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ABSTRACT 
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OLS regression, that provides standard errors with far less median bias and confidence 
intervals with far better coverage than conventional alternatives.  A unit root, and 
therefore the absence of cointegration, does not necessarily mean that a correlation 
between the variables is spurious.   
 
 The estimator is applied to a quadratic trend model of real GDP.  The rate of 
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“output gap” has an infinite standard error and is therefore a statistical illusion. 
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1.  Introduction 
 
 Serial correlation is a pervasive problem in time series models in econometrics, as 
well as in statistics in general.  When, as is often the case, positive serial correlation is 
present in both the errors and the regressors, it has long been well known that the 
Ordinary Least Squares (OLS) estimates of the standard errors are generally too small, 
and hence the derived t-statistics too large.1  
 
 If the form and parameters of the error serial correlation were known, it would be 
elementary to compute correct standard errors for OLS regression coefficients.  However, 
observed regression residuals are typically much less persistent than the unobserved 
regression errors.  Correlations estimated directly from the regression residuals therefore 
provide inadequate indication of the serial correlation that is actually present.  This 
problem is particularly severe as the persistence in the errors approaches or even reaches 
a unit root.   
 
 The present paper proposes a Moment Ratio (MR) estimator for the parameters of 
an Autoregressive (AR) model of the errors in an OLS regression.  Although it is 
computed from conventional correlation coefficients, it reduces their negative bias, and 
provides standard errors with far less median bias and confidence intervals with far better 
coverage than conventional alternatives.  The MR estimator is in the spirit of the Median 
Unbiased estimator of Andrews (1993) and McCulloch (2008), but does not require 
laborious Monte Carlo simulation of the distribution of the sample autocorrelations. 
 

By allowing the AR order to increase with the sample size by the same formula 
that is commonly used for Newey-West (1987) Heteroskedasticity and Autocorrelation 
Consistent (HAC) covariance matrix, the MR estimator shares its consistency with 
respect to autocorrelation, while greatly mitigating its substantial finite-sample bias.   
 
 A unit root in the errors requires reposing the problem and greatly increases the 
variance of OLS slope coefficients, but otherwise presents no insurmountable difficulties.  
In particular, the presence of a unit root in the errors does not by itself indicate that an 
OLS regression is spurious.  A unit root test similar in spirit to that of Andrews and Chen 
(1994) is developed that has only moderate size distortion in simulations using a trend 
line regression.  
 

An MR-HAC estimator that generalizes the White (1980) Heteroskedasticity 
Consistent Covariance (HCC) matrix is proposed to capture regressor-conditional 
heteroskedasticity.  It is found to have less finite-sample bias and better coverage than the 
Newey-West HAC estimator in simulated regressions.   
 
 The Moment Ratio estimator is applied to a quadratic trend model of US real 
GDP.  OLS, HAC, and even AR(4) standard errors are found to greatly overstate the 
precision of the coefficients, and all give the misleading impressions that the terminal 
output gap of -4.80% in 2014Q2 is significantly negative and that the rate of change of 
                                                
1  This understanding goes back at least to Bartlett (1935) and Quenouille (1952). 
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GDP growth is significantly negative.  The Moment Ratio persistence coefficient 
estimate is quite close to unity, and a unit root in the errors cannot be rejected.  Using the 
preferred “blended” covariance matrix, the “output gap” has infinite variance and 
therefore is illusory, and the estimated secular rate of decline of GDP growth of -2.82% 
per annum per century is statistically insignificant.  Nevertheless, expected GDP growth 
in 2014Q2 of +2.30% per annum remains strongly significant and positive despite the 
absence of cointegration.   
  
 Section 2 below reviews basic theory.  Section 3 develops the “MR(1)” model, 
i.e. the MR estimator in the case of stationary AR(1) errors, and compares the derived 
standard errors to conventional alternatives.  Section 4 discusses the Newey-West HAC 
estimator.  Section 5 develops the modifications required for the MR(1) estimator in the 
unit root case.  Section 6 investigates the bias in MR(1) standard errors using Monte 
Carlo simulations.  Section 7 develops an exact unit root test for the case of AR(1) errors.  
Section 8 develops the MR(p) estimator, which extends the MR(1) estimator to a more 
general AR(p) error process.  Section 9 uses simulations to compare the bias and size 
distortion of the MR(p) estimator to that of OLS, HAC, and asymptotic Method of 
Moments.  Section 10 develops an approximate unit root test for the MR(p) case, and 
finds that it has only moderate size distortion.  Section 11 uses the p-value of the unit root 
test to construct a blended covariance matrix that greatly reduces the remaining size 
distortion of the MR(p) estimator.  Section 12 proposes an MR-HAC estimator and 
compares it to the non-parametric estimator of Kiefer, Vogelsang and Bunzel (2000) .  
Section 13 applies the MR estimator to a quadratic trend model of US real GDP.  Section 
14 concludes.   
 
