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Abstract

When forecasting conditional correlations that evolve according to a Dynamic Conditional
Correlation (DCC) model, only point forecasts can be obtained at each moment of time. In
this paper, we analyze the finite sample properties of a bootstrap procedure to approximate
the density of these forecasts that also allows obtaining conditional densities for future returns
and volatilities. The procedure is illustrated by obtaining conditional forecast intervals and
regions of returns, volatilities and correlations in the context of a system of daily exchange
rates returns of the Euro, Japanese Yen and Australian Dollar against the US Dollar.
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1 Introduction

Forecasting conditional correlations is a key issue for financial market participants when dealing,

for example, with risk management, derivative pricing models, hedging strategies or portfolio

allocation models; see, for example, details in Engle (2009). Multivariate GARCH (MGARCH)

models are also widely implemented to macroeconomic time series. Modeling the time variation in

macroeconomic volatility is important to the accuracy of inference and to explain, for example,

the sources of the Great Moderation; see, for example, Clark and Ravazzolo (in press) for a

very recent reference. Moreover, MGARCH are becoming popular when modeling non-financial

time series as, for example, wind speed; see Jeon and Taylor (2012) among others. As a result,

modeling the second order moments of multivariate time series has become a prevailing field of

research and many MGARCH models have been developed with this purpose; see Bauwens et al.

(2006) and Silvennoinen and Teräsvirta (2009) for comprehensive surveys. Among the many

MGARCH models available in the literature, the Dynamic Conditional Correlation (DCC) model

of Engle (2002) has become one of the most popular models for the estimation of conditional
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correlations; see Audrino (in press) and Laurent et al. (2012) for the forecasting usefulness of

DCC models. The DCC model assumes that the dynamic evolution of the pairwise correlations

is similar to that of univariate GARCH conditional variances. Recently, Aielli (2013) proposes a

reformulation of the original specification of the correlation driving process so that it is possible

to obtain a consistent Quasi-Maximum Likelihood (QML) estimator of the parameters, giving

rise to the corrected Dynamic Conditional Correlation (cDCC) model. Note that the consistency

of the sample estimator of the unconditional correlations is crucial for the adequate performance

of the bootstrap procedure considered in this paper. The cDCC model is now the bechmark for

empirical applications in the context of multivariate conditional heterocedastic times series of

financial returns and it will be the focus of this paper; see, for example, Engle and Kelly (2012),

Hafner and Reznikova (2012), Bauwens et al. (2013), Aielli and Caporin (in press) and Audrino

(in press) for applications of the cDCC model.

It is important to note that the conditional correlations in cDCC models are observable one-

step-ahead; see Caporin and McAleer (2013) who suggest that, in spite of its limitations, the DCC

model can be considered as a filter for estimating and forecasting conditional correlations. Con-

sequently, the only uncertainty associated with one-step-ahead correlations is that attributable to

the parameter estimation. However, when the correlations are forecast more than one-step-ahead,

they also have uncertainty associated with the future forecast errors. As far as we know, there

have been no attempts in the literature to measure the uncertainty associated with conditional

correlations forecast by DCC models; see, for example, Laurent et al. (2012) and Caporin and

McAleer (2010) who compare point forecasts from various MGARCH models without even men-

tioning the associated uncertainty. The only attempts of measuring the uncertainty of conditional

correlations appear in the context of high frequency realized correlations, where Barndorff-Nielsen

and Shephard (2004) provide asymptotic intervals and Dovonon et al. (2013) propose bootstrap

intervals.

In the context of univariate GARCH models, Pascual et al. (2006) propose using bootstrap

procedures to obtain forecast densities of returns and conditional volatilities; see Hartz et al.

(2006), Gaglianone et al. (2011), Grigoletto and Lisi (2011), Huang and Wang (2012) and Wang

et al. (2012) for empirical implementations. In a multivariate setting, Fresoli et al. (2014) illustrate

how to adapt this bootstrap procedure to obtain forecast distributions of the correlations in the

context of a VAR-DCC model. The proposed bootstrap procedure is appealing because it allows

the construction of multivariate forecast densities for returns, volatilities and correlations that

incorporate the parameter uncertainty without relying on any particular assumption about the

2



distribution of standardized returns. This paper analyzes the finite sample performance of the

bootstrap procedure described by Fresoli et al. (2014) when implemented to obtain conditional

forecast regions for future returns, volatilities and correlations in the context of the cDCC model.

It is important to remark that this bootstrap procedure can be easily adapted to deal with other

MGARCH models. We illustrate the procedure by implementing it to construct time-varying

forecast Bonferroni regions for returns and forecast intervals for volatilities and correlations in a

three-dimensional system containing daily exchange rate returns of the Euro, Japanese Yen and

Australian Dollar against the US Dollar.

The rest of this paper is structured as follows. Section 2 describes the cDCC model and

the bootstrap algorithm proposed to approximate the conditional forecast densities of returns,

volatilities and correlations. In Section 3, we carry out Monte Carlo experiments to analyze the

finite sample properties of the bootstrap procedure. In Section 4, the bootstrap algorithm is

implemented to forecast returns, volatilities and correlations of a three-dimensional system of

daily exchange rates returns. Finally, Section 5 concludes the paper.

2 Bootstrap densities for conditional correlations

In this section, we establish briefly notation by describing the scalar cDCC model. The bootstrap

procedure proposed by Fresoli et al. (2014) to obtain forecast densities of returns, volatilities and

correlations in the context of the cDCC model is also described.

2.1 The DCC model

The scalar cDCC model as originally proposed by Engle (2002) and modified by Aielli (2013) is

given by

yt = H
1/2
t at (1)

Ht = DtRtDt (2)

where yt is a K × 1 vector of returns observed at time t, at is a K × 1 serially independent vector

with zero mean and identity covariance matrix, Ht is a K×K positive definite conditional covari-

ance matrix, Dt is a K ×K diagonal matrix containing the univariate GARCH-type conditional

standard deviations of each of the variables in yt and Rt is the K ×K matrix of conditional cor-

relations. The most popular model for univariate conditional variances is the basic GARCH(1,1)
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of Engle (1982) and Bollerslev (1986) given by

σ2
i,t = ωi + αiy

2
i,t−1 + βiσ

2
i,t−1, i = 1, ...,K , (3)

where σi,t is the ith element in the main diagonal of Dt. The parameters satisfy the conditions

for positivity and weak stationarity of yi,t; see Teräsvirta (2009) for a recent survey on univariate

GARCH models.1

The correlation matrix Rt is defined as follows

Rt = dg(Qt)
− 1

2Qtdg(Qt)
− 1

2 (4)

where dg(Qt) is a diagonal matrix with the same diagonal elements as Qt which determines the

dynamics of the conditional correlations as follows

Qt = (1− α− β)S + αυt−1υ
′
t−1 + βQt−1 (5)

where υt = dg(Qt)
1
2 εt with εt = D−1t yt being the vector of standardized errors, S is the uncon-

ditional correlation matrix of υt and α and β are scalars. The scalar cDCC model in equations

(1)-(5) restricts the dynamics of all the correlations to be governed by the same parameters,

namely α and β. Furthermore, positiveness is guaranteed if S is positive definite and α, β > 0

and α+ β < 1.

