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Abstract 

This paper presents a method capable of estimating richly parametrized versions of the dynamic 
conditional correlation (DCC) model that go beyond the standard scalar case. The algorithm is based on 
the maximization of a Gaussian quasi-likelihood using a Bregman-proximal trust-region method to 
handle the various non-linear stationarity and positivity constraints that arise in this context. We 
consider the general matrix Hadamard DCC model with full rank, rank equal to two and, additionally, 
two different rank one matrix specifications. In the last mentioned case, the elements of the vectors that 
determine the rank one parameter matrices are either arbitrary or parsimoniously defined using the 
Almon lag function. We use actual stock returns data in dimensions up to thirty in order to carry out 
performance comparisons according to several in- and out-of-sample criteria. Our empirical results 
show that the use of richly parametrized models adds value with respect to the conventional scalar case. 
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1 Introduction

The choice of the dynamic conditional correlation (DCC) model has become very common in the multi-
variate GARCH applied literature, where the goal is often to fit the dynamics of time-varying conditional
variances and correlations of asset returns and to forecast their future values. The DCC family was
developed in the works of Engle [Engl 02] and Tse and Tsui [Tse 02] as a generalization of the constant
conditional correlation (CCC) model of Bollerslev [Boll 90]. The main advantage of DCC models is the
availability of a two-step estimation procedure which, combined with correlation targeting, makes their
use feasible even when the number of assets is high. It is worth noting that even though in the origi-
nal paper [Engl 02] a general matrix Hadamard-type model parameterization is proposed, it is almost
exclusively the scalar prescription that is used in applications. This simplified version of the model
imposes the same correlation dynamics to all the pairs of assets that are considered which, for sizable
dimensions, may constitute a too restrictive homogeneity assumption.

The main contribution of this paper is to provide adequate estimation tools for several non-scalar
richly parameterized DCC models and to empirically evaluate how they perform with respect to each
other and to the scalar model. The non-scalar models that we consider are the general matrix Hadamard-
type model and four more parsimonious particular cases thereof. Our main conclusions are that the
estimation of these models is practically feasible in high dimensions, and that two of the non-scalar
models that we consider are worth using in practice.

We emphasize that we restrict ourselves to DCC models in which only an approximate correlation
targeting as suggested by Engle [Engl 02] is possible. This is a widespread approach that aims at reducing
the number of parameters in the likelihood maximization by replacing the constant term matrix of the
quasi-correlation process by a moment estimate. This approach is controversial in the DCC context
since the approximate targeting procedure is statistically inconsistent (see the papers by Caporin and
McAleer [Capo 12] for an extensive review). This has motivated the introduction by Aielli [Aiel 13] of a
corrected DCC (cDCC) model that carefully addresses this issue, but the price to pay is that estimation
is more convoluted. Despite the theoretical interest of the cDCC model, we do not consider it in this
work since existing empirical findings and simulation results in [Aiel 13] reveal that the cDCC and DCC
models do not differ much in the one-step-ahead forecasting context that we focus on.

The need to go beyond the scalar DCC prescription has been partly addressed in the works of Franses
and Hafner [Hafn 09] and Cappiello et al. [Capp 06].4 In these papers, a so-called diagonal DCC model
that allows for asset-specific heterogeneity in the correlation structure is used. This extension specifies
the parameter matrix associated to the lagged innovations as a rank one matrix, and the same applies
to the parameter matrix of the lagged quasi-correlation term although that one is also kept as a scalar
parameter in [Hafn 09]. The results in those papers provide empirical evidence supporting that these
richer DCC models exhibit improved performance with respect to the scalar model. Another relevant
work in the same direction is the paper by Noureldin et al. [Nour 14] who introduce (among others) a
model, called Rotated DCC (RDCC), which uses similar specifications as in the two previously cited
papers, after applying an estimated orthogonal transformation to the devolatized returns, and illustrate
that it yields increased performance when compared to existing models like, for instance, the OGARCH
model [Alex 98]. Our contribution with respect to these papers is that we consider non-scalar models
other than the diagonal DCC cases mentioned above.

The results in [Hafn 09] and [Capp 06] lead us to believe that non-scalar DCC models with asset spe-
cific dynamics in the correlation structure, like the one associated to the original matrix Hadamard-type
parameterization [Engl 02], can yield a superior performance in practical applications when compared

4Other extensions or variations of the scalar DCC model have been proposed in the literature: we can mention the
papers of Billio et al. [Bill 03, Bill 06], Fernandes et al. [Fern 05]), Pelletier [Pell 06], Billio and Caporin [Bill 05], Colacito
et al. [Cola 11], and Bauwens and Otranto [Bauw 13]. We do not discuss these models in detail because they are not
directly related to the non-scalar DCC models that we consider in this paper.
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with the widespread scalar DCC model. This conjecture can only be verified when effective estimation
procedures are available for the richer models, the absence of which explains in part statements in the
literature (see for example [Bill 06] or Chapter 7 of [Engl 09]) about the lack of empirical interest of
these more general models. Two difficulties in this respect arise: the first one is the quadratic depen-
dence of the number of parameters on the model dimension and the second is the need to impose in
the estimation the nonlinear constraints that ensure the positivity and the stationarity of the dynamic
correlation process.

We therefore turn first our attention to the optimization techniques that can be used for the esti-
mation of non-scalar DCC models. More specifically, we develop the approach proposed by Chrétien
and Ortega in [Chre 13] based on the use of Bregman divergences. These authors have successfully
applied this approach to the estimation of the heavily parametrized VEC-GARCH model subjected to
stationarity and positivity constraints. In our work we extend this optimization method to the DCC
models and develop explicit estimation tools for a variety of non-scalar DCC specifications originating
from the general Hadamard-type DCC prescription in [Engl 02]. Even though the DCC family has a
much smaller parameter space than VEC, the use of the Bregman divergences approach is extremely
advantageous in the treatment of the DCC highly nonlinear optimization constraints. The paper is
therefore organized around the following three topics.

DCC model specifications: We consider the Hadamard DCC family for which the two parameter
matrices of the lagged innovations and lagged quasi-correlation terms are symmetric with full rank,
as well as four other subfamilies where these matrices have smaller ranks. More specifically, in one
case the rank is set equal to two, and in three other cases it is equal to one. The first of these three
“rank one” cases is equivalent to the diagonal DCC model considered also in [Hafn 09] and Cappiello
et al. [Capp 06] where the parameter matrices are built as outer products of vectors of parameters of
dimension n. The last two “rank one” models are new and called Almon DCC and Almon shuffle DCC.
In these models, the elements of the vectors that generate the rank deficient parameter matrices are
defined using an Almon function [Almo 65]. Thus, like in the scalar model, the number of parameters
that need to be estimated does not depend on the dimension n but, like in the diagonal model, the
correlation dynamics differs for all pairs of assets. The Almon DCC models are therefore more flexible
than the scalar DCC model, while determined by a comparable number of parameters.

Section 3 is devoted to presenting the general setup for DCC models, to describing in detail the
different parameterizations under study, as well as the constraints that are imposed on each of them in
order to ensure the stationarity of the process and the positive definiteness of the resulting conditional
correlation matrices. As a prerequisite, Section 2 spells out the notation and contains several mathe-
matical results used in the paper.

DCC model estimation: this is the subject of Section 4 where we provide explicit expressions for the
log-likelihood function and its gradient that are used for estimation. Following the scheme proposed in
[Chre 13] we use Bregman divergences in order to handle the model constraints. This approach is much
used in the context of machine learning (see for instance [Dhil 07, Kuli 09a] and references therein).
In our context, it is particularly advantageous because it allows to treat the nonlinear optimization
constraints that our problem is exposed to without resorting to Lagrange duality or other techniques
that demand the solution of supplementary optimization problems. Section 4 contains a comprehensive
description of the ingredients necessary to implement this optimization algorithm for each of the DCC
models that we consider. In a forthcoming work we show that the non-scalar DCC models considered
in this paper can be estimated by the composite quasi-maximum likelihood (CQML) method, as done
by Engle et al. [Engl 08b] for the scalar model, and that this method is advantageous for processes in
high dimensions.
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DCC specifications performance assessment: the possibility of estimating non-scalar DCC models
with the tools that we just mentioned allows us to empirically study their performance and, ultimately,
to assess the need for those models in the processing of financial data. In Section 5 we carry out an
in- and and out-of-sample study using two datasets that contain the historical evolution of the returns
of the thirty assets listed in the Dow Jones Industrial Average Index during two different time periods.
The results that we obtain reveal that: (i) no model (whether scalar or not) dominates systematically
the others in terms of in-sample and out-of-sample performance; (ii) the full rank Hadamard model is
in most cases dominated by the less richly parametrized versions; (iii) among the less rich models, the
rank one (or diagonal) model and the Almon (shuffle) models are in many cases performing better than
the scalar model. We nevertheless underline that for a given dataset, the choice between the models has
to be made by taking into account the specifics of time series in question, the available sample length,
dimension, and other considerations.

A technical appendix is available online or by request to one of the authors. It contains the proofs
of the results in the paper and other technical details.

2 Notation and preliminaries

In this section we specify the notation that is used throughout the paper and we provide various general
results that are quoted in the sequel.

2.1 Vectors and matrices

Vector notation: a column vector is denoted by a bold lower case symbol like r and r> indicates
its transpose. Given a vector v ∈ Rn, we denote its entries by vi, with i ∈ {1, . . . , n}; we also write
v = (vi)i∈{1,...,n}. The symbols in,0n ∈ Rn stand for the vectors of length n consisting of ones and
of zeros, respectively. Additionally, given n ∈ N, we define the vectors k1

n := (1, 2, . . . , n)>, k2
n :=(

1, 22, . . . , n2
)> ∈ Rn; e(i)

n ∈ Rn, i ∈ {1, . . . , n} denotes the canonical unit vector of length n determined
by e(i)

n = (δij)j∈{1,...,n}.

Matrix notation: we denote by Mn,m the space of real n×m matrices with m,n ∈ N. When n = m, we
use the symbols Mn and Dn to refer to the space of square and diagonal matrices of order n, respectively.
Given a matrix A ∈Mn,m, we denote its components by Aij and we write A = (Aij), with i ∈ {1, . . . , n},
j ∈ {1, . . .m}. The symbol Ln,m denotes the subspace of lower triangular matrices, that is, matrices
that have zeros above the main diagonal:

Ln,m = {A ∈Mn,m | Aij = 0, j > i} ⊂Mn,m.

We denote by L+
n,m ⊂ Ln,m (respectively L−n,m ⊂ Ln,m) the cone of matrices in Ln,m whose elements in

the main diagonal are all positive (respectively negative). We use Sn to denote the subspace Sn ⊂ Mn

of symmetric matrices:
Sn =

{
A ∈Mn | A> = A

}
,

and we use S+
n (respectively S−n ) to refer to the cone S+

n ⊂ Sn (respectively S−n ⊂ Sn) of positive
(respectively negative) semidefinite matrices. We write A � 0 (respectively A � 0) when A ∈ S+

n

(respectively A ∈ S−n ). The symbol In ∈ Dn denotes the identity matrix and On ⊂ Mn is the subspace
of orthogonal matrices, that is, On := {A ∈Mn | AA> = In}.

The Frobenius inner product is defined on the space Mn,m as:

〈A,B〉 := tr
(
AB>

)
= tr

(
A>B

)
, A,B ∈Mn,m. (2.1)
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The symbol tr denotes the trace of the matrix. This inner product induces the Frobenius norm that we
denote as ‖A‖ := 〈A,A〉1/2. Given a linear operator A : Mn,m −→ Mp,q, we denote by A∗ : Mp,q −→
Mn,m its adjoint operator with respect to (2.1) by the relation

〈B,A (C)〉 = 〈A∗ (B) , C〉, for any B ∈Mn,m, and C ∈Mp,q.

The Hadamard product of matrices: given two matrices A,B ∈Mn,m, we denote by A�B ∈Mn,m

their elementwise multiplication matrix or Hadamard product, that is:

(A�B)ij := AijBij for all i ∈ {1, . . . , n} , j ∈ {1, . . . ,m} . (2.2)

The main properties of the Hadamard product that are used in the sequel are the following:

(i) The Hadamard product of two vectors: given two arbitrary vectors u,w ∈ Rn, the following
relation holds true

u�w = Uw, (2.3)

where U ∈ Dn is defined by Uii := ui, for all i ∈ {1, . . . , n}, that is, U := diag(u), where the
operator diag is defined in the following subsection.

(ii) The Hadamard product trace property: consider the matrices A,B,C ∈ Mn,m. Then the
following relation holds (see for instance [Horn 94, page 304])

((A�B)C>)ii = ((A� C)B>)ii for all i ∈ {1, . . . , n} .

This leads to the equality
tr
(
(A�B)C>

)
= tr

(
(A� C)B>

)
, (2.4)

which we refer to as the Hadamard product trace property.

(iii) Schur Product Theorem: let A,B ∈Mn be positive semidefinite matrices. Then A�B is also
positive semidefinite. See [Bapa 97] for a proof.

2.2 Operators and their adjoints

We recall some standard matrix operators and introduce several new ones that we use in the following
sections.

The diag and Diag operators: we denote as Diag the operator Diag : Mn −→ Dn that sets equal to
zero all the components of a square matrix except for those that are on the main diagonal. The operator
diag : Rn −→ Dn takes a given vector and constructs a diagonal matrix with its entries in the main
diagonal. We denote by diag−1 : Dn −→ Rn the inverse of the diag operator. The adjoint operator of
Diag (respectively diag) is denoted by Diag∗ : Dn −→ Mn (respectively diag∗ : Dn −→ Rn); it is easy
to see that Diag∗ is just the injection Dn ↪→Mn and that diag∗ = diag−1.

The vec and mat operators: Given a matrix A ∈ Mn,m, we denote by vec the operator that
transforms A into a vector of length nm by stacking all its columns, namely,

vec : Mn,m −→ Rnm, vec (A) = (A11, . . . , An1, . . . , A1m, . . . , Anm)> .

The inverse of this operator is denoted as mat : Rnm −→Mn,m.

The vech and math operators: we denote by vech the operator that stacks the elements on and
below the main diagonal of a symmetric matrix into a vector of length N := 1

2n (n+ 1), that is,

vech : Sn −→ RN , vech (A) = (A11, . . . , An1, A22, . . . , An2, . . . , Ann)> , A ∈ Sn,
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and we denote the inverse of this operator by math : RN −→ Sn.
The adjoint map of vech (respectively math) is denoted by vech∗ : RN −→ Sn (respectively math∗ :
Sn −→ RN ). In [Chre 13] it is shown that given A ∈ Sn and v ∈ RN , the following relations hold true:

vech∗ (v) =
1
2

(math (v) + Diag (math (v))) , (2.5)

math∗ (A) = 2 vech(A− 1
2

Diag (A)). (2.6)

The relation between the vech, math, vec, and Diag operators: given a matrix A ∈ Sn and
N := 1

2n (n+ 1), we denote by Ln ∈ MN,n2 and by Dn ∈ Mn2,N the elimination and the duplication
matrices [Lutk 05], respectively. These matrices satisfy:

vech (A) = Lnvec (A) , (2.7)
vec (A) = Dnvech (A) . (2.8)

Given A ∈Mn, we define the diagonalization matrix P dn ∈Mn via the relation:

math
(
P dnvech (A)

)
= Diag (A) . (2.9)

A well-known property of the vec operator that is exploited in the following sections is

vec (ABC) =
(
C> ⊗A

)
vec(B). (2.10)

The matr and vecr operators: let r ≤ n ∈ N, N∗ := nr − 1
2r (r − 1) and define the operator

matr : RN∗ −→ Ln,r that transforms a vector of length N∗ into the lower triangular n × r matrix
defined by,

matr (v) =



v1 0 · · · 0
v2 vn+1 · · · 0
...

...
. . .

...
vr vn+r−1 · · · vN∗−n+r

...
...

. . .
...

vn v2n−1 · · · vN∗


, for any v ∈ RN

∗
. (2.11)

We denote the inverse of this operator as vecr : Ln,r −→ RN∗ . We note for future reference that the
elements in the main diagonal of (2.11) are given by

{vi1 , . . . , vir} with ij = n(j − 1) +
1
2
j(3− j), j ∈ {1, . . . , r}. (2.12)

The following proposition characterizes the adjoint maps of matr and vecr, respectively. Its proof is
provided in the Technical Appendix A.1.

Proposition 2.1 Given r ≤ n ∈ N and N∗ = nr − 1
2r (r − 1), let A ∈ Ln,r and v ∈ RN∗ arbitrary.

Let mat∗r : Ln,r −→ RN∗ and vec∗r : RN∗ −→ Ln,r be the adjoint maps of matr and vecr, respectively.
Then, the following relations hold true:

mat∗r (A) = vecr (A) , (2.13)
vec∗r (v) = matr (v) . (2.14)
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The Almon lag operator and its tangent map: using the Almon lag function [Almo 65], we define
the Almon lag operator almn : R3 −→ Rn, with n ∈ N and v ∈ R3, as

(almn(v))i := v1 + exp(v2i+ v3i
2), for i ∈ {1, . . . , n} . (2.15)

The tangent map Tvalmn : R3 −→ Rn is determined by the equality

Tvalmn · δv = Kv · δv, with Kv :=
(
in | k1

n � almn(v̄) | k2
n � almn(v̄)

)
∈Mn,3, δv ∈ R3, (2.16)

where the symbol | denotes vertical concatenation of matrices (or vectors), the vectors in,k1
n,k

2
n ∈ Rn

were introduced in Subsection 2.1, and v̄ ∈ R3 is obtained out of the vector v ∈ R3 by setting its first
component equal to zero, namely, v̄ := (0, v2, v3)>.
The adjoint T ∗valmn : Rn −→ R3 of the tangent map Tvalmn is determined by the relation

T ∗valmn(u) = K>v · u, for any u ∈ Rn. (2.17)

3 Dynamic conditional correlation models

In this section, we present the various dynamic conditional correlation (DCC) model specifications that
we study in the paper. In the first subsection, we define the most general model that we consider in
the paper which is referred to as the (general) Hadamard DCC model. The following sections define
more particular DCC models obtained by imposing parametric restrictions on the general Hadamard
model. For each model, we explain the parametric constraints that need to be imposed so that the
correlation process admits a stationary solution and the resulting conditional correlation matrices are
positive definite. In some cases identification constraints are also required.

All these DCC models are based on the following assumption for the n-dimensional conditionally
heteroscedastic discrete-time process {rt}:

rt = H
1/2
t ξt, {ξt} ∼ IN(0n, In), t = 1, 2, . . . , T, (3.1)

meaning that {ξt} is a set of n-dimensional independent normally distributed vectors with mean 0n and
identity covariance matrix In. {Ht} is a predictable positive semidefinite matrix process, that is, for each
t ∈ N, Ht is a random matrix that takes values in S+

n ; predictable means that the random variable Ht

is Ft−1-measurable, where Ft−1 := σ (r1, . . . , rt−1) is the information set generated by {r1, . . . , rt−1}.
In the first stage of the DCC model construction, a dynamic process is chosen for the conditional

variances σ2
i,t of each component ri,t of rt, for example the GARCH(1,1) model [Engl 82, Boll 86]

σ2
i,t = α0,i + α1,ir

2
i,t−1 + β1,iσ

2
i,t−1, i ∈ {1, . . . , n} , (3.2)

where the parameters α0,i, α1,i, and β1,i for all i ∈ {1, . . . , n} satisfy the inequalities α0,i > 0, α1,i, β1,i ≥
0, and α1,i+β1,i < 1 in order to ensure the stationarity of the process and the positivity of the conditional
variances σ2

i,t. We define the standardized returns εi,t of the i-th asset at time t as εi,t := ri,t/σi,t and
assemble them in the vector εt.

The second stage of the DCC model construction consists in specifying a dynamic equation for the
conditional correlation matrices Rt of the standardized returns εt. The matrix Rt is related to the
covariance matrix Ht by the relation

Ht = DtRtDt, (3.3)

where Dt := diag (σ1,t, . . . , σn,t). The dynamic behavior of the conditional correlation process {Rt} is
modeled through a dynamic matrix process {Qt} to which it is connected by the relation

Rt = Q
∗−1/2
t QtQ

∗−1/2
t , (3.4)
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where the matrix Q∗t is defined as Q∗t := Diag(Qt). The previous relation is needed to transform the
matrix Qt into a correlation matrix since the diagonal elements of Qt are not necessarily equal to 1.
The different DCC models that we consider in the paper differ in the way in which the dynamics for Qt
is parametrized.

3.1 The general Hadamard DCC model and its parameter constraints

The most general dynamic prescription that we use for Qt is (see [Engl 02]):

Qt = (ini>n −A−B)� S +A� (εt−1ε
>
t−1) +B �Qt−1. (3.5)

In this equation, the parameters A and B are symmetric matrices, that is A,B ∈ Sn, and S :=
E
[
εtε
>
t

]
∈ S+

n . The particular expression chosen for the first summand of (3.5) leads to an approximate
variance targeting of the model that is implemented by estimating S in a preliminary step (i.e. prior to
the estimation of the parameters in A and B) by

S :=
1
T

T∑
t=1

εtε
>
t , (3.6)

where T is the sample size (see [Capo 12, Aiel 13] for additional details). Since the parameter matrices
A and B are generic elements in Sn, they can be naturally parametrized with (a, b) ∈ RN ×RN , where
N = 1

2n (n+ 1), by setting A := math (a) and B := math (b). We refer to RN × RN as the intrinsic
parameter space of the Hadamard DCC model. This space is generically denoted by P × P and the
dimension of the intrinsic parameter subspace P by P . Using the intrinsic parameters that we just
described, we write (3.5) as

Qt =
(
ini>n −math (a)−math (b)

)
� S + math (a)�

(
εt−1ε

>
t−1

)
+ math (b)�Qt−1. (3.7)

The dynamic equation that we just described guarantees neither that the resulting joint process
{rt, Ht} is stationary nor that {Ht} takes values in the cone of positive semidefinite matrices S+

n and
hence consists of covariance matrices. Consequently, we state sufficient conditions on the parameters a
and b that ensure those features:

(SC) Stationarity constraints: (see [Aiel 13, Proposition 2.3])

|ai + bi| < 1, i ∈ {1, . . . , N} . (3.8)

(PSD) Positivity constraints:

math (a) � 0, math (b) � 0, (3.9)(
ini>n −math (a)−math (b)

)
� S � 0, Q0 � 0. (3.10)

The sufficiency of the positivity constraints follow from an inductive argument using the expression (3.7)
that defines {Qt}, together with the Schur Product Theorem recalled in Section 2. We stress that the
first constraint in (3.10) cannot be replaced by ini>n −math (a)−math (b) � 0 even if we know that S � 0
holds (which is the case due to the targeting). Indeed, if the constraints (3.9) hold, they prevent that
ini>n −math (a)−math (b) � 0 since any vector v in the kernel of ini>n satisfies 〈v, (ini>n −A−B)v〉 ≤ 0.

Given that the number of parameters in (3.7) exhibits a quadratic dependence on the dimension n
of the process {rt}, we dedicate the following subsections to formulate several more parsimonious pa-
rameterizations of this general Hadamard DCC model, and to characterize the associated identification,
positivity, and stationarity constraints. In Table 6.1 we report the number of parameters of the matrices
A and B in the different models for process dimensions going from five to thirty.
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3.2 Rank deficient DCC models

The rank deficient DCC models constitute a subfamily of the Hadamard DCC family where the matrices
A and B ∈ Sn in (3.5) are constrained to have a common prescribed rank r ∈ {1, . . . , n − 1}, that is,
rank(A) = rank(B) = r. A natural parameterization for A and B consists of using Ã, B̃ ∈ Mn,r such
that A = ÃÃ> and B = B̃B̃>. This choice poses an identification problem due to the invariance
properties of the product ÃÃ> because given A ∈ Sn with rank r and Ã ∈ Mn,r such that A = ÃÃ>,

this equality also holds true for any other matrix ˜̃A := ÃO, with O ∈ O(r) an arbitrary element of the
orthogonal group. Indeed, ˜̃A ˜̃A> = ÃOO>Ã> = ÃÃ> = A. This observation indicates that the intrinsic
parameter subspace that we are looking for is not Mn,r but the orbit space Mn,r/O(r) of the Lie group
action of O(r) on the set of rectangular matrices Mn,r via:

Φ : O(r)×Mn,r −→ Mn,r

(O,A) 7−→ AO−1.
(3.11)

The next proposition provides a convenient model subspace for the quotient Mn,r/O(r) and, as a
corollary, a characterization of the intrinsic parameter subspace of the rank deficient DCC model. A
proof of this result can be found in the Technical Appendix A.2.

Proposition 3.1 In the setup that we just described, consider the cone L+
n,m of lower triangular ma-

trices with positive elements in the main diagonal. Then, the map

Ψ : L+
n,m −→ Mn,r/O(r)
A 7−→ [A], (3.12)

is a bijection. The symbol [A] in (3.12) denotes the orbit in Mn,r/O(r) corresponding to the element
A ∈Mn,r with respect to the action (3.11).

