
30 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Bayesian nonparametric forecasting for INAR models

Published version:

DOI:10.1016/j.csda.2014.12.011

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1508013 since 2016-06-04T08:51:10Z



Bayesian nonparametric forecasting for INAR models

Luisa Bisagliab, Antonio Canalea,∗

aDept. of Economics and Statistics, University of Turin and Collegio Carlo Alberto, Italy
bDept. of Statistical Sciences, University of Padua, Italy

Abstract

A nonparametric Bayesian method for producing coherent predictions of
count time series with the nonnegative integer-valued autoregressive process
is introduced. Predictions are based on estimates of h-step-ahead predic-
tive mass functions, assuming a nonparametric distribution for the innova-
tion process. That is, the distribution of errors are modeled by means of a
Dirichlet process mixture of rounded Gaussians. This class of prior has large
support on the space and probability mass functions and can generate almost
any kind of count distribution, including over/under-dispersion and multi-
modality. An efficient Gibbs sampler is developed for posterior computation,
and the method is used to analyze a dataset of visits to a web site.

Keywords: Count time series, INAR(1), Dirichlet process mixtures,
Forecasting, Gibbs sampling algorithm

1. Introduction

There has been recent growing interest in studying non-negative integer-
valued time series and, in particular, time series of counts. Examples are
categorical time series, binary processes, birth-death models and counting
series as, for instance, the monthly number of active customers of a mobile
phone service provider, daily number of traded stocks in a firm, daily number
of visitors to a website, monthly incidence of a disease, and so on.

In some cases, the discrete values of the time series are large numbers and
may be analyzed by using continuous-valued models such as ARMA models
with Gaussian errors. However, according to Chatfield (2000), a good model
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for time series should be consistent with the properties of the data and be
unable to predict values which violate known constraints. This means that,
in the case of counting data, we have to consider a model that is forecast-
coherent and a method of forecasting that produces integer values. In the
light of this requirement the usual linear ARMA processes are of limited use
for modeling and especially for forecasting purposes.

The most common approach to build an integer-valued autoregressive
process is by means of the thinning operator. An interpretation behind this
probabilistic operation is to consider a random count as the size of a pop-
ulation, which is randomly reduced. Using binomial thinning, Al-Osh and
Alzaid (1987) and McKenzie (1988) introduce INteger-valued AutoRegres-
sive processes (INAR) for models with one lag. Although the theoretical
properties of INAR models have been extensively studied in the literature
(see, for instance, Freeland and McCabe (2004a), and the references therein),
relatively few contributions discuss the development of forecasting methods
which are coherent in producing only integer forecasts of the count variable.
In the context of INAR(1) processes with Poisson innovations, Freeland and
McCabe (2004b) suggested a method to produce optimal coherent forecasts
based on the integer-valued median of the predictive distribution. Extensions
taking into account higher-order dependence structure and overdispersion
can be found in Jung and Tremayne (2006) and Schweer and Weiß (2014),
respectively.

Since previous solutions are somewhat problem-specific, McCabe and
Martin (2005) examined a method for producing coherent forecasts of low
count time series from the Bayesian point of view. The predictive probability
mass function, defined only over the support of the discrete count variable,
is a natural outcome of Bayes theorem, and both parameter uncertainty and
that due to the specification of the model are thus directly incorporated
into the predictive probability mass function. The authors assumed that the
model generating Yt is any one within a set of K models M1, . . . ,MK . Thus,
they define the h−step-ahead predictive probability mass function as:

Pr(YT+h = yT+h | y) =
K∑
k=1

Pr(YT+h = yT+h | y,Mk)Pr(Mk | y), (1)

where y = (y1, . . . , yT ) is the vector of the observed time series, Pr(YT+h =
yT+h | y,Mk) is the kth model-specific h−step-ahead predictive probability
mass function and Pr(Mk | y) is the posterior probability of model Mk.

2



In particular, the authors focused on three alternative error distributions,
Poisson, binomial and negative binomial. The complexity of (1) does not
allow us to work with it directly. In particular, its evaluation requires a
numerical approach which depends on the nature of the models in the model
set.