The cDCC model delivers point forecasts of correlations and volatilities. The h-steps-ahead

forecast of the volatility of each return in yt is obtained easily by iterating forward as follows

σ2
i,T+h|T = ωi

h−2∑
j=1

(αi + βi)
j + (αi + βi)

h−1σ2
i,T+1|T (6)

where the one-step-ahead forecast of the conditional variance is determined by the observed series

of returns as follows

σ2
i,T+1|T =

ωi
1− αi − βi

+ αi

T−1∑
j=0

βji

(
y2i,T−j −

ωi
1− αi − βi

)
. (7)

1For simplicity, we focus on the simplest cDCC(1,1) specification with GARCH(1,1) conditional variances.
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Similarly, the point forecast of the conditional correlation matrix RT+h is given by

RT+h|T = dg(QT+h|T )−
1
2QT+h|T dg(QT+h|T )−

1
2 . (8)

where

QT+h|T = (1− α− β)S
h−2∑
j=0

(α+ β)j + (α+ β)h−1QT+1|T (9)

and

QT+1|T = S + α
T−1∑
j=0

βj
[
(dg(QT−j)

− 1
2D−1T−jyT−jy

′
T−jD

−1
T−jdg(QT−j)

− 1
2 − S

]
. (10)

Using DT+h|T and RT+h|T , it is possible to construct HT+h|T using equation (2). Finally, as-

suming further that εt is conditionally Gaussian, one can approximate the joint forecast density

of yT+h as follows

yT+h|y1, ..., yT ∼ N(0, HT+h|T ). (11)

Note that, even if the errors were truly Gaussian, the forecast density in (11) is only valid for

h = 1 and it should be considered as an approximation for h > 1; see Drost and Nijman (1993) in

the context of univariate GARCH models. In any case, in practice, standardized financial returns

often depart from Gaussianity usually due to fat-tails; see, for instance, Bauwens and Laurent

(2005), Pesaran and Pesaran (2007) and Rossi and Spazzini (2010). If the errors are non-Gaussian,

future densities predicted as in (11) might be a poor approximation of the conditional distribution

of returns.

Furthermore, the parameters in equations (6) and (9) are unknown and must be estimated

using, for example, the three-steps correlation target estimator described by Engle (2009) and

Aielli (2013); see Hafner and Reznikova (2012) for a comparison of alternative estimators of DCC

models. Aielli (2013) derives heuristically the asymptotic distribution of the cDCC three-steps

correlation target estimator and shows that it is consistent and asymptotically Gaussian under

standard assumptions. The density in (11) does not incorporate the parameter uncertainty and,

consequently, it will underestimate the uncertainty associated with future returns.

Finally, note that equations (6) and (9) only yield point forecasts of future volatilities and

correlations. The bootstrap procedure described next allows constructing forecast densities for

future returns, volatilities and correlations that incorporate the parameter uncertainty without

relying on specific assumptions on the error distribution.
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2.2 Bootstrap forecasts in the cDCC model

Fresoli et al. (2014) propose a bootstrap procedure to approximate the forecast density of future

returns, volatilities and correlations for the DCC model. In this section, we describe how to adapt

this procedure to forecast in the context of the cDCC model.

Denote by θ = (Υ1,Υ2, s) where Υ1 = [(ω1, α1, β1), ..., (ωK , αK , βK)] is a vector containing

the parameters in the conditional variances, Υ2 = (α, β) is a vector whose components are the

parameters that govern the dynamics in the conditional correlation, and s = vech(S), is a vector

stacking the lower off-diagonal elements of S, with vech being the off-diagonal stacking operator.

The algorithm to obtain bootstrap replicates of returns, volatilities and correlations is as follows.

Step 1. Estimate the model parameters θ by the three-steps correlation target procedure as

described by Aielli (2013). Denote the estimated parameter by θ̂. Obtain ât = Ĥ
− 1

2
t yt and the

corresponding empirical distribution function denoted by F̂â.

Step 2. ComputeQ∗1 = Ŝ and the corresponding correlation matrixR∗1 = dg(Q∗1)−
1
2Q∗1dg(Q∗1)−

1
2 .

Obtain ε∗1 = R
∗ 1

2
1 a∗1 and υ∗1 = dg(Q∗1)

1
2 ε∗1, where a∗1 is a random draw with replacement from F̂â.

Construct recursively for t = 2, ..., T , a bootstrap replicate of ε∗t , υ
∗
t and R∗t as follows

Q∗t = (1− α̂− β̂)Ŝ + α̂υ∗t−1υ
∗′
t−1 + β̂Q∗t−1,

R∗t = dg(Q∗t )
− 1

2Q∗t dg(Q∗t )
− 1

2 ,

ε∗t = R
∗ 1

2
t a∗t , (12)

υ∗t = dg(Q∗t )
1
2 ε∗t , (13)

where a∗t are random draws with replacement from F̂â. Consider σ∗2i,1 = ω̂i/(1 − α̂i − β̂i) and

y∗i,1 = ε∗i,1σ
∗
i,1, for i = 1, ...,K. Obtain recursively for t = 2, ..., T , a bootstrap replicate of yt and

their conditional variances as follows

σ2∗
i,t = ω̂i + α̂iy

∗2
i,t−1 + β̂iσ

∗2
i,t−1, (14)

y∗i,t = ε∗i,tσ
∗
i,t, (15)

where ε∗i,t is the ith element of ε∗t obtained in (12).

