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Abstract

Data reproducibility is a critical issue in all scientific experiments. In this manuscript, the problem 

of quantifying the reproducibility of graphical measurements is considered. The image intra-class 

correlation coefficient (I2C2) is generalized and the graphical intra-class correlation coefficient 

(GICC) is proposed for such purpose. The concept for GICC is based on multivariate probit-linear 

mixed effect models. A Markov Chain Monte Carlo EM (mcm-cEM) algorithm is used for 

estimating the GICC. Simulation results with varied settings are demonstrated and our method is 

applied to the KIRBY21 test-retest dataset.
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1. Introduction

A crucial question in any statistical analysis is: how reliable is the data? Experimental 

replication for the purpose of measuring the reliability of measurements is the most common 

method for establishing reproducibility. In this paper, we consider repeated measurement of 

graphs and propose the concept of the graphical intra-class correlation coefficient for 

measuring their reliability.

The Intra-class correlation coefficient (ICC) has been proposed [1] and used to evaluate the 

reliability of measurements in a variety applications [2], [3]. ANOVA mixed-effect models 

have been proposed [4] as a framework for estimating the ICC. Suppose yij denotes the jth 

measurement of subject i, xi denotes the subject specific random effect and uij indicates the 

measurement error. The one-way ANOVA model is:

(1)

The ICC is then defined as:
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(2)

In (1) and (2), the total variability of the data is decomposed into subject-specific variability 

and measurement error; ICC represents the proportion of variability that is due to 

heterogeneity in subjects. In recent research, the ICC has been generalized to multivariate 

cases. The work in [5] proposed a model analogous to (1) in functional data using multilevel 

functional principal component analysis (MFPCA) and an image intra-class correlation 

coefficient (I2C2) was subsequently proposed in [6] to calculate ICC for image data.

Graphical data are becoming increasingly popular in scientific research. Notably, graphs are 

used in describing brain networks in neuroimaging. In such research, binary graphs are often 

obtained from functional magnetic resonance image (fMRI) [7], [8], [9], [10], [11]. The 

increasing number of graphical datasets motivates us to evaluate the reliability of binary 

graphs.

Figure. 1 illustrates idealized graphical measurements for three different subjects. Here each 

subject is measured three times. The left panel shows a case where graphical measurements 

resemble each other within one subject. The ICC, consequentially, should be higher. The 

right panel, on the other hand, demonstrates the opposite situation, where the repeated 

measurements within one subject show poor consistency. In such case, the ICC should be 

relatively lower. In this manuscript, we propose the concept of the graphical ICC (GICC) to 

quantify the similarity between repeated measurements of binary graphs. In Figure. 1, each 

binary graph is represented by a 0 – 1 vector. For example, the first graph of subject 1 is 

represented by (1, 1, 0, 1, 0, 0)T1. Thus our goal is to define an ICC for multivariate binary 

data.

Many authors have discussed the ICC for single variate binary data. [12] proposed a moment 

based estimator. Probit linear mixed-effect models were used by [13] and [14] to estimate a 

confidence interval for binary data ICC.

There is also work discussing the similarity between graphs. The work in [15] and [16] 

discussed the similarity between nodes and edges in graphs. One main purpose of these 

papers was to find assembled subgraphs between two graphs. Instead of having a fixed 

node-to-node or edge-to-edge match, they found the match between two graphs based on 

edge/node similarity score.

Our objective, on the other hand, is to estimate the ICC to evaluate the reliability of 

replicated measurement of binary graphs. In section 2, a multivariate probit linear mixed 

model is proposed. A Monte Carlo expectation maximization (MCEM) algorithm will be 

discussed in section 3. Simulation results with various settings will be shown in section 4 

and the results of our method being implemented on binary brain connectivity maps are in 

section 5. We will summarize the paper in section 6.