2.  Basics 
 
 Consider a time-series linear regression of the form  
  εXβy +=         (1) 
where X is an n × k matrix of exogenous regressors whose first column is a vector of 
units so that β1 is the intercept.  We assume that the n × 1 error vector ε  has mean 0, is 
independent of X, and, if stationary, has a time-invariant autocovariation structure,  
  ( )||)'E( ji−== γεεΓ .2   
 The OLS estimator of β ,  
  εXXXβyXXXβ ')'(')'(ˆ 11 −− +==  
then has covariance matrix3  

                                                
2  Although this independence assumption is much more restrictive than one of weak exogeneity, it is 
required by the factorizations below that motivate the Moment Ratio estimator.  As Peron and Yabu (2009) 
point out, deterministic linear trend regressions are often of interest, both to macroeconomists and climate 
scientists, in which case independence is a not unreasonable assumption.  Likewise, the quadratic trendline 
illustration in Section 13 below reasonably satisfies independence.  The author is optimistic that the 
proposed Moment Ratio estimator will be beneficial even with the weakly exogenous regressors that are 
often encountered in econometrics.  Section 12 below modifies the estimator to allow for regressor-
conditional heteroskedasticity.   
3  See, e.g., Greene (2003: 193). 
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where R is the population autocorrelation matrix, 
  ( ) 0|| / γρ ΓR == − ji .       (3) 
      

The vector of observed OLS residuals equals the “annihilator matrix” M times the 
vector of unobserved errors:   
  MεεXXXXIe =−= − )')'(( 1 .     (4) 
Define  
  ,1,,0),(tr −== njs jj …ee'  

where we define the j-th order trace operator trj( ) for an n×n matrix A = (ai,j) by 

  ∑
−

=
+=

jn

i
jiij a

1
,)(tr A . 

The residual autocorrelations are then customarily4 computed from the residuals as 
  1,,0,/ 0 −== njssr jj … .      (5) 
In general, 
  ,)'E(E MΓMMεεMee' ==       (6) 
so that  
  )(tr)(trE 0 MRMMΓM jjjs γ== .     (7) 
 

Under the classic OLS assumption IΓ 0γ= , (2) becomes  
  1

0 )'( −= XXC γOLS .       (8) 
In this case, 

  
kn

s
s

−
= 02         (9) 

is an unbiased estimator of γ0.  Furthermore,  
  12 )'(ˆ −= XXC sOLS        (10) 

                                                
4  This definition follows Hayashi (2000: 408), Greene (2003: 268), Paolella (2003) and others, by taking 
the ratio of the sum of n-j terms to that of n terms, to obtain what might be called the weak autocorrelations.  
The strong autocorrelations, defined as the ratio of the average value of etet-j to the average value of ej

2, are 
larger by a factor of n/(n-j).  Percival (1993) notes that time series texts commonly refer to these as the 
“biased” and “unbiased” estimators, respectively, although both in fact can be biased.  The Moment Ratio 
estimator could as easily be based on the strong autocorrelations, with identical results, but this would 
require adding the additional factor to the formulas. 
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is an unbiased estimator of C.  However, when, as is often the case, the errors and 
regressor(s) are both positively serially correlated, s2 is no longer unbiased and OLSĈ will 
underestimate the variances of the jβ̂ .   
 
 If Γ , or even R, were known, Generalized Least Squares (GLS) would provide the 
efficient estimator of β , along with an unbiased estimate of its variance.  Thus, for 
example, Canjels and Watson (1997) and Choi, Hu and Ogaki (2008) recommend using 
Feasible GLS (FGLS), based on an estimate of the covariance structure.  However, this 
covariance estimate must be based on a preliminary OLS regression, and it is 
recommended here that the Moment Ratio covariance matrix described below be used for 
this purpose.  Perron and Yabu (2009) note that even in the presence of a unit root, the 
OLS estimate of the slope of a trendline may have smaller variance than the first 
difference estimate of the growth rate in finite samples, if the first differences themselves 
exhibit positive serial correlation.   
  
3.  Stationary AR(1) errors 
 
 The serial correlation in econometric time series regressions is often 
approximately AR(1) in structure:  
  ,1 ttt u+= −εϕε        (11) 
where the innovations ut are iid with mean 0 and finite variance 2σ .  Under (11), the 
population autocorrelations are  
  j

j ϕρ = .        (12) 
For the moment, we assume |ϕ| < 1.  The unit root case ϕ = 1 requires reposing the 
problem somewhat, and is discussed in Section 5 below.   