This proposition implies that the intrinsic parameter subspace of the rank deficient family that we are
looking for is L+

n,m. This can be described as RN∗ , N∗ = nr − 1
2r(r − 1), via the operator matr :

RN∗ −→ Ln,r introduced in Subsection 2.2 just by adding a positivity constraint on the entries of the
vector in RN∗ that constitute the main diagonal of the corresponding matrix via the matr operator.
More explicitly, let a, b ∈ RN∗ and define Ã := matr (a) and B̃ := matr (b). The matrices A and B

are hence given by A := ÃÃ>, B := B̃B̃>. Using the notation that we just adopted, the rank deficient
DCC model specification can be written as

Qt = (ini>n − ÃÃ> − B̃B̃>)� S + (ÃÃ>)� (εt−1ε
>
t−1) + (B̃B̃>)�Qt−1. (3.13)

In order to ensure that Ã, B̃ ∈ L+
n,r and that, by Proposition 3.1, the model is well identified we need

to impose the following constraints:

(IC) Identification constraints: let {i1, . . . , ir} with ij = n(j− 1) + 1
2j(3− j), j ∈ {1, . . . , r}, be the

entries spelled out in (2.12) of any vector in RN∗ that amount to the main diagonal of the corresponding
matrix in Ln,r via the matr representation. Then

aij > 0, bij > 0, j ∈ {1, . . . , r}. (3.14)

Additionally, the stationarity and positivity constraints are expressed as:

(SC) Stationarity constraints:

r∑
k=1

∣∣∣ÃikÃjk + B̃ikB̃jk

∣∣∣ < 1, i, j ∈ {1. . . . , n} , i ≥ j. (3.15)
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(PSD) Positivity constraints:

(ini>n − ÃÃ> − B̃B̃>)� S � 0, Q0 � 0. (3.16)

3.3 The Almon DCC model

The Almon DCC model specification is a particular case of the rank deficient DCC model with r = 1,
where the vectors that generate the matrices A,B ∈ Sn in (3.5) are parametrized using the Almon
lag function [Almo 65] almn introduced in Subsection 2.2. More explicitly, given n ∈ N and v ∈ R3,
the Almon lag operator almn : R3 −→ Rn can be used to generate a vector almn(v) whose entries are
(almn(v))i = v1 + exp(v2i+ v3i

2), i ∈ {1, . . . , n}.
Let a, b ∈ R3 and define ã := almn(a), b̃ := almn(b) ∈ Rn. The parameter matrices A,B ∈ Sn can

be written as A := ãã>, B := b̃b̃
>

, and hence the Almon DCC model specification is given by

Qt = (ini>n − ãã
> − b̃b̃

>
)� S + (ãã>)� (εt−1ε

>
t−1) + (b̃b̃

>
)�Qt−1. (3.17)

and the associated constraints by

(IC) Identification constraints:

ã1 > 0, b̃1 > 0, i.e. a1 + exp(a2 + a3) > 0, b1 + exp(b2 + b3) > 0. (3.18)

(SC) Stationarity constraints:∣∣∣ãiãj + b̃ib̃j

∣∣∣ < 1, i, j ∈ {1, . . . , n} , i ≥ j. (3.19)

(PSD) Positivity constraints:

(ini>n − ãã
> − b̃b̃

>
)� S � 0, Q0 � 0. (3.20)

3.4 The Almon shuffle DCC model

The Almon shuffle DCC specification is a variant of the Almon DCC model in which the different
components of the process {rt} are ordered in order to enhance the performance of the Almon param-
eterization. Indeed, experience shows that the modeling performance of the Almon DCC prescription
is much influenced by the ability of the Almon function to fit the entry values of the parameter vectors
ã and b̃ that one would obtain by using an unrestricted rank deficient model with r = 1. This fit can
be improved by first carrying out a reordering of the process components so that the vector entries are
as monotonous as possible, hence fostering a good match between the typical profiles of Almon curves
and the entry values of ã and b̃. The reordering (shuffle) that we propose consists in arranging the
components in descending order according to the magnitude of their projection onto the first principal
component (the one that corresponds to the largest eigenvalue) computed using the unconditional co-
variance matrix of the available sample. Once the reordering is implemented, the Almon DCC model of
the previous subsection is used. The results in Section 5 show that the Almon shuffle DCC model often
exhibits a better performance than the Almon model.

3.5 The scalar DCC model

The scalar DCC model is by far the most widely used in the literature. In this case, the parameter
matrices A,B ∈ Sn in (3.5) are of the form A = aini>n , B = bini>n , with a, b ∈ R. The scalar DCC model
specification and the associated constraints can be written as:

Qt = (1− a− b)S + a εt−1ε
>
t−1 + b Qt−1. (3.21)
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(SC) Stationarity constraint:

a+ b < 1. (3.22)

(PSD) Positivity constraints:

a ≥ 0, b ≥ 0, S � 0, Q0 � 0. (3.23)

4 Constrained estimation of DCC model parameters

In this section, we present a constrained optimization scheme adapted to the quasi-maximum likelihood
(QML) estimation of the DCC models previously described, and we provide all the necessary details
to implement it. The QML approach stems from the assumptions that the innovations ξt appearing in
(3.1) are normally distributed and that the conditional variance and correlation of the data generating
process behave according to the Hadamard DCC equation.

4.1 The log-likelihood function and its gradient

In this subsection we provide the log-likelihood function associated to the DCC model (3.1) with cor-
relation dynamics determined by (3.5). We compute the gradient of the log-likelihood function related
to each of the DCC model specifications discussed in Section 3. The issues posed by the need to handle
the parameter constraints are addressed in detail in Subsection 4.2.

The log-likelihood function. Let r = {r1, . . . , rT } be a sample of size T of n-dimensional obser-
vations of the process {rt} and let Θ := (A,B) ∈ Sn × Sn denote the parameters to be estimated,
keeping in mind that this is performed after substituting the targeting estimator defined in (3.6) for
the parameter S (in the sequel the symbol S stands for the targeting estimator instead of the unknown
value). The log-likelihood function associated to the process (3.1) is

logL (Θ; r) =
T∑
t=1

lt (Θ; rt) , (4.1)

where
lt (Θ; rt) = −1

2
(
n log(2π) + log det (Ht) + r>t H

−1
t rt

)
. (4.2)

The dependence of lt on Θ is materialized through Ht, that explicitly relies on the set of parameters Θ
through Qt since Ht is equal to DtQ

∗−1/2
t QtQ

∗−1/2
t Dt. We recall that Dt depends on the parameters

of the conditional volatilities (3.2) specified in the first stage of the DCC model construction. These
parameters can be estimated consistently in a first stage as explained in [Engl 02] and we hence proceed
in this section by assuming that the symbol Dt in (4.2) and all the expressions derived from it stand for
the corresponding estimated version. After this substitution, the expression (4.1) is strictly equivalent
to the second stage log-likelihood function defined by [Engl 02].

Consequently, the DCC QML (second stage) estimation problem consists of finding the parameter
value Θ̂ that maximizes the log-likelihood (4.1) associated to a particular DCC model subjected to the
constraints (IC), (SC), and (PSD) associated to it. As we explain in the next subsection, we carry
this out using an iterative optimization method proposed in [Chre 13], which we adapt to the different
versions of the DCC model that we have defined in the previous section. For each of these versions, the
matrices A,B ∈ Sn are functions of a parameter vector θ that belongs to an intrinsic parameter space
P × P that is specific to each model, and for which Θ = Θ(θ).
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Gradient of the log-likelihood function. The computation of the estimator θ̂ of θ via the con-
strained maximum likelihood optimization that we use requires the gradient ∇θ logL (Θ; r). We provide
analytical expressions of the gradient in the following proposition, where we use several operators and
vectors defined in Section 2; the proof is available in the Technical Appendix A.3.

Proposition 4.1 Let r = {r1, . . . , rT } be a sample with rt ∈ Rn, t ∈ {1, . . . , T}. Let θ := (θ1,θ2) ∈
P×P, Θ (θ) := (A (θ1) , B (θ2)) ∈ Sn×Sn, and let logL (θ; r) be the log-likelihood in (4.1)-(4.2). Then,

∇θlogL (θ; r) =
T∑
t=1

∇θlt (θ; rt) =
T∑
t=1

T ∗θΘ · T ∗ΘHt · ∇Ht lt (θ; rt) , (4.3)

with
∇Ht lt (θ; rt) = −1

2
[
H−1
t −H−1

t rtr>t H
−1
t

]
. (4.4)

In the relation (4.3), the differential operator T ∗ΘHt : Sn × Sn −→ Sn × Sn is the adjoint of the map
TΘHt : Sn × Sn −→ Sn × Sn. For each component Θ (that is A (θ1) and B (θ2)) of Θ and for any
∆ ∈ Sn, T ∗ΘHt is determined by the expression:

T ∗ΘHt ·∆ = T ∗ΘQt

[
Q∗−1
t Dt∆DtQ

∗−1
t − 1

2
Diag(Q∗−2

t (Dt∆DtQ
∗−1
t Qt +QtQ

∗−1
t Dt∆Dt)Q∗−1

t )
]
. (4.5)

Additionally, the differential operator T ∗ΘQt : Sn × Sn −→ Sn × Sn is the adjoint of the map TΘQt :
Sn × Sn −→ Sn × Sn; for each component A (θ1) and B (θ2) of Θ and for any ∆ ∈ Sn, T ∗ΘQt is
determined by the recursions:

T ∗AQt ·∆ = ∆�
(
εt−1ε

>
t−1 − S

)
+ T ∗AQt−1 [∆�B] , (4.6)

T ∗BQt ·∆ = ∆� (Qt−1 − S) + T ∗BQt−1 [∆�B] , (4.7)

that are initialized by setting T ∗AQ0 = 0 and T ∗BQ0 = 0.
Finally, the differential operator T ∗θΘ : Sn × Sn −→ P × P is the adjoint of the map TθΘ : P × P −→
Sn × Sn, with P × P the intrinsic θ parameter space and parameterization Θ (θ) associated to each of
the model subfamilies considered in Section 3. For a given pair ∆1,∆2 ∈ Sn these maps are determined
by the following expressions:

(i) The Hadamard DCC family: let n ∈ N, N := 1
2n (n+ 1). In this case, the intrinsic parameter

subspace P is RN , θ := (a, b), and Θ (θ) := (math (a) ,math (b)), for any a, b ∈ RN . Moreover,

T ∗θΘ : Sn × Sn −→ RN × RN
(∆1,∆2) 7−→ (math∗ (∆1) ,math∗ (∆2)) . (4.8)

(ii) The rank deficient DCC family with rank r: let r < n ∈ N, N∗ := nr − 1
2r (r − 1). In this

case the intrinsic parameter subspace P is RN∗ , θ := (a, b), and

Θ(θ) := (matr(a)(matr(a))>,matr(b)(matr(b))>), for any a, b ∈ RN
∗
.

Moreover,
T ∗θΘ : Sn × Sn −→ RN∗ × RN∗

(∆1,∆2) 7−→ 2 (vecr(∆1matr(a)), vecr(∆2matr(b))).
(4.9)
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(iii) The Almon DCC family: in this case the intrinsic parameter subspace P is R3 and Θ (θ) :=
(almn (θ1) (almn (θ1))>, almn (θ2) (almn (θ2))>), with θ1,θ2 ∈ R3, θ := (θ1,θ2). Moreover,

T ∗θΘ : Sn × Sn −→ R3 × R3

(∆1,∆2) 7−→ 2 (K>θ1
∆1almn(θ1),K>θ2

∆2almn(θ2)), (4.10)

where Kθi = ( in | k1
n � almn(θ̄i) | k2

n � almn(θ̄i)) ∈Mn,3, θ̄i := (0, (θi)2, (θi)3)>, i ∈ {1, 2}, the
symbol | denotes vertical concatenation, and k1

n := (1, 2, . . . , n)>, k2
n :=

(
1, 22, . . . , n2

)> ∈ Rn.

(iv) The scalar DCC family: the intrinsic parameter subspace is R and Θ(θ) := (aini>n , bini>n ), with
a, b ∈ R, θ = (a, b). Moreover,

T ∗θΘ : Sn × Sn −→ R× R
(∆1,∆2) 7−→

(
〈∆1, ini>n 〉, 〈∆2, ini>n 〉

)
.

(4.11)

In order to algorithmically implement Proposition 4.1, the operator recursions (4.5)-(4.10) have to
be materialized in matrix recursions. We provide these results in the Appendix.

4.2 Constrained optimization using Bregman divergences

We present in this subsection the constrained optimization method that we advocate to compute the
QML estimator of the DCC model parameters. Handling the linear and nonlinear parameter constraints
associated to each of the specifications that we are considering complicates the optimization problem.
Standard techniques, like Lagrange duality, often require to solve additional secondary optimization
problems. We circumvent this difficulty by implementing a penalized optimization scheme that uses
the so-called Bregman matrix divergences [Breg 67] and that provides a solution using the primal space
as working setup. This technique has been introduced in the context of machine learning (see for
instance [Dhil 07, Kuli 09b] and references therein) and has has shown a good performance in the
estimation of the heavily parametrized VEC-GARCH model [Chre 13].

4.2.1 Bregman divergences and constrained optimization problems

Bregman matrix nearness measures and divergences. We start by recalling the definition of
Bregman matrix nearness measures.

Definition 4.2 Let X,Y ∈ Sn and φ : Sn −→ R a strictly convex and differentiable function. The
Bregman matrix nearness measure associated to φ is defined by

Dφ(X,Y ) := φ(X)− φ(Y )− tr
(
(∇φ(Y ))>(X − Y )

)
.

Different choices of φ lead to the following examples of this measure:

(i) The squared Frobenius distance: if the function φ is the squared Frobenius norm, that is,
φ(X) := ‖X‖2 = 〈X,X〉 then Dφ(X,Y ) := ‖X − Y ‖2.

(ii) The von Neumann divergence is the Bregman divergence associated to the entropy of the
eigenvalues of a positive definite matrix. more explicitly, if X is a positive definite matrix with
eigenvalues {λ1, . . . , λn}, then φ(X) :=

∑n
i=1(λi log λi − λi) and the resulting divergence is

DvN (X,Y ) := tr(X logX −X log Y −X + Y ),

where logX and log Y are the matrix logarithms.
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(iii) The Burg matrix divergence: it is also referred to in the literature as LogDet divergence
or Stein’s loss (mainly in the statistics literature [Jame 61]). This divergence is obtained out of
the Burg entropy of the eigenvalues of a positive definite matrix, that is φ(X) := −

∑n
i=1 log λi, or

equivalently φ(X) := − log det(X). We define the associated Bregman divergence over the positive
definite matrices X,Y ∈ S+

n by

DM (X,Y ) := tr(XY −1)− log det(XY −1)− n. (4.12)

The last two examples are particular cases of spectral Bregman matrix nearness measures, that
is, the function φ that defines them can be written down as the composition φ(X) = (ϕ ◦ λ)(X), where
ϕ : Rn −→ R is a differentiable strictly convex function and λ : Sn −→ Rn is the map that provides the
eigenvalues of the matrix in its argument.

In what follows we use the denomination Bregman matrix divergence when we refer to the von
Neumann or the Burg divergences. In practice, we use the Burg divergence.

The use of Bregman matrix nearness measures in constrained optimization problems.
Bregman divergences are particularly appropriate in optimization at the time of dealing with positive
(semi)definiteness constraints. Suppose that we want to minimize a function f(A) defined on a space of
square matrices and subjected to A � 0. We proceed by iteratively solving the optimization problems
associated to penalized local models of the form

f
(k)
A (A) := f(A(k)) +∇f(A(k))(A−A(k)) +

1
2

(A−A(k))TH(A(k))(A−A(k)) +Dφ(A,A(k)), (4.13)

where k ∈ N is the label for the iteration and H(A(k)) is the Hessian of the function f computed at the
point A(k). If we use as penalization term Dφ(A,A(k)) in (4.13) a Bregman divergence instead of the
usual Frobenius distance, it diverges when A approaches the set where the constraints are violated and
forces the solution of the penalized local model to automatically lay in the constrained set. Proceeding
this way we reduce the constrained optimization problem to a sequence of local unconstrained ones.

4.2.2 Bregman divergences for positivity constraints

We write down the Bregman divergences associated to the constraints that we need to impose on the
different DCC models under consideration in terms of the variables θ of their intrinsic parameter space
P × P. We recall that θ ∈ P denotes a generic P -dimensional component of θ ∈ P × P. In view of
the different functional character of the constraints considered, we classify them into three groups and
provide the corresponding expressions for the divergences.

Positive semidefinite (definite) constraints (PSDC): this group of constraints can be generically
written as M (θ) � 0, where M : P × P −→ Sq, q ∈ N, is a smooth map. In this case, the Bregman
matrix divergence DM (θ,θ(k)) ∈ R is given by

DM (θ,θ(k)) = tr
(
M(θ) ·M(θ(k))−1

)
− log det

(
M(θ) ·M(θ(k))−1

)
− q. (4.14)

Nonlinear positivity constraints (NPC): they are specified by the relation N (θ) > 0q, where
N : P × P −→ Rq is a differentiable map and q is the number of components of the constraint. The
corresponding entries of the divergence DN (θ,θ(k)) ∈ Rq are determined by the relation

Di
N (θ,θ(k)) = (DN (θ,θ(k))i =

(N (θ))i
(N(θ(k)))i

− log
(N(θ))i

(N(θ(k)))i
− 1, i = {1, . . . , q} . (4.15)
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Linear positivity constraints (LPC): they are a particular case of the previous ones, where N is a
linear map. More specifically, in the case when θ ∈ P × P, we consider linear constraints of the form
L (θ) := f −

∑2
i=1 Cθiθi > 0m, with Cθi ∈ Mm,P , θi ∈ P, f ∈ Rm, and m ≤ P ∈ N. The divergence

DL(θ,θ(k)) ∈ Rm associated to the condition L (θ) > 0m has m components given by

Di
L(θ,θ(k)) = (DL(θ,θ(k)))i =

(L(θ))i
(L(θ(k)))i

− log
(L(θ))i

(L(θ(k)))i
− 1, i ∈ {1, . . . ,m} . (4.16)

4.2.3 The local model, its gradient and Jacobian

As we already explained, the algorithm is based on the optimization of a sequence of penalized local
functions that incorporate the Bregman divergences in order to ensure that the constraints are satisfied at
each iteration. More specifically, the solution θ(k+1) of the local optimization problem after k iterations
is defined by

θ(k+1) = arg min
θ∈P×P

f̃ (k)(θ), (4.17)

where the local objective function f̃ (k) at θ(k) is given by

f̃ (k) (θ) := f(θ(k)) +∇θf(θ(k))(θ − θ(k)) +
1
2

(θ − θ(k))>H(k)(θ − θ(k))

+
s1∑
j=1

Lj1DMj
(θ,θ(k)) +

s2∑
j=1

Lj2i
>
qjDNj (θ,θ

(k)) +
s3∑
j=1

Lj3i
>
mjDLj (θ,θ

(k)). (4.18)

In the above expression, ∇θf(θ(k)) = −∇θlogL(θ(k); r) is the gradient of minus the log-likelihood
function which is determined, in the DCC case, by the relation (4.3) in Proposition 4.1. The symbol
H(k) denotes the Hessian of the function f computed at the point θ(k). The integers s1, s2, s3 are
the numbers of positive semidefiniteness, nonlinear, and linear constraints, respectively; the symbols
DMj

(θ,θ(k)) ∈ R, j ∈ {1, . . . , s1}, DNj (θ,θ
(k)) ∈ Rqj , j ∈ {1, . . . , s2}, and DLj (θ,θ

(k)) ∈ Rmj ,
j ∈ {1, . . . , s3} denote the Bregman divergences defined in (4.14), (4.15), and (4.16), respectively;
L1 ∈ Rs1 ,L2 ∈ Rs2 ,L3 ∈ Rs3 are vectors whose components control the strength of the Bregman
penalizations, and iqj ∈ Rqj , j ∈ {1, . . . , s2}, imj ∈ Rmj , j ∈ {1, . . . , s3} are vectors of ones.

The local optimization problem in (4.17) is solved by finding the value θ0 for which

∇θ f̃ (k) (θ0) = 0, (4.19)

where the gradient ∇θ f̃ (k) (θ) of the local model (4.18) is given by

∇θ f̃ (k) (θ) = ∇θf(θ(k)) +H(k)(θ − θ(k))

+
s1∑
j=1

Lj1∇θDMj
(θ,θ(k)) +

s2∑
j=1

Lj2

qj∑
i=1

∇θDi
Nj (θ,θ

(k))

+
s3∑
j=1

Lj3

mj∑
i=1

∇θDi
Lj (θ,θ

(k)). (4.20)
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The gradients of the divergences in (4.20) are given by

∇θDMj
(θ,θ(k)) = −T ∗θMj(Mj(θ)−1 −Mj(θ(k))−1), (4.21)

∇θDi
Nj (θ,θ

(k)) = −

[
1

(Nj(θ))i
− 1

(Nj(θ(k)))i

]
(T ∗θNj · e(i)

qj ), i ∈ {1, . . . , qj} , (4.22)

∇θDi
Lj (θ,θ

(k)) =

[
1

(Lj(θ))i
− 1

(Lj(θ(k)))i

]
(C(j)T

θ · e(i)
mj ), i ∈ {1, . . . ,mj} , (4.23)

where θ ∈ P is a generic component of the intrinsic parameter θ ∈ P×P, C(j)
θ ∈Mmj ,S , j ∈ {1, . . . , s3}

is the matrix associated to the j-th linear constraint, and e(i)
qj ∈ Rqj , i ∈ {1, . . . , qj} and e(i)

mj ∈ Rmj ,
i ∈ {1, . . . ,mj} are the canonical unit vectors introduced in Subsection 2.1. Additionally, for every
j ∈ {1, . . . , s1}, T ∗θMj : Sq −→ P ×P is the adjoint of the tangent map TθMj : P ×P −→ Sq of Mj(θ) :
P × P −→ Sq that determines the j-th positive semidefinite constraint. The symbol T ∗θMj : Sq −→ P
in the relation (4.21) denotes the adjoint of the partial derivative TθMj : P −→ Sq for some component
θ of θ. Analogously, for every j ∈ {1, . . . , s2}, the map T ∗θNj : Rqj ×Rqj −→ P ×P is the adjoint of the
tangent map TθNj : P × P −→ Rqj × Rqj of the function Nj(θ) : P × P −→ Rqj that determines the
j-th nonlinear constraint. Again T ∗θNj denotes the adjoint of the corresponding θ partial derivative.

In order to numerically obtain the solution θ0 of (4.19) using the Newton-Raphson algorithm, we
need the Jacobian of the local model and in particular the tangent maps of all the gradients of the
divergences in (4.21)-(4.23). Straightforward computations yield for every component θ ∈ P of θ and
any δθ ∈ P:

Tθ(∇θDMj
(θ,θ(k))) · δθ = T ∗θMj(Mj(θ)−1(TθMj · δθ)Mj(θ)−1))

− (Tθ(T ∗θMj)) (Mj(θ)−1 −Mj(θ(k))−1) · δθ, j ∈ {1, . . . , s1} ,

Tθ(∇θDi
Nj (θ,θ

(k))) · δθ =
(TθNj(θ))i · δθ

(Nj (θ))2
i

(T ∗θNj · e(i)
qj )−

[
1

(Nj(θ))i
− 1

(Nj(θ(k)))i

]
Tθ(T ∗θNj · e(i)

qj ) · δθ,

i ∈ {1, . . . , qj} , j ∈ {1, . . . , s2} ,

Tθ(∇θDi
Lj (θ,θ

(k)) · δθ =
(C(j)

θ · δθ)i
(Lj(θ))2

i

(C(j)T
θ · e(i)

mj ), i ∈ {1, . . . ,mj} , j ∈ {1, . . . , s3} .

Using these identities it is easy to determine the Jacobian of the local model f̃ (k) (θ). Indeed, the
expression for the block of the Jacobian that corresponds to the component θ ∈ P is:

Tθ(∇θf̃ (k)(θ)) · δθ = H(k) · δθ +
s1∑
j=1

Lj1

[
T ∗θMj(Mj(θ)−1(TθMj · δθ)Mj(θ)−1))

−(Tθ(T ∗θMj))(Mj(θ)−1 −Mj(θ(k))−1) · δθ
]

+
s2∑
j=1

Lj2

qj∑
i=1

[ (TθNj(θ))i · δθ
(Nj (θ))2

i

(T ∗θNj · e(i)
qj )

−

[
1

(Nj(θ))i
− 1

(Nj(θ(k)))i

]
Tθ(T ∗θNj · e(i)

qj ) · δθ
]

+
s3∑
j=1

Lj3

mj∑
i=1

(C(j)
θ · δθ)i

(Lj(θ))2
i

(C(j)>
θ · e(i)

mj ). (4.24)

4.3 Implementation for the Hadamard DCC model

In this subsection, we provide explicit expressions for the Bregman divergences, the local penalized
model, its gradient and Jacobian, for the Hadamard DCC model that we presented in Section 3. Similar
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results for the other DCC models are reported in Technical Appendix B. The lengthy computations that
lead to these expressions are contained in the Technical Appendices C.1-C.3.