1Each element of the vector is an indicator of the existence of an edge, the order of the six elements is ① – ②, ① – ③, ① – ④, ② 
– ③, ② – ④, ③ – ④.
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2. Model

Suppose {oij(d) : i = 1, …, I; j = 1 …, Ji; d = 1, …, D, } are binary observations representing 

repeated graph measurements for multiple subjects. Here, I is the total number of subjects, Ji 

is the number of visits for the ith subject and D is the number of possible edges for all 

graphs. Usually, we have  where N is the number of nodes. In Figure. 1, for 

example, we have I = 3, Ji = 3, N = 4, D = 6. The multivariate probit-linear mixed model is 

as follows:

(3)

where xi = (xi(1), …, xi(D))T. The GICC, is then defined as:

(4)

For the purpose of estimation, the model can also be viewed as a threshold model that 

dichotomizes the observations from a latent Gaussian distribution. In other words:

(5)

where xi = (xi(1), …, xi(d))T and uij = (uij(1), …, uij(d))T. The equivalency of these two 

models can be easily shown by the following calculation:

Formula 4 is a direct generalization from the univariate ICC Formula 2. GICC = 0 indicates 

that tr(Σx) = 0, which means that the between group variance is zero for all dimensions, d = 

1, …, D. GICC ≈ 1 indicates that tr(Σx) ≫ D, implying that the variation between subjects 

is much larger than the variation within subject. When GICC = 0.5, tr(Σx) = D, implying that 

the overall between subject variation is equal to the within subject variation.

The advantage of using the trace is that: (1) it is an overall statistic instead of a edge specific 

statistic, which provides a global measurement to quantify graphical reproducibility; (2) 

compared to other numerical methods (e.g. max(diag(Σ)), ∑ (σij)), the trace is invariant to 

orthogonal transformations, which is critical in measuring the variability of vectors.

Furthermore, using trace for measuring the global reproducibility was also proposed for the 

image ICC (I2C2) (see [6]) in and the functional version of ICC (see [5]).

3. The Monte Carlo EM Algorithm

MCEM algorithms have been used in probit-linear mixed models with single variate 

outcomes [17]. Here MCEM is generalized to the multivariate case. In model 5, the 
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parameters of interest are μ and Σx. In the procedure of estimation, we treat o as observed 

data and [y, x] as the full data.

3.1. M-step

Given the full data y and x, the MLE for both parameters yields an explicit form:

(6)

Unlike [18], the estimate of μ does not involve Σx, since x is also treated as part of the 

complete data. So μ̂ is obtained based on both x and y, rather than only on y.

Substituting y, x and xxT with E[y|o], E[x|o] and E[xxT |o] respectively on the right side of 

6, we obtain the M-step.

3.2. E-step

Based on 6, it is necessary to calculate E(yij |o), E(xi|o) and . Note that

(7)

The inner expectation can be obtained by using the joint distribution of {xi, yi1, …, yiJi}. 

Noticing the following fact:

(8)

it can be derived that:

(9)

where yi․ = ∑j yij. Thus we have
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(10)

However, the term E[yi․|o] and  does not have an explicit form. Here we use a 

Gibbs sampler to approximate the conditional expectation. Notice that, given o, the 

distribution of y is multivariate truncated normal. The Gibbs sampler for such a distribution 

has been discussed in [19], [20], [21]. In the Gibbs sampling cycles, we choose the burn in 

period to be the first T = 200 and treat the following B = 500 elements as limiting 

realizations from the conditional distribution of y|o. Then an empirical conditional 

expectation is calculated as follows:

(11)

3.3. Observed information matrix for μ

Though we are not specifically interested in estimating μ for the graphical ICC, the estimate 

of μ with its standard error remains of potential interests, especially for modeling 

multivariate binary data using probit-linear mixed model. [22] expressed the observed 

information matrix in EM algorithm using the first and second derivative of the full 

likelihood.

Assume the observed log-likelihood is lo(o, θ) where θ = (μ, Σx) and the full log-likelihood 

is lx,y(x, y, θ), following [22], we have:

(12)

Let Io = Io(θ̂), where θ̂ is the maximum likelihood estimator. Then we have:

(13)

Following the same path as in the E-step, we can use Gibbs sampler and empirical averages 

to approximate the conditional expectation.
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4. Simulation

4.1. Estimates

We set number of subjects at I = 100, 200 and each subject receives J = 2, 4 repeated 

measurements. The number of nodes is set to be N = 5 so that the number of possible 

undirected edges is D = 10. The true μ is set to be 0.5 for all elements and

The underlying true graphical ICC using definition 4 is controlled by r. We set r = 2, 4 in 

each setting so that the corresponding ICC’s are  and 4/5 respectively. A total 

of 500 simulations were run in each simulation group.

