasets encountered in different disciplines of biomedical and other scientific research. The
associated R code (available under supplementary materials) will provide a useful data
analysis tool to practicing statisticians and data analysts.

Another important purpose of this paper is to caution potential users about the danger of
using incorrect variance formulas in making statistical inference. While sandwich variance
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formulas related to estimating equations are regarded as robust against potential model
misspecification, they are not without pitfalls. In case of complex model fitting procedures,
a naive sandwich variance formula could underestimate the true variance by failing to
properly account for all sources of estimation errors. This, in turn, could inflate the power of
test of significance of an effect, leading to false positive results. When in doubt, non-
parametric procedures such as the bootstrap should be used. Of course, for developing a
proper resampling procedure, certain model structures should be respected. In particular for
clustered data, resampling entire clusters of observation is warranted, rather than subject-
level resampling.

As stated earlier, we have compared the GEE.ZINB method developed here with the
independent ZINB where an existing R-package was used to obtain the necessary inference
for the later method. In our simulation study, we noticed that this method of estimation
encountered convergence problems more often as compared to the GEE.ZINB method. In
terms of the variance estimates, it may be possible to create a robust variance estimate for
the ZINB likelihood scores that is valid under a clustered data setting. These issues may be
investigated elsewhere.

The GEE.ZINB is a marginal model and is suitable for population level inferences. The
multilevel zero-inflated NB and Poisson models (Lim et al., 2013; Moghimbeigi et al., 2008;
Yau et al., 2003) have been proposed to analyze clustered count data with extra zeros.
However, the regression coefficients in the multilevel models may not be interpreted as
population level effects (Fitzmaurice et al., 2011). The comparisons between the multilevel
ZINB models and GEE based ZINB may deserve further investigation. In addition, Bayesian
zero-inflated Poisson (ZIP) model (Xia et al., 2014) has been proposed recently, and the
estimation and influence diagnostics for ZINB (Garay et al., 2011) and Bayesian ZIP (Xia et
al., 2014) have been studied. How to extend the estimation and influence diagnostics to GEE
based ZINB model may be investigated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1B: Values Excluding 0s
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Figure 1.
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The marginal histogram of caries experience score (CES) summarized over all teeth and
children in our sample (Fig. 1A), and the marginal histogram of CES excluding zero counts

summarized over all teeth and children in our sample (Fig. 1B).
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Figure 2.

The Q-Q plots for the estimated parameters for count model (Panels A1-A8) and for the
zero-inflated model (Panels B1-B8) in the GEE-based ZINB model, each plot is based on
the estimated parameters from 1000 simulated datasets. The x-axis shows the theoretical
quantiles of standard normal distribution, and the y-axis is the quantiles of the 1000
estimated parameters.
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