Recall that in this particular case, the matrices A,B ∈ Sn are parametrized with two vectors a, b ∈
RN , N = 1

2n (n+ 1), by setting A := math (a), B := math (b). Let θ := (a, b) ∈ RN ×RN ; the intrinsic
parameter subspace P is in this case RN and has dimension P = N . The dynamics of the conditional
correlation matrix for the Hadamard DCC model is given by (3.7) and θ is subjected to the stationarity
(3.8) and positivity constraints (3.9)-(3.10).

Constraints and the local model. The stationarity and positivity constraints imposed on the
Hadamard model specification can be written down according to the classification introduced in Subsec-
tion 4.2.2 as the following set of two linear positivity and three positive semidefiniteness and definiteness
constraints:

L1 (θ) := iN − C(1)
a a− C(1)

b b > 0N , (4.25)

L2 (θ) := iN − C(2)
a a− C(2)

b b > 0N , (4.26)
M1(a) := math(a) � 0, (4.27)
M2(b) := math(b) � 0, (4.28)

M3 (θ) :=
(
ini>n −math(a)−math(b)

)
� S � 0, (4.29)

where L1(θ), L2(θ) ∈ RN , M1(a),M2(b),M3 (θ) ∈ Sn, C(1)
a = C

(1)
b = IN , C(2)

a = C
(2)
b = −IN with IN

the identity matrix. The local model corresponding to (4.17) is given in this case by

f̃ (k) (θ) =f(θ(k)) +∇θf(θ(k))(θ − θ(k)) +
1
2

(θ − θ(k))>H(k)(θ − θ(k))

+
3∑
j=1

Lj1DMj (θ,θ
(k)) +

2∑
j=1

Lj2i
>
NDLj (θ,θ

(k)), (4.30)

where L1 :=
(
L1

1, L
2
1, L

3
1

)> and L2 :=
(
L1

2, L
2
2

)> are the vectors that contain the penalization strengths,
f(θ(k)) is minus the log-likelihood function (4.1), ∇θf(θ(k)) is its gradient, that is ∇θf(θ(k)) =
−∇θlogL(θ(k); r), which for the Hadamard model is determined by relations (4.3)-(4.8) in Proposi-
tion 4.1, and H(k) is its Hessian computed at the point θ(k). In relation (4.30) the Bregman divergences
associated to each of the constraints (4.25)-(4.29) are easily obtained from (4.16) and (4.14), which
yields the following expressions:

Di
L1

(θ,θ(k)) =
1− ai − bi

1− a(k)
i − b

(k)
i

− log
1− ai − bi

1− a(k)
i − b

(k)
i

− 1, i ∈ {1, . . . , N} , (4.31)

Di
L2

(θ,θ(k)) =
1 + ai + bi

1 + a
(k)
i + b

(k)
i

− log
1 + ai + bi

1 + a
(k)
i + b

(k)
i

− 1, i ∈ {1, . . . , N} , (4.32)

DM1(a,a(k)) = tr(M1(a) ·M1(a(k))−1)− log det(M1(a) ·M1(a(k))−1)− n, (4.33)

DM2(b, b(k)) = tr(M2(b) ·M2(b(k))−1)− log det(M2(b) ·M2(b(k))−1)− n, (4.34)

DM3(θ,θ(k)) = tr(M3(a, b) ·M3(a(k), b(k))−1)− log det(M3(a, b) ·M3(a(k), b(k))−1)− n. (4.35)



Estimation and empirical performance of non-scalar DCC models 18

Gradient of the local model. A straightforward computation contained in Technical Appendix C.1
provides the following expressions for the components of the gradient of the local model:

∇af̃ (k) (θ) = ∇af(θ(k)) +H(k)
a (a− a(k))− L1

1 math∗(math(a)−1 −math(a(k))−1)

+ L3
1 math∗((

(
ini>n −math(a)−math(b)

)
� S)−1 − ((ini>n −math(a(k))−math(b(k)))� S)−1)� S)

+ L1
2

N∑
i=1

[
1

1− ai − bi
− 1

1− a(k)
i − b

(k)
i

]
· e(i)
N − L

2
2

N∑
i=1

[
1

1 + ai + bi
− 1

1 + a
(k)
i + b

(k)
i

]
· e(i)
N , (4.36)

∇bf̃ (k) (θ) = ∇bf(θ(k)) +H
(k)
b (b− b(k))− L2

1 math∗(math(b)−1 −math(b(k))−1)

+ L3
1 math∗((

(
ini>n −math(a)−math(b)

)
� S)−1 − ((ini>n −math(a(k))−math(b(k)))� S)−1)� S)

+ L1
2

N∑
i=1

[
1

1− ai − bi
− 1

1− a(k)
i − b

(k)
i

]
· e(i)
N − L

2
2

N∑
i=1

[
1

1 + ai + bi
− 1

1 + a
(k)
i + b

(k)
i

]
· e(i)
N . (4.37)

In these relations ∇af(θ(k)) and ∇bf(θ(k)) are the components of the gradient of minus the log-
likelihood function computed at the point θ(k) and e(i)

N ∈ RN , i ∈ {1, . . . , N} are the canonical unit
vectors introduced in Subsection 2.1.

Jacobian of the local model. We use the general relation (4.24) to determine the tangent map of
∇θ f̃ (k)(θ) for any δθ := (δa, δb) ∈ RN × RN :

Tθ∇af̃ (k) (δa, δb) =H(k)
a δa+ L1

1 math∗
(
math(a)−1 math(δa) math(a)−1

)
+ L3

1 math∗(((
(
ini>n −math(a)−math(b)

)
� S)−1(math(δa+ δb)� S)×

× (
(
ini>n −math(a)−math(b)

)
� S)−1)� S) + L1

2

N∑
i=1

δai + δbi
(1− ai − bi)2

· e(i)
N

+ L2
2

N∑
i=1

δai + δbi
(1 + ai + bi)2

· e(i)
N , (4.38)

Tθ∇bf̃ (k) (δa, δb) =H(k)
b δb+ L2

1 math∗
(
math(b)−1 math(δb) math(b)−1

)
+ L3

1 math∗(((
(
ini>n −math(a)−math(b)

)
� S)−1(math(δa+ δb)� S)×

× (
(
ini>n −math(a)−math(b)

)
� S)−1)� S) + L1

2

N∑
i=1

δai + δbi
(1− ai − bi)2

· e(i)
N

+ L2
2

N∑
i=1

δai + δbi
(1 + ai + bi)2

· e(i)
N . (4.39)

The (1, 1) and (1, 2) blocks of the Jacobian matrix can be obtained from (4.38) by taking increments δθ
of the form (δa,0) and (0, δb), respectively. Analogously, the (2, 1) and (2, 2) blocks of the Jacobian
follow from (4.39) by using increments δθ of the form (δa,0) and (0, δb), respectively.

5 Empirical study

The goal of this section is to report the results of experiments that allow us to the compare the empirical
performances of the different DCC models that we described in Section 3. For that purpose we select
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a dataset and estimate those models with various dimensions (from 5 to 30), using the algorithm
presented in Section 4. We then evaluate the in-sample adequacy of the different models with the
Akaike information criterion (AIC) in Subsection 5.2, where we also discuss the heterogeneity and other
features related to the point estimates of the non-scalar models. We finally assess the out-of-sample
performances of the different models using statistical tests described in Subsection 5.3 and discuss their
results in Subsection 5.4.

5.1 Datasets and competing models

We use two datasets that consist of daily closing price quotes of the thirty components included in the
Dow Jones Industrial Average Index (DJIA) as of October 2013, downloaded from the Yahoo Finance
database.5 We consider two different periods:

• Period I: the price quotes are taken from January 19th, 1996 to December 21st, 2010. This
amounts to 3750 observations in the sample. The first 3000 observations (January 19th, 1996 -
December 31st, 2007) are reserved for model estimation and the remaining 750 are used for an
out-of-sample study.

• Period II: the price quotes are taken from August 25th, 1998 to August 1st, 2013. The resulting
sample contains 3750 observations. The first 3000 quotes (August 25th, 1998 - August 9th, 2010)
are kept for model estimation and the last 750 for out-of-sample testing.

Period I contains the 2008-09 crisis events in the out-of-sample interval, while Period II includes these
events in the interval used for the estimations.

The Capital Asset Pricing Model (CAPM) [Shar 64] based data preprocessing. In order
to account in the modeling for the common dynamical factors that influence all the assets under con-
sideration, we use for each asset i ∈ {1, 2, . . . , n} a static unconditional CAPM one-factor model of the
form Yi,t = αi +βiXt +Zi,t, where for each time index t, Yi,t is the log-return of asset i, Xt is the value
of the chosen common factor, Zi,t is the regression error term, and αi, βi are the intercept and slope
coefficients, respectively.

In the DCC empirical experiments presented in this section, we use the CAPM regression in the
following way: let Test and Tout be the sample lengths taken for in-sample estimation and out-of-sample
testing, respectively, and let T := Test +Tout be the total number time series observations. We take the
log-returns of the S&P500 index as the common factor Zt, we estimate by ordinary least-squares the
CAPM regression for each asset i, using the observations t ∈ {1, . . . , Test}, and store the OLS residuals
Zi,t. Following the same approach as in Chapter 8 of [Engl 09], we then estimate the DCC models
under consideration on these residual returns, that is (Z1,t, Z2,t, . . . , Zn,t)> is the observed counterpart
of Zt appearing in (3.1). In order to perform the out-of-sample analysis, we compute the out-of-sample
residual returns Z := {ZTest+1, . . . ,ZT } according to the relations

Zi,t = Yi,t − α̂i − β̂iXt, i ∈ {1, . . . , n} , t ∈ {Test + 1, . . . , T} , (5.1)

where α̂i and β̂i are obtained using the Test in-sample observations and subsequently kept for the
out-of-sample assessment of the empirical performances of the DCC models. When generating the out-
of-sample forecasts of the Ht matrices of each DCC model, we also keep the values of the parameter
estimates obtained using only the in-sample observations, that is, we do not re-estimate each model
adding one observation at a time in the out-of-sample period.

5The Yahoo tickers of the stocks used in the study are AA, AXP, BA, BAC, CAT, CSCO, CVX, DD, DIS, GE, HD,
HPQ, IBM, INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT, PFE, PG, T, TRV, UNH, UTX, VZ, WMT, XOM. The
dataset has been prepared adjusting the quotes with respect to stock splits and dividend payments and the dates at which
at least one of the constituents was not quoted were removed.
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The competing models. We report results for six different DCC model parameterizations, namely:
(i) the Hadamard DCC, (ii) the rank deficient DCC with rank r = 2, (iii) the rank deficient DCC with
rank r = 1, (iv) the Almon DCC, (v) the Almon shuffle DCC, and (vi) the scalar DCC. Some of these
models are particular cases of others according to the inclusion relations represented in Figure 1.

Almon DCC

Hadamard DCC Rank deficient DCC (r = 2) Rank deficient DCC (r = 1) Scalar DCC

Almon shuffle DCC

Figure 1: Inclusion hierarchy of models. The symbol B ←− A should be read as “A is a particular case of B”.

5.2 In-sample results

The estimations are performed in various dimensions ranging from 5 up to 30 in such a way that for
the n-dimensional case we pick the first n assets in the DJIA datasets arranged in alphabetical order.

Goodness-of-fit comparisons. A consequence of the inclusion relations shown in Figure 1 is that
the optimal log-likelihood values obtained in the estimation of these models for a given sample need to
be ordered accordingly. More specifically, the optimal value resulting from the estimation procedure for
the Hadamard DCC model has to be the smallest6 among them all, and the others need to respect the
hierarchy established by the diagram in Figure 1. In Tables 6.3 and 6.4 we report these values and the
associated AIC statistics defined as

AIC := − 2
Test

logL+
log Test
Test

k,

where Test is the sample size reserved for estimation, logL is the obtained maximal value of the log-
likelihood function associated to the model and the sample used for estimation, and k is the number of
parameters of the model. A lower AIC value indicates a better trade-off between the model fit and the
number of parameters used to achieve it.

The values reported in the tables reveal that the Hadamard DCC model has, as should be the case,
the smallest minus log-likelihood values after convergence of the algorithms, and that the hierarchy of
models in terms of the maximized values is respected. At the same time, the rank deficient DCC models
with rank one (in eight cases) and rank two (in two cases) exhibit the best trade-off between fit and
parsimony according to the AIC statistics. In all cases, the Hadamard models have the largest AIC
values, which is not a big surprise given that they have many more parameters than the other models
(see Table 6.1). It is interesting to notice that the differences in AIC values between the Hadamard
model and all the other models are clearly larger than the differences between the other models. If we
rank the six models by attributing the score 6 to the worst AIC fitting model (the Hadamard), the score
5 to the next, up to 1 to the best performing model, and we aggregate these scores through the six
dimensions, we observe that the best performing model in both periods is the rank one deficient model.
In period I, the second best is the Almon shuffle model, followed by the scalar model. In period II, the

6Recall that we minimize minus the log-likelihood function. In the tables 6.3 and 6.4 we report the minimal values
divided by the number of observations; we call these normalized values.



Estimation and empirical performance of non-scalar DCC models 21

second best model is the rank two deficient model, the third is the Almon shuffle, and the fourth the
scalar. The global ranking (for both periods together, thus the best score can be 6, the worst 72), from
best to worst, is rank one deficient (14 points), Almon shuffle (31), rank two deficient (39), scalar (45),
Almon (51) and Hadamard (72). Based on these results, we consider that the rank one deficient and
Almon shuffle models are worth using in practice, in addition to the scalar model.

Likelihood ratio (LR) tests. For each dimension, the scalar model has the smallest maximal log-
likelihood, followed by the Almon model, and next by the Almon shuffle model, with one exception in
Period I for the ten assets sample, where the order between the Almon models is reversed. Using the
maximal log-likelihood values reported in Tables 6.3 and 6.4, LR-statistics can be computed to test the
scalar model as null against all the other more general parameterizations as alternatives. The p-values
of the corresponding LR statistics are reported in Tables 6.3 and 6.4. Two main results emerge: firstly,
the scalar model is rejected in both periods at the level of 5% (and in many cases 1%) against the Almon
shuffle, rank one, and rank two deficient models, with two exceptions that occur in Period I (for n = 5
against the rank two deficient model, and for n = 10 against the Almon shuffle model). Secondly, the
scalar model is not rejected against the full Hadamard model, all p-values being very close to 1 when
the dimension is larger than five. The numbers of degrees of freedom of the χ2 distributions used in
the tests are very large (for example, 928 in dimension 30 and 418 in dimension 10) and hence these
tests are likely to be not very powerful. On the contrary, those numbers are much smaller for the other
tests discussed above (4 for scalar against Almon, for example). In summary, the LR tests show that
the more general models, especially the rank deficient ones and the Almon shuffle, are valuable flexible
extensions of the scalar model.

Features of the point estimates. Since non-scalar DCC models allow for heterogeneity in the
parameters of the conditional correlations, we provide some information on the estimates of these models.
In Tables 6.5 and 6.6, we report for each model and dimension, the mean, standard deviation, minimum,
and maximum of the estimates of the elements of the matrices A and B of the DCC process written as
in (3.5). If these matrices are functions of intrinsic parameters of lower dimension than in the Hadamard
case, we compute the estimates of the matrices implied by the intrinsic parameter estimates, and then
the statistics. Obviously, for the scalar model, the mean, maximum, and minimum are equal to the
point estimate of the corresponding scalar parameters. We observe the following results:

• The A mean values decrease towards zero in all models as the dimension n increases: they are
approximately divided by a factor of 2 to 3 in dimension 30 relative to dimension 10. This is a
well-known phenomenon for the scalar DCC model, already mentioned in [Engl 02] and discussed
in [Engl 08b]. The latter paper shows by a simulation study that the a parameter is subjected to
a downward bias and that variance targeting is responsible for that. Our results suggest that the
same problem occurs in non-scalar models. We also observe that the mean values are very close
to each other across the different models. This is less the case in dimension 5 for both periods and
perhaps due to the arbitrary selection of the assets. Discounting these cases, this suggests that
the scalar model estimates the average value of the elements of A, and that all models are perhaps
subjected to the downward bias problem. Further insight on this issue could be obtained by a a
simulation study, which we leave for further research.

• The A standard deviations (which measure the degree of heterogeneity between the elements of
A) decrease as the dimension increases (in period I, the decrease is monotone, contrary to period
II). The decrease is more pronounced between dimensions 5 and 15 than between dimensions 20
and 30.
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• For every dimension, the largest degree of heterogeneity in A among non-scalar models takes place
for the Hadamard case (with two minor exceptions where it is the second largest: in Period I for
dimension 10, and in Period II for dimension 5). The rank deficient models have a slightly smaller
degree of heterogeneity than Hadamard, while the Almon models exhibit much less heterogeneity
than the previous three models. This reflects the more parsimonious parameterization of the
Almon cases.

• The B mean values increase slightly towards unity until dimension 20, and stay approximately
the same for dimensions 20, 25, and 30.

• The B standard deviations decrease globally (comparing dimensions 10 and 30), with some inter-
mediate ups and downs, as the dimension increases. In Period I, this is a bit less clear, and in
particular there is a global increase for the rank two and rank one deficient models (discounting
for the latter the unusual result in dimension 10).

We also report in the tables the statistics of the McGyver method [Engl 08a]. For dimension 30, this
consists in estimating all (in our case 435) the associated bivariate scalar DCC models, thus getting as
many point estimates of a and b. For each dimension smaller than 30 (except 5), we use the estimates
for the corresponding group of assets (e.g. the first ten assets for dimension 10, which provide 45
estimates that are a subset of the 435 ones for dimension 30). For dimension 5, we form six groups
of five assets (1-5, 6-10, until 26-30) which yield 60 estimates altogether for the six groups. For each
dimension, the McGyver estimates exhibit much more heterogeneity than the different DCC models we
consider; this is a consequence of the positive semidefiniteness constraints satisfied by DCC to which
the McGyver estimator is not exposed. Additionally, unusual values arise sometimes in the McGyver
case in comparison with the DCC estimates; more specifically, there are values of b close to zero (see
the minimum McGyver values in comparison to other models) and of a farther away from zero (see the
McGyver maximum values). The mean values of the McGyver estimates of a are therefore larger than
the corresponding medians (reported in the tables), and the reverse is true for the b estimates. The
median values of the a and b estimates are hardly influenced by the dimension.

Rank one deficient and Almon shuffle point estimates. Given that the AIC statistics favor these
models, we provide more information on the estimates of the corresponding parameters. Figures 2 and 3
represent the values of the entries of the parameter vectors a and b of both models in dimension 30,
ordered according to the Almon shuffle estimation. Each figure also shows the corresponding estimate
implied by the scalar model, which is the square root of the parameter a or b of (3.21). The figures
illustrate the flexibility of the rank one deficient and Almon models with respect to the scalar one. The
pattern of estimates of the entries of a of the Almon model (monotone increasing) is different from
that of b (concave). In Period II (not represented) the pattern for a is also concave. For the rank
one deficient model, the estimates are naturally more variable. The scalar model estimates correspond
approximately to the average values of the individual estimates of the other models.

The estimates of the entries of a and b in the Almon shuffle model are computed by using the
Almon function given in (2.15). In Table 6.7 we report the estimates of the three parameters of each
Almon function for the dimensions considered. As the dimension increases, for the function defining
a, the estimates of the parameters that intervene inside the exponential function tend to zero, and the
estimates of the constant term tend to minus one. This implies that the entries of a tend to zero and
are more homogeneous in higher dimensions. As we mentioned above, these trends seem to saturate
beyond dimension 15. Regarding the parameters of the Almon function defining b, the three parameters
tend to zero, so that the elements of b tend to one from below.
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Figure 2: Estimates of the entries of the parameter a of the rank one deficient and Almon shuffle models for the thirty assets
case in the order determined by the Almon shuffle estimation (dataset of Period I).

Figure 3: Estimates of the entries of the parameter b of the rank one deficient and Almon shuffle models for the thirty assets
case in the order determined by the Almon shuffle estimation (dataset of Period I).

Computational effort. In Table 6.2 we provide the time and the number of gradient calls necessary
to carry out the estimation of the various DCC models under consideration in different dimensions when
using the Period II sample. The figures provided are relative to the computational effort necessary to
estimate the scalar model in the corresponding dimension. There are several considerations that make
sometimes those figures not directly comparable and that need to be taken into account at the time of
drawing conclusions:

• The initial values used for the estimation of the different models are those obtained after the
estimation of the scalar model. More specifically, the scalar model is estimated using a generic
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initial condition (a = 0.2, b = 0.7) and then, the resulting A and B matrices are fed as initial
conditions to the optimization algorithm in the estimation of all the other models.

• The stopping tolerance on the function value increments used in the optimization algorithm is the
same when handling the different models (10−6). However, those having to do with the change in
the variable values had to be tuned for each different parameterization in order to secure reasonable
results (it equals 10−4 for the Hadamard case and rank deficient parameterizations; for the Almon
models it is equal to 10−4 in dimensions up to fifteen and 10−5 for n = 20, 25, 30).

It is interesting to observe that the built-in nonlinearities of some of these parameterizations (exponential
for Almon and quadratic for rank deficient models) have sometimes a bigger impact on the computational
effort than the dimension of the intrinsic parameter space (compare for example the values exhibited
by the Hadamard parameterization with those associated to rank two deficient models).

The main conclusion that we draw from the figures in Table 6.2 is that from a computational effort
standpoint, non-scalar models are quite affordable with respect to the scalar model in the dimensions
considered.

5.3 Out-of-sample specification tests

We start by presenting the specification tests that we use in order to assess the out-of-sample one-
step ahead forecasting performance of the competing DCC models. One test is based on the use of
multivariate variance standardized returns, and three others on the use of portfolio returns.

5.3.1 Model confidence set based on correlation loss functions

We compare the models under consideration by computing the model confidence set (MCS) of [Hans 03,
Hans 11] using the following loss function constructed using the GARCH standardized returns in (5.3)
and the conditional correlation matrices implied by the different models:

dt :=
2

n(n− 1)

∑
i<j=2,...,n

(εi,tεj,t − ρij,t)2
, (5.2)

where ρij,t is the (i, j)-entry of the model dependent conditional correlation matrix Rt of the stan-
dardized returns introduced in (3.4). The loss function is based on the fact that under the correct
specification (3.1), the GARCH standardized returns

εt := D
−1/2
t rt (5.3)

have the correlation matrix Rt defined in (3.4). The results are provided in Tables 6.8 and 6.9. Each
table shows, for a given number of assets, the order of exclusion of models from the confidence set: 6
means that the corresponding model was the first to be excluded (with its p-value underneath), 1 means
that the corresponding model was the last. The MCS at the significance level of 5% is identified by the
set of bold red figures, and at 10% by union of the bold red and black figures.

5.3.2 Tests based on the use of portfolio returns

The performances of the competing DCC models can be compared indirectly by running tests on port-
folios constructed using the assets whose returns are modeled. Let wt ∈ Rn denote a vector of portfolio
weights at date t, pt = w>t rt the portfolio return, and σ2

p,t = w>t Htwt the corresponding variance,
where Ht is the relevant conditional covariance matrix of rt (see (3.1)). We construct two kinds of
portfolios:
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• The minimum variance portfolio (MVP): it is defined by choosing a weight vector wt that
minimizes w>Htw subjected to the constraint

∑n
i=1 wt,i = 1. The solution of this problem is

given by

wt =
1

i>nH
−1
t in

H−1
t in. (5.4)

We use this expression to construct the sequence of variance minimizing portfolios associated to
each of the different models under test.

• The equally weighted portfolio (EWP): in this case wt := in/n for each date t.

Portfolio tests construction. The first three tests that we consider are based on the observation
that under a correct specification of the type (3.1), the standardized portfolio return series

yt :=
w>t rt√
w>t Htwt

(5.5)

has unconditional variance equal to one. Using the following tests, we can assess the validity of different
hypotheses for the series

ŷt :=
w>t rt√
w>t Ĥtwt

, (5.6)

constructed using the one-step ahead forecast of the conditional covariance matrices Ĥt implied by each
of the estimated models under consideration.

Engle-Colacito regression test [Engl 06]: it is constructed by estimating the regression

ŷt − 1 = λ+ ut, t ∈ {Test + 1, . . . , T}, (5.7)

where ut is the error term and λ is the intercept coefficient. The test assesses the null hypothesis that
λ is equal to 0 using a heteroskedasticity and autocorrealtion consistent (HAC) t-statistic ([Andr 91]).
The results are presented in the tables 6.10-6.13 that contain the HAC t-statistics and their p-values.

Model confidence set (MCS) based on the predictive ability for squared portfolio returns:
we evaluate the one-step ahead predictive ability of the models under consideration by computing model
confidence sets using the loss function

dt :=
(

(w>t rt)2 −w>t Ĥtwt

)2

. (5.8)

The results of this procedure are provided in Tables 6.14-6.17. The information that they contain is
organized in the same way that was already described at the end of Section 5.3.1.

VaR backtesting and the dynamic quantile test (HIT test) [Engl 04]: the Value at Risk VaRα(t)
at confidence level α of a given portfolio return (pt = w>t rt) distribution at time t is its α-quantile. When
the returns distribution is forecasted using a given model, the backtesting of the dynamical structure of
the VaR violations, that is, the occurrences for which w>t rt < VaRα(t), can be used as a tool to assess
its pertinence. We define the binary random variable HIT that counts the VaR violations as

HITα(t) := 1{w>t rt<VaRα(t)}.