In Table. 1, the average estimated GICC for r = 2 groups are 0.702, 0.672, 0.683 for I100J2, 

I100J4 and I200J4 group respectively, comparing to an under-lying truth 2/3 ≈ 0.667. As 

number of individuals increases, or as the number of repeated measurements increases, both 

the bias and the standard deviation of the estimated GICC reduces. When r = 4, the average 

estimated graphical ICCs are 0.817, 0.800 and 0.806, respectively. The MLE of GICC in 

each case has a positive bias, which is reduced as either I or Ji increases.

4.2. Robustness

In the proposed multivariate probit-linear mixed model, the assumption was made that the 

underlying within group error term is independent across edges. In other words, in model 5, 

the off-diagonal elements of var(uij) is set to be zero. In real applications, this may not be 

the case. Therefore, we conducted simulations using the above settings when I = 100, J = 2 

and r = 2. However, instead of setting Σ = I, we set σij = ρ|i−j|, where ρ = 0.1 and 0.5. The 

resulting GICC based on 100 simulations have means 0.699(0.025) and 0.722(0.026). The 

results highlight that the resulting GICC is still close to the underlying truth when there are 

correlations between edges in the error term.

4.3. Comparison With Other Benchmarks

We compared our proposed method with other available methods using our first simulation 

case (I = 100; J = 2; r = 2). The work in [23], [24] and [25] used ICC derived from one-way 

ANOVA, [13] proposed ICC for binary data using a single variate probit model. It should be 

pointed out that, all the other methods are based on the single variate ICC, so the 

comparison is limited. We compare our method with (1) average ICC(1)’s for all edges 

based on one-way ANOVA, (2) ICC(1) for the mean of the binary vector and (3) average 

edge-wise ICC based on single variate probit model. The results are shown in Table 2.

First of all, the first two ICCs are all derived from the one-way ANOVA model, thus all of 

the binary data are considered to be continuous. The average edge-wise ICC is only 0.457, 

but ICC for the mean vector is 0.812. None of them are close to the truth. The edge-wise 

ICC treats all binary data as pure jumps instead of treating them as having underlying 

continuous data. The ICC for the mean of vector can only provide the ICC on the average 

Yue et al. Page 6

Comput Stat Data Anal. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



statistic, but can not align the data with the same edge. The average edge-wise binary ICC 

based on single variate probit model also yields lower ICC. It also shows the difference 

between an unstructured covariance matrix for x and a diagonal matrix.

4.4. Running Time

To evaluate the running time of the MCEM algorithm, we conducted simulations with 

varied settings in which the number of subjects = 50, 100, the number of replicates = 2, 3, 4 

and the number of edges = 10, 20 and 30. To be consistent with all settings, we terminated 

the algorithm after 30 iterations. All simulations were conducted using a 2.4GHz core on 

PowerEdge C6145 AMD Processor-based 2U Rack Server.

Table 3 shows that the number of subjects has a strict linear relationship with running time. 

Running time increases nonlinearly with either the number of replicates or the number of 

edges in the graph. With under 30-edge graphs and 4 replicates, the running time is less than 

twenty minutes. It is clear that if the number of replicates is 4, the running time grows faster 

than a quadratic function of the number of edges. Therefore, the current algorithm requires a 

relative small number of edges for each graph. We will further discuss it in Section 6.

5. Application

Resting-state fMRI scans consisted of a test-retest dataset previously acquired at the FM 

Kirby Research Center at the Kennedy Krieger Institute, Johns Hopkins University [26] are 

used to highlight the method. Twenty one healthy volunteers with no history of neurological 

disease each underwent two separate resting state fMRI sessions on the same scanner. A 3T 

MR scanner was used (Achieva, Philips Healthcare, Best, The Netherlands) utilizing a body 

coil with a 2D echoplanar (EPI) sequence and eight channel phased array SENSitivity 

Encoding (SENSE; factor of 2) with the following parameters: TR 2s, 3mm × 3mm in plane 

resolution, slice gap 1mm, for total imaging time of 7 minutes and 14 seconds. One subject 

was excluded due to technical issues at acquisition.

ICA (Independent Component Analysis) was performed using MEDOLIC (Multivariate 

Exploratory Linear Optimized Decomposition into Independent Components) version 3.10 

in FSL (FMRIB Software Library, FMRIB, Oxford, UK). Preprocessing included removal 

of low-frequency drift with a highpass filter cutoff of 250s, realignment of the fMRI time 

series using MCFLIRT, slice timing correction, brain extraction using BET, and spatial 

smoothing with FWHM of 6mm. Images were registered to MNI standard space with 

resampling resolution of 2mm. ICA was performed using multi-session temporal 

concatenation with automatic dimensionality estimation and time-course variance 

normalization implemented in MELODIC. 43 components were identified by MELODIC.