Figure 1 illustrates the autocovariance function for a simple trend line regression 
  tt ty εββ ++= 21 ,       (13) 
whose errors are an AR(1) process with ϕ = 0.9 and innovation variance σ2 = 1.  The blue 
line shows the true autocovariances γ0, ... γn-1.  These decay geometrically from 
𝛾! = 𝜎! 1− 𝜑!  = 5.26 by factors of ϕ and are all positive.  A pseudo-random draw 
from this process was constructed with Gaussian innovations, and was fit by OLS to a 
linear trend with an intercept.  The irregular green line plots the ordinary estimated 
autocovariances5 of the residuals,  
  ns jj /ˆ =γ .   
These estimated autocovariances initially behave in a qualitatively similar fashion to the 
true autocovariances.  However, they exhibit several typical problems when serial 
correlation is present:  First, 0γ̂  typically understates the true unconditional variance γ0.  
Second, they typically decay faster initially than the true rate ϕ.  Third, as noted by 
Percival (1993),  

                                                
5  These are “weak” autocovariances” corresponding to the “weak” autocorrelations in the sense defined in 
footnote 3. 
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whenever a constant term is included in the regression, so that the sample 
autocorrelations of order 1 and higher are necessarily negative on average even if the true 
autocorrelations are all positive.  And fourth, when serial correlation is high they tend to 
exhibit the spurious oscillations that characterize trend line residuals with unit root or 
near unit root errors (Nelson and Kang 1981).  Because of these qualitatively misleading 
properties, the highest order sample autocorrelations should be ignored altogether.  
 

 
Figure 1 

Illustrative simulated autocovariances of regression residuals (green), compared to 
true autocovariances of AR(1) errors (blue) for a trend line regression with sample 
size n = 100, true autoregressive parameter ϕ  = 0.9, and unit innovation variance.  
Red  line gives the autocovariances of an AR(1) process fit to the lag 0 and 1 
autocovariances of the residuals.  Cyan line shows the effective autocovariances 
employed by the Newey-West HAC estimator with bandwidth m = 4, as discussed in 
Section 4. 
 

The red line in Fig. 1 is the autocovariance function of an AR(1) process fit by 
equating γ0 and γ1 directly to 0γ̂  and 1γ̂ .  This qualitatively captures the geometric shape 
of the true autocovariances, while it ignores the misleading behavior of the estimated 
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autocovariances at the long end.  However, it starts with too low a value ( 0γ̂  = 3.77), and 
then decays at too fast a rate (r1 = 0.83).  Hence it will tend to give too small a value to 
the estimated standard errors of the regression parameters when substituted into equation 
(2).6   
 
 Figure 2 illustrates  
  )/()(tr/E 00

2 kns −= MRMγ ,      (14) 
the expectation of the “unbiased” estimator s2 relative to the true variance γ0 of the 
regression errors, as a function of the true AR(1) parameter ϕ, again in the case of the 
simple trend line model with sample size n = 100.  For ϕ > 0 this ratio is less than unity, 
and hence s2 is downward biased, despite its “bias correction.”7  This bias depends on the 
observed regressor matrix X by way of M, but is also a function of the in-practice 
unknown parameter ϕ via the correlation matrix R.  As ϕ = 1 is approached, this bias 
actually becomes −100%, since γ0 is infinite while the expectation of s2 is necessarily 
finite when an intercept is included in the regression.    
 

 
 

Figure 2 

                                                
6  The cyan line in Figure 1 identified as HAC(4) is discussed in Section 4 below. 
7  ( )knns −= /ˆ0

2 γ  is unbiased only in the absence of serial correlation. 
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Bias in s2 relative to the true variance γ0 of the regression errors, in a trend line 
regression with AR(1) errors, as a function of the true AR(1) parameter ϕ . 
 

 
   In order to correct these deficiencies in the AR(1) case, we define the Moment 
Ratio function for r1 as the ratio of the population moments whose sample counterparts 
define 1r  per (5) and (7): 
  )(/tr)(tr);ψ( 01 MRMMRMX =ϕ .       (15) 
The value of ψ( ) depends on ϕ  through the correlation matrix R, and also on X via M.  
Fortunately, however, it does not depend on the unknown coefficient vector β  or the error 
variance γ0.  Figure 3 illustrates this value as a function of ϕ, for the special case of a 
trend line regression with n = 100.  A 45 degree line representing the true value of ϕ is 
also plotted.    
 

 
Figure 3 

The Moment Ratio function for r1 as a function of the true AR(1) autoregressive 
parameter ϕ  for a trend line regression with sample size n = 100 (blue).  This 
function lies entirely below the 45 degree line (dashed red). 

 
 
 It may be seen that r1 already has a small downward bias (in the Moment Ratio 
sense) when ϕ  = 0, and that this downward bias increases as ϕ increases to 1. The bias 
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may also be computed for ϕ < 0, but was found to vanish as ϕ ↓ -1.  Hence, only the 
more commonly encountered case ϕ ≥ 0 is illustrated.  
 