Under a correct model specification, E [HITα(t)] = α and the random variables {HITα(t)}t∈{Test+1,...,T}
are serially independent and independent of other elements in the conditioning information set, like the
quantity VaRα(t). We test these features using the HIT-test [Engl 04], which is a F-test on the regression

HITα(t)−HITα = λ+ β1HITα(t− 1) + · · ·+ βlHITα(t− l) + βl+1VaRα(t) + ut, (5.9)
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where HITα =
1

Tout

∑T
t=Test+1 HITα(t) and l is an exogenous number of lags. The null hypothesis

is that all the regression coefficients, including the intercept, are equal to zero. In order to compute
VaRα(t), we use the fact that the forecasted returns p̂t are Gaussian with zero mean and estimated
variance σ̂2

p,t = w>t Ĥtwt and hence VaRα(t) = Φ−1(α)σ̂p,t, where Φ is the cumulative density function
of the standard normal distribution.

The results of this test with lag order l = 5 for the two datasets and portfolios are described
in Tables 6.18-6.21. For each portfolio cardinality, the tables contain the hit averages HITα for the
confidence levels 1, 5, and 10%, as well as the corresponding p-values of the F-test on the regression (5.9).

5.4 Results of the tests on the empirical performance of the competing
models

All the tests presented in the previous subsection are carried out in several dimensions ranging from 5
up to 30 in such a way that for the n-dimensional case we have picked the first n assets in the DJIA
datasets arranged in alphabetical order. The following conclusions about the results of the tests that
we conducted can be drawn:

1. MCS for the correlation of the standardized returns (Tables 6.8-6.9): the first observa-
tion is that the size of the MCS goes down when the dimension increases. In both periods, the
MCS contains 5 or 6 models for dimensions up to 15. In Period I, for dimensions from 20 to 30,
the MCS contains a single model; in Period II, it contains one model for n = 20, and two models
for n = 25 and 30. Those models are always Almon or Almon shuffle, except in Period I for n = 20
where it is the scalar model. The Almon shuffle model performs relatively well in all dimensions
in Period II (with a score of 8), distantly followed by the Almon and rank one deficient models
(scores 20), the scalar model having only the fourth score (22). In Period I, the scalar model is the
winner (with a score of 10), closely followed by the Almon model (score 13), and then the rank
one deficient model (score 18).

2. Tests based on the use of portfolio returns.

• Engle-Colacito regression test (Tables 6.10-6.13): the test results are the same in
most cases across models for each dimension, that is, rejections (or non-rejections) at the
level of 5% occur for all models. Exceptions occur in Period I: for dimension 25 (MVP and
EWP), where no rejection happens only for the scalar and both Almon models (also rank
one deficient in EWP); for dimension 10 (EWP), where only Hadamard, rank one deficient,
and Almon shuffle models are not rejected. In Period II, the exceptions are for dimension
25, MVP (no rejection for scalar and Almon shuffle), EWP (no rejection for the Hadamard
model). However, when differences of this kind happen, the p-values are rather close to 5%.

• MCS for the predictive ability of squared portfolio returns (Tables 6.14-6.17):
the results do not favor systematically a particular model. For minimum variance portfolios,
the model confidence sets at the confidence level of 90% (95% in a few cases) include all
the models in both periods. The reported model scores are very similar in Period I, while
in Period II they are more favorable to the rank one deficient model. For equally weighted
portfolios, the model confidence sets do not include all six models; they only include the
scalar model in dimensions up to 20.

• VaR backtesting and the dynamic quantile test (HIT test, Tables 6.18-6.21): for
each dimension, the percentages of VaR violations (at 1, 5, and 10% confidence) and the
p-values of the F-tests of independence are in most cases similar across models. For equally
weighted portfolios, the number of VaR violations are not very good across the board, see
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e.g. the results for n = 30 in Tables 6.19 and 6.21. We have also carried these tests out
using the filtered historical simulation procedure [Baro 98] that constructs the forecasted
returns distribution and the corresponding VaRs by bootstrapping the estimation residuals;
the number of VaR violations obtained with this method are much closer to their nominal
levels for all models.

The results of the three tests based on portfolio returns clearly indicate that the different DCC
models considered in this paper have more or less the same performance in terms of out-of-sample
specification tests when using this approach. No model dominates systematically the others, and no
model is systematically dominated. This may be due to the fact that the different DCC models,
and consequently these tests results, rely on the same univariate GARCH models for the conditional
variances. In the context of portfolio performances, the correlations are often of secondary importance
with respect to the volatilities of the different assets. Consequently, the test results are probably mostly
influenced by the common GARCH components of the different models and therefore, unless the DCC
models under consideration produce very different correlation forecasts, it is not surprising that the test
based on portfolio returns do not let us discriminate clearly between the different parameterizations of
the correlation dynamics.

On the contrary, the tests behind the MCS based on the correlation of the standardized returns
do not depend directly on the univariate GARCH equations (though they depend on them indirectly,
through the standardization of the returns) and, as we saw, favors clearly the most parsimonious models
(Almon, Almon shuffle, scalar and rank one deficient).

In any case, we recommend that the choice of the optimal model is done a posteriori since the
grounds for this decision depend on the dataset, time period, and dimensionality of the application of
interest. It is clear that all these factors influence significantly the performance of the DCC models and
that a careful empirical study has to be conducted in order to select one of them.

6 Conclusions

In this paper we used several parameterizations for the Dynamic Conditional Correlation (DCC) family
of models which go beyond the standard scalar case that appears in most applications. We adapted
an optimization technique based on Bregman divergences designed to effectively perform the two-stages
quasi-maximum likelihood estimation of these models by handling all the linear and non-linear parameter
constraints that need to be imposed in order to ensure the stationarity of the processes and the positive
semidefiniteness of the conditional covariance matrices.

More explicitly, the DCC parameterizations that we work with are the scalar, Hadamard, and rank
deficient ones already proposed in the literature. We also introduce new parameterizations of the DCC
model, that we call Almon DCC and Almon shuffle DCC. They are particular cases of the rank one
deficient model. The number of parameters of the latter increases linearly with the dimension of the
return process, whereas the corresponding number in the Almon specifications is independent of that
dimension. Even though this property also applies to the scalar model, the Almon version is more
flexible as it does not impose that the same parameter values determine the dynamic pattern of the
conditional correlations. We provided all the mathematical and algorithmic details needed to implement
the proposed optimization method for each specification of the DCC model. Computer codes will be
made available to the community.

We carried out an extensive empirical study using two datasets based on the thirty constituents of
the Dow Jones Industrial Average Index considered during two periods that differ as to the presence or
not of the financial crisis events of 2008-09 in the sample used for estimation. The proposed estimation
procedure was applied to all the DCC models under study in various dimensions up to thirty. Moreover,
we compared the empirical in- and out-of-sample performances of the different types of parameterizations



Estimation and empirical performance of non-scalar DCC models 28

in the forecasting of conditional correlations using a variety of statistical specification tests. Our results
provide substantial evidence that some non-scalar DCC parameterizations, in particular the Almon
(shuffle) one and rank one deficient, are worth using in the volatility modeling of asset returns of
dimension up to thirty, and perhaps more, though this remains an open issue.

Two extensions of all this work are on our research agenda. In the first one, we shall develop and
apply the method of composite quasi-maximum likelihood estimation to the non-scalar DCC models.
[Engl 08b] have found that this method reduces the bias in the estimation of the parameters of the scalar
DCC model, so we shall be interested to know whether this result applies also to non-scalar models.
The second extension will consist in applying the optimization tools of this paper to various non-scalar
diagonal VEC (DVEC) models and compare the performance of DCC and DVEC models.

A possible further development of the research reported in this paper is to apply the same tools to
the cDCC model of Aielli [Aiel 13]. This extension will not be trivial, because the cDCC model does
not lend itself to a targeting procedure of the constant term matrix S of the dynamic equation of the
model. Instead, a profiling method must be used, as discussed in [Aiel 13]. The profiling implies that at
every evaluation of the objective function in the optimization method, the matrix S is updated through
the intrinsic parameters that determine A and B. The consequences of this are that the mathematical
derivations needed to implement the constrained optimization algorithm will be more tedious, and
estimation will be more computer intensive. It is an open question whether the cDCC model would
then be applicable in dimension as high as thirty.

Appendix: Matrix expressions of the recursions in Proposition 4.1

The proposition below provides explicit matrix expressions for the operator recursions (4.5)-(4.10) given
in Proposition 4.1. These expressions are needed to compute iteratively the gradient of the log-likelihood
function. The proof is provided in the Technical Appendix A.4. We refer the reader to Section 2 for the
definitions of the operators and other mathematical objects in the proposition.

Proposition 6.1 Consider θ := (θ1,θ2), Θ(θ) := (A(θ1), B(θ2)), and the differential operators T ∗ΘHt,
T ∗ΘQt : Sn×Sn −→ Sn×Sn, which for every component Θ of Θ are defined by the relations (4.5)-(4.7).
Let AtQ,BtQ, CtΘ : RN −→ RN with N := 1

2n (n+ 1) be the linear maps, defined as

AtQ := vech ◦ T ∗AQt ◦math, (6.1)

BtQ := vech ◦ T ∗BQt ◦math, (6.2)

CtΘ := vech ◦ T ∗ΘHt ◦math, (6.3)

and let At, Bt, Ct ∈ SN be the matrices associated to the operators (6.1), (6.2), and (6.3), respectively.
Then, the matrices {At}t∈{1,...,T}, {Bt}t∈{1,...,T}, and {Ct}t∈{1,...,T} are determined by the recursions

At = diag
(
vech

(
εt−1ε

>
t−1 − S

))
+At−1diag (vech (B)) , (6.4)

Bt = diag (vech (Qt−1 − S)) +Bt−1diag (vech (B)) , (6.5)

Ct = Θt

{
Ln
((
Q∗−1
t Dt

)
⊗
(
Q∗−1
t Dt

))
− 1

2
P dnLn((Q∗−1

t QtQ
∗−1
t Dt)⊗ (Q∗−2

t Dt)

+(Q∗−1
t Dt)⊗ (Q∗−2

t QtQ
∗−1
t Dt))

}
·Dn with Θt = {At, Bt} , (6.6)

and the initial values A0 = B0 = C0 = 0, where Ln, Dn, and P dn are the elimination, duplication, and
diagonalization matrices in dimension n, respectively, defined in (2.7)-(2.9).
Finally, consider the map Gθ : RN × RN −→ P ×P defined by

Gθ := T ∗θΘ ◦math, (6.7)
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where T ∗θΘ : Sn × Sn −→ P × P is the adjoint of the map TθΘ : P × P −→ Sn × Sn and P × P
the intrinsic θ parameter space that depends on the mapping Θ (θ) associated to each of the model
specifications considered in Proposition 4.1. Then:

(i) The Hadamard family:

Gθ : RN × RN −→ RN × RN

Gθ (v1,v2) = 2
(

v1 −
1
2

vech(Diag(math(v1))),v2 −
1
2

vech(Diag(math(v2)))
)
. (6.8)

(ii) The rank deficient family:

Gθ : RN × RN −→ RN
∗
× RN

∗

Gθ (v1,v2) = 2 (vecr(math(v1)matr(θ1)), vecr(math(v2)matr(θ2))), (6.9)

with θ = (θ1,θ2) ∈ RN∗ × RN∗ , and where r ≤ n ∈ N, N∗ := nr − 1
2
r(r − 1).

(iii) The Almon family:

Gθ : RN × RN −→ R3 × R3

Gθ (v1,v2) = 2 (K>θ1
math(v1)almn(θ1),K>θ2

math(v2)almn(θ2)), (6.10)

where θ = (θ1,θ2) ∈ R3 × R3, and Kθi (for i = 1 and 2) has been defined in Proposition 4.1.

(iv) The scalar family:

Gθ : RN × RN −→ R× R
Gθ (v1,v2) =

(
〈math(v1), ini>n 〉, 〈math(v2), ini>n 〉

)
. (6.11)

Proposition 6.1 provides a complete computational recipe for the calculation of the gradient of the
log-likelihood function associated to each of the DCC model parameterizations under study. We note
that this result could be easily extended to any other model prescription by simply writing down the
associated operator Gθ : RN × RN −→ P × P in (6.7).
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n 5 10 15 20 25 30

Hadamard n(n+ 1) 30 110 240 420 650 930
Rank Deficient (r = 2) 2(2n− 1) 18 38 58 78 98 118
Rank Deficient (r = 1) 2n 10 20 30 40 50 60

Almon 6 6 6 6 6 6 6
Scalar 2 2 2 2 2 2 2

Table 6.1: Number of parameters needed for the different DCC model parameterizations as a function of the process
dimension n. These numbers represent exclusively the parameters obtained in the second stage estimation that
we study in detail in this paper.

Period II. Relative computation time/Relative number of gradient calls

n Almon Almon Shuffle Rank Deficient Rank Deficient Hadamard
(r = 1) (r = 2)

5 time 0.6599 0.7783 0.7828 6.5984 1.0486
grad calls 0.6613 0.7742 0.6452 3.1935 0.6774

10 time 2.5637 5.4408 1.7209 28.3579 2.8449
grad calls 0.7500 1.2333 0.9333 3.2667 0.9000

15 time 3.0451 16.9112 6.7186 14.4835 2.6498
grad calls 1.1190 4.8095 1.7619 2.5952 1.0952

20 time 1.1361 0.9467 2.7956 2.6302 0.6662
grad calls 1.2449 1.0816 1.8163 1.8571 0.7959

25 time 1.2971 1.8973 2.0043 2.6563 0.5554
grad calls 1.4286 1.7959 1.7143 2.1837 0.8163

30 time 1.8630 1.9192 1.9769 1.9992 0.3627
grad calls 1.9792 2.3750 2.0625 1.8958 0.7083

Table 6.2: Time and number of gradient calls necessary to carry out the estimation of the various DCC models under
consideration in different dimensions when using the Period II sample. The figures provided are relative to the
computational effort necessary to estimate the scalar model in the corresponding dimension.
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DJIA dataset. Period I.

n Scalar Almon Almon Shuffle Rank Deficient Rank Deficient Hadamard
(r = 1) (r = 2)

5
-logL -13.9889 -13.9892 -13.9912 -13.9926 -13.9932 -13.9945

AICrank -27.96653 -27.96444 -27.96832 -27.96851 -27.96435 -27.95916

LR p-value — 0.7736 0.0085 0.0049 0.0603 0.2032

10
-logL -28.3038 -28.3042 -28.3038 -28.3102 -28.3130 -28.3163

AICrank -56.58622 -56.58433 -56.58354 -56.58701 -56.58075 -56.53926

LR p-value — 0.6537 1.0000 0.0034 0.0191 0.9933

15
-logL -42.0486 -42.0489 -42.0510 -42.0592 -42.0670 -42.0725

AICrank -84.06593 -84.06375 -84.06802 -84.06841 -84.06534 -83.95506

LR p-value — 0.8443 0.0067 0.0001 0.0000 1.0000

20
-logL -56.6593 -56.6597 -56.6613 -56.6742 -56.6855 -56.6951

AICrank -113.27734 -113.27535 -113.27863 -113.28181 -113.27902 -113.07026

LR p-value — 0.7419 0.0183 0.0000 0.0000 1.0000

25
-logL -71.1817 -71.1819 -71.1835 -71.1985 -71.2108 -71.2296

AICrank -142.31203 -142.30984 -142.31292 -142.31371 -142.30625 -141.97606

LR p-value — 0.8475 0.0295 0.0000 0.0000 1.0000

30
-logL -85.9232 -85.9253 -85.9267 -85.9523 -85.9599 -86.0091

AICrank -171.78514 -171.78663 -171.78942 -171.80471 -171.78115 -171.33816

LR p-value — 0.0139 0.0004 0.0000 0.0000 1.0000
AIC scorerank 193 244 152 61 265 366

Table 6.3: Normalized values of minus the log-likelihood function (-logL), associated AIC statistics, and p-values of the
likelihood ratio (LR) tests that take as null model the scalar one and all the others as alternatives. The smallest
values of minus the log-likelihood function are displayed in black bold and the p-values smaller than 0.05 are
shown in bold. Exponents on the AIC row indicate the rank of the model from 6 (the worse) to 1 (the best).
The “AIC score” row at the bottom contains aggregated ranks by models. Figures in red point to the model
that exhibits the lowest AIC value.

DJIA dataset. Period II.

n Scalar Almon Almon Shuffle Rank Deficient Rank Deficient Hadamard
(r = 1) (r = 2)

5
-logL -13.4686 -13.4690 -13.4713 -13.4728 -13.4735 -13.4736

AICrank -26.92583 -26.92395 -26.92862 -26.92891 -26.92504 -26.91736

LR p-value — 0.6671 0.0024 0.0013 0.0205 0.3437

10
-logL -27.8050 -27.8059 -27.8084 -27.8149 -27.8178 -27.8186

AICrank -55.58884 -55.58785 -55.59282 -55.59641 -55.59023 -55.54396

LR p-value — 0.2675 0.0005 0.0000 0.0001 0.9735

15
-logL -41.8992 -41.9006 -41.9026 -41.9164 -41.9235 -41.9266

AICrank -83.76715 -83.76714 -83.77123 -83.78291 -83.77842 -83.66336

LR p-value — 0.0888 0.0004 0.0000 0.0000 0.9999

20
-logL -56.4619 -56.4629 -56.4662 -56.4860 -56.4969 -56.5068

AICrank -112.88244 -112.88195 -112.88853 -112.90531 -112.90182 -112.69356

LR p-value — 0.1750 0.0000 0.0000 0.0000 1.0000

25
-logL -71.0132 -71.0148 -71.0172 -71.0357 -71.0523 -71.0724

AICrank -141.97505 -141.97574 -141.98053 -141.98802 -141.98931 -141.66146

LR p-value — 0.0417 0.0001 0.0000 0.0000 1.0000

30
-logL -85.9028 -85.9063 -85.9065 -85.9347 -85.9565 -85.9935

AICrank -171.74435 -171.74874 -171.74903 -171.76942 -171.77431 -171.30706

LR p-value — 0.0003 0.0002 0.0000 0.0000 1.0000
AIC scorerank 264 275 163 81 132 366

Table 6.4: Normalized values of minus the log-likelihood function (-logL), associated AIC statistics, and p-values of the
likelihood ratio (LR) tests that take as null model the scalar one and all the others as alternatives. See caption
of Table 6.3 for an explanation of the table entries.
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DJIA dataset. Period I. Matrix A

n McGyver Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5

mean (median) 0.0111 (0.0077) 0.0040 0.0083 0.0030 0.0042 0.0048 0.0046
std 0.0120 - 0.0078 0.0060 0.0071 0.0015 0.0069
min 0.0000 0.0040 -0.0012 -0.0018 -0.0014 0.0018 0.0001
max 0.0559 0.0040 0.0243 0.0172 0.0216 0.0070 0.0296

10

mean (median) 0.0097 (0.0069) 0.0046 0.0056 0.0076 0.0044 0.0050 0.0045
std 0.0102 - 0.0046 0.0055 0.0037 0.0011 0.0016
min 0.0000 0.0046 -0.0021 0.0024 -0.0015 0.0035 0.0025
max 0.0466 0.0046 0.0279 0.0437 0.0193 0.0083 0.0101

15

mean (median) 0.0095 (0.0064) 0.0036 0.0038 0.0039 0.0032 0.0036 0.0036
std 0.0105 - 0.0038 0.0026 0.0025 0.0004 0.0015
min 0.0000 0.0036 -0.0030 0.0005 -0.0034 0.0024 0.0014
max 0.0559 0.0036 0.0237 0.0172 0.0146 0.0042 0.0088

20

mean (median) 0.0088 (0.0059) 0.0026 0.0025 0.0029 0.0025 0.0026 0.0026
std 0.0100 - 0.0024 0.0015 0.0020 0.0001 0.0006
min 0.0000 0.0026 -0.0025 0.0006 -0.0034 0.0023 0.0009
max 0.0559 0.0026 0.0128 0.0088 0.0100 0.0029 0.0035

25

mean (median) 0.0092 (0.0061) 0.0024 0.0023 0.0033 0.0029 0.0023 0.0024
std 0.0099 - 0.0023 0.0020 0.0021 0.0000 0.0004
min 0.0000 0.0024 -0.0037 0.0004 -0.0036 0.0023 0.0015
max 0.0559 0.0024 0.0139 0.0162 0.0141 0.0024 0.0033

30

mean (median) 0.0091 (0.0060) 0.0021 0.0019 0.0028 0.0024 0.0021 0.0022
std 0.0100 - 0.0023 0.0018 0.0012 0.0001 0.0006
min 0.0000 0.0021 -0.0047 -0.0003 0.0005 0.0018 0.0010
max 0.0578 0.0021 0.0127 0.0100 0.0090 0.0023 0.0036

DJIA dataset. Period I. Matrix B

n McGyver Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5

mean (median) 0.7731 (0.9484) 0.9764 0.9354 0.9873 0.9774 0.9692 0.9696
std 0.3311 - 0.0439 0.0115 0.0106 0.0107 0.0088
min 0.0000 0.9764 0.8700 0.9576 0.9560 0.9539 0.9584
max 0.9974 0.9764 0.9803 0.9994 0.9990 0.9943 0.9921

10

mean (median) 0.8623 (0.9698) 0.9801 0.9745 0.8791 0.9804 0.9769 0.9797
std 0.2744 - 0.0081 0.1978 0.0094 0.0069 0.0097
min 0.0001 0.9801 0.9580 0.2466 0.9600 0.9606 0.9509
max 0.9974 0.9801 0.9917 0.9955 0.9971 0.9877 0.9921

15

mean (median) 0.8707 (0.9652) 0.9805 0.9781 0.9701 0.9810 0.9799 0.9793
std 0.2372 - 0.0069 0.0230 0.0130 0.0014 0.0106
min 0.0000 0.9805 0.9607 0.8915 0.9305 0.9777 0.9434
max 0.9974 0.9805 0.9935 0.9972 0.9965 0.9835 0.9933

20

mean (median) 0.8514 (0.9656) 0.9871 0.9862 0.9756 0.9854 0.9865 0.9865
std 0.2717 - 0.0030 0.0247 0.0080 0.0012 0.0029
min 0.0000 0.9871 0.9795 0.8382 0.9580 0.9847 0.9780
max 0.9977 0.9871 0.9935 0.9975 0.9970 0.9907 0.9913

25

mean (median) 0.8398 (0.9610) 0.9857 0.9851 0.9589 0.9748 0.9861 0.9847
std 0.2741 - 0.0027 0.0436 0.0200 0.0014 0.0028
min 0.0000 0.9857 0.9792 0.7953 0.8685 0.9833 0.9766
max 0.9977 0.9857 0.9926 0.9970 0.9970 0.9900 0.9892

30

mean (median) 0.8364 (0.9617) 0.9864 0.9857 0.9689 0.9779 0.9866 0.9841
std 0.2781 - 0.0022 0.0272 0.0159 0.0026 0.0047
min 0.0000 0.9864 0.9795 0.8425 0.9033 0.9828 0.9674
max 0.9977 0.9864 0.9932 0.9971 0.9958 0.9960 0.9911

Table 6.5: Period I. Estimated parameter matrices A and B of (3.5). Mean, median, standard deviation, minimum and
maximum of the entries of the estimated matrices are reported. “McGyver” stands for the method with this
name introduced in [Engl 08a] based on the use of bivariate scalar DCC models; in this case the median value
of estimates are reported between parentheses.
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DJIA dataset. Period II. Matrix A

n McGyver Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5

mean (median) 0.0103 (0.0086) 0.0063 0.0093 0.0071 0.0092 0.0064 0.0065
std 0.0090 - 0.0102 0.0054 0.0106 0.0039 0.0042
min 0.0000 0.0063 0.0004 0.0021 -0.0000 0.0026 0.0026
max 0.0432 0.0063 0.0493 0.0276 0.0520 0.0194 0.0201

10

mean (median) 0.0118 (0.0101) 0.0060 0.0066 0.0065 0.0063 0.0060 0.0062
std 0.0089 - 0.0036 0.0025 0.0028 0.0003 0.0013
min 0.0000 0.0060 -0.0015 0.0025 0.0012 0.0056 0.0045
max 0.0432 0.0060 0.0189 0.0124 0.0122 0.0071 0.0112

15

mean (median) 0.0101 (0.0079) 0.0044 0.0047 0.0048 0.0045 0.0044 0.0045
std 0.0082 - 0.0038 0.0029 0.0035 0.0008 0.0014
min 0.0000 0.0044 -0.0032 0.0005 -0.0022 0.0021 0.0026
max 0.0432 0.0044 0.0243 0.0193 0.0197 0.0055 0.0100

20

mean (median) 0.0099 (0.0074) 0.0034 0.0033 0.0037 0.0031 0.0035 0.0035
std 0.0089 - 0.0026 0.0022 0.0023 0.0005 0.0005
min 0.0000 0.0034 -0.0039 0.0004 -0.0030 0.0027 0.0021
max 0.0535 0.0034 0.0162 0.0144 0.0110 0.0052 0.0042