The approach of McCabe and Martin (2005) relies on parametric as-
sumptions for the distribution of innovations, which may lead to misspeci-
fication errors if the true distribution is not included among the set of all
possible distributions. From this point of view, an interesting proposal un-
der the frequentist approach came from McCabe et al. (2011) in which ef-
ficient probabilistic forecasts are produced by treating the arrival process
non-parametrically and proving the asymptotic (non-parametric) efficiency
of the estimated forecast distribution.

With regard to the non-parametric estimation of the innovation process,
Drost et al. (2009) consider a semiparametric INAR(p) model where there
are essentially no restrictions on the innovation distribution. The authors
provide a (semiparametrically) efficient estimator of both the auto-regression
parameters and the innovation distribution, but they do not consider the
problem of forecasting.

Our purpose is to develop a forecasting procedure within the context of
these models which preserves the integer structure of the data. To this end
we discuss, under a Bayesian paradigm, a nonparametric specifications of
the error term. Assuming a nonparametric prior with large support for the
innovation distribution bypasses the need to specify a finite set of discrete
distributions for the innovations, as in McCabe and Martin (2005). This ap-
proach leads to two main improvements: first, we overcome the specification
of the predictive probability as a mixture of K predictive distributions; and,
second, we do not rely on the usual strict assumptions of standard paramet-
ric models. We concentrate on INAR(1) models, leaving the generalization
to INAR(p) models for future work for two main reasons. First, this is
(to our knowledge) the first attempt at applying a Bayesian nonparametric
approach to forecasting count time series and so we want to focus on the
innovation structure of the INAR models. Second, the extension for p > 1
is not unique and there are several proposal in this sense. See for example
Jung and Tremayne (2011) and the references therein.

Different proposals to estimate count probability distributions have been
introduced in the Bayesian nonparametric literature. Poisson mixtures are
a natural choice (for a review, see Karlis and Xekalaki, 2005) which unfor-
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tunately lack of flexibility. Indeed the Poisson kernel has a single parameter
corresponding to both mean and variance and so a mixture of Poissons is
not able to produce probability functions that are underdispersed. A mix-
ture of multinomials can be seen as a first alternative, but this requires a
bounded support for the count variable. An alternative nonparametric Bayes
approach, avoids the mixture specification and directly uses the Dirichlet pro-
cess (DP) prior (Ferguson, 1973, 1974). Exploiting the almost sure discrete-
ness of the DP, Carota and Parmigiani (2002) propose to place it directly as
prior for the count distribution. Despite the flexibility of the latter approach,
there are some major disadvantages for both small and large sample sizes.
Indeed, the posterior expectation of the nonparametric probability mass func-
tion is a mixture of the DP base measure and the empirical probability mass
function with non-smooth deviations between neighboring integers. Canale
and Dunson (2011) recently discussed a flexible prior for count distribution,
with appealing properties in terms of large support and posterior consistency,
which we use here.

The paper is organized as follows. In Section 2 we introduce our model,
reviewing the structure of the INAR process and of the nonparametric prior
introduced by Canale and Dunson (2011). In Section 3 a simulation study
is conducted, and in Section 4 the proposed method is applied to a dataset
on the daily number of visitors to the web site of the “statistical calendar”
(http://cal.stat.unipd.it/eng), a students’ project of the department of
Statistics of the University of Padua, Italy. Section 5 concludes.

2. Model specification

2.1. INAR(1) model

Introduced by Al-Osh and Alzaid (1987) and McKenzie (1988), INAR(1)
is suitable for counting processes in which one element of the process at time
t may be either the survival of an element of the process at previous times,
or the outcome of an innovation process with a certain discrete distribution.
INARs provide a useful class of integer-valued processes for modeling time se-
ries, and their representation makes use of the thinning operator, ‘◦’, defined
as follows (Steutel and Van Harn, 1979):

Definition 1. If Y is a non-negative integer-valued random variable, then,
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for any α ∈ [0,1],

α ◦ Y =
Y∑
i=1

Xi,

where Xi is a sequence of iid Bernoulli random variables, independent of Y ,
with success probability α.