This bias in r1 as an estimator of ϕ may be eliminated, simply by numerically 
evaluating the inverse of the function );ψ( Xϕ , with respect to its first argument, at the 
empirical r1, when possible.  If r1 exceeds );1ψ( X  (0.91 in the example), we instead use 
the point of nearest approach, namely ϕ = 1.  Formally, the MR(1) estimator is defined by  
  

( ]
);ψ(minargˆ 1

1,1
Xϕϕ

ϕ
−=

−∈
rMR .      (16)  

This inverse function and its extension are illustrated in Figure 4 below. 
   
 

 
Figure 4  

The inverse Moment Ratio function (blue) gives MRϕ̂  as a function of the residual 
serial correlation coefficient r1.  This inverse function lies entirely above the 45 
degree line (dashed red). 

 
 
 Andrews (1993) has noted that a pattern similar to that in Figure 3 emerges when 
the median of the Monte Carlo distribution of the OLS estimator of ϕ is plotted against ϕ. 
Andrews proposes that an Exactly Median Unbiased estimator of ϕ be computed by 
numerically inverting this median function.  In a precursor to the present paper 
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(McCulloch 2008), the author implements and extends Andrews’ method to find exactly 
median unbiased estimators of all the coefficients of an AR(p) model for regression 
errors.  However, the Moment Ratio approach of the present paper gives very similar 
results, without the tedious and noisy Monte Carlo simulation at each step of the 
numerical search.   
 

Once MRϕ̂  has been found, the correlation matrix R may be estimated by  

  ( )||)ˆ(ˆ jiMRMR −= ϕR .        (17) 
 

A natural estimator of γ0, that would be unbiased by (7) if it were computed with 
the true value of ϕ, would be  
  )ˆ(tr/ 00 MRM MRs .         (18)  
However, this does not lead to a consistent estimate of the variance of the innovations in 
the limit as ϕ approaches unity, as discussed in section 5.  This problem can nevertheless 
be avoided by instead basing the estimator of γ0 on the innovations:   
  𝑢! = 𝜀! − 𝜑𝜀!!!,      𝑡 = 2,…𝑛  
or   
  εDu ϕ=  
where the (n-1)×n quasi-differencing operator Dϕ = (dij) is defined by di,i+1 = 1, di,i = -ϕ, 
and di,j = 0 otherwise.  The consistently estimated last n-1 innovations are then  
  MεDeDu ϕϕ ==ˆ  
so that  
  ϕϕϕϕ σ DMGMDDMΓMDuu ʹ′=ʹ′=ʹ′ 2ˆˆE ,     (19) 

where ( ) RΓG 0
2

|| / gg ji === − σ  is the covariance matrix of the errors, normalized to 

unit variance for the innovations.  In the AR(1) case, ( )20 1/1 ϕ−=g .  Then  
  ( )ϕϕσ DMGMDuu ʹ′=ʹ′ 0

2 trˆˆE ,  
so that  
  ( )ϕϕσ DMGMDuu ʹ′ʹ′= 0

2 /trˆˆˆ̂
MR  

would be an unbiased and consistent estimator of the innovation variance if ϕ were 
known.  When ϕ is estimated consistently by MRϕ̂  and G by  
  𝐆!" = 𝐑!"/ 1− 𝜑!" ! ,  

( )MRMR
MR

MR ϕϕ
σ ˆˆ0
2 ˆ/trˆˆˆ DMGMDuu ʹ′ʹ′=      (20) 

becomes a consistent and at least approximately unbiased estimator.  The Moment Ratio 
estimator of the covariance matrix C of OLSβ̂  as given in (2) is then  
  112 )'(ˆ')'(ˆˆ −−= XXXGXXXC MR

MR
MR σ .      (21) 

If desired, the variance of the AR(1) errors may then be estimated by  
  ( )22

0 )ˆ(1/ˆˆ MR
MR

MR ϕσγ −= .      (22) 
 
4.  The Newey-West HAC covariance matrix 
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 The truncated-kernel Heteroskedasticity and Autocorrelation Consistent (HAC) 
covariance matrix, introduced by Newey and West (1987), is now widely used by 
economists to “correct” the standard errors of OLS time series coefficients for serial 
correlation.  Greene (2003: 201) reports that its use is now “standard in the econometrics 
literature.”  Hayashi (2000: 409-12)  mentions only it, the similar Quadratic Spectral 
HAC of Andrews and Monahan (1992), and the Vector Autoregression HAC (VAR-
HAC) method of den Haan and Levin (1996) as appropriate methods for correcting OLS 
standard errors for serial correlation.  The elementary text by Stock and Watson (2007) 
presents HAC as the only method worthy of consideration.   
 