Step 3. Obtain a bootstrap estimate of the parameters θ̂∗ by fitting the cDCC model to
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the bootstrap replicate {y∗1 , ..., y∗T }. Construct D̂∗t and Q̂∗t , for t = 1, ..., T , which contain the

in-sample estimates of the univariate conditional standard deviations and correlations obtained

by using the bootstrap estimates of the parameters and the returns series as follows

σ̂∗i,t =
[
ω̂∗i + α̂∗i y

2
i,t−1 + β̂∗i σ̂

∗2
i,t−1

] 1
2

, (16)

Q̂∗t = (1− α̂∗ − β̂∗)Ŝ∗ + α̂∗
[
dg(Q̂

∗ 1
2

t−1)D̂∗−1t−1 yt−1y
′
t−1D̂

∗−1
t−1 dg(Q̂

∗ 1
2

t−1)
]

+ β̂∗Q̂∗t−1. (17)

Step 4. Compute one-step-ahead bootstrap forecasts of conditional correlations, variances

and returns according to

Q∗T+1|T = Ŝ∗ + α̂∗
T−1∑
j=0

β̂∗j
[
dg(Q̂∗T−j)

1
2 D̂∗−1T−jyT−jy

′
T−jD̂

∗−1
T−jdg(Q̂∗T−j)

1
2 − Ŝ∗

]
(18)

R∗T+1|T = dg(Q∗T+1|T )−
1
2Q∗T+1|T dg(Q∗T+1|T )−

1
2 , (19)

ε∗T+1 = R
∗ 1

2

T+1|Ta
∗
T+1,

υ∗T+1 = dg(Q∗T+1|T )
1
2 ε∗T+1

σ2∗
i,T+1|T =

ω̂∗i

1− α̂∗i − β̂∗i
+ α̂∗i

T−1∑
j=0

β̂∗ji

(
y2i,T−j −

ω̂∗i

1− α̂∗i − β̂∗i

)
, (20)

y∗i,T+1 = ε∗i,T+1σ
∗
i,T+1|T . (21)

where a∗T+1 is a random draw with replacement from F̂â. Likewise, obtain future values of the

correlations, volatilities and returns through the following recursion for h = 2, ...,H

Q∗T+h|T = (1− α̂∗ − β̂∗)Ŝ∗ + α̂∗υ∗T+h−1υ
∗′
T+h−1 + β̂∗Q∗T+h−1|T , (22)

R∗T+h|T = dg(Q∗T+h|T )−
1
2Q∗T+h|T dg(Q∗T+h|T )−

1
2 , (23)

ε∗T+h = R
∗ 1

2

T+h|Ta
∗
T+h

υ∗T+h = dg(Q∗T+h|T )
1
2 ε∗T+h

σ2∗
i,T+h|T = ω̂∗i + α̂∗i y

∗2
i,T+h−1 + β̂∗i σ

∗2
i,T+h−1|T ; (24)

y∗i,T+h = ε∗i,T+hσ
∗
i,T+h|T . (25)

where a∗T+h are random draws with replacement from F̂â.
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Step 5. Repeat steps 2 to 4, B times, obtaining y
∗(b)
T+h|T , D

∗(b)
T+h|T and R

∗(b)
T+h|T for h = 1, ...,H

and b = 1, ..., B.

It is worth mentioning that the one-step-ahead forecast of Qt in (18) depends on D̂∗t and

Q̂∗t , which are the in-sample estimates of Dt and Qt evaluated at the bootstrap estimates of

the parameters, θ̂∗, and the original observations. Therefore, although the one-step-ahead boot-

strap forecasts of the correlation matrix is conditional on the observed sample, their variability

is affected by the parameter uncertainty. The only component which varies from one bootstrap

replicate to another is the bootstrap estimates of the parameters, θ̂∗, while {y1, ..., yT } are kept

fixed throughout all bootstrap replicates. When forecasting further into the future, the boot-

strap forecasts of the correlation matrix also includes the error uncertainty by sampling with

replacement from F̂â to obtain a
∗(b)
T+h. A similar argument holds for the bootstrap forecasts of the

conditional variances; see also the discussion in Pascual et al. (2006) for a similar argument in

the univariate context.

Using the bootstrap replicates, one can obtain estimates of the multivariate forecast densities

of returns, volatilities and correlations. Also, it is possible to obtain their forecast regions and

intervals. Consider first the construction of time-varying forecast regions for returns. First, we

can obtain bootstrap forecast ellipsoids with probability content (1−α)100% which are given by

BEy(T + h) =
{
y|y ∈

[
yT+h − ŷ∗T+h|T

]
H∗−1T+h|T

[
yT+h − ŷ∗T+h|T

]
< C∗

}
(26)

where ŷ∗T+h is the sample mean of the B bootstrap replicates of returns ŷ
∗(b)
T+h, H∗T+h|T is the

corresponding sample covariance of y∗T+h, and C∗ is the (1− α)100% percentile of the bootstrap

distribution of the following quadratic form

[
ŷ
∗(b)
T+h − ŷ

∗(b)
T+h

]
H
∗(b)−1
T+h|T

[
ŷ
∗(b)
T+h − ŷ

∗(b)
T+h

]
.

It is well-known that the ellipsoids are only appropriate when the distribution is Gaussian; see

Fresoli et al. (2014) and Wolf and Wunderli (2012). Furthermore, constructing ellipsoids can be

computationally complicated when the dimension of the system is very large. Alternatively, one

can construct Bonferroni cubes with probability content at least (1− α)100% for future returns
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which are given by

BCy(T + h) =
{
y|y ∈ ∪Kj=1

[
qy∗j,T+h

( α

2K

)
, qy∗j,T+h

(
1− α

2K

)]}
(27)

where qy∗j,T+h (ζ) is the ζth quantile of the empirical bootstrap distribution of the jth return,

G∗yj,T+h
(x) = #(y

∗(b)
j,T+h|T ≤ x)/B. As the Bonferroni cubes do not offer information about

the association between returns, they can be corrected to be expressed in the direction of the

correlations; see Fresoli et al. (2014).

As an illustration, we consider several bivariate cDCC models obtained combining three sets

of correlation parameters, Υ2 = (0.18, 0.70), (0.1, 0.88) and (0.03, 0.95), two error distributions,

namely Gaussian and Student-7, two values for the unconditional correlation, 0.5 and 0.9, and

univariate GARCH models with parameters Υ1 = (0.05, 0.05, 0.90, 0.01, 0.10, 0.85). So we con-

sider 12 different models. For each model we generate a time series of size T = 1000 and estimate

the cDCC model parameters by the three-steps correlation target estimator.2 Then, the bootstrap

procedure is implemented with B = 1000 bootstrap replicates to obtain one-steps-ahead forecast

densities of returns. We also obtain the corresponding Gaussian forecast densities computed as

in equation (11) with HT+1|T substituted by ĤT+1|T . From each of these conditional densities,

we construct the 95% one-step-ahead ellipsoids and corrected Bonferroni cubes. The results are

plotted in Figure 1 for the three models with Gaussian errors and unconditional correlation equal

to 0.5 for three selected within-sample periods. In each, a realization of 1000 returns, yT+1, has

been represented by dots. A quick inspection of all panels in Figure 1 reveals that, for a particu-

lar model, both the shape and the slope of the ellipsoids and Bonferroni cubes change over time.