25

mean (median) 0.0093 (0.0069) 0.0031 0.0029 0.0032 0.0030 0.0031 0.0031
std 0.0093 - 0.0023 0.0018 0.0017 0.0005 0.0003
min 0.0000 0.0031 -0.0027 0.0008 -0.0010 0.0022 0.0021
max 0.0545 0.0031 0.0155 0.0130 0.0098 0.0046 0.0035

30

mean (median) 0.0093 (0.0070) 0.0027 0.0025 0.0027 0.0025 0.0026 0.0027
std 0.0092 - 0.0023 0.0019 0.0021 0.0005 0.0002
min 0.0000 0.0027 -0.0040 0.0004 -0.0021 0.0020 0.0020
max 0.0592 0.0027 0.0138 0.0112 0.0131 0.0047 0.0031

DJIA dataset. Period II. Matrix B

n McGyver Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5

mean (median) 0.8748 (0.9673) 0.9815 0.9728 0.9694 0.9725 0.9819 0.9788
std 0.2433 - 0.0121 0.0170 0.0126 0.0106 0.0057
min 0.0006 0.9815 0.9461 0.9265 0.9436 0.9550 0.9672
max 0.9945 0.9815 0.9928 0.9944 0.9937 0.9956 0.9881

10

mean 0.8748 (0.9647) 0.9801 0.9742 0.9667 0.9733 0.9785 0.9772
std 0.2617 - 0.0088 0.0228 0.0148 0.0051 0.0022
min 0.0000 0.9801 0.9478 0.8785 0.9197 0.9641 0.9743
max 0.9949 0.9801 0.9928 0.9962 0.9962 0.9865 0.9842

15

mean (median) 0.8874 (0.9658) 0.9827 0.9797 0.9737 0.9788 0.9822 0.9815
std 0.2309 - 0.0070 0.0158 0.0141 0.0009 0.0049
min 0.0000 0.9827 0.9626 0.9258 0.9297 0.9808 0.9653
max 0.9975 0.9827 0.9942 0.9984 0.9970 0.9851 0.9878

20

mean (median) 0.8769 (0.9672) 0.9866 0.9854 0.9806 0.9857 0.9862 0.9851
std 0.2415 - 0.0038 0.0104 0.0073 0.0013 0.0029
min 0.0000 0.9866 0.9758 0.9434 0.9601 0.9840 0.9805
max 0.9975 0.9866 0.9951 0.9985 0.9985 0.9900 0.9942

25

mean (median) 0.8752 (0.9724) 0.9862 0.9857 0.9816 0.9848 0.9860 0.9853
std 0.2490 - 0.0026 0.0094 0.0076 0.0007 0.0028
min 0.0000 0.9862 0.9791 0.9465 0.9485 0.9851 0.9812
max 0.9975 0.9862 0.9925 0.9964 0.9977 0.9881 0.9950

30

mean (median) 0.8776 (0.9718) 0.9866 0.9858 0.9836 0.9844 0.9867 0.9858
std 0.2391 - 0.0020 0.0099 0.0089 0.0021 0.0029
min 0.0000 0.9866 0.9781 0.9383 0.9420 0.9839 0.9815
max 0.9975 0.9866 0.9920 0.9985 0.9974 0.9943 0.9964

Table 6.6: Period II. Estimated parameter matrices A and B of (3.5). Mean, median, standard deviation, minimum and
maximum of the entries of the estimated matrices are reported. “McGyver” stands for the method with this
name introduced in [Engl 08a] based on the use of bivariate scalar DCC models; in this case the median value
of estimates are reported between parentheses.
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DJIA dataset. Period I

n a1 a2 a3 b1 b2 b3

5 -0.97647 -0.02374 0.01028 0.01344 -0.02047 0.00293

10 -0.94870 -0.00176 0.00065 -0.00758 0.00247 -0.00042

15 -0.96304 0.00090 0.00019 -0.01338 0.00346 -0.00030

20 -0.97398 0.00448 -0.00015 -0.00434 -0.00001 -0.00002

25 -0.96169 0.00099 -0.00001 -0.01266 0.00112 -0.00004

30 -0.96930 0.00124 -0.00001 -0.01275 0.00121 -0.00004

DJIA dataset. Period II

n a1 a2 a3 b1 b2 b3

5 -0.78996 -0.07976 0.00909 -0.02519 0.01330 -0.00232

10 -0.87945 -0.01598 0.00117 -0.00609 -0.00197 0.00014

15 -0.90004 -0.01347 0.00090 -0.00926 0.00122 -0.00012

20 -0.93593 0.00045 -0.00007 -0.00144 -0.00152 0.00007

25 -0.94422 0.00077 -0.00005 -0.00140 -0.00112 0.00004

30 -0.95261 0.00113 -0.00004 -0.00088 -0.00095 0.00003

Table 6.7: Estimates of the parameters of the Almon functions (almn(a))i = a1 + exp(a2i + a3i2) and (almn(b))i =
b1 + exp(b2i + b3i2) for the Almon shuffle models. The symbol i represents the entry number and n is the
dimension of the model.
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DJIA dataset. Period I. MCS for the correlation of the standardized returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5 Position 1 6 3 5 2 4
p-value 1.000 0.066 0.170 0.170 0.170 0.170

10 Position 2 6 1 3 4 5
p-value 0.108 0.085 1.000 0.108 0.108 0.108

15 Position 2 6 1 4 3 5
p-value 0.683 0.001 1.000 0.159 0.159 0.159

20 Position 1 6 3 5 2 4
p-value 1.000 0.001 0.025 0.025 0.025 0.025

25 Position 2 6 5 3 1 4
p-value 0.004 0.000 0.004 0.004 1.000 0.004

30 Position 2 6 5 3 1 4
p-value 0.000 0.000 0.000 0.000 1.000 0.000
Score 10 36 18 23 13 26

Table 6.8: Model confidence sets (MCS) constructed using the loss function (5.2) based on the correlation of the stan-
dardized returns defined in (5.3). For each model and dimension, the integer value in the first row indicates
the order of elimination of the model from the MCS (6 stands for the first eliminated model, 5 for the second
eliminated model, and so on). In the second row we report the p-value of the test leading to the decision of
eliminating the given model from the MCS. The set of integer values printed in bold red identifies the MCS at
the confidence level of 95%. The union of integer values printed in bold black and bold red identifies the MCS
at the confidence level of 90%. The score of each model in the last row is the sum of the integer values of the
six dimensions.

DJIA dataset. Period II. MCS for the correlation of the standardized returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5 Position 5 4 1 3 6 2
p-value 0.008 0.073 1.000 0.228 0.005 0.228

10 Position 5 3 1 4 6 2
p-value 0.190 0.433 1.000 0.260 0.190 0.433

15 Position 3 5 4 6 2 1
p-value 0.242 0.127 0.242 0.061 0.811 1.000

20 Position 3 6 5 4 2 1
p-value 0.003 0.003 0.003 0.003 0.026 1.000

25 Position 3 6 5 4 2 1
p-value 0.002 0.000 0.001 0.002 0.074 1.000

30 Position 3 6 4 5 2 1
p-value 0.006 0.000 0.006 0.001 0.394 1.000
Score 22 30 20 26 20 8

Table 6.9: Model confidence sets (MCS) constructed using the loss function (5.2) based on the correlation of the stan-
dardized returns defined in (5.3). See caption of Table 6.8 for an explanation of the table entries.
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DJIA dataset. Period I. Engle-Colacito regression test for the minimum variance portfolio

returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5 t-stats 3.76* 4.04* 4.13* 4.09* 3.81* 3.98*
p-value 0.00 0.00 0.00 0.00 0.00 0.00

10 t-stats 1.73 1.80 1.67 1.90 1.74 1.65
p-value 0.08 0.07 0.10 0.06 0.08 0.10

15 t-stats -0.55 -0.16 0.05 0.26 -0.45 -0.16
p-value 0.58 0.87 0.96 0.80 0.65 0.87

20 t-stats -0.51 -0.02 0.44 0.43 -0.43 -0.22
p-value 0.61 0.99 0.66 0.67 0.66 0.82

25 t-stats 1.47 2.17* 2.48* 2.15* 1.56 1.96
p-value 0.14 0.03 0.01 0.03 0.12 0.05

30 t-stats 2.70* 3.73* 3.85* 3.60* 2.97* 3.43*
p-value 0.01 0.00 0.00 0.00 0.00 0.00

Table 6.10: Results of the Engle-Colacito regression test. The t-stat values refer to the intercept λ of the Engle-Colacito
regression (5.7) obtained using a HAC estimator. The p-value can be used to test the null hypothesis that
λ = 0. The symbol * (respectively **) indicates rejection at the 5% (respectively 1%) significance level. Values
corresponding to models that exhibit the maximum p-value for a given portfolio cardinality are printed in red.

DJIA dataset. Period I. Engle-Colacito regression test for the equally weighted portfolio

returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5 t-stats 2.72* 2.80* 2.87* 2.78* 2.77* 2.82*
p-value 0.01 0.01 0.00 0.01 0.01 0.00

10 t-stats 1.99* 1.91 1.84 2.01* 2.06* 1.91
p-value 0.05 0.06 0.07 0.04 0.04 0.06

15 t-stats -1.21 -1.57 -1.24 -1.44 -1.22 -1.29
p-value 0.23 0.12 0.22 0.15 0.22 0.20

20 t-stats -2.32* -2.89* -2.16* -2.84* -2.29* -2.28*
p-value 0.02 0.00 0.03 0.00 0.02 0.02

25 t-stats -1.94 -2.39* -1.68 -2.36* -1.86 -1.76
p-value 0.05 0.02 0.09 0.02 0.06 0.08

30 t-stats -3.45* -3.88* -3.10* -3.01* -3.18* -3.12*
p-value 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.11: Results of the Engle-Colacito regression test. The t-stat values refer to the intercept λ of the Engle-Colacito
regression (5.7) obtained using a HAC estimator. The p-value can be used to test the null hypothesis that
λ = 0. The symbol * (respectively **) indicates rejection at the 5% (respectively 1%) significance level. Values
corresponding to models that exhibit the maximum p-value for a given portfolio cardinality are printed in red.
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DJIA dataset. Period II. Engle-Colacito regression test for the minimum variance portfolio

returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5 t-stats -3.81* -3.77* -3.58* -3.70* -3.87* -3.49*
p-value 0.00 0.00 0.00 0.00 0.00 0.00

10 t-stats 0.39 0.30 0.38 0.25 0.33 0.29
p-value 0.70 0.76 0.71 0.81 0.74 0.77

15 t-stats 0.38 0.66 0.40 0.49 0.43 0.41
p-value 0.71 0.51 0.69 0.63 0.67 0.68

20 t-stats 0.58 1.01 0.72 0.82 0.62 0.50
p-value 0.56 0.31 0.47 0.41 0.54 0.62

25 t-stats 1.96 2.77* 2.29* 2.31* 2.06* 1.83
p-value 0.05 0.01 0.02 0.02 0.04 0.07

30 t-stats 2.58* 3.63* 2.73* 3.04* 2.73* 2.35*
p-value 0.01 0.00 0.01 0.00 0.01 0.02

Table 6.12: Results of the Engle-Colacito regression test. The t-stat values refer to the intercept λ of the Engle-Colacito
regression (5.7) obtained using a HAC estimator. The p-value can be used to test the null hypothesis that
λ = 0. The symbol * (respectively **) indicates rejection at the 5% (respectively 1%) significance level. Values
corresponding to models that exhibit the maximum p-value for a given portfolio cardinality are printed in red.

DJIA dataset. Period II. Engle-Colacito regression test for the equally weighted portfolio

returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5 t-stats -2.42* -2.48* -2.32* -2.41* -2.54* -2.23*
p-value 0.02 0.01 0.02 0.02 0.01 0.03

10 t-stats -2.00* -2.30* -2.08* -2.36* -2.13* -2.32*
p-value 0.05 0.02 0.04 0.02 0.03 0.02

15 t-stats -1.70 -1.62 -1.89 -1.60 -1.71 -1.80
p-value 0.09 0.11 0.06 0.11 0.09 0.07

20 t-stats -2.84* -2.57* -2.63* -2.50* -2.82* -3.20*
p-value 0.00 0.01 0.01 0.01 0.00 0.00

25 t-stats -2.31* -1.87 -1.98* -2.03* -2.25* -2.63*
p-value 0.02 0.06 0.05 0.04 0.02 0.01

30 t-stats -2.97* -2.82* -2.87* -2.68* -2.86* -3.33*
p-value 0.00 0.00 0.00 0.01 0.00 0.00

Table 6.13: Results of the Engle-Colacito regression test. The t-stat values refer to the intercept λ of the Engle-Colacito
regression (5.7) obtained using a HAC estimator. The p-value can be used to test the null hypothesis that
λ = 0. The symbol * (respectively **) indicates rejection at the 5% (respectively 1%) significance level. Values
corresponding to models that exhibit the maximum p-value for a given portfolio cardinality are printed in red.
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DJIA dataset. Period I. MCS of EPA for the minimum variance portfolio squared returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5 Position 3 2 4 1 5 6
p-value 0.856 0.856 0.810 1.000 0.810 0.810

10 Position 4 2 1 3 5 6
p-value 0.335 0.579 1.000 0.335 0.335 0.270

15 Position 5 4 1 3 6 2
p-value 0.374 0.588 1.000 0.600 0.290 0.600

20 Position 2 5 4 6 3 1
p-value 0.206 0.206 0.206 0.206 0.206 1.000

25 Position 3 6 2 5 4 1
p-value 0.803 0.465 0.910 0.803 0.803 1.000

30 Position 1 6 5 4 3 2
p-value 1.000 0.383 0.407 0.407 0.407 0.638
Score 18 25 17 22 26 18

Table 6.14: Model confidence sets based on the predictive ability for squared portfolio returns using the loss function
defined in (5.8). See the caption of Table 6.8 for an explanation of the table entries.

DJIA dataset. Period I. MCS of EPA for the equally weighted portfolio squared returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5 Position 2 5 4 6 1 3
p-value 0.296 0.296 0.296 0.002 1.000 0.296

10 Position 3 4 6 2 1 5
p-value 0.071 0.071 0.001 0.345 1.000 0.001

15 Position 1 6 2 5 3 4
p-value 1.000 0.005 0.685 0.005 0.326 0.199

20 Position 2 6 1 5 3 4
p-value 0.367 0.006 1.000 0.011 0.367 0.158

25 Position 4 5 1 6 2 3
p-value 0.005 0.004 1.000 0.004 0.061 0.049

30 Position 5 6 2 1 3 4
p-value 0.002 0.002 0.136 1.000 0.018 0.018
Score 17 32 16 25 13 23

Table 6.15: Model confidence sets based on the predictive ability for squared portfolio returns using the loss function
defined in (5.8). See the caption of Table 6.8 for an explanation of the table entries.
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DJIA dataset. Period II. MCS of EPA for the minimum variance portfolio squared returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5 Position 2 6 1 3 5 4
p-value 0.562 0.214 1.000 0.562 0.214 0.562

10 Position 4 6 3 5 2 1
p-value 0.379 0.071 0.379 0.379 0.379 1.000

15 Position 5 3 1 4 2 6
p-value 0.368 0.676 1.000 0.676 0.676 0.368

20 Position 4 2 1 5 3 6
p-value 0.339 0.932 1.000 0.339 0.836 0.339

25 Position 4 6 1 3 2 5
p-value 0.618 0.100 1.000 0.618 0.618 0.618

30 Position 3 6 1 5 2 4
p-value 0.544 0.054 1.000 0.312 0.808 0.544
Score 22 29 8 25 16 26

Table 6.16: Model confidence sets based on the predictive ability for squared portfolio returns using the loss function
defined in (5.8). See the caption of Table 6.8 for an explanation of the table entries.

DJIA dataset. Period II. MCS of EPA for the equally weighted portfolio squared returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5 Position 4 5 2 3 6 1
p-value 0.000 0.000 0.029 0.000 0.000 1.000

10 Position 1 4 2 6 3 5
p-value 1.000 0.000 0.438 0.000 0.000 0.000

15 Position 3 2 6 1 4 5
p-value 0.486 0.772 0.001 1.000 0.484 0.003

20 Position 5 2 3 1 4 6
p-value 0.061 0.374 0.374 1.000 0.061 0.000

25 Position 5 1 2 3 4 6
p-value 0.000 1.000 0.674 0.000 0.000 0.000

30 Position 5 3 4 1 2 6
p-value 0.000 0.036 0.002 1.000 0.036 0.000
Score 23 17 19 15 23 29

Table 6.17: Results of the model confidence set of EPA for equally weighted portfolio squared returns. The loss function
is defined in (5.8). See caption of Table 6.8 for an explanation of the table entries.
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DJIA dataset. Period I. HIT test of the minimum variance portfolio returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5

1% 2.54 3.07 3.07 2.94 2.67 2.80
p-value 0.7895 0.9538 0.9549 0.9046 0.8707 0.9205

5% 6.81* 7.21* 6.94* 6.94* 6.94* 6.81*
p-value 0.0170 0.0108 0.0112 0.0112 0.0223 0.0172

10% 11.08** 11.48** 11.75* 11.48* 10.95* 11.62
p-value 0.0085 0.0075 0.0211 0.0295 0.0362 0.0811

10

1% 1.60 1.87 1.74 1.74 1.60 1.60
p-value 0.5135 0.7272 0.9820 0.5750 0.5126 0.5120

5% 4.54 4.67 4.54 4.67 4.54 4.54
p-value 0.6107 0.5839 0.7906 0.6146 0.6113 0.6114

10% 9.35 8.95 8.68 9.48 9.21 9.21
p-value 0.1459 0.0816 0.1247 0.0738 0.1585 0.1588

15

1% 0.93 1.07 1.20 1.20 0.93 0.93
p-value 0.9965 0.1357 0.0845 0.2323 0.9968 0.9968

5% 4.14 4.41 4.41 4.54 4.14 4.14
p-value 0.2980 0.4356 0.4524 0.4987 0.2977 0.2992

10% 7.61 8.14 8.68 8.81 7.88 8.54
p-value 0.4368 0.6871 0.8502 0.5405 0.4536 0.8441

20

1% 1.20 1.47 1.47 1.34 1.34 1.47
p-value 0.2141 0.9301 0.5153 0.9826 0.3886 0.5197

5% 3.47 3.87 4.14 4.01 3.47 3.60
p-value 0.7794 0.7344 0.7765 0.7980 0.7794 0.7789

10% 7.48 8.28 8.41 8.41 7.61 7.74
p-value 0.9621 0.7913 0.9138 0.7433 0.9693 0.9448

25

1% 1.34 1.47 1.87 1.74* 1.34 1.60*
p-value 0.4985 0.9939 0.0772 0.0350 0.4985 0.0105

5% 4.67 4.81 5.07 5.21 4.67 4.81
p-value 0.6049 0.4531 0.7543 0.4600 0.6049 0.5051

10% 9.35 10.68 10.55 9.88 9.48 9.75
p-value 0.7228 0.9699 0.9094 0.9739 0.5810 0.7412

30

1% 1.74 2.54 2.80 2.40 1.87 2.27
p-value 0.7757 0.9153 0.9129 0.9175 0.8351 0.9213

5% 5.74 6.81 7.34 7.08 6.01 6.54
p-value 0.9235 0.9682 0.9890 0.9019 0.9568 0.6951

10% 10.28 12.28 12.02 11.21 10.68 10.81
p-value 0.8853 0.6322 0.9880 0.7384 0.9599 0.9487

Table 6.18: Results of the HIT test. For each assets cardinality n and model we report the average number of VaR
violations when this risk measure is computed at the 1, 5, and 10% confidence levels. The percentage printed
in red corresponds to the model that yields the closest number to the specified confidence level. The p-values
correspond to the F-test on the HIT regression (5.9) with five lags. The highest p-values are marked in bold.
When they imply that the null hypothesis of independence is rejected at the 5% (respectively 1%) level, the
corresponding average number of VaR violations is marked with * (respectively **).
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DJIA dataset. Period I. HIT test of the equally weighted portfolio returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5

1% 2.27 2.27 2.27 2.27 2.14 2.27
p-value 0.5905 0.6204 0.6210 0.6204 0.4791 0.6198

5% 6.28 6.54 6.54 6.54 6.01 6.54
p-value 0.7918 0.6796 0.6793 0.6776 0.5968 0.6796

10% 11.88 11.88 11.88 11.88 11.88 12.02
p-value 0.3977 0.2019 0.2019 0.2017 0.3792 0.2615

10

1% 1.47 1.34 1.47 1.34 1.47 1.47
p-value 0.9944 0.9936 0.9944 0.9931 0.9943 0.9944

5% 6.28 6.14 6.28 6.14 6.28 6.28
p-value 0.0708 0.1067 0.0717 0.1066 0.0703 0.0704

10% 9.48* 9.61* 9.48* 9.61* 9.48* 9.35
p-value 0.0390 0.0333 0.0403 0.0309 0.0382 0.2340

15

1% 1.07 1.07 1.07 1.07 1.07 1.07
p-value 0.9961 0.9960 0.9952 0.9952 0.9959 0.9956

5% 3.87 3.60 3.87 3.60 3.87 3.87
p-value 0.2759 0.2613 0.2753 0.2594 0.2758 0.2756

10% 6.81 6.54 6.41 6.41 6.68 6.54
p-value 0.1950 0.1605 0.0975 0.0969 0.1506 0.1652

20

1% 1.20 0.93* 1.20 0.93* 1.20 1.20
p-value 0.3060 0.0453 0.3059 0.0452 0.3061 0.3066

5% 2.67 2.54 2.67 2.67 2.67 2.67
p-value 0.3405 0.2177 0.3399 0.3356 0.3410 0.3409

10% 5.34 5.21 5.34 5.21 5.34 5.34
p-value 0.7912 0.7699 0.4568 0.7709 0.7925 0.4519

25

1% 0.80 0.53 0.80 0.53 0.80 0.67
p-value 0.9998 0.9253 0.9998 0.9184 0.9998 0.9992

5% 3.34 3.20 3.60 3.07 3.47 3.47
p-value 0.8904 0.9086 0.7351 0.9182 0.8690 0.8687

10% 6.14 6.01* 6.28 6.01* 6.14* 6.14*
p-value 0.0501 0.0350 0.0719 0.0349 0.0499 0.0497

30

1% 0.80 0.93 0.93 0.93 0.80 0.80
p-value 0.9954 0.9759 0.9752 0.9778 0.9952 0.9951

5% 2.94 2.94 3.07 3.07 2.94 3.07
p-value 0.4821 0.4812 0.5690 0.5697 0.4807 0.5674

10% 6.01 5.87 6.14 6.28 6.14 6.28
p-value 0.6916 0.9274 0.7334 0.6628 0.7295 0.6599

Table 6.19: Results of the HIT test. For each assets cardinality n and model we report the average number of VaR
violations when this risk measure is computed at the 1, 5, and 10% confidence levels. The percentage printed
in red corresponds to the model that yields the closest number to the specified confidence level. The p-values
correspond to the F-test on the HIT regression (5.9) with five lags. The highest p-values are marked in bold.
When they imply that the null hypothesis of independence is rejected at the 5% (respectively 1%) level, the
corresponding average number of VaR violations is marked with * (respectively **).
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DJIA dataset. Period II. HIT test of the minimum variance portfolio returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5

1% 0.40 0.40 0.53 0.40 0.53 0.53
p-value 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999

5% 3.60 3.47 3.60 3.60 3.60 3.74
p-value 0.3355 0.2632 0.3367 0.3349 0.3337 0.5322

10% 8.95 8.54 8.54 8.54 8.81 8.68
p-value 0.5005 0.2296 0.2278 0.2292 0.4985 0.4310

10

1% 1.60 1.47 1.47 1.47 1.47 1.47
p-value 0.9916 0.9924 0.9940 0.9933 0.9955 0.9946

5% 4.81 4.81 4.81 4.81 4.81 4.67
p-value 0.7859 0.7784 0.7780 0.7850 0.7894 0.9189

10% 7.34 7.34 7.74 7.34 7.48 7.34
p-value 0.8484 0.8423 0.7044 0.7633 0.8345 0.8480

15

1% 1.07 1.60 1.34 1.47 1.34 1.20*
p-value 0.0994 0.1511 0.3995 0.1273 0.0579 0.0105

5% 4.94 4.54 4.67 4.81 5.07 4.81
p-value 0.8766 0.6078 0.6573 0.5982 0.8753 0.8643

10% 8.54 9.08 8.68 9.21 8.54 8.81
p-value 0.9149 0.9735 0.9310 0.9350 0.9061 0.9493

20

1% 1.34* 1.47 1.34* 1.34* 1.34* 1.34*
p-value 0.0314 0.0939 0.0295 0.0332 0.0305 0.0317

5% 4.94 4.81 4.94 4.81 5.07 4.81
p-value 0.9438 0.9355 0.9262 0.9370 0.9476 0.9107

10% 8.81 10.28 9.61 10.01 8.81 8.81
p-value 0.9216 0.9227 0.9930 0.9932 0.9157 0.9228

25

1% 1.07 1.60 1.47 1.47 1.20 1.07
p-value 0.9990 0.2535 0.5740 0.1508 0.3132 0.9990