 In the OLS case considered here, the Newey-West HAC estimator of C simplifies 
to  
  11 )'(')'(ˆ −−= XXFXXXXCHAC ,      (23) 
where  
  ( )|)K(| jiee ji −=F        (24) 
and  
  )0),1/()1max(()K( +−+= mlml      (25) 
is the truncated Bartlett Kernel function at lag l for some bandwidth m.  (Greene 2003: 
200)  Most econometric packages provide “automatic bandwidth selection” for HAC, 
using a formula such as the following: 
  ⎣ ⎦9/2)100/(4 nm = ,       (26) 
which just yields m = 4 (corresponding to 4 non-zero autocorrelation terms used) for n = 
100.8 
 
 At least three types of heteroskedasticity are commonly encountered in 
econometrics:  In a priori heteroskedasticity, the variance of the errors is known up to a 
common constant, and Weighted Least Squares (WLS) provides efficient coefficient 
estimates and correct standard errors.  In serially conditional heteroskedasticity, episodes 
of high and low variance errors are clustered, in which case a GARCH model is often 
appropriate (McCulloch 1985, Bollerslev 1986).  And finally, in what might be called 
Regressor Conditional Heteroskedasticity (RCH), the variance of the errors may depend 
in an unknown way on the equation’s regressors.  The White (1980) HCC and Newey-
West HAC estimators correct consistently for RCH, though not necessarily for the other 
two forms of heteroskedasticity unless they coincidentally coincide.     
 
 In the benchmark case of regressor-conditional homoskedasticity, the expectation 
of the HAC estimator becomes 

                                                
8   EViews uses Equation (26), following a suggestion of Newey and West (1994).  Stock and Watson 
(2007:607) suggest ⎣ ⎦5.075.0 3/1 −= nm , which has very similar effect for n in the range 50 – 2000, and 
generally identical effect in the range 400 – 1000.  Sun et al. (2008) note that while a power of 1/3 or 1/5 
minimizes the asymptotic mean squared error of the long-run variance estimator for first and second order 
kernels, respectively, a power of 1/2 or 1/3  asymptotically minimizes a weighted average of Type I and 
Type II errors.  The notation  ⎣x⎦ indicates the floor function of x.   
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  11 )'(')'(ˆE −−= XXXHXXXC HACHAC ,     (27) 
where  
  ( ) ( ) MΓMHH ==−= jiji

HAC hjih ,,   and,|)K(| . 
HAC thus effectively employs only the first m sample autocovariances, and replaces the 
others with zeros.  At the same time it down-weights the autocovariances it does not 
discard entirely by the factor (m+1– l)/(m+1).  It also uses the regression residuals as if 
they were the errors themselves.  For all three of these reasons, it tends in finite samples 
to underestimate the standard error for a regressor which is itself serially correlated.  
However, the amount by which it does this depends on both the ρj and the degree of 
serial correlation of the regressors themselves.   
 
 Aside from its RCH adjustment, the NW HAC estimator in effect therefore 
replaces the already twice-downward-biased OLS

jγ̂  with the triply-biased )K(ˆ jOLS
jγ , as 

depicted by the cyan line in Figure 1 above.  Although NW provides some improvement 
over the OLS standard errors, the already seriously deficient AR(1) standard errors are far 
superior.9 
 
 As the sample size n rises without bound, the bandwidth determined by (26) also 
rises without bound, so that eventually every lag is included and K(l) becomes arbitrarily 
close to unity for each l.  Furthermore, as long as n1/2/m also rises to infinity, each 
autocorrelation is consistently estimated (Newey and West 1994: 633).  However, in 
finite samples the estimator can be highly misleading.   
 
5.  The Unit Root Case ϕ  = 1 
 
 The unit root case ϕ = 1 poses no insurmountable problems, so long as there is a 
constant term and a trend or trending variable(s) in the original regression (1), and so 
long as the regression residuals are not used to estimate the variance of the innovations.  
In particular, a unit root in the errors does not in itself indicate a “spurious regression” in 
which OLS coefficient slope estimates become meaningless.  However, it does require 
reposing the problem, so as to replace certain undefined mathematical expressions with 
their limiting values.  We assume that ]1,1(−∈ϕ , so that a unit root is the only type of 
nonstationarity that will be encountered.   
 
 As is well known, OLS coefficient estimates are inconsistent when both the 
regressor(s) and the errors contain a unit root with no drift.  (See e.g. Choi, Hu and 
Ogaki, 2008: 330).  Conditional on the observed regressor(s) and the finite innovation 
variance, the limiting coefficient error is Gaussian with positive variance.  Even so, there 
may be a problem of estimating the innovation variance from even the estimated 
innovations if the residuals themselves are not consistently estimated.   