Also, it is noticeable that the bootstrap ellipsoids have larger volumes than the corresponding

Gaussian ellipsoids and, in some cases, the true observation is included in the former but not in

the latter. The discrepancy between bootstrap and standard regions is even more pronounced for

the corrected Bonferroni cubes. Given that the models considered in Figure 1 have Gaussian er-

rors and the forecast horizon is one, the differences between the regions based on the Gaussianity

assumption and the bootstrap regions can be attributed to the parameter uncertainty.

2The computations have been carried out by using a MATLAB code developed by the first author in a worksta-
tion with processor Intel Core i5-2.50GHz and 8GB of RAM. Correlation target estimates are obtained numerically
by using fminunc with the interior point algorithm. For each GARCH(1,1) process, the intercept, ωi, is restricted
to be greater than e−6 while the elements in S are obtained as centered correlations. All other parameters, αi, βi, α
and β, are restricted to lie in the interval (e−6, 1− e−6) with αi + βi < 1 and α+ β < 1 being less than 1− e−6.
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Following the same ideas as in Pascual et al. (2006) for univariate conditional variances, we can

use the bootstrap replicates of the jth univariate conditional variance to construct its empirical

bootstrap distribution, G∗
σ2
j,T+h

(x) = #(σ
2∗(b)
j,T+h|T ≤ x)/B. For completeness we also illustrate the

construction of forecast densities for conditional variances. Given that, in the cDCC model, the

conditional variances are assumed to be contemporaneously independent, here we only consider

the construction of the (1-α)100% marginal forecast intervals which are given by

BIσ2(T + h) =
{
σ2|σ2 ∈

[
qσ

2∗
j,T+h

(α
2

)
, qσ

2∗
j,T+h

(
1− α

2

)]}
(28)

where qσ
2∗
j,T+h (ζ) = G∗−1

σ2
j,T+h

is the ζth percentile of the empirical bootstrap distribution of the jth

conditional variance. To illustrate the construction of bootstrap forecast densities and their corre-

sponding forecast intervals for conditional variances, we consider a bivariate time series generated

by the cDCC with correlation parameters Υ2 = (0.03, 0.95), the unconditional correlation being

0.9 and the error distribution being Student-7. For the sake of presentation, we just focus on the

conditional variance for the second variable in the system. Figure 2 displays kernel estimates of

the h-steps-ahead bootstrap conditional densities together with the empirical conditional densities

of σ2
2,T+h, for h = 1, 2 and 20. The empirical densities have been obtained using a kernel estimate

implemented to 2000 simulated future values of the series, conditional on {y1, ..., yT }. First, ob-

serve that the one-step-ahead forecast of σ2
2,T+1 plotted in panel (a) of Figure 2 is concentrated on

a fixed value. As we stated before, no uncertainty is associated with forecasting one-step-ahead

conditional variances. Yet the conditional bootstrap distribution of σ2
2,T+1 has some degree of

variability reflecting the parameter uncertainty. Second, note that the conditional 2-steps-ahead

forecast of σ2
2,T+2 is bounded by the value of the intercept, ω2 and, consequently, the empirical

density is asymmetric to the right. However, the bootstrap replicates, σ2∗
2,T+2, might be smaller

than this value depending on the bootstrap estimates of the parameters,
(
ω̂∗2 , α̂

∗
2, β̂
∗
2

)
. Third, the

uncertainty associated with σ2
2,T+h clearly increases as we forecast further into the future due to

the addition of error uncertainty, a fact that is reflected by both, the empirical and the bootstrap

conditional distributions of σ2
2,T+h. After all, the first three panels of Figure 2 display bootstrap

densities that approximate quite well the true empirical ones with the approximation being better

for longer forecast horizon than short ones. This is due to the fact that the model implies known

one-step-ahead forecast.

Panel (d) of Figure 2 plots one realization of σ2
2,T+h, for h = 1, ..., 20, together with the

corresponding point forecasts and the 95% bootstrap intervals. It can be observed that the true
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(a) σ2
2,T+1 (b) σ2

2,T+2

(c) σ2
2,T+20 (d) σ2

2,T+h

Figure 2: Kernel estimates of empirical (continuous line) and bootstrap densities (discontinuous
line) of σ2

2,T+h within the bivariate cDCC model with sample size T = 1000 and Student-7
errors for (a) h = 1, (b) h = 2 (c) h = 20 (d) 95% h-steps-ahead forecast interval, for h =
1, ..., 20, (discontinous lines) together with point forecasts (dash-dot line) and out-of-sample true
realization (continuous line).

out-of-sample realizations of the volatilities are included within the bootstrap forecast intervals.

Finally, we implement the bootstrap procedure to construct h-steps-ahead bootstrap forecast

densities for conditional correlations. Panels (a), (b) and (c) of Figure 3 plot kernel estimates of

the conditional empirical h-steps-ahead forecast densities of ρ12,T+h, for h = 1, 2 and 20 together

with kernel estimates of the corresponding bootstrap densities for the bivariate cDCC model, with

correlation parameters Υ2 = (0.10, 0.88), unconditional correlation equal to 0.9 and Student-7

errors. The conclusions are similar to those obtained when forecasting volatilities. However,

because, in this particular illustration, the marginal correlation is close to one, the densities are

asymmetric to the left. After all, it is clear from the first three Panels of Figure 3 that the

bootstrap procedure it approximates adequately the shape of the conditional empirical densities

of ρ12,T+h.

Once more, the h-steps-ahead bootstrap densities can be used to construct the corresponding

intervals for the forecasts of the correlations. Panel (d) of Figure 3 plots an out-of-sample real-

ization of the correlations, ρ12,T+h, for h = 1, 2..., 20, together with the point forecasts obtained

after estimating the model and the 95% bootstrap forecast intervals. We observe that the true

correlations fall within the bounds of the forecast intervals. Further, we observe that the point
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forecasts underestimate the corresponding the out-of-sample correlations; see Engle and Sheppard

(2001).