Relevant ICA components corresponding to known large scale brain networks were 

identified by a board certified neuroradiologist with experience in resting state fMRI. Seven 

total components were selected (default mode network, dorsal attention network, motor 

network, visual network, salience network, and two lateralized executive control networks), 

and the 7 by 7 correlation matrix was calculated (see raw data in Figure 5). Different 

thresholds were used to dichotomize the raw graphs into binary ones, where the thresholds 
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were chosen from 0.1 to 0.8 using grid 0.01 (see Figure 5). The GICC algorithm was then 

implemented on these binary graphs.

The GICC was then calculated for each threshold (see Figure 3). The GICC remains above 

0.6 when the threshold is between 0.1 and 0.6. For threshold outside of this band the GICC 

decreases dramatically. When the threshold is around 0.8, GICC fluctuates more 

significantly and the value eventually drops to 0.1. Thus the GICC shows high 

reproducibility of the raw data if a reasonable threshold is employed (from 0.1 to 0.6). When 

the threshold is too high, only few raw values will be dichotomize to 1, such that poor 

reproducibility is obtained. For practical subsequent applications, one could use the value 

that maximizes the GICC in this data set (see Figure 5).

6. Conclusion

In this paper, we propose the concept of the graphical intra-class correlation coefficient 

using multivariate probit mixed-linear models. The GICC is defined as . We used 

a Monte Carlo EM algorithm to obtain the MLE of Σx, while a Gibbs sampler was used in 

the E-step. We show the results of GICC in varied simulation settings and in the KIRBY21 

test-retest datasets.

While providing GICC, the estimation procedure can also be generalized to multivariate 

probit mixed-linear model with fixed and random covariates components, which is:

In the EM algorithm, η and y can be treated as full data and the procedure in Section 3 

follows. In section 3.3, we also calculate the observed information matrix for the fixed 

effects which can provide confidence intervals for β’s. Moreover, the procedure can also be 

used multivariate generalized mixed-linear models, such as multivariate poisson or logistic 

regression.

Currently, our method works for small graphs. As the number of nodes in a graph increases, 

the number of parameters of interests grows quadratically (D ~ O(N2) and #{σij} ~ O(D2)). 

Thus a graph with 100 nodes will have tens of millions of parameters to estimate. The Gibbs 

sampler could not be implemented effectively in such cases. Therefore, the algorithm 

currently requires a relatively small number of nodes for each graph (typically less than 10). 

In order to achieve faster convergence rate as well as control the Monte Carlo error induced 

by Gibbs sampler, ascent based MCEM [27] and acceleration EM algorithm ([28]) could be 

implemented.

Notice that from the application, GICC could also be used for choosing thresholds for 

dichotomizing raw graphs. The value that maximizes the GICC is a reasonable threshold, 

since it yields the best reproducibility of a well known benchmark data set.
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In summary, GICC provides us a way to measure the reproducibility of repeated graphical 

measurements. The current algorithm gives us the estimates of GICC for relatively small 

graphs. To our knowledge, GICC for large graphs has not been addressed before and 

therefore deserves further investigation.
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Figure 1. 
The left panel shows a high GICC case, where graphical measurements are similar within 

subjects. The right panel illustrates a low GICC case, where graphical measurements are less 

consistent within subjects.
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Figure 2. 
The figure illustrates two repeated measurements for one subject. On the left, raw 

correlations between seven nodes are illustrated. Then the raw correlations are 

dichotomizing using different thresholds (0.2, 0.35, 0.6 are listed here). Our algorithm is 

then implemented on binary graphes using each threshold. Red suggests lower value and 

white (yellow) suggests higher value. In the binary graph on the right, red indicates 1 and 

yellow indicates 0.
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Figure 3. 
The calculated GICC under different thresholds. The threshold were picked equally spaced 

from 0.1 to 0.8 using grid 0.01. The maximized GICC is indicated in the figure, which 

corresponds to a 0.35 threshold.
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Table 2

Compare to Benchmark

Models

ave. ICC(1) ICC(1) for vec.mean 1-var probit GICC

ICCtrue = 0.667 0.457 (0.028) 0.812 (0.035) 0.613 (0.025) 0.696 (0.029)
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