                                                
9  Politis (2011) finds that a flat-top kernel and a data-driven bandwidth somewhat alleviate the downward 
bias in the Newey-West estimator.  In order to ensure that the resulting covariance matrix is positive 
semidefinite, he must rectify it by zeroing out any negative eigenvalues in its singular value decomposition.  
Nevertheless, he uses residuals as if they were errors, with no compensation for their biased variance..  
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Nevertheless, when the regression includes a constant and a time trend, the slope 

coefficient becomes √n consistent:  Hayashi (2000: 570) shows that after scaling the 
horizontal axis by n and the vertical axis by √n, the slope coefficient is Gaussian about its 
true value with a finite variance.  Without the scaling, the slope coefficient is therefore 
Gaussian with standard error proportional to 1/√n.  Likewise, if the regressor is unit root 
with non-zero drift, the drift will dominate the unit root noise for large n, and so the 
regressor will act as if it were a time trend.  This section is therefore limited to the case in 
which the regressors include either a time trend or a trending variable.   
 
 As ϕ ↑ 1, each element of the unconditional covariance matrix Γ  becomes 
infinite, holding the variance 2σ  of the innovations in (11) constant.  Furthermore, each 
element of the correlation matrix R becomes unity in this limit.  These matrices are 
therefore no longer useful or informative in this case, and the problem must be reposed 
without them.    
 
 Although a random walk has infinite unconditional variance and covariances, its 
variances and covariances are all finite conditional on its value at any point in time, say t 
= 0.  If the errors ε  are a random walk that arise by accumulating white noise u, we have  
  Nuε += 0ε  
where  

( )( )ji ≤= 1N          (28) 
is the n × n integrator matrix, and the logical indicator ( )ji ≤1  takes the value 1 when the 
expression is true and 0 when it is false.  The conditional covariance matrix of the errors, 
taken conditional on ε0, is then  
  0

2
00 )|'E( WεεΓ σε == , 

where  
  ( )( )ji,min0 =ʹ′= NNW .   
 

Furthermore, so long as there is a constant term in the regression, the OLS 
residuals will sum to zero regardless of the value of the random walk at t = 0, so that the 
actual value of ε0 does not matter for their properties.  Equation (6) then becomes   
  ( ) MMWMΓMee'ee' 0

2
00|EE σε ===      

so that  
)(trE 0

2 MWMjjs σ= .      (29) 
The limiting value of );ψ( Xϕ , as plotted in Figure 2, then becomes    
  )(/tr)(tr);1ψ( 0001 MWMMWMX = .    (30) 
Due to sampling error, the actual value of r1 could lie above or below this value.  Any 
value of r1 above );1ψ( X  should simply be identified with 1ˆ =MRϕ  as in (16) and Figure 
4. 
 

The innovation variance 2σ  could be estimated without bias, using (29), by  



 14 

  )(tr/ 000 MWMs . 
Unfortunately, however, this unbiased estimator, which is the limiting value of (19) taken 
together with (22), is not consistent, even in a trend line regression (see, e.g. Hayashi 
2000:570-71).  Simulations with Gaussian errors indicate that for a model in which only a 
constant term is estimated, its distribution is approximately a scaled χ2 with 2.5 degrees 
of freedom, using either n = 100 or n = 1000.10  In a linear trend line model, it is 
approximately scaled χ2 with 5 degrees of freedom, using either n = 100 or n = 1000.  
 

However, using the estimated innovations (which are in fact simply the first-
differenced residuals in the random walk case being discussed here), equation (19) 
becomes 

101
2

0 )|E(E DMWMDuuuu ʹ′=ʹ′=ʹ′ σε ,  
whence  

( )1010
2

0 tr)|'E(E DMWMDuuuu ʹ′==ʹ′ σε ,  
so that  

( )1010
2 /tr'ˆ DMWMDuu ʹ′=MRσ      (31) 

is an unbiased estimator when it is known that there is a unit root.  Furthermore, 
simulations with Gaussian errors indicate that the distribution of this estimator is 
approximately scaled χ2 with n-k degrees of freedom, for both the mean and trend line 
models, and for both n = 100 and 1000.  Inference on the coefficients with t or F statistics 
based on (31) and (32) should therefore be at least approximately valid. 
 
 Having computed 2ˆMRσ , we may estimate the covariance of the regression 
coefficients, conditional on the arbitrarily chosen reference point ε0, by  
  1

0
12

0 )'(')'(ˆˆ −−= XXXWXXXC MR
MR σ .      (32) 

If a reference point other than ε0, say εt, is chosen, the conditional covariance of the 
errors becomes  
  ttt WεεΓ 2)|'E( σε == , 
where  
  ( )t

jit w ,=W ,  
with 

⎩
⎨
⎧ <<>>−−

=
.,0

)()(|),||,min(|
, else

tjandtiortjandtitjti
wt ji  

Since MWtM does not depend on the choice of t, exactly the same values of );1ψ( X  and 
2ˆMRσ  will be obtained.  Furthermore, except for its first row and column,  

  112 )'(')'(ˆˆ −−= XXXWXXXC tMR
MR
t σ  

does not depend on the choice of t.  The estimated standard error of the constant term β1 
therefore does depend on the reference point defined by the choice of t, while those of the 
                                                
10  Although s0 can be expressed as a linear combination of squared N(0,1) random variables, the weights 
are unequal so that its distribution is not exactly χ2.  Nevertheless, the relation between the distribution’s 
simulated mean and variance is the same as for the χ2 with the indicated degrees of freedom.   
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slope coefficients β2, ... βk do not.  In particular, the regression F statistic for the joint 
hypothesis β2 = 0, ... βk = 0 is at least approximately valid despite the unit root in the 
errors, and is invariant to the arbitrarily chosen reference point. 
 