This operator is the multiplication counterpart in the integer-valued context.
Some interesting properties of the thinning operator are discussed in Silva
(2005).

To find a maximum of parallelism with the AR(1) model, Al-Osh and
Alzaid (1987) define the INAR(1) {Yt; t ∈ Z} by the recursion

Yt = α ◦ Yt−1 + εt, (2)

where α ∈ [0, 1), and εt is a sequence of iid positive discrete random variables
with finite first and second moments, µε > 0 and σ2

ε respectively.
The components of process {Yt} are the surviving elements of process Yt−1

during period (t−1, t], and the number of elements which entered the system
in the same interval, εt. Each element of Yt−1 survives with probability α, and
its survival has no effect on that of other elements, nor on εt. Observe that,
given Y = y, the random variable α ◦ Y follows the binomial distribution
with parameters y and α.

The marginal distribution of model (2) may be expressed in terms of
arrival process εt as

Yt
d
=
∞∑
j=0

αj ◦ εt−j.

The unconditional moments (see, for example, Jung et al., 2005) are E(Yt) =
µε/(1−α) and Var(Yt) = (αµε + σ2

ε )/(1−α2). The autocorrelation function
of the process is ρ(k) = αk, k = 1, 2, . . ., but only positive autocorrelation
is allowed.

Usual distributional assumptions for the error term include Poisson, bi-
nomial, negative binomial and geometric. If the error terms are distributed
as a Poisson distribution with mean parameter λ, then it can be shown that
the marginal distribution of the observed counts is a Poisson distribution
with (unconditional) mean and variance equal to λ/(1 − α). In this case,
therefore, the model cannot take into account over/under-dispersion in data.
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The negative binomial allows for over-dispersion, but assumes a truncated
support for innovations.

The distribution of Yt, given yt−1, α, and innovation distribution p, is

Pr(Yt = yt | yt−1, α, p) =

min{yt,yt−1}∑
s=0

Pr(Bα
yt−1

= s)× p(yt − s)

where Bπ
k ∼ Bin(k, π). The likelihood function of θ = (α, p), given a sample

y = (y1, . . . , yT ) of size T , is

L(θ | y) =
T∏
t=2

min{yt,yt−1}∑
s=0

Pr(Bα
y−1 = s)× p(yt − s), (3)

where θ ∈ Θ and Θ = (0, 1) × C, with C the space of probability mass
functions on non-negative integers.

From a Bayesian perspective, we must specify a prior distribution for θ.
In the following, we assume independent prior distributions for α ∼ πα and
p ∼ Π, leading to prior π(θ) = Π× πα. With this formulation, the posterior
h-step-ahead probability mass function for j ∈ N is

Pr(YT+h = j | y) =

∫
Θ

Pr(YT+h = j | y, θ)dπ(θ | y), (4)

where π(θ | y) is the posterior distribution of the parameters given the data.

2.2. Rounded mixture priors

To define a nonparametric model for counts, Canale and Dunson (2011)
rounded an underlying variable having an unknown density, given a Dirichlet
process mixture of Gaussians prior, (Lo, 1984; Escobar and West, 1995). This
rounded mixture of Gaussians (RMG) is not only highly flexible and with
excellent performance in small samples, but also has appealing asymptotic
properties in terms of large support and strong posterior consistency. The
choice of modeling the distribution of errors εt with such a prior allows us to
leverage on a model with large support, robust for any model misspecification
while eliminating the need to average over several models, as proposed by
McCabe and Martin (2005).

