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Universidad Carlos III de Madrid

Getafe (Madrid), Spain, 28903

audrone.virbickaite@uc3m.es

M. Concepción Ausín

Universidad Carlos III de Madrid

Getafe (Madrid), Spain, 28903

concepcion.ausin@uc3m.es

Pedro Galeano

Universidad Carlos III de Madrid

Getafe (Madrid), Spain, 28903

pedro.galeano@uc3m.es

ar
X

iv
:1

30
1.

51
29

v2
  [

q-
fi

n.
PM

] 
 3

1 
Ja

n 
20

14



Abstract

We propose a Bayesian non-parametric approach for modeling the distribution of

multiple returns. In particular, we use an asymmetric dynamic conditional correlation

(ADCC) model to estimate the time-varying correlations of financial returns where the

individual volatilities are driven by GJR-GARCH models. The ADCC-GJR-GARCH

model takes into consideration the asymmetries in individual assets’ volatilities, as well

as in the correlations. The errors are modeled using a Dirichlet location-scale mixture of

multivariate Gaussian distributions allowing for a great flexibility in the return distribu-

tion in terms of skewness and kurtosis. Model estimation and prediction are developed

using MCMC methods based on slice sampling techniques. We carry out a simulation

study to illustrate the flexibility of the proposed approach. We find that the proposed

DPM model is able to adapt to several frequently used distribution models and also

accurately estimates the posterior distribution of the volatilities of the returns, without

assuming any underlying distribution. Finally, we present a financial application using

Apple and NASDAQ Industrial index data to solve a portfolio allocation problem. We

find that imposing a restrictive parametric distribution can result into underestimation

of the portfolio variance, whereas DPM model is able to overcome this problem.

Keywords: Bayesian Analysis; Dirichlet Process Mixtures; Markov Chain Monte

Carlo; Multivariate GARCH; Portfolio Allocation.

JEL Classification: C11, C32, C53, C58, G11.



1. INTRODUCTION

Modeling the stylized features of the assets’ returns has been extensively researched for

decades and the topic yet remains of great interest. The ARCH-family models, first intro-

duced by Engle (1982) and then generalized by Bollerslev (1986), are without doubt the

most analyzed and used in practice to explain time-varying volatilities, see Bollerslev et al.

(1992), Bollerslev et al. (1994), Engle (2002b), Teräsvirta (2009) and Tsay (2010), for in-

stance. When dealing with multiple returns, one must also take into consideration the mutual

dependence between them, see Bauwens et al. (2006), Silvennoinen & Teräsvirta (2009) and

Tsay (2010), for instance. In particular, conditional correlation models firstly proposed by

Engle (2002a), Tse & Tsui (2002) and Christodoulakis & Satchell (2002), play an important

role because there is evidence that conditional correlations are time dependent. The asym-

metric behavior of individual returns has been well established in the financial literature, see

Hentschel (1995). More recently, Cappiello et al. (2006) have pointed out that conditional

correlations may exhibit some stylized features, such as persistence and asymmetry and,

consequently, have proposed Asymmetric Dynamic Conditional Correlation (ADCC) models

for time-varying correlations.

It is well known, that every prediction, in order to be useful, has to come with a certain

precision measurement. In this way the agent can know the uncertainty of the risk she is fac-

ing. In the field of MGARCH models, the distribution of the returns, that strongly depends

on the distributional assumptions for the error term, permits to quantify this uncertainty

about the future. However, the traditional premises of multivariate Normal or Student-t

distributions may be rather restrictive because usually the empirical distribution of returns

is slightly skewed and their tails are fatter than those of a Gaussian distribution, see Rossi

& Spazzini (2010), for example. Alternative parametric choices such as the Student-t den-

sity, see Fiorentini et al. (2003), the skew-Student-t distribution, see Bauwens & Laurent

(2005), or finite mixtures of Gaussian distributions, see e.g. Ausín & Galeano (2007) and
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Galeano & Ausín (2010), have been proposed in the literature that usually improve the fit

of the GARCH models. However, all of them require the assumption of a certain parametric

model.

In this paper, in order to model the stylized features of the assets’ returns, we assume

a model which allows for asymmetries not only in individual assets’ returns, but also in

their correlations. In particular, we consider an Asymmetric Dynamic Conditional Correla-

tion (ADCC) model for time-varying correlations, proposed by Cappiello et al. (2006), with

GJR-GARCH models, proposed by Glosten et al. (1993), for individual volatilities. This

specification, denoted by ADCC-GJR-GARCH, provides a much more realistic evaluation of

the co-movements of the assets’ returns than standard symmetric MGARCH models. Addi-

tionally, we propose a Bayesian non-parametric approach for the ADCC-GJR-GARCH model

avoiding the specification of a particular parametric distribution for the return innovations.

More specifically, we consider a Dirichlet Process Mixture (DPM) model of Gaussian dis-

tributions, firstly introduced by Antoniak (1974). This is a very flexible model that can be

viewed as an infinite location-scale mixture of Gaussian distributions which includes, among

others, the Gaussian, Student-t, logistic, double exponential, Cauchy and generalized hyper-

bolic distributions, among others. We follow closely the works of Ausín et al. (2014), who

have applied the DPM models for univariate GJR-GARCH, and Jensen & Maheu (2013),

who have used DPM models for the multivariate symmetric DVEC by Ding & Engle (2001).

Non-parametric time-varying volatility models have been of great interest in the recent lit-

erature, not only in GARCH, but also in Stochastic Volatility setting, see Jensen & Maheu

(2010), Jensen & Maheu (2012), Delatola & Griffin (2011) and Delatola & Griffin (2013).