 If the one-step-ahead forecast of yn+1 (conditional on the time t = n+1 values of 
the regressors) is of particular interest, the reference point t = n+1 may be useful.  In this 
case,  
  ( ))1,1min(1 jninn −+−+=+W .  
Another particularly natural reference point, one that does not single out any individual 
point in the sample period, is the mean error  
  n'ε /ει= , 
where ι  = (1, ... 1)’. Conditioning on this value, we have  
   112 )'(')'(ˆˆ −−= XXXWXXXC εε σMR

MR , 
where  
  ZWZW 0=ε  
and 
  nn /'ιιIZ −= .11       (33) 
 
 The unconditional unit root covariance matrix URĈ  may be obtained from MR

0Ĉ  or 
any of the other conditional unit root covariance matrices developed above, simply by 
replacing its (1,1) element by ∞.  With no loss of generality, the remaining elements of its 
first row and column may be set to 0, since the variance of any linear combination of the 
intercept and the regressors is infinite regardless of these covariances.  The inverse of the 
unconditional unit root covariance matrix will be of use below when we compute a 
blended covariance matrix in the near-unit-root cases.  It may be seen from the 
partitioned matrix inversion rule that the inverse of URĈ  is block-diagonal, with 0 in the 
(1,1) position, regardless of the covariances in the first row and column, so that again 
there is no loss of generality in setting them to 0.  URĈ  may be similarly constructed from 
MR
0Ĉ  in the MR(p) case considered below.   

 
6.  Monte Carlo Properties of Moment Ratio Estimator in AR(1) case 
 
 Figure 5 below shows the Moment Ratio Function ψ(ϕ, X), along with the Monte 
Carlo mean, median, quartiles, and 5th and 95th percentiles of the distribution of r1, as a 
function of the true value of ϕ, again for the trend line model with n = 100, under the 
additional assumption of Gaussian errors.12  The median line is essentially the same as 
the median function inverted by Andrews (1993) to determine his Median Unbiased 

                                                
11  The unit root covariance matrix could also be conditioned on 𝜀! for any t outside [0,n+1], but this 
complicates the formula somewhat, and so is not treated here.  
12  This simulation was performed with m = 99,999 replications using MATLAB’s randn(‘state’) Gaussian 
random number generator, for ϕ in steps of 0.01.  The same seed was used for each value of ϕ  in order to 
make each simulated percentile a smooth function of ϕ.   
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estimator of the autoregressive parameter ϕ.13  The Moment Ratio Function is almost 
indistinguishable from the median for values of ϕ near 0, but rises slightly above the 
median as ϕ increases.  Nevertheless, it remains well within the quartiles, and at least 
approximately corrects the median bias of r1 when inverted.  The downward skewness of 
the distribution of r1 pulls the mean of the distribution down below the median by a 
comparable amount.   
 

 
Figure 5 

Monte Carlo distribution of the residual autocorrelation r1 for a trend line 
regression with sample size n = 100, as a function of the true AR(1) parameter ϕ .  
The median is shown in solid red, the quartiles in dashed red, the 5% and 95% 
quantiles in dash-dot red, and the mean in solid green.  The solid blue line shows the 
Moment Ratio function from Fig. 1 for comparison.    

 
 

Because the Moment Ratio function lies above the median in Figure 5 for ϕ > 0, 
and both are increasing functions of ϕ, MRϕ̂  is necessarily less than the Median Unbiased 
estimator computed by inverting the Monte Carlo median function at r1, and therefore 

                                                
13  Andrews in fact bases his estimator on an OLS regression of yt on yt-1, a constant, and t, rather than on 
the first order autocorrelation of the residuals of a regression of yt on a constant and t.  The two approaches 
are nevertheless very similar.  As demonstrated in McCulloch (2008), the latter approach is easily applied 
to the residuals of a general OLS regression with higher-order autoregressive errors.     
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provides a less conservative adjustment for serial correlation, at least for the trend line 
problem simulated.   

 
Figures 6 through 17 are based on 10,000 Monte Carlo replications of a trend line 

regression with n = 100 equally spaced and demeaned values of the time trend variable, 
Gaussian AR(1) errors, and various true values of ϕ ranging from -0.2 to 1.0, inclusive.  
The “AR(1)” model is fit to the (weak) sample autocorrelation r1, in conjunction with an 
estimate of γ0 that is unbiased conditional on ϕ = r1 per (7).  The “HAC” results are based 
on a bandwidth of m = 4, using formula (26).   