For each j ∈ N, let

p(j) = p(εt = j) = g(f)[j] =

∫ aj+1

aj

f(ε∗)dε∗, (5)
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where f is a continuous density, ε∗ a latent continuous variable, and a0 = −∞
and aj = j − 1 for j ∈ {1, 2, . . . }. We then model the underlying f via the
nonparametric mixture model

f(ε∗;P ) =

∫
φ(ε∗;µ, σ2)dP (µ, σ2), P ∼ DP (ηP0), (6)

where φ(·;µ, σ2) is a Gaussian density with mean µ and variance σ2. To the
mixing random measure P , a DP prior with precision parameter η and base
measure P0 is assigned. The DP is a probability distribution on the space of
probability measures and has several characterizations. For sake of brevity
and to directly understand its usefulness in equation (6), we describe the so
called stick-breaking construction (Sethuraman, 1994), in which the random
mixing measure P can be written as

P =
∞∑
l=1

πlδθl , θ
iid∼ P0,

and π1 = V1, πl = Vl
∏

r<l(1− Vr) with Vl ∼ beta(1, η). The mechanism that
generates the weights gives the name to this representation since it may be
thought as breaking a stick of length one into infinitely many pieces with
length proportional to the sequence of weight. In our model θl = (µl, σ

2
l ) and

P0 is chosen to be Normal-Gamma, i.e.

σ−2
l

iid∼ Ga(a, b), µl
iid∼ N(µ0, κσ

2
l ).

Note that equation (5) defines mapping function g(·) between the spaces of
continuous densities and of probability mass functions. A related rounding
function, r : R → N, is such that r(ε∗) = j if aj ≤ ε∗ < aj+1. As default
hyperparameter choice, when no prior information is available, we can let
a0 = −∞ and aj = j for j = 1, . . . , and let a = b = 1/2 and, with an
empirical Bayes approach µ0 = ȳ and κ = s2, the sample mean and vari-
ance respectively. Equations (5)–(6) induce a prior p ∼ Π over the space of
probability mass functions on the integers.

2.3. Computation by MCMC

Since the joint posterior distribution is not in closed form, we rely on
Markov Chain Montecarlo (MCMC) simulation from the posterior distribu-
tion. In particular we resort to an iterative Gibbs sampler. In a first data
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augmentation step we simulate the latent survivor and birth processes. Con-
ditionally on the latent underlying continuous innovations ε∗t , simulated un-
der the constraints that r(ε∗t ) = εt, one can resort to the algorithm described
in Canale and Dunson (2011). Specifically, we introduce latent S1, . . . , ST
where St = l if the t-th innovation is drawn from the l-th mixture compo-
nent. With such an approach, conditionally on St, each ε∗t is drawn from
a single normal distribution and hence the updated of each cluster-specific
set of parameters can be done easily. The conditional posterior distribution
of α is not in closed form, so we rely on a Metropolis-Hastings substep. As
proposal density we choose a Be(1, (1 − αlast)/αlast), where αlast is the last
value of the Markov chain for the thinning parameter. With this choice, the
expectation of the proposal density is centered on the last available value of
the Markov chain. The Gibbs sampler is summarized below.

1. Data augmentation step given p and α :
(a) simulate B = {B2, . . . , BT} where each Bt has multinomial distri-

bution with cell probability P (Bt = j) ∝
(
yt−1

j

)
αj(1 − α)yt−1−j ×

p(yt − j) for j = 0, . . . , yt;
(b) for t = 2, . . . , T , simulate ε∗t ∼ f where f is as in (5)–(6) under

constraints ayt−Bt ≤ ε∗t ≤ ayt−Bt+1.
2. Update p with the Gibbs sampler described in Canale and Dunson

(2011), namely:
(a) sample St from a multinomial with cell probabilities equal to

Pr(St = l|ε∗t ) ∝ πlφ(ε∗t ;µl, σ
2
l );

(b) update the stick-breaking weights using

Vl ∼ Be

(
1 + nl, η +

∑
r>l+1

nr

)
,

where nl is the sample size of the l-th cluster;
(c) sample (µl, σ

2
l ) from

N
(
µ̂l, κ̂lσ

2
l

)
InvGam(a+ nl/2 + 1, b+ b̂l),

where

µ̂l = κ̂l (κµ0 + nlε̄∗l ) , κ̂l = (κ−1 + nl)
−1,

b̂l =
1

2

{∑
St=l

(ε∗t − ε̄∗l )
2 + nl/(1 + κnl)(ε̄∗l − µ0)2

}
,
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and ε̄∗l is the sample mean in the l-th cluster.