The Bayesian approach also helps to deal with parameter uncertainty in portfolio decision

problems, see e.g. Jorion (1986), Greyserman et al. (2006), Avramov & Zhou (2010) and Kang

(2011), among others. This is in contrast with the usual maximum likelihood estimation

approach, which assumes a "certainty equivalence” viewpoint, where the sample estimates

are treated as the true values, which is not always correct and has been criticized in a number
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of papers. As noted by Jorion (1986), this estimation error can gravely distort optimal

portfolio selection. In this paper, we propose a Bayesian method which provides the posterior

distributions of the one-step-ahead optimal portfolio weights, which are more informative

than simple point estimates. In particular, using the proposed approach, it is possible to

obtain Bayesian credible intervals for the optimal portfolio weights. Note that the Bayesian

methodology also provides some other advantages over the classical maximum likelihood

techniques, see Ardia & Hoogerheide (2010). For example, it is easy to incorporate via

priors complicated positivity constraints on the parameters to ensure positive variance and

covariance stationarity. Additionally, it is possible to approximate the posterior distribution

of any other non-linear function of the parameters, as will be done for the optimal portfolio

weights. For a survey on Bayesian inference methods for univariate and multivariate GARCH

models see Virbickaite et al. (2013).

Therefore, the main contribution of this work is the proposal of a Bayesian nonparametric

method for explaining the dynamics of the assets’ returns via an ADCC-GJR-GARCH model

with the use of DPM location-scale mixture models for the return innovations. Also, we

present an application of Bayesian non-parametric techniques in portfolio decision problems

and explore the differences in uncertainty between the proposed approach and conventional

restrictive distributional assumptions, where the objective is to provide a more realistic

evaluation of risk of financial decisions. As commented before, this study extends the work

by Ausín et al. (2014) to the multivariate framework and the recent work by Jensen & Maheu

(2013) to the asymmetric setting. Also, differently from the work of Jensen & Maheu (2013),

we always assume a conjugate prior specification and we use a different sampling approach.

The outline of the paper is as follows: Section 2 describes the model, inference and

prediction from a Bayesian perspective. Section 3 introduces the time-varying portfolio

optimization problem. Section 4 presents a short simulation study. Section 5 illustrates

the proposed approach using a real data example, solves a portfolio allocation problem and

carries out model comparison. Finally, Section 6 concludes.
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2. MODEL, INFERENCE AND PREDICTION

This section describes the asymmetric dynamic conditional correlation GJR-GARCH model

used for volatilities and correlations. Then, we introduce the DPM specification for the

error term. Finally, we provide a detailed explanation of the implementation of Bayesian

non-parametric inference and the methodology of obtaining predictive densities of returns

and volatilities.

2.1 The ADCC-GJR-GARCH-DPM Model

As commented before, financial returns usually exhibit two types of asymmetries: in indi-

vidual volatilities and in conditional correlations. Therefore, in one hand, we choose the

GJR-GARCH model proposed by Glosten et al. (1993) for individual returns, to incorporate

asymmetric volatility effects, while, on the other hand, we use the ADCC model proposed

by Cappiello et al. (2006) and based on the previous work by Engle (2002a), to model joint

volatilities. Then, we assume that the vector of K asset returns is given by:

rt = H
1/2
t εt, (1)

for t = 1, . . . , T , where Ht is a scale symmetric K × K matrix and εt are a sequence of

iid random variables with an unknown K-dimensional distribution FK , for which we will

assume a DPM prior specified later. As usual in all the DCC models, the matrix Ht can be

decomposed as follows:

Ht = DtRtDt, (2)

where Dt is a diagonal matrix that contains the square root of the elements of the main

diagonal of Ht, denoted by diit, for i = 1, . . . , K. These elements are assumed to follow
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GJR-GARCH models given by:

d2iit = ωi + (αi + φiIi,t−1)r
2
it−1 + βid

2
iit−1, (3)

with parameters ωi, αi, φi, βi > 0, for i = 1, . . . , K and where Ii,t−1 is an indicator function

such that Ii,t−1 = 1 if rit < 0 and is Ii,t−1 = 0, otherwise. On the other hand, to introduce

Rt, we need to define

εt = D−1t rt, and ηt = εt � I(εt < 0), (4)

where � denotes Hadamard matrix product operator and I(εt < 0) is a vector with ith

component equal to 1 if εit < 0, and 0 otherwise. Then, Rt is given by:

Rt = Q?−1
t QtQ

?−1
t , (5)

where Qt is the K ×K matrix given by:

Qt = S(1− κ− λ− δ/2) + κ× εt−1ε′t−1 + λ×Qt−1 + δ × ηt−1η′t−1, (6)

where S is a sample correlation matrix of εt, and Q?
t is a diagonal matrix with the square root

of the ith diagonal element of Qt on its ith diagonal position. We impose that κ, λ, δ > 0

and κ + λ + δ/2 < 1 to ensure the positivity and stationarity of Qt. Finally, the vector

Φ = (ω, α, β, φ, κ, λ, δ) summarizes the set of parameters describing the matrices Ht, for

t = 1, 2, . . .

As for the unknown distribution of εt ∼ FK , there has been and ongoing discussing about

the best specification for the heavy-tailed financial returns. Next, we present a flexible DPM

specification for the errors and some of the most important special cases arising from this

model. Using the stick-breaking representation by Sethuraman (1994), a DPM of Gaussian

distributions can be expressed as a location-scale Gaussian mixture model with infinitely

many components and therefore, it can be easily defined as an extension of a parametric
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mixture model. The base distribution of the DP, usually denoted by G0, corresponds to the

prior distribution of the component parameters in the infinite mixture. The concentration

parameter, denoted by c, can be interpreted as the prior belief on the number of clusters

in the mixture. Small values of c assumes a priori an infinite mixture model with a small

number of components with large weights. On the contrary, large values of c assumes a priori

an infinite mixture model with all the weights being very small.

Therefore, the resulting density function of εt can be written as:

f (εt|ρ, µ,Λ) =
∞∑
j=1

ρjNK
(
εt|µj,Λ−1j

)
, (7)

where NK denotes a K-variate normal density. Let us denote by Ω = {ρj, µj,Λj}∞j=1 the

infinite-dimensional parameter vector describing the innovation mixture distribution. Here

ρj, represent the component weights, µj are the component means and Λj are the precision

matrices, for j = 1, 2, . . . Using the stick breaking representation, the weights of the infinite

mixture components are reparameterized as follows: ρ1 = v1, ρj = (1 − v1) . . . (1 − vj−1)vj,

where a Beta prior distribution is assumed for vj ∼ B(1, c), for j = 1, 2, . . . Clearly, there

will be some sensitivity to the choice of the concentration parameter c. Therefore, we further

assume a Gamma hyper-prior distribution for c, c ∼ G(a0, b0). Finally, as a base distribution,

we assume a conjugate Normal-Wishart prior for (µj,Λj) ∼ NW(m0, s0,W0, d0), where:

µj|Λj ∼ NK
(
m0, (s0Λj)

−1) ,
Λj ∼ W(W0, d0),

for j = 1, 2, . . ., such that E [Λj] = d0 ×W−1
0 and E

[
Λ−1j

]
= (d0 − (K + 1)/2)−1 ×W0.