(a) ρ12,T+1 (b) ρ12,T+2

(c) ρ12,T+20 (d) ρ12,T+h

Figure 3: Kernel estimates of empirical densities (continuous line) and bootstrap densities (dis-
continuous line) of ρ12,T+h within of a bivariate cDCC with T = 1000 and Student-7 error for
(a) h = 1, (b) h = 2 (c) h = 20 (d) 95% h-steps-ahead forecast interval, for h = 1, ..., 20, (dis-
continuous lines) together with point forecasts (dash dot line) and out-of-sample true realization
(continuous line).

3 Monte Carlo evidence

In this section, we carry out Monte Carlo experiments to analyse the finite sample properties

of the bootstrap procedure described in the previous section. We focus on two of the bivari-

ate cDCC models, used for illustration in the previous section. The first model (model 1) has

Υ2 = (0.10, 0.88) and an unconditional correlation of 0.5 while the second model (model 2) has

Υ2 = (0.03, 0.95) with an unconditional correlation of 0.9. Note that these two models bring

up two different situations. In both models the persistence is 0.98. However, the first model is

characterized by a large response-to-shock parameter, α while the second model resembles closely

the parameters found when fitting cDCC models to financial series, with α being relatively small;

see, for example, the empirical application in next section. Three alternative distributions for at

are assumed, namely, Gaussian, Student-7 and χ2
5. The second distribution is chosen to reproduce

the heavy tails often observed in the distribution of standardized financial returns while the third
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is chosen to represent potential asymmetries. The sample sizes considered are T = 500, 1000 and

2000. The number of Monte Carlo replicates is 500; see Hafner and Franses (2009) and Hafner and

Reznikova (2012) for similar number of Monte Carlo replications. For each replicate, we generate

2000 conditional future values of yT+h, σ2
T+h and ρ12,T+h, for h =1,...,20, to approximate the

empirical distribution of returns, conditional variances and correlations, respectively. The param-

eters are estimated by the three-steps correlation target estimator of Aielli (2013). The number

of bootstrap replicates is B = 1000, and these are used to construct 95% h-steps-ahead bootstrap

forecast intervals for each return, conditional variance and correlation in the system. In order to

assess the small sample properties of the bootstrap procedure, the empirical coverage is computed

by counting the number of future values inside the corresponding intervals. In addition, to mea-

sure the adequacy of the bootstrap distributions to approximate the out-of-sample distributions

of returns, we compute the Earth Mover’s Distance (EMD) between the h-step-ahead bootstrap

distribution of the ith return and the corresponding empirical distribution. Also, we compute

the EMD when the h-steps-ahead distribution of the ith return is approximated by assuming

Normality; see Rubner et al. (1998) for the definition of the EMD and Arroyo and Maté (2009)

for an application of the EDM to forecast histograms.3

Figure 4 displays the empirical coverages of the 95% bootstrap forecast intervals for y2,T+h,

σ2
2,T+h and ρ12,T+h when considering model 1.

First, we consider the empirical coverages of y2,T+h which are plotted in the first row of

Figure 4. Although the empirical coverages of the bootstrap forecast intervals are below the

nominal of 95%, they are always above 94.5%, and this happen irrespective of the forecast horizon.

We also observe that, as the sample size increases, the coverage rates of the bootstrap intervals

are closer to the nominal, a feature that is more evident when the error distribution departs from

Gaussianity. For the purpose of comparing alternative methods, the first row of figure Figure 4

also includes the coverage rates of the Gaussian forecast intervals. As expected, the difference

between the Gaussian and bootstrap intervals are less pronounced when the error distribution

is Gaussian. In contrast, in the case of the Student-7 error distribution, the coverage rates of

the Gaussian intervals are well below the nominal as well as below the bootstrap coverages for

all sample sizes. Surprisingly, when the error distribution is χ2
5, the Gaussian intervals provide

empirical coverages above the nominal, though this distortion seems to dampen with the forecast

3The EMD can be approximated as follows. Let x(1) ≤ ... ≤ x(B) and y(1) ≤ ... ≤ y(B) be ordered realizations

of X and Y . Then the EMD is given by EMDxy =
[

1
N

∑R
i=1 | x(i) − y(i) |2

] 1
2

, which is just the L2 distance

between the ordered vectors. We are thankful to Ruben Zamar for suggesting using this measure.
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horizon.

The coverages plotted in the first row of Figure 4 are not informative about whether the

shape of the density of returns is well approximated by the bootstrap density. This is why, we

also compute the EMD. Figure 5 plots the average EMD between the Gaussian and the bootstrap

conditional densities of y2,t with respect to the corresponding empirical density, when the sample

size is T = 500. Consider first the results when the errors are Gaussian. In this case, we can

observe that the performance of the Gaussian and the bootstrap densities is similar for h = 1.

Note that, in this case, the true forecast density is Normal. However, if h > 1, the forecast

densities are not Normal and the EMDs of the Gaussian densities increase with h and are clearly

larger than the EMDs of the bootstrap densities. Therefore, even if the errors are truly Gaussian,

it is worth to implement the bootstrap procedure to forecast more than one-step-ahead. On the

other hand, when the errors are either Student-7 or χ2
5, the bootstrap EMDs are clearly smaller

than the EMDs of the Gaussian densities.

The small sample properties of bootstrap forecast intervals for univariate GARCH(1,1) pro-

cesses have studied in detail by Pascual et al. (2006). In this paper, however, we also display

some results regarding average coverages of the conditional variance of y2,t. The second row of

Figure 4 plots the empirical coverages of the bootstrap forecast intervals of σ2
2,T+h for Gaussian,

Student-7 and χ2
5 errors in model 1. We can observe that the coverages of the bootstrap fore-

cast intervals depend on the forecast horizon. Regardless of the error distribution, the coverages

are below the nominal of 95% when h = 1. This undercoverage is more pronounced when the

errors are non-Gaussian and the sample size is small. In any case, it is important to note that

the coverages are always over 0.9. When h > 2, the coverages tend to decrease as the forecast

horizon increases. We can observe that, as expected, the coverages are closer to the nominal as T

increases suggesting that the procedure is consistent. For instance, when T = 2000, the coverages

are below the nominal by less than 2.5%, and this happen for all the forecast horizons and error

distributions; these results are qualitatively similar to those reported by Pascual et al. (2006),

though there is a slight difference in the decline of the coverage curve as the forecast horizon

increases.
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Figure 5: Monte Carlo averages of EMD distances between the h-steps-ahead Gaussian forecast
densities (grey lines) and bootstrap densities (black lines) of y2,T+h and the corresponding em-
pirical conditional density for y2,t in model 1 with T = 500 and Gaussian (•), Student-7 (+) and
χ2
5 (∗) errors.