3. Update α with a Metropolis-Hastings step from its conditional posterior
distribution πα(α|y,B, p) ∝ πα(α)× L(α|y,B, p), i.e.

(a) generate α∗ ∼ Be(1, (1−αlast)/αlast), where αlast is the last avail-
able value of the Markov chain;

(b) accept α∗ as next value with probability equal to

min

{
1,

π(α∗|y,B, p)
π(αlast|y,B, p)

× Be(αlast; 1, (1− α∗)/α∗)
Be(α∗; 1, (1− αlast)/αlast)

}
,

otherwise keep αlast as next value.

3. Simulation study: results and discussion

To evaluate the performance of the proposed method in obtaining co-
herent predictions for h-step-ahead forecasts we conducted a Monte Carlo
experiment. We simulated R = 500 independent realizations of size n = 50,
n = 100, and n = 250 from a wide variety of scenarios under the INAR(1)
model. We chose α = 0.25, 0.5, 0.9 for the thinning parameter, h = 1, 2, 3, 4
for the number of steps, and various discrete distributions for the arrival
process, namely

i. Poisson, with mean parameter λ = 4;

ii. Negative Binomial, with k = 6, p = 0.4;

iii. Binomial, with k = 15, p = 0.8;

iv. Conway-Maxwell-Poisson distribution, with λ = 30 and ν = 3.

Each independent sample was generated with 200 additional burn-in values
to obtain random starting values.

For each scenario we run our Gibbs sampling algorithm with default hy-
perparameters choice as described in Section 2.3. We assess the predictive
performance of our method by means of scoring rules for predictive distri-
bution (Gneiting and Raftery, 2007). Scoring rules assess the quality of a
probabilistic forecasts, by assigning a numerical score considering the esti-
mated predictive distribution and the actual observed value. In particular,
since we are dealing with discrete values, we computed the quadratic loss
functions as

S(p̂h, yT+h) = 2p̂h(yt+h)
2 −

∑
j

p̂h(j)
2 − 1, (7)
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Figure 1: Quadratic scoring rules in function of h for α = 0.5 (continuous line), α = 0.75
(dashed line), and α = 0.9 (dotted line), under Scenario i (a), Scenario ii (b), Scenario iii
(c), and Scenario iv (d), for n = 50.

where p̂h is the posterior mean of the h-step-ahead probability mass function
obtained with our approach, and the sum in j is taken across the range of
the observed data ± a buffer of 20. Table 1 reports the results. The expected
increase of the quality of the predictive performance for increasing sample
size, is only mild. The performance of the method is indeed similar for all
the sample sizes. This means that the proposed approach can be utilized
also for medium-short time series. To better perceive the performance of
our procedure in function of the number of steps ahead and the value of
α, Figure 1 reports a graphical representation of the results for n = 50
only. Poorer performance is obtained in the scenarios involving a thinning
parameter of α = 0.9. This is probably due to the fact that the value of the
parameters is close to the upper boundary of the domain and thus very close
to the situation of non stationarity of the time series. We were expecting
a general decrease of the performance as h increases. In fact, only a mild
decrease of the performance for increasing h is evident particularly for the
cases in which α = 0.9. For α = 0.5 and α = 0.75, the predictive performance
remain stable. Note that qualitatively similar results were obtained also using
a spherical scoring rules, which values are reported in the Supplementary
Material, see Appendix A.

Table 2 shows a Monte Carlo approximation to the mean Bhattacharya
coefficient distance (BC) and Kullback-Leibler divergence (KL) between the
posterior mean probability mass function of the arrivals (p̂) and the true
distribution (p0). The BC and KL are calculated as

BC =
∑
j

− log
(√

p0(j)p̂(j)
)
, KL =

∑
j

p0(j) log
(
p0(j)/p̂(j)

)
,

where, again, the sums in j are taken across the range of the observed data
± a buffer of 20, p̂ is the estimated h-step-ahead probability mass function
and p0 is the true predictive probability mass function. The scenarios in-
volving the Poisson and the Conway-Maxwell-Poisson are those where our
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Table 1: Quadratic score of h step-ahead predictive distribution
n α p(ε) h = 1 h = 2 h = 3 h = 4
50 0.25 Pois -0.892 -0.883 -0.887 -0.886