In summary, the complete set of model parameters is denoted by Θ = (Φ,Ω). Given the

information available up to time t−1, denoted by rt−1, the conditional density of the returns
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can be written as follows:

f(rt|Θ, rt−1) =
∞∑
j=1

ρjNK
(
rt|H1/2

t µj, H
1/2
t Λ−1j (H

1/2
t )′

)
, (8)

with conditional mean given by:

µ?t = E
[
rt|Θ, rt−1

]
= H

1/2
t

∞∑
j=1

ρjµj (9)

and conditional covariance matrix:

H?
t = Cov

[
rt|Θ, rt−1

]
= H

1/2
t Cov [εt|Ω] (H

1/2
t )′, (10)

where

Cov [εt|Ω] =
∞∑
j=1

ρj
(
Λ−1j + µj(µj)

′)−( ∞∑
j=1

ρjµj

)(
∞∑
j=1

ρjµj

)′
.

It is important to notice that this full unrestricted model induces GARCH-in-Mean ef-

fects, since the conditional mean of the returns is not restricted to be zero. Moreover, the

DPM model for εt does not assume an identity covariance matrix. As noted in Jensen &

Maheu (2013), imposing moment restrictions in DPM models is still an open question. How-

ever, the prior information considered essentially centers εt around an identity covariance

matrix.

On the other hand, an essential issue in choosing more complicated models versus the

simple ones is the ability to handle numerous assets. The DPM model is very flexible in this

sense, since the general specification described before contains numerous other simplified

models. For example, it clearly contains the single Gaussian as a special case when the first

mixture weight is equal to one. Also, it is possible to impose a symmetric distribution for the

innovations by simply assuming that the mixture means are all equal and, in particular, it

could be reasonable to impose µj = 0, for j = 1, 2, . . .. If we further assume that the precision
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matrices are all diagonal, Λj = diag (λj1, . . . , λjK), this will lead to uncorrelated innovations.

Finally, we could in addition assume that the diagonal elements of each precision matrix

are all equal by considering Λj = λjIK . In this paper we will use the full version of the

DPM model to illustrate the flexibility of it. However, the adaptation of the model to these

particular cases in order to simplify the problem of many assets is straightforward.

2.2 MCMC algorithm

The following section describes a Markov Chain Monte Carlo (MCMC) algorithm to sample

from the posterior distribution of the parameters of the ADCC-GJR-GARCH-DPM model

introduced in the previous section. The algorithm is based on the procedure by Walker

(2007), who introduces slice sampling schemes to deal with the infiniteness in DPM, the

retrospective MCMC method of Papaspiliopoulos & Roberts (2008) and the ideas by Pa-

paspiliopoulos (2008) who combines these two methods to obtain a new composite algorithm,

which is better, faster and easier to implement. Generally, all these approaches compared

to traditional schemes based on the original algorithm by Escobar & West (1995) produce

better mixing and simpler algorithms.

Following Walker (2007), in order not to sample an infinite number of values at each

MCMC step, we introduce a latent variable ut, such that the joint density of (εt, ut) given Ω

is:

f(εt, ut|Ω) =
∞∑
j=1

1
¯
(ut < ρj)NK(εt|µj,Λ−1j ). (11)

Let Aρ(ut) = {j : ρj > ut} be a set of size Nut , which is finite for all ut > 0. Then the joint

density of (εt, ut) in (11) can be equivalently written as f(εt, ut|Ω) =
∑

j∈Aρ(ut)NK(εt|µj,Λ−1j ).

Integrating over ut gives us the density of infinite mixture of distributions (7). Finally, given

ut, the number of mixture components is finite. In order to simplify the likelihood, we also

need to introduce a further indicator latent variable zt, which indicates the mixture com-

ponent that εt comes from: f(εt, zt = j, ut|Ω) = NK(εt|µ,Λ−1)1¯
(j ∈ Aρ(ut)). Then, the
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log-likelihood of Θ, given the latent variables ut and zt looks as follows:

logL(Θ| {rt, ut, zt}Tt=1) = −1

2

T∑
t=1

(
K log(2π) + log |H?

t,zt |+ (rt − µ?t,zt)H
?−1
t,zt (rt − µ?t,zt)

′) ,
(12)

where µ?t,zt and H
?
t,zt are the conditional mean vector and conditional covariance matrix given

zt, i.e.:

µ?t,zt = H
1/2
t µzt ,

H?
t,zt = H

1/2
t Λ−1zt H

1/2
t .

respectively.

Using these latent variables, we now construct the following MCMC algorithm that is

described step by step.

Firstly, given zt, for t = 1, . . . , T , the conditional posterior distribution of the concentra-

tion parameter, c, is independent of the rest of the parameters, as seen in Escobar & West

(1995). So, we first sample an auxiliary variable ξ ∼ B(c+ 1, T ) and then c from a Gamma

mixture:

πξG(a0 + z?, b0 − log(ξ)) + (1− πξ)G(a0 + z? − 1, b0 − log(ξ)),

where z? = max(z1, . . . , zT ) and πξ = (a0 + z? − 1)/(a0 + z? − 1 + T (b0 − log(ξ))).

In the second step, we sample from the conditional posterior of vj for j = 1, . . . , z?, which

is given by:

vj| {zt}Tt=1 ∼ B(nj + 1, T −
j∑
l=1

nl + c),

where nj is the number of observations in the jth component and
∑j

l=1 nl gives the cumu-

lative sum of the groups. Also, ρ1 = v1, ρj = (1− v1) . . . (1− vj−1)vj, for j = 2, . . . , z?.
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In the third step, we sample the uniform latent variables ut ∼ U(0, ρzt), for t = 1, . . . , T .