5% 4.67 5.34 5.07 4.81 4.81 4.67
p-value 0.8538 0.3596 0.9060 0.4802 0.8694 0.8544

10% 11.21 12.15 11.62 11.35 11.48 10.95
p-value 0.9361 0.9297 0.9829 0.9757 0.9566 0.9548

30

1% 1.07 1.60 1.20 1.34 1.20 1.07
p-value 0.9997 0.6447 0.2330 0.4011 0.2327 0.9997

5% 4.94 5.87 5.21 5.61 5.07 5.07
p-value 0.3227 0.2609 0.7368 0.8300 0.3966 0.4063

10% 10.95 12.42 11.75 11.88 11.62 10.81
p-value 0.5710 0.8997 0.8530 0.8707 0.7243 0.6226

Table 6.20: Results of the HIT test. For each assets cardinality n and model we report the average number of VaR
violations when this risk measure is computed at the 1, 5, and 10% confidence levels. The percentage printed
in red corresponds to the model that yields the closest number to the specified confidence level. The p-values
correspond to the F-test on the HIT regression (5.9) with five lags. The highest p-values are marked in bold.
When they imply that the null hypothesis of independence is rejected at the 5% (respectively 1%) level, the
corresponding average number of VaR violations is marked with * (respectively **).
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DJIA dataset. Period II. HIT test of the equally weighted portfolio returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r = 1) (r = 2)

5

1% 0.53 0.67 0.67 0.67 0.53 0.67
p-value 0.9864 0.9986 0.9987 0.9985 0.9870 0.9981

5% 3.20 3.20 3.20 3.20 3.20 3.20
p-value 0.0982 0.0985 0.0963 0.0986 0.0995 0.0975

10% 8.28 8.14 8.14 8.14 8.14 8.28
p-value 0.9162 0.9483 0.9487 0.9481 0.9483 0.7887

10

1% 1.34 1.34 1.34 1.34 1.34 1.34
p-value 0.9959 0.9949 0.9948 0.9951 0.9956 0.9944

5% 4.01 4.01 4.01 4.01 4.01 4.01
p-value 0.4566 0.4355 0.4183 0.4350 0.4543 0.4417

10% 6.94 6.94 6.94 6.68 6.94 6.81
p-value 0.2370 0.3799 0.3659 0.1903 0.2331 0.2884

15

1% 2.00 2.00 2.00 2.00 2.00 2.00
p-value 0.6435 0.6407 0.6429 0.6388 0.6465 0.6439

5% 4.01 4.14 4.01 4.14 4.14 4.01
p-value 0.8840 0.9467 0.8897 0.9521 0.9361 0.8837

10% 7.48 7.88 7.74 8.01 7.61 7.48
p-value 0.9053 0.8020 0.8267 0.6327 0.9059 0.9059

20

1% 1.34 1.34 1.34 1.47 1.34 1.20
p-value 0.9964 0.9961 0.9957 0.9899 0.9967 0.9902

5% 3.87 3.74 3.87 3.74 3.87 3.87
p-value 0.9354 0.9414 0.9368 0.9412 0.9358 0.9351

10% 7.61 7.74 7.74 7.74 7.61 7.34
p-value 0.3273 0.3136 0.2648 0.2452 0.3279 0.2836

25

1% 1.07 1.20 1.34 1.20 1.20 1.07
p-value 0.9959 0.9988 0.9972 0.9985 0.9989 0.9952

5% 4.27 4.41 4.14 4.27 4.27 4.14
p-value 0.6704 0.6125 0.6940 0.6678 0.6694 0.7031

10% 7.08 7.34 7.34 7.08 7.21 6.81
p-value 0.6365 0.5347 0.3536 0.6351 0.5319 0.7141

30

1% 1.07 1.07 1.07 1.07 1.07 0.93
p-value 0.9796 0.9768 0.9752 0.9844 0.9732 0.9966

5% 3.74 3.74 3.87 3.87 3.87 3.60
p-value 0.9449 0.9423 0.9347 0.9348 0.9348 0.8676

10% 6.68 6.54 6.41 6.54 6.54 6.54
p-value 0.8804 0.9154 0.8955 0.9172 0.9106 0.8993

Table 6.21: Results of the HIT test. For each assets cardinality n and model we report the average number of VaR
violations when this risk measure is computed at the 1, 5, and 10% confidence levels. The percentage printed
in red corresponds to the model that yields the closest number to the specified confidence level. The p-values
correspond to the F-test on the HIT regression (5.9) with five lags. The highest p-values are marked in bold.
When they imply that the null hypothesis of independence is rejected at the 5% (respectively 1%) level, the
corresponding average number of VaR violations is marked with * (respectively **).
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A Proofs of Propositions

A.1 Proof of Proposition 2.1

In order to prove the Proposition 2.1, we introduce the auxiliary operator σ.

The operator σ: Let r ≤ n ∈ N, N∗ = nr − 1
2r (r − 1), and

S = {(i, j) |i ∈ {1, . . . , n} , j ∈ {1, . . . , r} , i ≥ j} .

Given a matrix A ∈ Ln,r and v = vecr (A) ∈ RN∗
the operator σ : S −→ {1, . . . , N∗} assigns to the

position of the entry (i, j), i ≥ j, of the matrix A the position of the corresponding element of v in the
vecr representation. We refer to the inverse of this operator as σ−1 : {1, . . . , N∗} −→ S.

Proof of Proposition 2.1: In order to prove (2.13), we use the following chain of equalities:

〈A,matr (v)〉 = tr
(
A> ·matr (v)

)
=

n∑
i=1

r∑
j=1

Aij(matr (v))ij =

n∑
i=r

r∑
j=1

Aij(matr (v))ij

+

r−1∑
i=1

r∑
j=1

Aij(matr (v))ij =

n∑
i=r

r∑
j=1

Aij(matr (v))ij +

r−1∑
i=1

i∑
j=1

Aij(matr (v))ij

+

r−1∑
i=1

r∑
j=i+1

Aij(matr (v))ij =

n∑
i=r

r∑
j=1

Aij(matr (v))ij +

r−1∑
i=1

i∑
j=1

Aij(matr (v))ij

=

n∑
i=r

r∑
j=1

Aijvσ(i,j) +

r−1∑
i=1

i∑
j=1

Aijvσ(i,j) =

N∗∑
q=1

Aσ−1(q)vq = 〈vecr (A) ,v〉.

Since A ∈ Ln,r and v ∈ RN∗
in these equalities are arbitrary, the identity 〈A,matr (v)〉 = 〈vecr (A) ,v〉

ensures that 〈mat∗r (A) ,v〉 = 〈vecr (A) ,v〉, which yields (2.13). In order to prove the relation (2.14) we
write down:

〈v, vecr (A)〉 = tr
(
v>vecr (A)

)
=

N∗∑
i=1

vi(vecr (A))i =

n∑
i=1

r∑
j=1

vσ(i,j)(vecr (A))σ(i,j)

=

n∑
i=1

r∑
j=1

(matr (v))ijAij = tr((matr(v)> ·A) = 〈matr (v) , A〉,

which yields 〈vec∗r (v) , A〉 = 〈matr (v) , A〉 and hence proves (2.14).

A.2 Proof of Proposition 3.1

We start by showing that the map Ψ is injective. Let A,B ∈ L+
n,m be such that [A] = [B]. This implies

the existence of an element O ∈ O(r) such that AO−1 = B or, equivalently, OA> = B>. This equality
can be written in terms of matrix entries as

O


a11 a21 a31 · · · ar1
0 a22 a32 · · · ar2
0 0 a33 · · · ar3
...

...
...

. . .
...

0 0 0 · · · arr

Ã

 =


b11 b21 b31 · · · br1
0 b22 b32 · · · br2
0 0 b33 · · · br3
...

...
...

. . .
...

0 0 0 · · · brr

B̃

 , (A.1)
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with Ã, B̃ ∈ Mr,n−r. We now proceed recursively by analyzing the n different equations included

in (A.1). First of all, since A,B ∈ L+
n,m, then a11, b11 > 0 and hence the equation O (a11, 0, · · · , 0)

>
=

(b11, 0, . . . , 0)
>

implies that a11 = b11 and that O ∈ O(r) belongs to the subgroup of O(r) isomorphic

to O(r − 1) that leaves invariant the vectors in span{e(1)
r }. This statement, together with the second

equation included in (A.1), that is, O (a21, a22, 0, . . . , 0)
>

= (b21, b22, 0, . . . , 0)
>

imply that a21 = b21 and

that O (0, a22, 0, . . . , 0)
>

= (0, b22, 0, . . . , 0)
>

. Since a22, b22 > 0 then a22 = b22 necessarily and we can
conclude that O ∈ O(r) belongs to the subgroup of O(r) isomorphic to O(r − 2) that leaves invariant

the vectors in span{e(1)
r , e

(2)
r }. We are able to conclude by repeating this procedure r times that O = Ir

necessarily and that A = B, as required.
In order to show that Ψ is also surjective, we have to prove that for any [B] ∈ Mn,r/O(r), there

exists A ∈ L+
n,m such that Ψ(A) = [B]. Let B ∈Mn,r be an arbitrary element in the orbit [B] such that

B> =


b11 b21 b31 · · · br1
b12 b22 b32 · · · br2
...

...
...

. . .
...

b1r b2r b3r · · · brr

B̃

 ,

with B̃ ∈Mr,n−r. Let O1 ∈ O(r) be such that O1 (b11, b12, . . . , b1r)
>

=
(
b111, 0, . . . , 0

)>
, for some b111 > 0

and let 
b111 b121 b131 · · · b1r1
0 b122 b132 · · · b1r2
...

...
...

. . .
...

0 b12r b13r · · · b1rr

B̃1

 := O1B
>.

Consider now another element O2 ∈ O(r) that leaves invariant the vectors in span{e(1)
r } and such that

O2

(
b121, b

1
22, . . . , b

1
2r

)>
=
(
b121, b

2
22, 0, . . . , 0

)>
, for some b222 > 0, and let

b111 b121 b131 · · · b1r1
0 b222 b232 · · · b2r2
0 0 b233 · · · b2r3
...

...
...

. . .
...

0 0 b23r · · · b2rr

B̃2

 := O2O1B
>.

If we iterate r times this construction we obtain r elements O1, O2, . . . , Or ∈ O(r) such that the matrix
A defined by A> := OrOr−1 · · ·O2O1B

> belongs to L+
n,m and since by construction [A] = [B] we have

that Ψ(A) = [A] = [B], and the result follows.

A.3 Proof of Proposition 4.1

We first compute the differential of the log-likelihood function in (4.2). Indeed, for any δθ ∈ TθP×TθP:

dθlt · δθ = dHt lt (Ht (Θ (θ))) · TΘHt (Θ (θ)) · TθΘ (θ) · δθ
= 〈∇Ht lt, TΘHt · TθΘ · δθ〉 = 〈T ∗θΘ · T ∗ΘHt · ∇Ht lt, δθ〉,

where we used the chain rule on the function Θ = Θ(θ). This relation shows that

∇θlt (θ; rt) = T ∗θΘ · T ∗ΘHt · ∇Ht
lt (θ; rt) ,
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which yields (4.3). The proof of (4.4) is standard and can be found, for instance, in Apendix 7.6 of
[Chre 13]. In order to prove (4.5) we first consider the tangent map TΘHt : Sn × Sn −→ Sn × Sn and
derive the expression that determines it for every component Θ of Θ. First,

TΘHt · δΘ = Dt(TΘ(Q∗−1
t ) · δΘ)QtQ

∗−1
t Dt +DtQ

∗−1
t (TΘQt · δΘ)Q∗−1

t Dt

+DtQ
∗−1
t Qt(TΘ(Q∗−1

t ) · δΘ)Dt, δΘ ∈ Sn. (A.2)

Now, since

TΘQ
∗
t · δΘ =

1

2
Q∗−1
t Diag (TΘQt · δΘ) ,

the following relation holds true

TΘ(Q∗−1
t ) · δΘ = −1

2
Q∗−2
t Diag(TΘQt · δΘ)Q∗−1

t . (A.3)

When we substitute the expression (A.3) into the relation (A.2) we obtain an explicit expression for
the map TΘHt : Sn × Sn −→ Sn × Sn . We now compute its adjoint T ∗ΘHt : Sn × Sn −→ Sn × Sn by
dualizing (A.2) with respect to the Frobenius inner product. Indeed, let δΘ,∆ ∈ Sn arbitrary, then:

〈T ∗ΘHt ·∆, δΘ〉 = 〈∆, TΘHt · δΘ〉 = 〈∆, Dt(TΘ(Q∗−1
t ) · δΘ)QtQ

∗−1
t Dt〉+ 〈∆, DtQ

∗−1
t (TΘQt · δΘ)Q∗−1

t Dt〉
+〈∆, DtQ

∗−1
t Qt

(
TΘ

(
Q∗−1
t

)
· δΘ

)
Dt〉 = 〈T ∗Θ

(
Q∗−1
t

) (
Dt∆DtQ

∗−1
t Qt

)
, δΘ〉

+〈T ∗ΘQt
(
Q∗−1
t Dt∆DtQ

∗−1
t

)
, δΘ〉+ 〈T ∗ΘQ∗−1

t

(
QtQ

∗−1
t Dt∆Dt

)
, δΘ〉,

and hence

T ∗ΘHt ·∆ = T ∗ΘQt
(
Q∗−1
t Dt∆DtQ

∗−1
t

)
+ T ∗Θ

(
Q∗−1
t

) [
Dt∆DtQ

∗−1
t Qt +QtQ

∗−1
t Dt∆Dt

]
. (A.4)

In order to explicitly write down the second summand of this relation, we dualize (A.3). For any
δΘ,∆ ∈ Sn we obtain:

〈T ∗Θ(Q∗−1
t )∆, δΘ〉 = −1

2
tr(∆>Q∗−2

t Diag(TΘQt · δΘ)Q∗−1
t ) = −1

2
tr(Q∗−1

t ∆>Q∗−2
t Diag(TΘQt · δΘ))

= −1

2
〈Q∗−2

t ∆Q∗−1
t ,Diag(TΘQt · δΘ)〉 = −1

2
〈Diag(Q∗−2

t ∆Q∗−1
t ),Diag(TΘQt · δΘ)〉

= −1

2
〈T ∗ΘQtDiag(Q∗−2

t ∆Q∗−1
t ), δΘ〉,

which immediately yields

T ∗Θ
(
Q∗−1
t

)
·∆ = −1

2
T ∗ΘQtDiag

(
Q∗−2
t ∆Q∗−1

t

)
. (A.5)

Substituting (A.5) into (A.4) we obtain:

T ∗ΘHt ·∆ = T ∗ΘQt

[
Q∗−1
t Dt∆DtQ

∗−1
t − 1

2
Diag

(
Q∗−2
t

(
Dt∆DtQ

∗−1
t Qt +QtQ

∗−1
t Dt∆Dt

)
Q∗−1
t

)]
,

which proves (4.5) in the statement of the Proposition.
In order to prove the relations (4.6) and (4.7) we start by differentiating (3.5). For arbitrary δA, δB ∈

Sn we obtain:

TAQt · δA = −δA� S + δA�
(
εt−1ε

>
t−1

)
+B � (TAQt−1 · δA)

= δA�
(
εt−1ε

>
t−1 − S

)
+B � (TAQt−1 · δA) , (A.6)

TBQt · δB = −δB � S + δB �Qt−1 +B � (TBQt−1 · δB)

= δB � (Qt−1 − S) +B � (TBQt−1 · δB) . (A.7)
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We now compute the corresponding adjoints with respect to the Frobenius inner product. Indeed, for
any δA,∆ ∈ Sn we have

〈T ∗AQt ·∆, δA〉 = tr
[
∆>

(
δA�

(
εt−1ε

>
t−1 − S

))]
+ tr

[
∆> (B � (TAQt−1 · δA))

]
= tr

[
δA>

(
∆�

(
εt−1ε

>
t−1 − S

))]
+ tr

[
(TAQt−1 · δA)

>
(∆�B)

]
= 〈∆�

(
εt−1ε

>
t−1 − S

)
, δA〉+ 〈T ∗AQt−1 (∆�B) , δA〉,

where we used the Hadamard product trace property (2.4). This expression yields

T ∗AQt ·∆ = ∆�
(
εt−1ε

>
t−1 − S

)
+ T ∗AQt−1 (∆�B)

which proves (4.6). We analogously show (4.7) by dualizing (A.7). Let δB,∆ ∈ Sn be arbitrary; the
following relation holds true:

〈T ∗BQt ·∆, δB〉 = tr
[
∆> (δB � (Qt−1 − S))

]
= tr〈∆� (Qt−1 − S) , δB〉+ 〈T ∗BQt−1 (∆�B) , δB〉,

which is equivalent to T ∗BQt ·∆ = ∆� (Qt−1 − S) + T ∗BQt−1 (∆�B).

We conclude by proving the relations (4.8)-(4.11) that are obtained out of the dualization of the tangent
map TθΘ of the relation Θ (θ) that provides the connection between the variables Θ and the intrinsic
parameter space θ for each of the families considered in Section 3.

(i) The Hadamard family: let δa, δb ∈ RN , then the map TθΘ : RN × RN −→ Sn × Sn is given by

TθΘ · (δa, δb) = (math (δa) ,math (δb)) .

Dualizing this relation, we obtain for any ∆1,∆2 ∈ Sn:

〈T ∗θΘ(∆1,∆2), (δa, δb)〉 = 〈(∆1,∆2), (math(δa),math(δb))〉 = 〈(math∗(∆1),math∗(∆2), (δa, δb))〉,

and hence
T ∗θΘ(∆1,∆2) = (math∗(∆1),math∗(∆2)),

which yields (4.8).

(ii) The rank deficient family: let δa, δb ∈ RN∗
, the tangent map TθΘ : RN∗ × RN∗ −→ Sn × Sn

is given by

TθΘ · (δa, δb) =
(
matr(δa)(matr(a))> + matr(a)(matr(δa))>,

matr(δb)(matr(b))
> + matr(b)(matr(δb))

>).
We now dualize this relation in order to prove (4.9). For ∆1,∆2 ∈ Sn arbitrary we write

〈T ∗θΘ(∆1,∆2), (δa, δb)〉 = 〈(∆1,∆2), TθΘ · (δa, δb)〉
= 〈(∆1,∆2), (matr(δa)(matr(a))>,matr(δb)(matr(b))

>)〉
+〈(∆1,∆2) , (matr (a) (matr (δa))

>
,matr (b) (matr (δb))

>
))〉

= 2〈(∆1matr (a) ,∆2matr (b)) , (matr (δa) ,matr (δb))〉
= 2〈(mat∗r (∆1matr (a)) ,mat∗r (∆2matr (b)) , (δa, δb))〉. (A.8)

Recall that by Proposition 2.13 the operator mat∗r equals vecr and hence the relation (A.8) yields

T ∗θΘ (∆1,∆2) = 2(vecr(∆1matr (a)), vecr(∆2matr (b))),

and proves (4.9), as required.
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(iii) The Almon family: let δa, δb ∈ R3, then the map TθΘ : R3×R3 −→ Sn× Sn is determined by

TθΘ · (δa, δb) =
(

(Ka · δa)(almn (a))> + almn (a) (Ka · δa)>,

(Kb · δb)(almn (b))> + almn (b) (Kb · δb)>
)
, (A.9)

where we used the expression (2.16) for the tangent map Tθalmn : R3 −→ Rn. In order to prove
(4.10) we dualize the relation (A.9). For ∆1,∆2 ∈ Sn arbitrary we compute

〈T ∗θΘ (∆1,∆2) , (δa, δb)〉 = 〈(∆1,∆2) , TθΘ · (δa, δb)〉
= 〈(∆1,∆2) , ((Ka · δa)(almn (a))>, (Kb · δb)(almn (b))>)〉

+〈(∆1,∆2) , (almn (a) (Ka · δa)>, almn (b) (Kb · δb)>)〉
= 2〈(∆1almn (a) ,∆2almn (b)) , (Ka · δa,Kb · δb)〉
= 2〈

(
K>a ·∆1 · almn (a) ,K>b ·∆2 · almn (b)

)
, (δa, δb)〉,

which yields (4.10), as required. �

(iv) The scalar family: let δa, δb ∈ R. The map TθΘ : R× R −→ Sn × Sn is given by

TθΘ · (δa, δb) =
(
δaini>n , δbini>n

)
.

Hence, for ∆1,∆2 ∈ Sn arbitrary we have

〈T ∗θΘ (∆1,∆2) , (δa, δb) 〉 = 〈(∆1,∆2) , TθΘ (δa, δb)〉
= 〈(∆1,∆2) ,

(
δaini>n , δbini>n

)
〉 = 〈

(
〈∆1, ini>n 〉, 〈∆2, ini>n 〉

)
, (δa, δb)〉,

and consequently,
T ∗θΘ (∆1,∆2) =

(
〈∆1, ini>n 〉, 〈∆2, ini>n 〉

)
,

which proves (4.11), as required.

A.4 Proof of Proposition 6.1

We start by proving (6.4). Let ∆ := math (v), with v ∈ RN arbitrary. Then by (4.6), recalling that
the operator math is the inverse of the operator vech, and using the expression (2.3) for the Hadamard
product of two vectors, we obtain

At · v = vech
(
math (v)�

(
εt−1ε

>
t−1 − S

))
+ vech T ∗AQt−1 math vech (math (v)�B)

= vech
(
math (v)�

(
εt−1ε

>
t−1 − S

))
+At−1 vech (math (v)�B)

= v � vech
(
εt−1ε

>
t−1 − S

)
+At−1 (v � vech (B))

= diag
(
vech

(
εt−1ε

>
t−1 − S

))
· v +At−1diag (vech (B)) · v,

which yields (6.4) as required. Analogously, by (4.7):

Bt · v = vech (math (v)� (Qt−1 − S)) + vech T ∗BQt−1 math vech (math (v)�B)

= v � vech (Qt−1 − S) +Bt−1 (v � vech (B)) = diag (vech (Qt−1 − S)) · v +At−1diag (vech (B)) · v,

and hence (6.5) follows.
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We now prove (6.6) out of (4.5) and apply the relations (2.7)-(2.10) between the vech, math, vec, and
Diag:

Ct · v = vech T ∗ΘQt math vech
(
Q∗−1
t Dt math (v)DtQ

∗−1
t

)
−1

2
vech T ∗ΘQt math vech Diag(Q∗−2

t Dt math (v)DtQ
∗−1
t QtQ

∗−1
t +Q∗−2

t QtQ
∗−1
t Dtmath (v)DtQ

∗−1
t )

= ΘtLnvec
(
Q∗−1
t Dt math (v)DtQ

∗−1
t

)
− 1

2
ΘtLnvec Diag(Q∗−2

t Dt math (v)DtQ
∗−1
t QtQ

∗−1
t

+Q∗−2
t QtQ

∗−1
t Dtmath (v)DtQ

∗−1
t ) = ΘtLn

((
Q∗−1
t Dt

)
⊗
(
Q∗−1
t Dt

))
Dn · v

−1

2
ΘtLnvec math P dnLnvec(Q∗−2

t Dt math (v)DtQ
∗−1
t QtQ

∗−1
t +Q∗−2

t QtQ
∗−1
t Dtmath (v)DtQ

∗−1
t )

= ΘtLn
((
Q∗−1
t Dt

)
⊗
(
Q∗−1
t Dt

))
Dn · v −

1

2
ΘtP

d
nLn(

(
Q∗−1
t QtQ

∗−1
t Dt

)
⊗
(
Q∗−2
t Dt

)
+
(
Q∗−1
t Dt

)
⊗
(
Q∗−2
t QtQ

∗−1
t Dt

)
)Dn · v,

with Θt = {At, Bt}, which proves (6.6) as required. Finally, the relations (6.8)-(6.11) are obtained from
(4.8)-(4.11) by straightforward substitution. �.

B Implementation of the constrained optimization in the esti-
mation of DCC models

In the following paragraphs we provide explicit expressions for the Bregman divergences, the local
penalized model, its gradient and Jacobian, for the rank deficient DCC models, the Almon DCC and
the scalar DCC model specifications that we presented in Section 3. The corresponding results for the
Hadamard DCC model are provided in Subsection 4.3 of the paper. The detailed derivations of these
results are contained in Appendix C.

B.1 The rank deficient DCC model

As explained in Section 3.2, in this case the parameter matrices A,B ∈ Sn have a common prescribed
rank r ∈ {1, . . . , n − 1}, that is, rank(A) = rank(B) = r. The intrinsic parameterization is provided
by two vectors a, b ∈ RN∗

, N∗ = nr − 1
2r(r − 1) using the operator matr : RN∗ −→ Ln,r, presented

in Subsection 2.2 and setting: A := matr (a) matr (a)
>

, B := matr (b) matr (b)
>

. Let θ := (a, b) ∈
RN∗×RN∗

; the intrinsic parameter subspace P is RN∗
of dimension N∗. The dynamics of the conditional

correlation matrix process {Qt} for the rank deficient family is given in (3.13) and θ is subjected to the
identification, stationarity, and positivity constraints (3.14)-(3.16).