The third row of Figure 4 plots the Monte Carlo coverages of the bootstrap forecast intervals

for the conditional correlation, ρ12,t in model 1 when the nominal coverage is 95%. The patterns

observed are roughly similar to those observed for the conditional variance of y2,t. Once more,

the coverages of the one-step-ahead bootstrap forecast are under the nominal for all error distri-

bution and sample sizes. This undercoverage is slightly larger than that observed for conditional

variances. When h ≥ 2, we also observe that the coverages decrease with the forecast horizon.

However, this undercoverage is only observed for the smallest sample size when T = 500. When

T = 1000 and 2000, the coverages of the bootstrap forecast intervals of ρ12,t are approximately

equal to the nominal.

Finally, Figure 6 plots the empirical coverages of the bootstrap forecast intervals for y1,T+h,

σ1,T+h, ρ12,T+h and average EMD between the Gaussian forecast densities and bootstrap densities

of y1,T+h and the corresponding empirical density, when T = 500 and the error distribution is

Student-7, in model 2. Much of what we commented about Figures 4 and 5 is still valid for

Figure 6. In panel (a) of Figure 6, we observe that the empirical coverages of the bootstrap forecast

intervals of y1,T+h are below the nominal. Also, bootstrap intervals of y1,T+h improve their

coverage with the sample size and they provide better accuracy than the corresponding Gaussian

intervals for moderate and large sample sizes. Moreover, panel (d) shows that the bootstrap

densities are clearly closer to the corresponding true density than the Gaussian densities when

the error distributions depart from Gaussianity. Still, when the error distribution is Gaussian, the
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(a) ρ12,T+1 (b) ρ12,T+20

(c) ρ12,T+h (d) ρ12,T+2

Figure 6: Monte Carlo average of coverages of h-steps-ahead bootstrap forecast intervals of (a)
y2,T+h , (b) σ2

2,T+h and (c) ρ12,T+h model 2 with sample size T = 500 (◦), 1000 (2) and 2000 (�)
with Student-7 errors and nominal coverage 95%, and (d) averages of EMD distances between
the h-steps-ahead Gaussian forecast densities (grey lines) and bootstrap densities (black lines)of
y1,T+h and the corresponding empirical conditional density for y1,t in model 1 with T = 500 and
Gaussian (•), Student-7 (+) and χ2

5 (∗) errors.
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bootstrap seems to be as good as the Gaussian density when h = 1. Panel (b) and (c) that plot the

empirical coverages σ1,T+h and ρ12, T + h, respectively, look qualitatively similar to those plotted

in the second and third rows of Figures 4. Quantitatively, comparing the empirical coverages of

Figures 4 and Figure 6 for ρ12, T + h we observe that are slightly closer to the nominal in model

1 than in model 2. This seems to be caused by the greater uncertainty encountered when α is

larger relative to the β. In such a case, the the bootstrap forecast intervals become considerably

wide and, thus, they are more likely to capture future realization of the conditional correlation.

After all, the Monte Carlo simulation results show that the bootstrap algorithm can reasonably

deal with forecasting returns, volatilities and correlations cDCC models.

4 Empirical application

In this section, the bootstrap algorithm is implemented to forecast future returns, volatilities and

correlations of a system of three currencies, Euro (EUR), Japanese Yen (JPY) and Australian

Dollar (AUD) against the US Dollar (USD). Note that this section is purely illustrative of the

application of the bootstrap procedure and limited attention is given to the economic interpre-

tation of the results. Daily exchange rates of the three currencies, Pi,t i = 1, 2 and 3, have been

observed from 3/1/2003 to 13/9/2013 with 2693 observations. The full sample period have been

split in a estimation period spanning from 3/1/2003 to 1/8/2013 with T = 2663 and a forecast

out-of-sample period from 2/8/2013 to 13/9/2013 with H = 30. The currencies are transformed

to log-returns as usual by yi,t = 100×4log(Pi,t). Several descriptive statistics are reported in Ta-

ble 1 for the overall period as well as for the estimation and out-of-sample periods. Note that, for

all three currencies, the univariate and multivariate skewness and excess kurtosis are significantly

different from zero. Therefore, each of them has a distribution that departs from Normality, a

fact which is in line with the results reported by Normality test suggested by Fiorentini et al.

(2004) which rejects the null hypothesis of Normality for each of the series. Table 1 also reports

the Ljung-Box statistics adjusted to account for conditional heteroscedasticity as proposed by

Diebold (1988) and denoted by Q(l), for l = 10. It may be observed that the returns show no lin-

ear dependence. However, squared returns are characterized by significant correlations according

to the Ljung-Box statistics of order 10 for the squared returns, Q2(10). Finally, the last column

of Table 1 reports the Ljung-Box statistics for the first ten cross-correlations between returns

and future squared returns, Q12(10), suggesting the presence of leverage effect only in the case of

AUD.
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From a multivariate point of view, the sample pairwise unconditional correlations for the

EUR-AUD and EUR-JPY are 0.63 and 0.25, respectively. However, the unconditional correlation

between AUD and JPY is not different from zero. To test for constant conditional correlations, we

implement the test suggested by Engle and Sheppard (2001) which considers the null hypothesis

H0 : Rt = R against the alternative Ha: vech(Rt) = φ0 + φ1vech(Rt−1) + · · · + φqvech(Rt−l),

where φj are scalar. Note that the alternative states the current correlation matrix depends on

its own lags up an order l but does no specify a cDCC process for the correlation matrix. The test

statistic based on l = 10 is 271.32 with p-value equal to 0.00. Therefore, the constant correlation

hypothesis is rejected. Next we test for asymmetries in conditional correlations, implementing

the exceedance test of Hong et al. (2007) which is based on the exceedance correlations above or

below a threshold. For instance, when the threshold is the median of each exchange rate return,

the exceedance test statistics are 0.30, 0.53 and 0.17 for EUR-JPY, EUR-AUD and JPY-AUD,

respectively, with the corresponding p-values being all larger than 0.40. Considering different

thresholds does not change this result. Therefore, the presence of asymmetries in correlations is

rejected.