In the fourth step, following Walker (2007), we need to find the smallest j? such that∑j?

j=1 ρj > u?, where u? = min(u1, . . . , uT ). Then, if z? < j?, we need to sample vj, for

j = z? + 1, . . . , j?, from the prior and sample ρj accordingly.

Next, in the fifth step, we sample from the conditional posterior distribution of the mix-

ture parameters, which are also Normal-Wishart distributions, (µj,Λj) ∼ NW(mj, sj,Wj, dj),

for j = 1, . . . , j?, where:

mj =
s0m0 + nj ε̄j
s0 + nj

, sj = s0 + nj,

Wj = W−1
0 + Sj +

s0nj
s0 + nj

(m0 − ε̄j)(m0 − ε̄j)′,

Sj =
1

nj

T∑
t:zt=j

(εt − ε̄j)(εt − ε̄j)′, ε̄j =
1

nj

T∑
t:zt=j

εt,

dj = d0 + nj.

Note that this approach is different from the one described in Jensen & Maheu (2013) since

they assume independent prior distributions for µj and Λj, and then, it is necessary to

include some Gibbs steps to sample from the conditional posterior.

In the sixth step, we generate to which component each observation belongs to by sam-

pling from the following conditional posterior distribution:

Pr(zt = j|...) ∝ 1
¯

(j ∈ Aρ (ut))NK(εt|µj,Λ−1j ),

see also Walker (2007).

The rest of the steps of the algorithm concern updating the parameters of the ADCC-

GJR-GARCH model. For that, we use the Random Walk Metropolis Hasting (RWMH),

following a similar procedure as in Jensen & Maheu (2013). For the set of parameters Φ a

candidate value Φ̃ is generated from a D-variate Normal distribution with mean equal to the
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previous value of the parameter, where D = 4K + 3, is the number of parameters in Φ as

follows:

Φ̃ ∼

 ND (Φ, V ) w.p. p

ND (Φ, 100V ) w.p. 1− p

The probability of accepting a proposed value Φ̃, given the current value Φ, is α(Φ, Φ̃) =

min
{

1,
∏T

t=1 l(rt|Φ)/
∏T

t=1 l̃(rt|Φ̃)
}
, where the likelihood used is as in (12), see e.g. Robert

& Casella (2005). The covariance matrix V is obtained by running some initial MCMC

iterations and then adjusting the sample covariance matrix by some factor in order to achieve

the desired acceptance probability. In this paper the acceptance probabilities are adjusted

to be between 20% and 50% and we use p = 0.9.

2.3 Prediction

In this section, we are mainly interested in estimating the one-step-ahead predictive density

of the returns:

f(rT+1|rT ) =

∫
f(rT+1|Θ, rT )f(Θ|rT )dΘ, (13)

where f(rT+1|Θ, rT ) is specified in (8). Although this integral is not analytically tractable,

it can be in principle approximated using the MCMC output,

f(rT+1|rT ) ' 1

M

M∑
m=1

f(rT+1|Θ(m), rT ), (14)

where M is the length of the MCMC chain and Θ(m) is the infinite set of parameters at the

m-th iteration. However, in practice, at each iteration, there are a finite number of weigths,

ρ
(m)
j , for j = 1, . . . , j?(m), and the corresponding pairs of means, µ(m)

j , and precision matrices,

Λ
(m)
j . Then, as considered in Jensen & Maheu (2013), we can use the following simulation

procedure at each MCMC iteration.
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Repeat for r = 1, . . . , R:

i. Sample a random variable a ∼ U(0, 1).

ii. Take such ρ(m)
r for which

∑r−1
j=1 ρ

(m)
j−1 < a <

∑r
j=1 ρ

(m)
j and the corresponding (µr,Λr)

(m).

iii. If
∑j?(m)

j=1 ρ
(m)
j < a, sample (µr,Λr)

(m) from the Normal-Wishart prior.

And then, approximate the one-step-ahead density in (14) by,

f(rT+1|Θ(m), rT ) ' 1

R

R∑
r=1

NK
(
rT+1|µ(m)

r H
(m)1/2
T+1 , H

(m)1/2
T+1

(
Λ(m)
r

)−1
(H

(m)1/2
T+1 )′

)
, (15)

where (µr,Λr)
(m), are the R pairs of means and precision matrices simulated for r = 1, . . . , R,

and H(m)
T+1 is the value of the HT+1 matrix at the m-th MCMC iteration.

Using this simulation procedure, we can also obtain predictions for many other important

measures. For example, the posterior expected value of the adjusted one-step-ahead mean

and volatility matrix, introduced in (9) and (10), respectively, can be approximated by:

E
[
µ?T+1 | rT

]
' 1

M

M∑
m=1

µ
?(m)
T+1 , (16)

and

E
[
H?
T+1 | rT

]
' 1

M

M∑
m=1

H
?(m)
T+1 , (17)

where,

µ
?(m)
T+1 = H

(m)1/2
T+1

(
1

R

R∑
r=1

µ(m)
r

)
(18)

and

H
?(m)
T+1 = H

(m)1/2
T+1

(
1

R

R∑
r=1

((
Λ(m)
r

)−1
+ µ(m)

r (µ(m)
r )′

)
−

(
1

R

R∑
r=1

µ(m)
r

)(
1

R

R∑
r=1

µ(m)
r

)′)(
H

(m)1/2
T+1

)′
.

(19)
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In order to obtain the posterior distributions of the adjusted means and volatilities, one

should fix a certain R: a number of components to sample at each iteration m. Since the

number of components in the data is not known a priori, one might chose R depending on

the number of clusters in the data. However, this implies that there is no upper limit for

R, which might result into sampling a very large number of components at each step and

increasing computational cost. Instead, we propose to make use of the truncation introduced

in (11) and use only j? components with their corresponding weights ρ at each step, such

that equations (18) and (19) become the following:

µ
?(m)
T+1 = H

(m)1/2
T+1

j?(m)∑
j=1

ρ
(m)
i µ

(m)
i

 (20)

and

H
?(m)
T+1 = H

(m)1/2
T+1 × (21)j?(m)∑

j=1

ρ
(m)
i

((
Λ

(m)
i

)−1
+ µ

(m)
i (µ

(m)
i )′

)
−

j?(m)∑
j=1

ρ
(m)
i µ

(m)
i

j?(m)∑
j=1

ρ
(m)
i µ

(m)
i

′(H(m)1/2
T+1

)′
.