Constraints and the local model. We group these constraints according to the classification in
Subsection 4.2.2 which yields two linear, two non-linear, and one positive definiteness constraint. In
order to specify them let {i1, . . . , ir} with ij = n(j−1) + 1

2j(3− j), j ∈ {1, . . . , r}, be the entries spelled

out in (2.12) of any vector in RN∗
that amount to the main diagonal of the corresponding matrix in Ln,r

via the matr representation. Let C
(1)
a , C

(2)
b ∈ Mr,N∗ be the matrices that have as rows the canonical
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unit vectors {e(i1)
N∗ , . . . , e

(ir)
N∗ } with a minus sign in the front. Then:

L1 (a) := −C(1)
a a > 0r, (B.1)

L2 (b) := −C(2)
b b > 0r, (B.2)

N1 (θ) := iN − vech(matr (a) matr (a)
>

+ matr (b) matr (b)
>

) > 0N , (B.3)

N2 (θ) := iN + vech(matr (a) matr (a)
>

+ matr (b) matr (b)
>

) > 0N , (B.4)

M (θ) := (ini>n −matr (a) matr (a)
> −matr (b) matr (b)

>
)� S � 0, (B.5)

where L1(a), L2(b) ∈ Rr, N1(θ), N2(θ) ∈ RN , and M (θ) ∈ Sn. The local penalized model for the
optimization problem (4.17) in this case is given by

f̃ (k) (θ) =f(θ(k)) +∇θf(θ(k))(θ − θ(k)) +
1

2
(θ − θ(k))>H(k)(θ − θ(k))

+ L1DM (θ,θ(k)) +

2∑
j=1

Lj2i
>
NDNj

(θ,θ(k)) +

2∑
j=1

Lj3i
>
r DLj

(θ,θ(k)), (B.6)

where L1, L2 :=
(
L1

2, L
2
2

)>
, L3 :=

(
L1

3, L
2
3

)>
specify the penalization strengths, f(θ(k)) is minus the

log-likelihood function evaluated at (4.1), ∇θf(θ(k)) is its gradient, that is ∇θf(θ(k)) = −∇θlogL(θ(k))
which is determined by relations (4.3)-(4.7), and (4.9) in Proposition 4.1. Finally, H(k) is its Hessian

computed at the point θ(k). In relation (B.6) the Bregman divergences associated to each of the
constraints (B.1)-(B.5) are easily obtained from (4.14)-(4.16):

Dj
L1

(θ,θ(k)) =
aij

a
(k)
ij

− log
aij

a
(k)
ij

− 1, ij = n(j − 1) +
1

2
j(3− j), j ∈ {1, . . . , r}, (B.7)

Dj
L2

(θ,θ(k)) =
bij

b
(k)
ij

− log
bij

b
(k)
ij

− 1, ij = n(j − 1) +
1

2
j(3− j), j ∈ {1, . . . , r}, (B.8)

Di
N1

(θ,θ(k)) =
(N1 (θ))i

(N1(θ(k)))i
− log

(N1(θ))i

(N1(θ(k)))i
− 1, i ∈ {1, . . . , N} , (B.9)

Di
N2

(θ,θ(k)) =
(N2 (θ))i

(N2(θ(k)))i
− log

(N2(θ))i

(N2(θ(k)))i
− 1, i ∈ {1, . . . , N} , (B.10)

DM (θ,θ(k)) = tr(M(θ) ·M(θ(k))−1)− log det(M(θ) ·M(θ(k))−1)− n. (B.11)

Gradient of the local model. A straightforward computation provided in Technical Appendix C.2
gives the following expressions for the components of the gradient of the local model (B.6):

∇af̃ (k) (θ) = ∇af(θ(k)) +H(k)
a (a− a(k)) + 2L1vecr(((M(θ)−1 −M(θ(k))−1)� S)matr(a))

+ 2

N∑
i=1

(
L1

2

[
1

(N1(θ))i
− 1

(N1(θ(k)))i

]
− L2

2

[
1

(N2(θ))i
− 1

(N2(θ(k)))i

])
· vecr(vech∗(e

(i)
N ) ·matr(a))

− L1
3

r∑
j=1

[
1

aij
− 1

a
(k)
ij

]
· e(ij)
N∗ , ij = n(j − 1) +

1

2
j(3− j), j ∈ {1, . . . , r}. (B.12)
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∇bf̃ (k) (θ) = ∇bf(θ(k)) +H
(k)
b (b− b(k)) + 2L1(vecr(((M(θ)−1 −M(θ(k))−1)� S)matr(b))

+ 2

N∑
i=1

(
L1

2

[
1

(N1(θ))i
− 1

(N1(θ(k)))i

]
− L2

2

[
1

(N2(θ))i
− 1

(N2(θ(k)))i

])
· vecr(vech∗(e

(i)
N ) ·matr(b))

− L2
3

r∑
j=1

[
1

bij
− 1

b
(k)
ij

]
· e(ij)
N∗ , ij = n(j − 1) +

1

2
j(3− j), j ∈ {1, . . . , r}. (B.13)

where ∇af(θ(k)) and ∇bf(θ(k)) are the components of the gradient of minus the log-likelihood function

computed at the point θ(k); e
(i)
N∗ ∈ RN∗

, i ∈ {1, . . . , N∗} are the canonical unit vectors.

Jacobian of the local model. We use the general relation (4.24) to determine the tangent map to
∇θ f̃ (k)(θ) for any δθ := (δa, δb) ∈ RN∗ × RN∗

:

Tθ∇af̃ (k) (δa, δb) =H(k)
a δa+ 2L1vecr(((M(θ)−1(W � S)M(θ)−1)� S)matr(a)

+ ((M(θ)−1 −M(θ(k))−1)� S)matr(δa)) + 2

N∑
i=1

{(
L1

2

[
1

(N1(θ))i
− 1

(N1(θ(k)))i

]

− L2
2

[
1

(N2(θ))i
− 1

(N2(θ(k)))i

])
· vecr(vech∗(e

(i)
N ) ·matr(δa))

+ (vech(W ))i ·

(
L1

2

(N1(θ))2
i

+
L2

2

(N2(θ))2
i

)
· vecr(vech∗(e

(i)
N ) ·matr(a))

}

+ L1
3

r∑
j=1

δaij
a2
ij

· e(ij)
N∗ , ij = n(j − 1) +

1

2
j(3− j). (B.14)

Tθ∇bf̃ (k) (δa, δb) =H
(k)
b δb+ 2L1vecr(((M(θ)−1(W � S)M(θ)−1)� S)matr(b)

+ ((M(θ)−1 −M(θ(k))−1)� S)matr(δb)) + 2

N∑
i=1

{(
L1

2

[
1

(N1(θ))i
− 1

(N1(θ(k)))i

]

− L2
2

[
1

(N2(θ))i
− 1

(N2(θ(k)))i

])
· vecr(vech∗(e

(i)
N ) ·matr(δb))

+ (vech(W ))i ·

(
L1

2

(N1(θ))2
i

+
L2

2

(N2(θ))2
i

)
· vecr(vech∗(e

(i)
N ) ·matr(b))

}

+ L1
3

r∑
j=1

δbij
b2ij
· e(ij)
N∗ , ij = n(j − 1) +

1

2
j(3− j). (B.15)

with W := matr(δa)matr(a)> + matr(a)matr(δa)> + matr(δb)matr(b)
> + matr(b)matr(δb)

>.
The (1,1) and (1, 2) blocks of the Jacobian matrix can be obtained from (B.14) by taking δθ of the

form (δa,0), (0, δb). Analogously, the (2,1) and (2, 2) blocks of the Jacobian are prescribed by (B.15)
by setting δθ as (δa,0), (0, δb), respectively.

B.2 The Almon DCC model

In this subsection we provide the detailed description of the Bregman divergences based optimization
algorithm for the new Almon DCC model that we introduced in Section 3.3. This model can be seen
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as a particular case of the rank deficient DCC model with parameter matrices A,B ∈ Sn in (3.5) of
rank r = 1. The matrices are intrinsically parametrized by two vectors a, b ∈ R3 via the Almon lag
operator almn : R3 −→ Rn (see Subsection 2.2 for the definition and properties of the operator) by
defining A := almn(a) almn(a)> and B := almn(b) almn(b)>. Let θ := (a, b) ∈ R3 × R3; the intrinsic
parameter subspace P is R3 of dimension P = 3. The DCC model in the Almon specification is given
in (3.17). The parameter constraints that are imposed in order to ensure that the process admits a
stationary solution and that the resulting conditional correlation and hence the conditional covariance
matrices are positive definite, are prescribed by the relations (3.18)-(3.20).

Constraints and the local model. We group the parameter constraints following the classification
suggested in Subsection 4.2.2. This leads to the following set of four nonlinear positivity and one positive
definiteness constraint:

N1 (a) := (almn (a))1 = −e(1)T
n · almn (a) > 0, (B.16)

N2 (b) := (almn (b))1 = −e(1)T
n · almn (b) > 0, (B.17)

N3 (θ) := iN − vech(almn (a) almn (a)
>

+ almn (b) almn (b)
>

) > 0N , (B.18)

N4 (θ) := iN + vech(almn (a) almn (a)
>

+ almn (b) almn (b)
>

) > 0N , (B.19)

M (θ) := (ini>n − almn (a) almn (a)
> − almn (b) almn (b)

>
)� S � 0, (B.20)

where N1(a), N2(b) ∈ R, N3(θ), N4(θ) ∈ RN , M(θ) ∈ Sn, and e
(1)
n ∈ Rn is the canonical unit vector. In

the case of the Almon family of models the local penalized model for the optimization problem (4.17)
with incorporated Bregman divergences associated to the constraints (B.16)-(B.20) is given by

f̃ (k) (θ) =f(θ(k)) +∇θf(θ(k))(θ − θ(k)) +
1

2
(θ − θ(k))>H(k)(θ − θ(k))

+ L1DM (θ,θ(k)) +

4∑
j=1

Lj2i
>
mj
DNj

(θ,θ(k)), (B.21)

where L1, L2 :=
(
L1

2, . . . , L
4
2

)>
specify the penalization strengths and mj = dim

{
DNj

(θ,θ(k))
}

, j ∈

{1, . . . , 4}. In this relation f(θ(k)) is minus the log-likelihood function evaluated at (4.1), ∇θf(θ(k)) is its

gradient, that is ∇θf(θ(k)) = −∇θlogL(θ(k)) which is determined by relations (4.3)-(4.7), and (4.10) in

Proposition 4.1; H(k) is the Hessian of the minus log-likelihood computed at the point θ(k); DNj (θ,θ(k)),

j = {1, . . . , 4} and DM (θ,θ(k)) are the Bregman divergences associated to the constraints (B.16)-(B.19)
and (B.20), respectively. The expressions of these divergences by (4.15) and (4.14) can be written as

DN1(θ,θ(k)) =
(almn (a))1

(almn (a)
(k)

)1

− log
(almn (a))1

(almn (a)
(k)

)1

− 1, (B.22)

DN2
(θ,θ(k)) =

(almn (b))1

(almn (b)
(k)

)1

− log
(almn (b))1

(almn (b)
(k)

)1

− 1, (B.23)

Di
Nj

(θ,θ(k)) =
(Nj (θ))i

(Nj(θ
(k)))i

− log
(Nj(θ))i

(Nj(θ
(k)))i

− 1, i ∈ {1, . . . , N} , j ∈ {3, 4} , (B.24)

DM (θ,θ(k)) = tr(M(a, b) ·M(a(k), b(k))−1)− log det(M(a, b) ·M(a(k), b(k))−1)− n. (B.25)
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Gradient of the local model. By means of a computation provided in Technical Appendix C.3, we
obtain the expressions for the components of the gradient of the local model (B.21), namely:

∇af̃ (k) (θ) = ∇af(θ(k)) +H(k)
a (a− a(k))

+ 2L1K
>
a ((M(θ)−1 −M(θ(k))−1)� S) · almn(a)− L1

2

[
1

(almn (a))1
− 1

(almn (a)
(k)

)1

](
K>a · e(1)

n

)
+ 2

N∑
i=1

(
L3

2

[
1

(N2(θ))i
− 1

(N2(θ(k)))i

]
− L4

2

[
1

(N3(θ))i
− 1

(N3(θ(k)))i

])
(Ka · vech∗(e

(i)
N ) · almn(a)),

(B.26)

∇bf̃ (k) (θ) = ∇bf(θ(k)) +H
(k)
b (b− b(k))

+ 2L1K
>
b ((M(θ)−1 −M(θ(k))−1)� S) · almn(b)− L2

2

[
1

(almn (b))1
− 1

(almn (b)
(k)

)1

](
K>b · e(1)

n

)
+ 2

N∑
i=1

(
L3

2

[
1

(N2(θ))i
− 1

(N2(θ(k)))i

]
− L4

2

[
1

(N3(θ))i
− 1

(N3(θ(k)))i

])
(Kb · vech∗(e

(i)
N ) · almn(b)),

(B.27)

where ∇af(θ(k)) and ∇bf(θ(k)) are the components of the gradient of minus the log-likelihood function

computed at the point θ(k). Recall that Ka,Kb ∈ Mn,3 are the matrices introduced in (2.16), e
(i)
N∗ ∈

RN∗
, i ∈ {1, . . . , N∗} and e

(i)
N , i ∈ {1, . . . , N} are the canonical unit vectors introduced in Subsection 2.1.

Jacobian of the local model. We use the expression (4.24) to determine the tangent map to
∇θ f̃ (k)(θ) for any δθ := (δa, δb) ∈ R3 × R3. Computations detailed in Technical Appendix C.3
provide the following results:

T θ∇af̃ (k) (δa, δb) = H(k)
a δa+ 2L1

{
(Kaa · δa)> · ((M(θ)−1 −M(θ(k))−1)� S) · almn(a)

+Ka · ((M(θ)−1(W � S)M(θ)−1)� S) · almn(a) +K>a · ((M(θ)−1 −M(θ(k))−1)� S) · (Ka · δa)
}

+ L1
2

{
(Ka · δa)1

(almn(a))2
1

· (K>a · e(1)
n )−

[
1

(almn(a))1
− 1

(almn(a(k)))1

]
((Kaa · δa)> · e(1)

n )

}
(B.28)

+ 2

N∑
i=1

{(
L3

2

[
1

(N2(θ))i
− 1

(N2(θ(k)))i

]
− L4

2

[
1

(N3(θ))i
− 1

(N3(θ(k)))i

])
· ((Kaa · δa)> · vech∗(e

(i)
N ) · almn(a)

+K>a · vech∗(e
(i)
N ) · (Ka · δa)) + (vech(W ))i ·

[
L3

2

(N2(θ))2
i

+
L4

2

(N3(θ))2
i

]
· (K>a · vech∗(e

(i)
N ) · almn(a))

}
,

(B.29)

T θ∇bf̃ (k) (δa, δb) = H
(k)
b δb+ 2L1

{
(Kbb · δb)> · ((M(θ)−1 −M(θ(k))−1)� S) · almn(b)

+Kb · ((M(θ)−1(W � S)M(θ)−1)� S) · almn(b) +K>b · ((M(θ)−1 −M(θ(k))−1)� S) · (Kb · δb)
}

+ L2
2

{
(Kb · δb)1

(almn(b))2
1

· (K>b · e(1)
n )−

[
1

(almn(b))1
− 1

(almn(b(k)))1

]
((Kbb · δb)> · e(1)

n )

}
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+ 2

N∑
i=1

{(
L3

2

[
1

(N2(θ))i
− 1

(N2(θ(k)))i

]
− L4

2

[
1

(N3(θ))i
− 1

(N3(θ(k)))i

])
· ((Kbb · δb)> · vech∗(e

(i)
N ) · almn(b)

+K>b · vech∗(e
(i)
N ) · (Kb · δb)) + (vech(W ))i ·

[
L3

2

(N2(θ))2
i

+
L4

2

(N3(θ))2
i

]
· (K>b · vech∗(e

(i)
N ) · almn(b))

}
,

(B.30)

with

W := (Ka · δa) · almn(a)> + almn (a) · (Ka · δa)> + (Kb · δb) · almn (b)
>

+ almn (b) · (Kb · δb)>,
Kaa · δa := (0n | k1

n � (K0
a · δa) | k2

n � (K0
a · δa)),

Kbb · δb := (0n | k1
n � (K0

b · δb) | k2
n � (K0

b · δb)),
K0
a :=

(
0n | k1

n � almn(ā) | k2
n � almn(ā)

)
,

K0
b :=

(
0n | k1

n � almn(b̄) | k2
n � almn(b̄)

)
.

The expressions in (B.29)-(B.30), despite their apparent complexity, are explicit and provide the
tool to compute the blocks of the Jacobian matrix. The (1,1) and (1, 2) blocks of the Jacobian matrix
can be obtained from (B.29) by taking δθ of the form (δa,0), (0, δb). Analogously, the (2,1) and (2,
2) blocks of the Jacobian are prescribed by (B.30) by setting δθ as (δa,0), (0, δb), respectively.

B.3 The scalar DCC model

In this case the parameter matrices A,B ∈ Sn in (3.5) are of the form A = aini>n , B = bini>n , with
a, b ∈ R. The intrinsic parameter subspace P is in this case R and its dimension P = 1; we denote
θ := (a, b) ∈ R× R. The scalar DCC model specification together with the associated stationarity and
positivity constraints are provided in (3.21)-(3.23).

Constraints and the local model. In this case, the necessary constraints can be reduced to three
linear positivity constraints, namely:

L1(θ) := 1− C(1)
a a− C(1)

b b > 0, (B.31)

L2(a) := −C(2)
a a ≥ 0, (B.32)

L3(b) := −C(3)
b b ≥ 0, (B.33)

where L1(θ), L2(a), L3(b) ∈ R, C
(1)
a = C

(1)
b = 1, and C

(2)
a = C

(3)
b = −1. The local penalized model for

the optimization problem (4.17) in this case is given by

f̃ (k) (θ) = f(θ(k)) +∇θf(θ(k))(θ − θ(k)) +
1

2
(θ − θ(k))>H(k)(θ − θ(k)) +

3∑
j=1

Lj1DLj (θ,θ(k)), (B.34)

where the vector L1 :=
(
L1

1, L
2
1, L

3
1

)>
contains the penalization strengths, f(θ(k)) is minus the log-

likelihood function in (4.1), ∇θf(θ(k)) = −∇θlogL(θ(k) is its gradient which for the scalar family is
determined by relations (4.3)-(4.7), and (4.11) in Proposition 4.1, and H(k) is its Hessian computed

at the point θ(k). The Bregman divergences associated to each constraint (B.31)-(B.33) and obtained
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from (4.16) take the following expressions:

DL1
(θ,θ(k)) =

1− a− b
1− a(k) − b(k)

− log
1− a− b

1− a(k) − b(k)
− 1, (B.35)

DL2
(θ,θ(k)) =

a

a(k)
− log

a

a(k)
− 1, (B.36)

DL3(θ,θ(k)) =
b

b(k)
− log

b

b(k)
− 1. (B.37)

Gradient of the local model. A straightforward computation yields:

∇af̃ (k) (θ) = ∇af(θ(k)) +H(k)
a (a− a(k)) + L1

1

[
1

1− a− b
− 1

1− a(k) − b(k)

]
− L2

1

[
1

a
− 1

a(k)

]
, (B.38)

∇bf̃ (k) (θ) = ∇bf(θ(k)) +H
(k)
b (b− b(k)) + L1

1

[
1

1− a− b
− 1

1− a(k) − b(k)

]
− L3

1

[
1

b
− 1

b(k)

]
, (B.39)

where ∇af(θ(k)), ∇bf(θ(k)) are the components of the gradient of minus the log-likelihood function

∇θf(θ(k)) = −∇θlogL(θ(k), r) determined by the expressions (4.3)-(4.7) and by relation (4.11).

Jacobian of the local model. A straightforward computation yields for any (δa, δb) ∈ R × R the
following expressions:

Tθ∇af̃ (k) (δa, δb) = H(k)
a δa+ L1

1

δa+ δb

(1− a− b)2
+ L2

1

δa

a2
, (B.40)

Tθ∇bf̃ (k) (δa, δb) = H
(k)
b δb+ L1

1

δb+ δb

(1− a− b)2
+ L3

1

δb

b2
. (B.41)

The (1,1) and (1, 2) blocks of the Jacobian matrix can be obtained from (B.40) by simply taking (δa, δb)
of the form (δa, 0), (0, δb), and the (2,1) and (2, 2) blocks of the Jacobian matrix are prescribed by (B.41)
by setting (δa, δb) as (δa, 0), (0, δb), respectively.

C Detailed computations for the implementation of the con-
strained optimization in the estimation of non-scalar DCC
models

We provide here detailed derivations of the results in Subsection 4.3 of the paper and in Appendix B.

C.1 The Hadamard DCC model

The gradient of the local model. The computation of ∇θ f̃ (k)(θ) requires the expressions of the
gradients of each of the divergences in (4.31)-(4.35).

We start with the Bregman divergences DL1
(θ,θ(k)), DL2

(θ,θ(k)) ∈ RN associated to the linear
constraints (4.25) and (4.26), respectively. It is easy to check by (4.23) that for each component θ ∈ RN
of θ, the gradients of these divergences are determined by

∇θDi
L1

(θ,θ(k)) =

[
1

1− ai − bi
− 1

1− a(k)
i − b

(k)
i

]
e

(i)
N , i ∈ {1, . . . , N} , (C.1)

∇θDi
L2

(θ,θ(k)) = −

[
1

1 + ai + bi
− 1

1 + a
(k)
i + b

(k)
i

]
e

(i)
N , i ∈ {1, . . . , N} , (C.2)
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where e
(i)
N ∈ RN are the canonical unit vectors defined by e

(i)
N = (δij)j∈{1,...,N}.

Regarding the Bregman divergences DM1(a,a(k)), DM2(b, b(k)) ∈ Sn in (4.33)-(4.34) related to the
positive semidefiniteness constraints (4.27) and (4.28), we have

∇aDM1
(a,a(k)) = −math∗(M1(a)−1 −M1(a(k))−1), (C.3)

∇bDM2(b, b(k)) = −math∗(M2(b)−1 −M2(b(k))−1), (C.4)

where math∗ : Sn −→ RN is the adjoint map of the operator math : RN −→ Sn, both introduced in
Subsection 2.2.

We now proceed with the expression for the gradient of the divergence DM3
(θ,θ(k)) ∈ Sn defined

in (4.35) and related to the positive definiteness constraint (4.29). By relation (4.21) it can be written
down as

∇θDM3(θ,θ(k)) = (math∗((M3(θ)−1 −M3(θ(k))−1)� S),math∗((M3(θ)−1 −M3(θ(k))−1)� S)),
(C.5)

where we just used that the tangent map TθM3 : RN × RN −→ Sn for any δθ := (δa, δb) ∈ RN × RN
is given by

TθM3 · δθ = −math(δa+ δb)� S. (C.6)

Substitution of (C.1)-(C.5) into (4.20) gives the components (4.36)-(4.37) of the gradient of the local
model (4.30) for the Hadamard family, as required.

The Jacobian of the local model. The only new element required in the expression (4.24) are the
adjoints T ∗θMj : Sn −→ RN ×RN of the tangent maps TθMj : RN ×RN −→ Sn, j = 1, 2, 3. In the case
of j = 1 and j = 2, these adjoints are given by math∗. We now compute the expression for the adjoint
map T ∗θM3 : Sn −→ RN × RN by dualizing (C.6) for ∆ ∈ Sn arbitrary and obtain

〈T ∗θM3 ·∆, (δa, δb)〉 = 〈∆, TθM3 (δa, δb)〉 = −tr (∆((math(δa+ δb))� S)) = −tr ((math(δa)� S)∆)

−tr ((math(δb)� S)∆) = −tr ((∆� S) math(δa))− tr ((∆� S) math(δb))

= −〈∆� S,math(δa)〉 − 〈∆� S,math(δb)〉 = −〈math∗(∆� S), δa〉
−〈math∗(∆� S), δb〉 = 〈(math∗(∆� S),math∗(∆� S)), (δa, δb)〉,

where we used the Hadamard product trace property (2.4) which immediately yields

T ∗θM3 ·∆ = − (math∗(∆� S),math∗(∆� S)) . (C.7)

The relations (4.38)-(4.39) hence follow from (4.24), as required.

C.2 The rank deficient DCC model

Gradient of the local model. The computation of the gradient ∇f̃(θ) requires the expressions for
the gradients of the components of each of the Bregman divergences defined in (B.7)-(B.11).