NB -0.950 -0.944 -0.946 -0.942
Bin -0.907 -0.900 -0.902 -0.899
CMP -0.806 -0.810 -0.811 -0.806

0.50 Pois -0.912 -0.905 -0.908 -0.903
NB -0.955 -0.956 -0.956 -0.953
Bin -0.925 -0.924 -0.925 -0.928
CMP -0.856 -0.852 -0.862 -0.855

0.90 Pois -0.937 -0.944 -0.950 -0.950
NB -0.968 -0.970 -0.972 -0.973
Bin -0.944 -0.951 -0.956 -0.962
CMP -0.905 -0.916 -0.925 -0.928

100 0.25 Pois -0.887 -0.880 -0.886 -0.888
NB -0.946 -0.943 -0.944 -0.941
Bin -0.895 -0.888 -0.893 -0.889
CMP -0.798 -0.809 -0.809 -0.801

0.50 Pois -0.907 -0.903 -0.906 -0.905
NB -0.951 -0.954 -0.954 -0.953
Bin -0.917 -0.922 -0.923 -0.924
CMP -0.846 -0.852 -0.861 -0.855

0.90 Pois -0.928 -0.940 -0.947 -0.949
NB -0.964 -0.969 -0.971 -0.973
Bin -0.953 -0.961 -0.964 -0.966
CMP -0.895 -0.912 -0.923 -0.928

250 0.25 Pois -0.885 -0.880 -0.885 -0.887
NB -0.948 -0.944 -0.944 -0.941
Bin -0.891 -0.886 -0.890 -0.886
CMP -0.794 -0.805 -0.805 -0.796

0.50 Pois -0.906 -0.902 -0.905 -0.904
NB -0.950 -0.953 -0.953 -0.952
Bin -0.918 -0.922 -0.923 -0.923
CMP -0.845 -0.850 -0.859 -0.853

0.90 Pois -0.926 -0.938 -0.945 -0.948
NB -0.967 -0.973 -0.975 -0.975
Bin -0.956 -0.962 -0.964 -0.966
CMP -0.891 -0.909 -0.920 -0.924
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Table 2: Kullback-Leibler divergence, Bhattacharya coefficient
α p(ε) n = 50 n = 100 n = 250

KL BC KL BC KL BC
0.25 Pois 1.25 0.51 0.59 0.28 0.39 0.19

NB 1.73 0.68 0.71 0.32 0.52 0.23
Bin 14.40 3.60 1.79 0.82 1.52 0.67
CMP 1.87 0.67 0.73 0.35 0.50 0.24

0.50 Pois 1.43 0.60 0.75 0.35 0.47 0.22
NB 2.22 0.88 0.82 0.38 0.03 0.01
Bin 11.41 2.99 4.65 2.07 2.96 1.31
CMP 1.61 0.63 0.95 0.44 0.68 0.31

0.90 Pois 5.07 2.27 2.61 1.15 1.94 0.82
NB 8.18 3.08 7.29 2.41 6.88 2.03
Bin 19.20 8.71 19.37 9.26 23.63 11.49
CMP 4.25 1.99 2.46 1.14 1.48 0.65

nonparametric prior registers the better performance: both the Bhattacharya
coefficient and Kullback-Leibler divergence are constantly smaller than those
obtained under the binomial and negative binomial scenario. Also in esti-
mating the innovation probability mass functions the worst performance are
obtained when the true value of α equals 0.9. This is consistent with the
results in terms of goodness of prediction. To conclude, the estimation of
the innovation probability mass function tends to be better for increasing
n. Indeed, our prior is posterior consistent, i.e. the posterior probability
of a neighborhood of the true data generating process (the probability mass
function of the innovations) goes to one as n→∞ (see Canale and Dunson,
2011, Section 2.3, for more details). This finite sample behavior confirm this
asymptotic property.