Similarly, we can approximate the posterior median and credible intervals using the

quantiles of the posterior samples
{
µ
?(m)
T+1

}M
m=1

and
{
H
?(m)
T+1

}M
m=1

.

3. PORTFOLIO DECISIONS

As commented in the introduction, optimal asset allocation is greatly affected by the pa-

rameter uncertainty, which has been recognized in a number of papers, see Jorion (1986)

and Greyserman et al. (2006), among others. They conclude that in the frequentist setting

the estimated parameter values are considered to be the true ones, therefore, the optimal

portfolio weights tend to inherit this estimation error. Instead of solving the optimization

problem on the basis of the choice of unique parameter values, the investor can choose the
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Bayesian approach, because it accounts for parameter uncertainty, as seen in Kang (2011)

and Jacquier & Polson (2013), for example.

The main objective of diversification is to reduce investor’s exposure to risk. See Markowitz

(1952) and Merton (1972) for some classical portfolio optimization references. Nowadays,

there is a wide variety of portfolio optimization objectives, such as maximizing agent’s utility

or minimizing expected shortfall, among many others. In this paper we consider one of the

mostly used objectives, where the investor minimizes the portfolio variance. The Global

Minimum Variance (GMV) portfolio can be found at the very peak of the efficient frontier.

Given the time series of returns r1, . . . , T , the standard approach is to consider the uncon-

ditional covariance matrix of the returns, Σ = Cov[rt] and solve the following optimization

problem:

p? = arg min
p:p′1K=1

Var[rPt ],

where p is the weight vector, 1K is a K-vector of ones and rPT+1 = p′rT+1 is the portfolio

return at time point T + 1. The problem has solution:

p? =
Σ−11K

1′KΣ−11K
,

that is independent of the time point T . Note that, if we choose to impose the short sale

constraint, i.e., pi ≥ 0, ∀i = 1, . . . , K, the problem cannot be solved analytically anymore

and it requires numerical optimization techniques.

However, recent results suggest that the use of the time-varying covariance matrix to

determine portfolio weights leads to better performing portfolios than the use of a con-

stant covariance matrix. For instance, Giamouridis & Vrontos (2007) find that portfolios,

constructed under a dynamic approach, have lower average risk and higher out-of-sample

risk-adjusted realized return, see also Yilmaz (2011). Cecchetti et al. (1988) was the first

to suggest the use of MGARCH models in optimal allocation context. Since then, there

has been a number of papers investigating the differences in estimation and evaluating their
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performance using various approaches, from simple OLS, to bivariate vector autorregression

(VAR), to GARCH. In particular, Kroner & Sultan (1993), Rossi & Zucca (2002) and Yang

& Allen (2005), among others, have shown that GARCH-type models leads to the overall

portfolio risk reduction.

Consequentely, to solve the portfolio allocation problem in our case, instead of Σ, we

use the adjusted one-step-ahead conditional covariance matrix for the assets returns H?
T+1,

defined in (10), which varies continuously on the basis of available information up to time

T , rT . Therefore, we are able to obtain optimal portfolio weights for time point T + 1 as

follows:

p?T+1 =
H?−1
T+11K

1′KH
?−1
T+11K

. (22)

Using the MCMC output, we can obtain samples from the entire posterior distribution of

optimal portfolio weights for T+1, f(p?T+1|rT ). This approach relies on solving the allocation

problem at every MCMC iteration and approximate for example the posterior mean of the

optimal portfolio weights by:

E[p?T+1|rT ] =

∫
p?T+1f(Θ|rT )dΘ ≈ 1

M

M∑
m=1

p
?(m)
T+1 ,

where
{
p
?(m)
T+1

}M
m=1

is a posterior sample of optimal portfolio weights obtained from (22) for

each value of one-step-ahead conditional covariance matrix of the returns,
{
H
?(m)
T+1

}M
m=1

, in

the MCMC sample. In other words, since we have assembled M one-step-ahead volatility

matrices, we can solve the portfolio allocation problem M times. As in the previous section,

we can similarly approximate the posterior median of p?T+1 and credible intervals by using

the quantiles of the sample of optimal portfolio weights. In this manner, we are able to

approximate the posterior distribution of the optimal portfolio variance, σ2?
T+1, and optimal

portfolio gain, g?T+1, using the samples
{

(p?
′
T+1H

?
T+1p

?
T+1)

(m)
}M
m=1

and
{

(p?T+1µ
?′
T+1)

(m)
}M
m=1

,
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respectively, where

p
(
σt+1,P |rt

)
∼
{

(σt+1,P )(m)
}M
m=1

=
{

(p?
′

t+1H
?
t+1p

?
t+1)

(m)
}M
m=1

,

p
(
rt+1,P |rt

)
∼
{

(rt+1,P )(m)
}M
m=1

=
{

(p?t+1r
′

t+1)
(m)
}M
m=1

.

4. SIMULATION STUDY

The goal of this simulation study is to show the flexibility and adaptability of the DPM

specification for the innovations for the ADCC-GJR-GARCH model introduced Section 2.

For this, we consider three bivariate time series of 3000 observations simulated from a ADCC-

GJR-GARCH model with the following innovation distributions: (a) Gaussian N (0, I2);

(b) Student-t T (I2, ν = 8); (c) Mixture of two bivariate Normals 0.9N (0, σ2
1 = 0.8, σ12 =

0.0849, σ2
2 = 0.9) + 0.1N (0, σ2

1 = 2.8, σ12 = −0.7637, σ2
2 = 1.9). Notice that these are most

frequently used distributional assumptions for the financial return data.