The results above suggest fitting the symmetric cDCC model.4 Table 2 reports the three-

steps target correlation estimates of the parameters. Observe that all parameters are significant

and close to the values usually estimated when the cDCC model is fitted to systems of financial

returns. Also, observe that the constant of the equation of the correlation between the Japanese

Yen and the Australian Dollar exchange rate returns is not significantly different from zero when

α =1%. Table 2 also reports the Ljung-Box statistics for the univariate squared standardized

residuals and the multivariate Ljung-Box statistic, QM (m) computed for ât = R̂
− 1

2
t ε̂t, which is

conjectured to be distributed asymptotically as χ2 with mN2 degrees of freedom; see Hafner and

Franses (2009) who consider it as a measure of residual autocorrelation. The null hypothesis of

no further dynamics in squared returns is not rejected. Therefore, the cDCC model seems to be

adequate to represent the dynamic dependence in the system of exchange rate returns.

Using the bootstrap replicates of the parameters and the original observations, we obtain one-

step-ahead densities of volatilities and correlations using equations (16) and (17). We also obtain

one-step-ahead bootstrap densities of returns. We also obtain one-step-ahead bootstrap densities

of yt. Figure 7 plots the one-step-ahead forecasts and the 95% intervals for the period between

2/7/2006 and 1/8/2013 together with the sample estimate of the unconditional correlation. We

4Further analysis show that the presence of leverage effect in AUD is rather weak.
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can observe that the intervals are rather tiny so that the forecasts of correlations are very reliable.

The second column of Figure 7 highlights this conclusion by plotting the one-step-ahead forecasts

of the correlations for the last nineteen days, covering the period from 8/7/2013 to 1/8/2013. We

can observe large and frequent changes in the EUR-JPY and JPY-AUD conditional correlations

while the correlations between EUR-AUD are more stable. Judging from what is observed in Fig-

ure 7, the movements in EUR-AUD unconditional correlation happen closer to its unconditional

correlation than those of the others correlations. As a result, one may conclude that EUR-AUD

is more likely to fall within the one-step-ahead bootstrap interval than EUR-JPY and JPY-AUD

correlations. To illustrate this feature, we compute the coverage rates of the one-steps-ahead

bootstrap interval with respect to the unconditional correlation. The results show that, with a

coverage rate of 3.56%, the EUR-AUD unconditional correlation is more likely to fall within the

bootstrap interval than the EUR-JPY and JPY-AUD, with coverages nearly 1.30%. Similarly,

although the unconditional correlation between AUD and JPY is not significantly different from

zero, only 1.04% of the bootstrap intervals contains the zero within its bounds. However, the

conditional correlations fluctuate around zero and this is why one can wrongly conclude that the

unconditional correlation between Japanese Yen and the Australian Dollar exchange rates is zero.

The proposed bootstrap procedure is also implemented to forecast returns, volatilities and

correlations out-of-sample. Figure 8 plots h-steps-ahead Gaussian and bootstrap forecast ellip-

soids and cubes for the exchange rates returns considered two-by-two and h = 1, 20 and 30. In

each of the figures, the true observed return is represented by a dot. First, we observe that the

Gaussian and bootstrap ellipsoids are very similar. This result is not surprising as the means and

conditional covariances used to construct them do not differ significantly. Consider, for example,

the EUR and AUD returns. In this case, the Gaussian ellipsoids is based on a mean (0.00, 0.00)

and a one-step-ahead covariance matrix is given by vech(ĤT+1|T ) = (0.05, 0.04, 0.13), while the

bootstrap ellipsoid is centered at (0.00, 0.01) and the bootstrap conditional covariance matrix

is given by vech(Ĥ∗T+1|T ) = (0.06, 0.05, 0.13). Clearly, these two moments are rather similar in

both cases and the corresponding ellipsoids are also similar. Second, as expected, we note that

the bootstrap corrected cubes are larger than those based on Gaussianity, a fact that might be

attributed to the parameter uncertainty and the non-Gaussianity of the errors. In order to differ-

entiate the effect of both features, we implemented a slight modification of the proposed bootstrap

procedure, which consist in omitting the parameter uncertainty by fixing the parameter at their

three-steps correlation target estimate throughout all bootstrap forecast replicates. As a result,

we avoid the sampling variability due the parameter uncertainty while we are able to capture the
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asymmetries in the empirical distribution of the error. In this case, the difference between the

bootstrap corrected cubes can be attributed to the parameter uncertainty. Figure 8 shows that

both bootstrap cubes are rather similar. Consequently, the difference between the standard and

bootstrap cubes is, to a large extent, due to the non-Gaussianity of the error with the parameter

uncertainty playing a minor role. Once more, this is not surprising as the sample size in this

empirical application is considerably large. As the financial market have reached a period of

calm, extreme returns are less frequent during the out-of-sample period and, consequently, they

tend to fall within the boundaries of all the regions plotted in Figure 8.

Finally, in order assess the adequacy of the out-of-sample h-steps-ahead bootstrap forecast

intervals for correlations, we compute realized correlations; see Andersen et al. (2001), Andersen

et al. (2003) and Barndorff-Nielsen and Shephard (2004). It is widely recognized that the es-

timation of realized covariances and correlations suffers from asynchronous trading and market

microstructure noise, causing the covariance estimator to be biased and inconsistent; see, for

instance, McAleer and Medeiros (2008) and Corsi and Audrino (2012). In our empirical example,

the intra-day data is sampled using 1-minute intervals, avoiding the effect of non-synchronous

data. The sample data spans from 2/8/2013 to 13/9/2013, which corresponds to 30 weekdays,

and consist of transaction prices for the three exchange rates considered. In order to avoid the

effect of non official trading we only consider prices between 9:00am and 4:00pm. After computing

the intra-daily returns, the realized covariance matrix is obtained as follows

Hr
t =

m∑
i=j

y(m)t+j/my
′
(m)t+j/m (29)

for j = 1, ...,m where y(m)t+j/m is the returns vector during the interval 1
m ; see Andersen et al.

(2001) and Barndorff-Nielsen and Shephard (2004). Also, under some regularity assumption, the

asymptotic distribution of the realized covariance and correlation matrices can be established;

see Barndorff-Nielsen and Shephard (2004) for details.5

Figure 9 plots the 95% and 99% h-steps-ahead bootstrap forecast intervals of correlations.