Regarding the divergences (B.7)-(B.8) associated with the linear positivity constraints we write

∇θDj
L1

(θ,θ(k)) = −

[
1

aij
− 1

a
(k)
ij

]
e

(ij)
N∗ , ij = n(j − 1) +

1

2
j(3− j), j ∈ {1, . . . , r}, (C.8)

∇θDj
L2

(θ,θ(k)) = −

[
1

bij
− 1

b
(k)
ij

]
e

(ij)
N∗ , ij = n(j − 1) +

1

2
j(3− j), j ∈ {1, . . . , r}, (C.9)
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where we recall that e
(ij)
N∗ ∈ RN∗

is the canonical unit vector whose ij-th entry equals one.
We now carry out the computation of the gradients of the Bregman divergences (B.9)-(B.10) related

to the nonlinear positivity constraints (B.3)-(B.4) using the relation (4.22). In order to provide explicit
expressions for those gradients we first compute the tangent maps TθN1 : RN∗ × RN∗ −→ RN and
TθN2 : RN∗ × RN∗ −→ RN :

TθN1 · δθ = −vech(matr(δa)matr(a)> + matr(a)matr(δa)> + matr(δb)matr(b)
> + matr(b)matr(δb)

>),
(C.10)

TθN2 · δθ = vech(matr(δa)matr(a)> + matr(a)matr(δa)> + matr(δb)matr(b)
> + matr(b)matr(δb)

>),
(C.11)

with δθ := (δa, δb) ∈ RN∗ × RN∗
. We determine their adjoints T ∗θN1 : RN −→ RN∗ × RN∗

and
T ∗θN2 : RN −→ RN∗ × RN∗

by dualizing (C.10)-(C.2). Indeed, for v ∈ RN arbitrary, we have

〈T ∗θN1 · v, (δa, δb)〉 =〈v, TθN1 (δa, δb)〉 = −〈v, vech(matr(δa)matr(a)> + matr(a)matr(δa)>

+ matr(δb)matr(b)
> + matr(b)matr(δb)

>)〉 = −〈v, vech(matr(δa)matr(a)>)〉
− 〈v, vech(matr(a)matr(δa)>)〉 − 〈v, vech(matr(δb)matr(b)

>)〉
− 〈v, vech(matr(b)matr(δb)

>)〉 = −〈vech∗(v)matr(a),matr(δa)〉
− 〈matr(a)>vech∗(v),matr(δa)>〉 − 〈vech∗(v)matr(b),matr(δb)〉
− 〈matr(b)

>vech∗(v),matr(δb)
>〉 = −2〈mat∗r(vech∗(v)matr(a)), δa〉

− 2〈mat∗r(vech∗(v)matr(b)), δb〉
=− 2〈(vecr(vech∗(v)matr(a)), vecr(vech∗(v)matr(b)), (δa, δb))〉,

where we used that by Proposition 2.1 mat∗r equals vecr. We hence obtain that

T ∗θN1 · v = −2(vecr(vech∗(v)matr(a)), vecr(vech∗(v)matr(b)). (C.12)

Analogously, it can be easily checked that:

T ∗θN2 · v = 2(vecr(vech∗(v)matr(a)), vecr(vech∗(v)matr(b)). (C.13)

Consequently, the gradients of the components of the Bregman divergences Di
N1

(θ,θ(k)), Di
N2

(θ,θ(k)),
i ∈ {1, . . . , N} are given by the relations

∇θDi
N1

(θ,θ(k)) = 2

[
1

(N1 (θ))i
− 1

(N1(θ(k)))i

]
(vecr(vech∗(e

(i)
N ) ·matr(a), vecr(vech∗(e

(i)
N ) ·matr(b)),

(C.14)

∇θDi
N2

(θ,θ(k)) = −2

[
1

(N2 (θ))i
− 1

(N2(θ(k)))i

]
(vecr(vech∗(e

(i)
N ) ·matr(a), vecr(vech∗(e

(i)
N ) ·matr(b)),

(C.15)

where e
(i)
N ∈ RN , i ∈ {1, . . . , N} are the canonical unit vectors.

We now proceed with the positive definite constraint (B.5), for which we recall that

M (θ) = (ini>n −matr (a) matr (a)
> −matr (b) matr (b)

>
)� S.

In order to provide the gradient for the Bregman divergence associated to the constraint (B.5), we refer
to the relation (4.21), whose explicit formulation requires the expression of the adjoint map
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T ∗θM : Sn −→ RN∗ × RN∗
. We hence first determine the corresponding tangent map TθM : RN∗ ×

RN∗ −→ Sn. Indeed, for any δθ = (δa, δb) ∈ RN∗ × RN∗
:

TθM · δθ = −(matr(δa)matr(a)> + matr(a)matr(δa)> + matr(δb)matr(b)
> + matr(b)matr(δb)

>)� S.

We dualize this expression in order to obtain the required adjoint, that is, for arbitrary ∆ ∈ Sn:

〈T ∗θM ·∆, (δa, δb)〉 = 〈∆, TθM · (δa, δb)〉
=− 〈∆, (matr(δa)matr(a)> + matr(a)matr(δa)> + matr(δb)matr(b)

> + matr(b)matr(δb)
>)� S〉

=− 〈∆, (matr(δa)matr(a)>)� S〉 − 〈∆, (matr(a)matr(δa)>)� S〉 − 〈∆, (matr(δb)matr(b)
>)� S〉

− 〈∆, (matr(b)matr(δb)
>)� S〉 = −〈(∆� S)matr(a),matr(δa)〉 − 〈matr(a)>(∆� S),matr(δa)>〉

− 〈(∆� S)matr(b),matr(δb)〉 − 〈matr(b)
>(∆� S),matr(δb)

>〉 = −2 〈mat∗r((∆� S)matr(a)), δa〉
− 2 〈mat∗r((∆� S)matr(b)), δb〉 = −2〈(mat∗r((∆� S)matr(a)),mat∗r((∆� S)matr(b))), (δa, δb)〉.

Recall that by Proposition 2.1, mat∗r equals vecr and we hence have

T ∗θM ·∆ = −2 (vecr((∆� S)matr(a)), vecr((∆� S)matr(b))) ∈ RN
∗
× RN

∗
. (C.16)

If we substitute (C.16) into (4.21) we obtain the following expression for the gradient of the Bregman

divergence DM (θ,θ(k)):

∇θDM (θ,θ(k)) = −T ∗θM(M(θ)−1 −M(θ(k))−1) = 2 (vecr(((M(θ)−1 −M(θ(k))−1)� S) matr(a)),

vecr(((M(θ)−1 −M(θ(k))−1)� S) matr(b))),
(C.17)

Finally, the relations (C.8), (C.14), (C.15), and (C.17) lead to expressions (B.12)-(B.13) for the compo-
nents of the gradient for the local model (B.6) in the case of rank deficient family.

Jacobian of the local model. We use the general expression (4.24) to determine the tangent map of
∇θ f̃ (k)(θ) for any δθ := (δa, δb). The only ingredient that needs to be specified in order to apply (4.24)

is the tangent map of the gradient ∇θDM (θ,θ(k)) (C.16) of the Bregman divergence (B.11) associated
to the positive definite constraint (B.5). A straightforward computation yields

Tθ(∇θDM (θ,θ(k))) · δθ = −Tθ(T ∗θM(M(θ)−1 −M(θ(k))−1)) · δθ

= 2 Tθ

(
vecr(((M(θ)−1 −M(θ(k))−1)� S)matr(a)), vecr(((M(θ)−1 −M(θ(k))−1)� S)matr(b))

)
· δθ

= −2(vecr(((M(θ)−1(TθM · δθ)M(θ)−1)� S)matr(a)− ((M(θ)−1 −M(θ(k))−1)� S)matr(δa)),

vecr(((M(θ)−1(TθM · δθ)M(θ)−1)� S)matr(b)− ((M(θ)−1 −M(θ(k))−1)� S)matr(δb))).
(C.18)

The substitution of the expressions for the tangent maps and their adjoints provided in this appendix
into (4.24) yields the relations (B.14)-(B.15) that can be used to obtain the blocks of the Jacobian
matrix for the local model (B.6) in the case of the rank deficient DCC specification.

C.3 The Almon DCC model

Gradient of the local model. We determine the explicit expression for the gradient of the lo-
cal model which requires computation of the gradients of each of the Bregman divergences presented
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in (B.22)-(B.25). For the divergences associated with the nonlinear positivity constraints we use the

relation (4.22) and for DN1
(θ,θ(k)) and DN2

(θ,θ(k)) related to the inequalities (B.16)-(B.17) we write

∇θDN1
(θ,θ(k)) = −

[
1

(almn (a))1
− 1

(almn(a(k)))1

](
K>a · e(1)

n

)
, (C.19)

∇θDN2
(θ,θ(k)) = −

[
1

(almn (b))1
− 1

(almn(b(k)))1

](
K>b · e(1)

n

)
, (C.20)

where we used the definition (2.17) of the adjoint T ∗valmn : Rn −→ R3 of the tangent map Tvalmn :

R3 −→ Rn; recall that Ka,Kb ∈ Mn,3 are the matrices introduced in (2.16) and e
(1)
n ∈ Rn is the

canonical unit vector.
We now carry out the computation of the gradients for the components Di

N2
(θ,θ(k)), Di

N3
(θ,θ(k)),

i ∈ {1, . . . , N} of the Bregman divergences associated to the nonlinear positivity constraints in (B.18)
and (B.19), respectively. For that we first need to introduce the maps TθN2 : RN∗ × RN∗ −→ RN and
TθN3 : RN∗ × RN∗ −→ RN . Let δθ := (δa, δb) ∈ R3 × R3, then the following relations hold true:

TθN2 · δθ =− vech((Ka · δa) · almn(a)> + almn (a) · (Ka · δa)>

+ (Kb · δb) · almn (b)
>

+ almn (b) · (Kb · δb)>), (C.21)

TθN3 · δθ =vech((Ka · δa) · almn(a)> + almn (a) · (Ka · δa)>

+ (Kb · δb) · almn (b)
>

+ almn (b) · (Kb · δb)>). (C.22)

In order to use (4.22), we need to determine the adjoint maps T ∗θN1 : RN −→ RN∗ × RN∗
and T ∗θN2 :

RN −→ RN∗ × RN∗
by dualizing the relations (C.21) and (C.22). For v ∈ RN arbitrary we compute

〈T ∗θN2 · v, (δa, δb)〉 = 〈v, TθN2 (δa, δb)〉 = −〈v, vech((Ka · δa) · almn(a)> + almn (a) · (Ka · δa)>

+ (Kb · δb) · almn (b)
>

+ almn (b) · (Kb · δb)>)〉 = −〈v, vech((Ka · δa) · almn(a)>)〉

− 〈v, vech(almn (a) · (Ka · δa)>)〉 − 〈v, vech((Kb · δb) · almn (b)
>

)〉 − 〈v, vech(almn (b) · (Kb · δb)>)〉
=− 〈vech∗(v) · almn(a),Ka · δa〉 − 〈almn(a)> · vech∗(v), (Ka · δa)>〉 − 〈vech∗(v) · almn(b),Kb · δb〉
− 〈almn(b)> · vech∗(v), (Kb · δb)>〉 = −2〈K>a · vech∗(v) · almn(a), δa〉 − 2〈K>b · vech∗(v) · almn(b), δb〉

=− 2〈(K>a · vech∗(v) · almn(a),K>b · vech∗(v) · almn(b)), (δa, δb)〉,

which immediately yields

T ∗θN2 · v = −2(K>a · vech∗(v) · almn(a),K>b · vech∗(v) · almn(b)),

and, analogously, it can be easily checked that

T ∗θN3 · v = 2(K>a · vech∗(v) · almn(a),K>b · vech∗(v) · almn(b)).

Hence we obtain the following expression for the gradients of divergences DN3
(θ,θ(k)) and DN4

(θ,θ(k)):

∇θDi
Nj

(θ,θ(k)) = 2 · (−1)j ·

([
1

(Nj(θ))i
− 1

(Nj(θ
(k)))i

]
(K>a · vech∗(e

(i)
N ) · almn(a)),[

1

(Nj(θ))i
− 1

(Nj(θ
(k)))i

]
(K>b · vech∗(e

(i)
N ) · almn(b))

)
, j ∈ {3, 4} .

(C.23)
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We now proceed with the positive definite constraint (B.5), for which we recall that

M (θ) = (ini>n − almn (a) almn (a)
> − almn (b) almn (b)

>
)� S.

In order to provide the gradient for the Bregman divergences associated to the constraint (B.5), we
refer to the relation (4.21), whose explicit formulation requires the expression of the adjoint map T ∗θM :
Sn −→ RN∗ ×RN∗

. We hence first determine the corresponding tangent map TθM : RN∗ ×RN∗ −→ Sn
for any δθ = (δa, δb) ∈ RN∗ × RN∗

in a straightforward manner

TθM · δθ = −((Ka · δa) · almn(a)> + almn (a) · (Ka · δa)> + (Kb · δb) · almn (b)
>

+ almn (b) · (Kb · δb)>)� S

and dualize it in order to obtain the required adjoint, that is, for arbitrary ∆ ∈ Sn, we compute

〈T ∗θM ·∆, (δa, δb)〉 = 〈∆, TθM · (δa, δb)〉

=− 〈∆, ((Ka · δa) · almn(a)> + almn (a) · (Ka · δa)> + (Kb · δb) · almn (b)
>

+ almn (b) · (Kb · δb)>)� S〉

=− 〈∆, ((Ka · δa) · almn(a)>)� S〉 − 〈∆, (almn (a) · (Ka · δa)>)� S〉 − 〈∆, ((Kb · δb) · almn (b)
>

)� S〉
− 〈∆, (almn (b) · (Kb · δb)>)� S〉 = −〈(∆� S)almn(a),Ka · δa〉 − 〈almn(a)>(∆� S), (Ka · δa)>〉
− 〈(∆� S)almn(b),Kb · δb〉 − 〈almn(b)>(∆� S), (Kb · δb)>〉 = −2 〈K>a (∆� S)almn(a), δa〉
− 2 〈K>b (∆� S)almn(b), δb〉 = −2〈(K>a (∆� S)almn(a),K>b (∆� S)almn(b)), (δa, δb)〉.

This relation is equivalent to

T ∗θM ·∆ = −2 (K>a (∆� S)almn(a),K>b (∆� S)almn(b)) ∈ R3 × R3. (C.24)

Directly substituting (C.24) into (4.21) gives the following expression for the required gradient of the

Bregman divergence DM (θ,θ(k))

∇θDM (θ,θ(k)) = −T ∗θM(M(θ)−1 −M(θ(k))−1) = 2 (K>a ((M(θ)−1 −M(θ(k))−1)� S) almn(a),

K>b ((M(θ)−1 −M(θ(k))−1)� S) almn(b)).
(C.25)

Finally, the relations (C.19), (C.20), (C.23), and (C.25) lead to expressions (B.26)-(B.27) for the com-
ponents of the gradient of the local model (B.21) in the case of the Almon family of DCC models.

Jacobian of the local model. Again we use the general expression (4.24) to determine the tangent
map of ∇θ f̃ (k)(θ) for any δθ := (δa, δb) ∈ R3 × R3. In order to apply (4.24), we only need to specify

the tangent map of the gradient ∇θDM (θ,θ(k)) (C.25) of the Bregman divergence (B.25) associated to
the positive definite constraint (B.20). A straightforward computation yields

Tθ(∇θDM (θ,θ(k))) · δθ = −Tθ(T ∗θM(M(θ)−1 −M(θ(k))−1)) · δθ

=2 Tθ(K>a · ((M(θ)−1 −M(θ(k))−1)� S) · almn(a),K>b · ((M(θ)−1 −M(θ(k))−1)� S) · almn(b))

=2
(
(Kaa · δa)> · ((M(θ)−1 −M(θ(k))−1)� S) · almn(a)−Ka · ((M(θ)−1(TθM · δθ)M(θ)−1)� S)

· almn(a) +K>a · ((M(θ)−1 −M(θ(k))−1)� S) · (Ka · δa), (Kbb · δb)> · ((M(θ)−1 −M(θ(k))−1)� S)

· almn(b) +Kb · ((−M(θ)−1(TθM · δθ)M(θ)−1)� S) · almn(b) +K>b · ((M(θ)−1 −M(θ(k))−1)� S)

· (Kb · δb)
)
, (C.26)
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where

Kaa · δa := (0n | k1
n � (K0

a · δa) | k2
n � (K0

a · δa)),

Kbb · δb := (0n | k1
n � (K0

b · δb) | k2
n � (K0

b · δb)),
K0
a :=

(
0n | k1

n � almn(ā) | k2
n � almn(ā)

)
,

K0
b :=

(
0n | k1

n � almn(b̄) | k2
n � almn(b̄)

)
.

The substitution of the expressions for the tangent maps and their adjoints provided in this appendix
into (4.24) yields the relations (B.29)-(B.30) that can be used to obtain the blocks of the Jacobian
matrix for the local model (B.21) in the case of the Almon DCC specification.

References

[Bauw 14] L. Bauwens, L. Grigoryeva, and J.-P. Ortega. “Estimation and empirical performance of
non-scalar dynamic conditional correlation models”. 2014.

[Chre 13] S. Chrétien and J.-P. Ortega. “Multivariate GARCH estimation via a Bregman-proximal
trust-region method”. Computational Statistics and Data Analysis, Vol. To appear, 2013.



Recent titles 
CORE Discussion Papers 

 
2013/47 Helmuth CREMER, Firouz GAHVARI and Pierre PESTIEAU. Uncertain altruism and the 

provision of long term care. 
2013/48 Claire DUJARDIN, Vincent LORANT and Isabelle THOMAS. Self-assessed health of elderly 

people in Brussels: does the built environment matter? 
2013/49 Marc FLEURBAEY, Marie-Louise LEROUX, Pierre PESTIEAU and Grégory PONTHIERE. 

Fair retirement under risky lifetime. 
2013/50 Manuel FÖRSTER, Ana MAULEON and Vincent VANNETELBOSCH. Trust and 

manipulation in social networks. 
2013/51 Anthony PAPAVASILIOU, Yi HE and Alva SVOBODA. Self-commitment of combined cycle 

units under electricity price uncertainty. 
2013/52 Ana MAULEON, Elena MOLIS, Vincent VANNETELBOSCH and Wouter VERGOTE. 

Dominance invariant one-to-one matching problems. 
2013/53 Jean GABSZEWICZ and Skerdilajda ZANAJ. (Un)stable vertical collusive agreements. 
2013/54 François MANIQUET and Massimo MORELLI. Approval quorums dominate participation 

quorums. 
2013/55 Mélanie LEFÈVRE and Joe THARAKAN. Intermediaries, transport costs and interlinked 

transactions. 
2013/56 Gautier M. KRINGS, Jean-François CARPANTIER and Jean-Charles DELVENNE. Trade 

integration and the trade imbalances in the European Union: a network perspective. 
2013/57 Philip USHCHEV, Igor SLOEV and Jacques-François THISSE. Do we go shopping downtown 

or in the 'burbs'? Why not both? 
2013/58 Mathieu PARENTI. Large and small firms in a global market: David vs. Goliath. 
2013/59 Paul BELLEFLAMME and Francis BLOCH. Dynamic protection of innovations through 

patents and trade secrets. 
2013/60 Christian HAEDO and Michel MOUCHART. Specialized agglomerations with areal data: 

model and detection. 
2013/61 Julien MARTIN and Florian MAYNERIS. High-end variety exporters defying distance: micro 

facts and macroeconomic implications. 
2013/62 Luca G. DEIDDA and Dimitri PAOLINI. Wage premia, education race, and supply of educated 

workers. 
2013/63 Laurence A. WOLSEY and Hande YAMAN. Continuous knapsack sets with divisible 

capacities. 
2013/64 Francesco DI COMITE, Jacques-François THISSE and Hylke VANDENBUSSCHE. Verti-

zontal differentiation in export markets. 
2013/65 Carl GAIGNÉ, Stéphane RIOU and Jacques-François THISSE. How to make the metropolitan 

area work? Neither big government, nor laissez-faire. 
2013/66 Yu. NESTEROV and Vladimir SHIKHMAN. Algorithmic models of market equilibrium. 
2013/67 Cristina PARDO-GARCIA and Jose J. SEMPERE-MONERRIS. Equilibrium mergers in a 

composite good industry with efficiencies. 
2013/68 Federica RUSSO, Michel MOUCHART and Guillaume WUNSCH. Confounding and control in 

a multivariate system. An issue in causal attribution. 
2013/69 Marco DI SUMMA. The convex hull of the all-different system with the inclusion property: a 

simple proof. 
2013/70 Philippe DE DONDER and Pierre PESTIEAU. Lobbying, family concerns and the lack of 

political support for estate taxation. 
2013/71 Alexander OSHARIN, Jacques-François THISSE, Philip USHCHEV and Valery VERBUS. 

Monopolistic competition and income dispersion. 
2013/72 N. Baris VARDAR. Imperfect resource substitution and optimal transition to clean 

technologies. 
2013/73 Alejandro LAMAS and Philippe CHEVALIER. Jumping the hurdles for collaboration: fairness 

in operations pooling in the absence of transfer payments. 



Recent titles 
CORE Discussion Papers - continued 

 
2013/74 Mehdi MADANI and Mathieu VAN VYVE. A new formulation of the European day-ahead 

electricity market problem and its algorithmic consequences. 
2014/1 Erik SCHOKKAERT and Tom TRUYTS. Preferences for redistribution and social structure. 
2014/2 Maarten VAN DIJCK and Tom TRUYTS. The agricultural invasion and the political economy 

of agricultural trade policy in Belgium, 1875-1900. 
2014/3 Ana MAULEON, Nils ROEHL and Vincent VANNETELBOSCH. Constitutions and social 

networks. 
2014/4 Nicolas CARAYOL, Rémy DELILLE and Vincent VANNETELBOSCH. Allocating value 

among farsighted players in network formation. 
2014/5 Yu. NESTEROV and Vladimir SHIKHMAN. Convergent subgradient methods for nonsmooth 

convex minimization. 
2014/6 Yuri YATSENKO, Natali HRITONENKO and Thierry BRECHET. Modeling of enrironmental 

adaptation versus pollution mitigation. 
2014/7 Sanjeeb DASH, Oktay GÜNLÜK and Laurence A. WOLSEY. The continuous knapsack set. 
2014/8 Simon BUCKLE, Mirabelle MUÛLS, Joerg LEIB and Thierry BRECHET. Prospects for Paris 

2015: do major emitters want the same climate. 
2014/9 Lionel ARTIGE, Antoine DEDRY and Pierre PESTIEAU. Social security and economic 

integration. 
2014/10 Mikhail ISKAKOV, Alexey ISKAKOV and Alexey ZAKHAROV. Equilibria in secure 

strategies in the Tullock contest. 
2014/11 Helmuth CREMER and Pierre PESTIEAU. Means-tested long term care and family transfers. 
2014/12 Luc BAUWENS, Lyudmila GRIGORYEVA and Juan-Pablo ORTEGA. Estimation and 

empirical performance of non-scalar dynamic conditional correlation models. 
 

Books 
 
V. GINSBURGH and S. WEBER (2011), How many languages make sense? The economics of linguistic 

diversity. Princeton University Press. 
I. THOMAS, D. VANNESTE and X. QUERRIAU (2011), Atlas de Belgique – Tome 4 Habitat. Academia 

Press. 
W. GAERTNER and E. SCHOKKAERT (2012), Empirical social choice. Cambridge University Press. 
L. BAUWENS, Ch. HAFNER and S. LAURENT (2012), Handbook of volatility models and their 

applications. Wiley. 
J-C. PRAGER and J. THISSE (2012), Economic geography and the unequal development of regions. 

Routledge. 
M. FLEURBAEY and F. MANIQUET (2012), Equality of opportunity: the economics of responsibility. 

World Scientific. 
J. HINDRIKS (2012), Gestion publique. De Boeck. 
M. FUJITA and J.F. THISSE (2013), Economics of agglomeration: cities, industrial location, and 

globalization. (2nd edition). Cambridge University Press. 
J. HINDRIKS and G.D. MYLES (2013). Intermediate public economics. (2nd edition). MIT Press. 
J. HINDRIKS, G.D. MYLES and N. HASHIMZADE (2013). Solutions manual to accompany intermediate 

public economics. (2nd edition). MIT Press. 
 

CORE Lecture Series 
 
R. AMIR (2002), Supermodularity and complementarity in economics. 
R. WEISMANTEL (2006), Lectures on mixed nonlinear programming. 
A. SHAPIRO (2010), Stochastic programming: modeling and theory. 


	Introduction
	Notation and preliminaries
	Vectors and matrices
	Operators and their adjoints

	Dynamic conditional correlation models
	The general Hadamard DCC model and its parameter constraints
	Rank deficient DCC models
	The Almon DCC model
	The Almon shuffle DCC model
	The scalar DCC model

	Constrained estimation of DCC model parameters
	The log-likelihood function and its gradient
	Constrained optimization using Bregman divergences
	Bregman divergences and constrained optimization problems
	Bregman divergences for positivity constraints
	The local model, its gradient and Jacobian

	Implementation for the Hadamard DCC model

	Empirical study
	Datasets and competing models
	In-sample results
	Out-of-sample specification tests
	Model confidence set based on correlation loss functions
	Tests based on the use of portfolio returns

	Results of the tests on the empirical performance of the competing models

	Conclusions
	Bibliography
	TA.pdf
	Proofs of Propositions
	Proof of Proposition 2.1
	Proof of Proposition 3.1
	Proof of Proposition 4.1
	Proof of Proposition 6.1

	Implementation of the constrained optimization in the estimation of DCC models
	The rank deficient DCC model
	The Almon DCC model
	The scalar DCC model

	Detailed computations for the implementation of the constrained optimization in the estimation of non-scalar DCC models
	The Hadamard DCC model
	The rank deficient DCC model
	The Almon DCC model

	Bibliography