Note that, in the third case, we have chosen larger variances for the second mixture

component to allow for the presence of extreme returns but preserving an identity covariance

matrix. Then, we estimate all three data sets using the proposed ADCC-GJR-GARCH-DPM

model assuming uninformative uniform priors restricted to the stationary region for Φ and

setting m0 = 02, s0 = 0.1, d0 = 5, W0 = I2/5, a0 = 4 and b0 = 4. The MCMC algorithm

is run for 10,000 burn-in plus 40,000 iterations. The point estimates are not reported in the

paper to save space. All parameters were estimated well, with true parameters always inside

the 95% credible intervals.

Figure 1 presents the contour plots that compare the true one-step-ahead predictive

densities of returns, given the model parameters, with the estimated ones, obtained from

(14) by setting R = 3. As we can see, the estimated contours of the one-step ahead return

densities are very close to the true ones. Note that these contours can be seen as a summary

of the estimation results for all 11 parameters of the model Φ = (ω, α, β, φ, κ, λ, δ) and the
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distribution for the error term. Therefore, it seems that the proposed infinite mixture model

is a very flexible tool that is able to adjust to rather different return specifications. This is

of primary interest because in practice one never knows which is the true error distribution.

Therefore, the proposed approach appears to be able to fit adequately several frequently

used distributions.

Figure 1. Contour plots of the true and estimated one-step-ahead predictive densities,
f(rT+1 | rT ), for the three simulated data sets.
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First part of Table 1 presents the estimated posterior mean, median and 95% credible

intervals for the number of clusters, z?, for the three generated datasets. For the Gaussian

dataset, the proposed DPM model estimates very few non-empty components, 1.23 on aver-

age, where there is always a clear dominant weight. For the Student-t dataset, the proposed

DPM model estimates a large number of clusters, around 19.66, with similar small weights.

This is expected since, as commented in Jensen & Maheu (2013), the Student-t distribu-

tion can be viewed as a limiting case of a DPM model when the concentration parameter

goes to infinity and, consequently, the number of clusters increases indefinitely. Finally, for

the two-component mixture data, the DPM model can identify very well the two underly-

ing clusters with posterior mean around 2.68. The second and third part of Table 1 also

show the estimation results for the concentration parameter, c, and its transformed value

A = c/(1 + c), where 0 < A < 1, that has been used by Jensen & Maheu (2013) to provide
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Table 1. Posterior mean, median and 95% credible intervals for the number of non-empty
clusters, z?, concentration parameter, c, and quantity A, for the three simulated data sets.

Gaussian Student-t 2 comp. mixture
Mean 95% CI Mean 95% CI Mean 95% CI

Median Median Median
z? 1.2330 (1.0000, 3.0000) 19.6612 (9.0000, 33.0000) 2.6765 (2.0000, 5.0000)

1.0000 19.0000 2.0000
c 0.3578 (0.0934, 0.8072) 2.5037 (0.9327, 5.0059) 0.4863 (0.1512, 1.0408)

0.3252 2.3308 0.4462
A 0.2509 (0.0855, 0.4467) 0.6892 (0.4826, 0.8335) 0.3122 (0.1314, 0.5100)

0.2454 0.6998 0.3085

an intuition of the probability of having infinite clusters in the mixture. However, note that,

different to Jensen & Maheu (2013), we have previously defined a Gamma prior on c instead

of a uniform prior on A. Observe that the obtained results are coherent, since the posterior

means of c and A for the Gaussian case are the smaller ones (A = 0.2509), respectively, while

for the Student-t case are the largest ones (A = 0.6892), respectively. Finally, for the two-

component mixture dataset, the posterior means of c and A are between the corresponding

values of the Gaussian and Student-t cases, that can be seen as a compromise between the

two extreme cases.

Finally, we have estimated the generated Normal and Student data sets assuming Gaus-

sian and Student’s t-distributions, respectively. We used the RWMH with 10,000 burn-in

plus 40,000 iterations. This way we were able to obtain a sample of one-step-ahead covari-

ance matrices {H(m)
t+1}Mm=1, estimated using the true return distributions. Figure 2 compares

the densities for one-step-ahead covariances {H?(m)
t+1 }Mm=1 assuming a DPM for (a) and (b)

with the true data generating model: Gaussian and Student-t respectively. As we can see,

the mean estimates and the width and shape of the posterior distributions are very similar

for DPM and the ones obtained using the true return distribution. Therefore, we can con-

clude that DPM model can adjust to different frequently used distributions for the return

data without making any restrictive distributional assumptions.
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Figure 2. Densities of the elements of the one-step-ahead covariance matrices for Normal
and Student data estimated using (a) DPM and Normal and (b) DPM and Student errors.
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5. REAL DATA AND RESULTS

In this section, we illustrate the performance of the proposed methodology using a real

dataset and solve a portfolio allocation problem as described in Section 3.

5.1 Estimation

We consider the daily price data of Apple Inc. company (PA
t ) and NASDAQ Industrial

index (PN
t ) from January 1, 2000 till May 7, 2012, obtained from Yahoo Finance. Then,
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Table 2. Descriptive statistics of the Apple Inc. and NASDAQ Ind. return series.

100× ln
(

PA
t

PA
t−1

)
100× ln

(
PN

t

PN
t−1

)
Mean 0.0973 0.0020

Median 0.1007 0.0766
Variance 9.7482 3.1537
Skewness −4.2492 −0.1487
Kurtosis 102.0411 7.1513

Correlation 0.5376

daily prices are transformed into daily logarithmic returns (in %), resulting in T = 3098

observations. Table 2 provides the basic descriptive statistics and Figure 3 illustrates the

dynamics of returns.

Figure 3. Log-returns and histograms of Apple Inc. and NASDAQ Ind. Index.
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As expected, the Apple Inc. has higher overall variance because of the higher mean

return. Both returns do not exhibit any evidence of autoregressive behavior. Apple Inc.

returns contain one atypical data point, corresponding to September 29, 2000. The very low

return is due to an announcement the day before about lower than expected sales.

Next, the return series was estimated assuming Gaussian, Student-t and DPM errors.