4. Application to website traffic data

We apply the proposed method to a real time series of the daily count of
visits to the web site of the “statistical calendar” (Durante et al., 2012), a
students’ project of the department of Statistics of the University of Padua,
Italy. The data used go from the 1st of April, 2012 to the first week of
September, 2012. The site is the output of a contest sponsored by the Italian
Statistical Society on the the topic ”Statistics and statisticians: ideas to
foster and spread the statistical culture”.

The reason for a h-step-ahead prediction lies in promoting the site, after
its launch at the end of 2011. Knowing the whole predictive probability
mass function allows the webmasters to compute both the median forecast
for the following day and the probability of having less than k visits, when
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Figure 2: Time series of the daily number of visit to the “statistical calendar” website.

k is a lower bound, in order to have a fairly large number of visitors. The
total number of visitors for today is typically made up of loyal visitors from
yesterday and new visitors. Thus, the birth-death interpretation of the INAR
model fits this particular dataset. It is important to underline, however, that
the birth-and-death interpretation is just an intuitive interpretation and it
is not critical if one is interested in prediction rather than in estimate and
interpret the birth or death sub-components.

The dataset consists of 156 daily counts, from 0 to 16, but we remove the
last 6 observations to perform out-of-sample forecasts. A plot of the series
is shown in Figure 2. The series has median 3, mean 3.96 and mode 2, more
than 98% of counts are less than 12, and variance is 7.81, meaning that the
data are over-dispersed.

We run the Gibbs sampler for 17,000 iterations, discarding the first 2,000
for burn-in. The values of the predictive probability mass function Pr(YT+h =
j | y) for a wide variety of js are monitored to asses the convergence of the
Markov chains. The trace plots show excellent mixing and Geweke (1992)
diagnostics (as implemented in the R package coda) typically do not reject
the hypothesis of the equality of the means of the first and last part of a
Markov chains. Additional plots and comments on convergence and mixing
are reported in the Supplementary Material, see Appendix A.

The predictive performance in terms of quadratic scores are −0.761,
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−0.914, −0.816, −0.767, −0.918, and −1.101 for h = 1, . . . , 6, respectively.
As in the simulation study the predictive performance are stable for increas-
ing h, and only a mild decrease of the performance can be noted. Figure 3
shows the posterior mean h-step-ahead predictive probability, Pr(YT+h = j |
y) for j = 0, 1, . . . , 20, together with its 95% credible bands. These intervals
are estimated as the 2.5th-97.5th percentiles of the MCMC samples collected
after burn-in.

Figure 4 shows the posterior predictive probability of having a number of
visits less than the median, i.e. Pr(Yt+h ≤ 2) together with its 95% credible
bands for h = 1, . . . , 6. As before, the intervals are obtained considering
the 2.5th-97.5th percentiles of the MCMC samples. The posterior mean of
α turns out to be 0.23, with posterior probability of 95% between 0.07 and
0.34, which clearly indicates short-run dependence.

5. Conclusions

A Bayesian nonparametric method for producing coherent forecasts of
count time series has been presented. Introducing a nonparametric distri-
bution for the error term has several advantages. First of all, the lack of
robustness implicitly present in specifying a particular family of distributions
is overcome. In addition, the large support of our prior overcomes the usual
parametric assumptions for counts and the approach of McCabe and Martin
(2005) of defining a set of possible error distributions is bypassed. Bayesian
reasoning is also appealing in that it allows us to use prior information, if
available (e.g., the probability mass function of the errors is concentrated for
small values, or α is centered on a given value a priori) and easy, reliable
MCMC implementation is possible so that general h-step-ahead predictions
can be made without tedious calculations.
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Figure 3: Posterior means of predictive probability mass function and 95% posterior cred-
ible bands for h-step-ahead and h = 1 (a), h = 2 (b), h = 3 (c), h = 4 (d), h = 5 (e), and
h = 6 (f).
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Figure 4: Posterior mean probability of having fewer than 2 counts (continuous lines) with
95% credible bands (dashed lines).

Appendix A. Supplementary material

Supplementary material related to this article can be found online at
[INSERT DOI HERE]
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