The point forecast for the correlations of the cDCC model and realized correlations have also

been plotted in Figure 9. We observe that the path depicted by the realized correlations is

well-captured by their corresponding 95% and 99% bootstrap forecast intervals during the out-of-

5Dovonon et al. (2013) propose an i.i.d. bootstrap for realized correlations which is shown to outperform
the asymptotic theory of Barndorff-Nielsen and Shephard (2004). Comparing the bootstrap intervals for daily
correlations based on daily or high-frequency data is left for further research.
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sample period. Figure 9 also displays asymptotic 95% intervals of realized correlations computed

using the results in Barndorff-Nielsen and Shephard (2004). We can observe that these intervals

are mostly contained within the bootstrap intervals, suggesting that the latter depict reasonably

well the uncertainty surrounding the conditional correlation estimates.

5 Conclusion

DCC models deliver within-sample and out-of-sample point forecasts of conditional correlations.

However, uncertainty measures related to these forecasts are not available. In this paper, we

propose to approximate the uncertainty of conditional correlations in the cDCC model by imple-

menting the bootstrap procedure proposed by Fresoli et al. (2014) for multivariate models. We

analyze its finite sample properties and show that it is adequate in situations similar to those

encountered when fitting cDCC models to real systems of financial returns.

The bootstrap procedure is implemented to obtain predictive densities of returns, volatilities

and correlations of a three-dimensional system of daily exchange rates returns. The bootstrap

procedure seems to work adequately when forecasting out-of-sample in the sense that the boot-

strap forecast intervals capture most of the realized correlations during the out-of-sample period.

Note also that the bootstrap procedure proposed in this paper can be easily adapted to deal

with alternative MV-GARCH models; see Bauwens et al. (2006) and Silvennoinen and Teräsvirta

(2009) for alternatives. In the context of VAR models, Fresoli et al. (2014) show that the advan-

tages of bootstrapping are larger when the roots are close to the non-stationary regions, therefore

it is of interest to analize the uncertainty associated with forecasting correlations in the context

of non-stationary models as those suggested by Amado and Teräsvirta (in press).

Another important issue left for further research is the feasibility of the considered bootstrap

procedure in large systems of returns. In this case, Hafner and Reznikova (2012) show that, in high

dimensions, there is a problem of biased parameter estimates when implementing the three-steps

target estimator considered in this paper due to the ill-conditioning of the sample correlation

matrix, which is used for correlation targeting. They suggest using a shrinkage technique to

solve this problem and compare it with alternative estimators. Alternatively, one can also use a

bootstrap-after-bootstrap approach, though the computational burden is largely deepened.
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Silvennoinen, A. and Teräsvirta, T. (2009), “Multivariate GARCH models,” in Handbook of

Financial Time Series, Springer.
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Table 1: Summary statistics of daily returns for Euro (EUR), Japanese Yen (JPY) and Australian
Dollar (AUD) against the US Dollar observed for the in-sample period from 3/1/2003 to 1/8/2013
(upper part), the out-of-sample period 2/8/2013 to 13/9/2013 (middel part) and the overall
period from 3/1/2003 to 1/8/2013. Mean, standard deviation (Std), skewnees (Skew) and excess
kurtosis (Ek), Normality test (Fiorentini et al. (2004)), Ljung-Box for returns (Q(10)), squared
returns (Q2(10)) and cross-correlations between returns and future squared returns (Q12(10)).
Asymptotic p-values in parenthesis.

Mean Std Skew Ek Normality Q(10) Q2(10) Q12(10)

Within-sample
EUR 0.00 0.28 −0.10

(0.02)
2.45
(0.00)

669.67
(0.00)

0.41
(0.99)

356.96
(0.00)

0.50
(0.99)

JPY 0.00 0.29 −0.29
(0.00)

4.55
(0.00)

2324.29
(0.00)

0.53
(0.99)

164.39
(0.00)

3.25
(0.97)

AUD -0.01 0.40 0.74
(0.00)

12.22
(0.00)

16761.15
(0.00)

2.88
(0.98)

1665.31
(0.00)

80.95
(0.00)

Out-of-sample
EUR -0.01 0.16 0.24

(0.30)
−0.78
(0.19)

0.85
(0.65)

0.04
(0.99)

8.29
(0.60)

0.00
(0.99)

JPY 0.00 0.31 0.10
(0.41)

−0.28
(0.38)

0.12
(0.94)

0.32
(0.99)

14.66
(0.15)

0.99
(0.02)

AUD -0.05 0.30 −0.48
(0.14)

−0.42
(0.32)

1.14
(0.56)

0.55
(0.99)

7.85
(0.64)

0.02
(0.99)

Overall period
EUR 0.00 0.28 −0.10

(0.02)
2.47
(0.00)

689.65
(0.00)

0.40
(0.99)

366.79
(0.00)

0.50
(0.99)

JPY 0.00 0.29 −0.28
(0.00)

4.48
(0.00)

2285.50
(0.00)

0.54
(0.99)

164.05
(0.00)

3.17
(0.98)

AUD -0.01 0.40 0.74
(0.00)

12.21
(0.00)

16945.48
(0.00)

2.82
(0.99)

1683.26
(0.00)

80.21
(0.00)
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Table 2: Estimates of the parameters of the cDCC(1,1) model and diagnosis for daily returns of
Euro (EUR), Japanese Yen (JPY) and Australian Dollar (AUD) exchange rates observed from
3/1/2003 to 1/8/2013. Ljung-Box statistic for the standardized squared residuals (Q2(10)), and
multivariate Ljung-Box statistics for standardized residuals(QM (10)). Asymptotic p-values in
parenthesis.

Conditional variances ωi αi βi Q2(10)

EUR 2.29e−4
(0.00)

0.03
(0.00)

0.97
(0.00)

14.03
(0.170)

JPY 8.37e−4
(0.00)

0.03
(0.00)

0.96
(0.00)

10.64
(0.39)

AUD 1.06e−3
(0.00)

0.06
(0.00)

0.93
(0.00)

5.95
(0.82)

Conditional correlations qi,j α β QM (10)

EUR-JPY 0.26
(0.00)

— — —

EUR-AUD 0.63
(0.00)

0.04
(0.00)

0.95
(0.00)

93.30
(0.16)

JPY-AUD 0.11
(0.02)

— — —
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(a) EUR-JPY

(b) EUR-AUD

(c) JPY-AUD

Figure 9: Intra-daily realized correlations for EUR-JPY, EUR-AUD and JPY-AUD together with
95% h-steps-ahead (grey discontinuos line) and 99% bootstrap h-steps-ahead (black discontinuos
line) forecast intervals for the out-of-sample period from 2/8/2013 to 13/9/2013. The vertical
lines represent 95% asymptotic intervals for realized correlations.

32