Table 3 reports the parameter estimation results for the ADCC model assuming a Gaussian,
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a Student-t and the proposed DPM model for the innovation distribution. As we can see

from the table, the constant volatility parameter, ω1, for the first series is overestimated

under the Gaussian assumption. This is because the Gaussian model does not allow for

fat tails, and therefore, all the volatility is summed into the ω1. Same happens with the

asymmetric volatility parameters φ1 and φ2 under the Gaussian assumption. The posterior

mean of the degrees of freedom under the Student-t is around 7. Under the DPM model,

the average number of non-empty clusters is z? = 7.8. Finally, the posterior mean of A is

rather close to 0.5, which suggest the better adequacy of the DPM model when compared

with the Student-t specification. This is more clear in Figure 4, which draws the histogram

of the posterior distribution for A. Note that the posterior probability that A is larger

than 0.7 is very small. These results can be compared to the ones obtained in simulation

study: when the data comes from a Student-t distribution, DPM estimates a large number

of clusters (around 19 in our case) and parameter A is closer to 0.7. On the other hand, when

the underlying distribution is Gaussian, DPM model estimates few clusters and parameter

A close to 0.2. The results indicate that for this specific data set neither Gaussian, nor

Student-t distributions are appropriate, since the data comes from a distribution, which is

positioned in between.
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Table 3. Estimation results for Apple Inc. (1) and NASDAQ Ind. (2) returns asumming a
Gaussian, a Student-t and the proposed DPM model for the innovation distribution.

Gaussian Student-t DPM
Mean 95% CI Mean 95% CI Mean 95% CI

ω1 0.2653 (0.1603, 0.3942) 0.1071 (0.0619, 0.1659) 0.1999 (0.1330, 0.2364)
ω2 0.0285 (0.0203, 0.0395) 0.0192 (0.0125, 0.0269) 0.0088 (0.0052, 0.0131)
α1 0.0894 (0.0651, 0.1244) 0.0403 (0.0279, 0.0534) 0.0747 (0.0575, 0.0964)
α2 0.0126 (0.0020, 0.0270) 0.0109 (0.0012, 0.0245) 0.0055 (0.0006, 0.0123)
β1 0.8430 (0.8039,0.8740) 0.8975 (0.8730, 0.9204) 0.8771 (0.8489, 0.9000)
β2 0.9237 (0.9052, 0.9375) 0.9281 (0.9121, 0.9408) 0.9232 (0.9074, 0.9362)
φ1 0.1197 (0.0622, 0.1627) 0.0409 (0.0183, 0.0683) 0.0539 (0.0139, 0.0984)
φ2 0.1050 (0.0796, 0.1312) 0.0739 (0.0520, 0.0912) 0.0370 (0.0255, 0.0476)
κ 0.0093 (0.0030, 0.0266) 0.0075 (0.0020, 0.0153) 0.0172 (0.0043, 0.0326)
λ 0.9828 (0.9415, 0.9936) 0.9711 (0.9477, 0.9858) 0.8914 (0.8445, 0.9409)
δ 0.0061 (0.0008, 0.0213) 0.0220 (0.0094, 0.0392) 0.0242 (0.0024, 0.0426)
ν 7.1879 (7.0529, 7.2862)
z? 7.7481 (4.0000, 13.0000)
A 0.4862 (0.2723, 0.6746)

Figure 4. Histogram of the posterior sample of A = c/(1 + c).
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Figure 5 compares the predictive densities of the one-step-ahead return, rT+1, under the

Gaussian, the Student-t and the proposed DPM specifications for the innovation distribution.

Observe that both Normal and Student-t models lead to symmetric predictive densities,

although for the Student-t case it exhibits fatter tails, which are completely defined by a single
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parameter, ν. On the contrary, the DPM model, which allows for different variances and

non zero means, predicts an asymmetric multimodal density with fatter tails. Also, Figure 6

presents the marginal log predictive densities for the returns under the three specifications.

Observe that the DPM model can differentiate between volatile and not so volatile returns,

since it predicts obviously fatter tails for the Apple return data, meanwhile for not so volatile

NASDAQ data, the difference between DPM and Student-t is not so big. The Gaussian

specification in both cases cannot capture the high kurtosis.

Figure 5. Contours of the predictive densities for rT+1 under a Gaussian, Student-t and
DPM specification for the innovation distribution.
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Figure 6. Marginal log-predictive densities for the one-step-ahead Apple (left) and NAS-
DAQ (right) return data, under a Gaussian, Student-t and DPM specification for the inno-
vation distribution.
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Table 4. Cumulative log-predictive likelihoods for the DPM, Student and Gaussian error
models.

Model log p(rT+1, . . . , rT+k)
DPM -746.5467

Student -749.2850
Normal -775.8299

# of out-of-sample obs. k = 233

Next, following Jensen & Maheu (2013), we compare the three estimated models using

predictive likelihoods based on a small set of out-of-sample observations, {T + 1, . . . , T + k}.

For each new observation, we calculate the predictive likelihood as an average over the

MCMC iterations given by:

p(rT+i|rT+i−1) =
1

M

M∑
m=1

p(rT+i|rT+i−1,Θ(m)), for i = 1, . . . , k,

and then calculate the sum of the logarithms over the out-of-sample time period:

log p(rT+1, . . . , rT+k) =
k∑
i=1

log p(rT+i|rT+i−1).

However, note that, differently to Jensen & Maheu (2013), we do not re-estimate the model

whenever a new observation arrives to avoid a high increase in the computational cost, we

use the already estimated model parameters up to time T . Table 4 presents the cumulative

log-predictive likelihood for the three models using k = 233 out-of-sample observations.

Observe that the sum of the log-predictive favors the DPM model. The difference between

the two competing models is the log of a Bayes factor.

Figure 7 draws the posterior densities of the volatilities and Table 5 presents the posterior

means, medians and confidence intervals for the elements of the one-step-ahead volatility

matrix under the Gaussian, the Student-t and the proposed DPM specification. For the

latter, these are obtained using (17) and the explanations given in Section 2.3. Observe

that the credible intervals for the DPM model are wider, especially for the marginal one-

step-ahead volatility of the first series. This is because it allows for some very volatile
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Table 5. Posterior means, medians and confidence intervals for the elements of the one-
step-ahead volatility matrix under the Gaussian, Student-t and DPM specification.

Gaussian Student-t DPM
Mean 95% CI Mean 95% CI Mean 95% CI

Median Median Median

H
?(1,1)
T+1 7.3315 (6.8461, 7.6932) 6.6228 (6.2307, 7.0214) 6.3519 (5.4437, 7.3185)

7.3419 6.6237 6.3532
H

?(1,2)
T+1 1.7954 (1.6379, 1.9831) 1.6684 (1.5609, 1.7944 ) 1.6215 (1.3615, 1.8238)

1.7890 1.6649 1.6284
H

?(2,2)
T+1 1.5932 (1.4534, 1.7163) 1.6524 (1.5188, 1.7733) 1.4570 (1.2624, 1.5953)

1.5954 1.6541 1.4634
ν 7.1879 (7.0529, 7.2865)

7.1933
µ
?(1)
T+1 0 0 0.1503 (0.0547, 0.2456)

0.1503
µ
?(2)
T+1 0 0 0.0131 (-0.0311, 0.0574)

0.0132

mixture components, due to the atypical data point, which seems to provide a more realistic

evaluation of risk for an agent. Also, under the DPM model, the posterior distributions for

the volatilities are not symmetric. Finally, Table 5 also shows the estimation results for the

degrees of freedom parameter under the Student-t assumption, which indicates heavy tails,

and for the one-step-ahead mean under the DPM model using (16).

Figure 7. Posterior Distributions of One-step-ahead Volatilities for the Three Errors Spec-
ifications
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Table 6. Posterior mean, median and 95% credible intervals for the optimal one-step-ahead
portfolio weight, variance and return.

Gaussian Student-t DPM
Mean 95% CI Mean 95% CI Mean 95% CI

Median Median Median

p?T+1 -0.0401 ( -0.0775, -0.0084) -0.0015 (-0.0245, 0.0204 ) -0.0327 (-0.0726, 0.0038)
-0.0391 -0.0012 -0.0320

σ2?
T+1 1.5811 (1.4609, 1.7318) 1.6518 (1.5175, 1.7722) 1.4526 (1.2577, 1.5939)

1.5771 1.6536 1.4591
g?T+1 3.2009 (3.1255, 3.2897) 3.1091 (3.0572, 3.1637) 3.1832 (3.0965, 3.2780 )

3.1986 3.1085 3.1817

5.2 Portfolio Allocation

Here we are interested in estimating the GMV optimal portfolio of the two real assets,

without the short-sale constraint, using the procedure described in Section 3. Firstly, we

will make predictions on the optimal one-step-ahead portfolio and then, we will consider all

the 233 out-of-sample future observations, adjusting the optimal portfolio weights at each

time period. The estimation results for the T + 1 period are presented in Table 6. The

major difference between the estimates is the width of the credible intervals of the portfolio

variance. The same can be observed for the rest of the period, as seen in Figure 10. Therefore,

if the investor chooses to be Gaussian or Student, she would underestimate the variance of

the variance of her portfolio.

Next, we estimate the optimal portfolio weights for the entire out-of-sample period of

233 observations. Figures 8 and 9 present the dynamics of the estimated portfolio weights

and variances for each of the models. It shows that along time the mean portfolio weights

are rather similar across all three models. As mentioned before, the differences arise in

the thickness of the credible intervals for the portfolio variance, as seen in Figure 10. This

allows for a more realistic evaluation of the uncertainty that investor is facing in financial

risk management problems.
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Figure 8. Dynamics of Portfolio Weights and 95% Credible Intervals.
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Figure 9. Dynamics of Portfolio Variance and 95% Credible Intervals.
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Figure 10. Mean Cumsum of the Width of the 95% Credible Intervals for Portfolio Weights
and Variance.
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To sum up, these portfolio allocation exercises helped to illustrate the direct consequences

of return distribution to the uncertainty of financial decisions. The DPM model permits the

investor to perform inference and prediction about the returns and their volatilities without

imposing arbitrary restrictions on the data generating process. In the portfolio allocation

context, adjusting portfolio weights at each period might lead to high transaction costs,

thus the investor will adjust her portfolio only if the expected utility after the adjustment

minus the transaction costs is greater than the expected utility without the adjustment.

The illustration has shown the differences in error specifications in using real data. We have

illustrated how quantification of uncertainty reflects distributional assumptions of the errors.

6. Conclusions

In this paper we have proposed a Bayesian non-parametric approach for modeling the dis-

tribution of multiple returns. We have used an ADCC-GJR-GARCH model to explain the

individual volatilities and the time-varying correlations and taking into consideration the

asymmetries in individual assets’ volatilities, as well as in the correlations. The errors are

modeled using a location-scale mixture of infinite Gaussian distributions that has been shown
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to allow for a great flexibility in the return distribution in terms of skewness and kurtosis.

An MCMC method has been presented for model estimation and prediction. For that, a

Dirichlet process mixture (DPM) prior has been given to the infinite mixture of multivari-

ate Gaussian distribution. We have also considered a dynamic portfolio allocation problem,

where the time-varying covariance matrix is estimated using a ADCC-GJR-GARCH model.

We have presented a short simulation study that illustrates the differences arising from

different assumptions for the errors and shows the adaptability of the DPM model. The

simulation results suggest that the proposed approach appears to be able to fit adequately

several frequently used distributions. Here is the main importance of our approach because

in practice one never knows which is the true error distribution. Finally, we have presented

an application to return data of Apple Inc. and NASDAQ Industrial that compares the

DPM specification with a Gaussian and Student-t distributions. Model comparison via log-

predictive likelihood favors the non-parametric approach. Additionally, we have employed

the proposed approach to solve a portfolio allocation problem. In the application we have

showed that even though the point estimates for optimal portfolio weights are very simi-

lar for Gaussian or Student-t, the non-parametric credible intervals for the volatilities are

wider. Therefore, the normality or Student assumptions forces the investor to be overconfi-

dent about her estimates. The explained methodology and obtained results are not limited

to this specific risk management problem and could be expanded into various other topics

in applied finance and risk management.
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