 
Figure 6 shows the Monte Carlo median of the squared standard error of the slope 

coefficient, relative to the true variance of the coefficient, so that a value of unity reflects 
the target of zero median bias.  As expected, OLS is right on the mark when the errors are 
uncorrelated, but then deteriorates rapidly as the degree of serial correlation increases.  
With random walk errors, the true variance of the slope coefficient still finite, but is 180 
times larger than the OLS estimate, because OLS takes no account at all of serial 
correlation.   

 
 

Figure 6 
Monte Carlo median of estimated variance of slope coefficient, relative to true 
variance, versus true AR(1) parameter of error DGP, for a trend line regression 
with n = 100.  OLS is shown in blue, NW-HAC in green, conventional AR(1) in red, 
and MR(1) in cyan.   
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NW HAC provides some improvement over OLS for ϕ greater than 

approximately 0.13.  However, it already has substantial negative median bias 
(median/true = 0.90) even when the errors are white noise.  This is because HAC takes no 
account of the distinction, important in finite samples, between the residuals and the 
errors.  However, the AR(1) model that fits r1 directly to its asymptotic counterpart is a 
big improvement over HAC.   
 
 Finally, the Moment Ratio estimator MR(1) is clearly the leader of the pack by 
this metric, except for OLS when ϕ is very near 0.  Because of the upper bound imposed 
on MRϕ̂ , even MR(1) is inevitably somewhat biased downwards as ϕ approaches and 
reaches 1.    
 

 
 

Figure 7 
Monte Carlo mean of estimated variance of slope coefficient, relative to true 
variance, versus true AR(1) parameter of error DGP, for a trend line regression 
with n = 100.  OLS is shown in blue, NW-HAC in green, conventional AR(1) in red, 
and MR(1) in cyan.   
 
 Figure 7 is similar to Figure 6, except that it gives the Monte Carlo means of the 
squared standard errors, relative to the true variance of the slope coefficient, rather than 
the medians.  OLS, HAC and AR(1) all have mean biases qualitatively similar to the 
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median biases shown in Figure 6.  However, MR(1) now has a positive mean bias for all 
but the highest values of ϕ.  For ϕ < 0.6, this bias is quite small, but for larger values it 
grows quickly, reaching a peak of +95% at ϕ = 0.95 (corresponding to a RMSE of +40% 
for the standard error itself).  This mean bias is due to the fact that the expected squared 
standard error is a highly convex function of ϕ, especially as ϕ  = 1 is approached, so that 
overestimates of ϕ have a much bigger impact on the mean than do underestimates.  The 
medians in Figure 6 are less affected by this factor, resulting in negative median biases 
throughout.  For ϕ > 0.95, the upper bound 1ˆ ≤MRϕ  becomes binding more frequently, 
with the result that under-estimates start to dominate, and the bias turns negative after 
0.98.  At ϕ = 1, the mean variance bias is -49% , corresponding to -30% in terms of the 
RMS standard error.   
 

 
Figure 8 

Monte Carlo coverage of 95% confidence interval for slope coefficient in a trend 
line regression with n = 100.  OLS is shown in blue, NW-HAC in green, conventional 
AR(1) in red, and MR(1) in cyan. 

 
 For most practical purposes, the ultimately relevant criterion is not the mean or 
median bias of the corrected standard errors, but rather their ability to construct 
confidence intervals, and therefore hypothesis tests, with correct coverage.14  Figures 8 
                                                
14  Peron and Yabu (2009) similarly evaluate the asymptotic behavior of estimators in terms of  a weighted 
average of Type I and Type II errors, rather than the mean squared error of the estimated long-run variance 
itself.   
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and 9 below shows the simulated coverage of a 95% confidence interval for the slope in 
the same trend line regression with n = 100 and Gaussian innovations.  Since 10,000 
replications were again used, the sampling standard error of the coverage of a 95% 
confidence interval is 0.22%.  The intercept and slope coefficients were, without loss of 
generality, both set to 0 for this simulation.  Figure 8 shows the large-scale behavior as ϕ 
↑ 1, while Figure 9 is a detail of the same curves, allowing comparisons for ϕ near 0.  In 
both figures, the horizontal black line at 95% is the target representing perfect coverage.   
 

 

 
Figure 9 

Detail of Figure 8. 
 

Despite its upward mean bias for the slope variance, the MR(1) size distortion is 
always negative and becomes increasingly negative throughout the range [-.2, 1].  
Although it does not have perfect coverage, the MR(1) estimator always has better 
performance than HAC or AR(1), and almost always dominates OLS, by this metric. 

 
The pattern for the estimated intercept is qualitatively similar to that shown for 

the estimated slope in Figures 6 – 9, and hence is not shown here.  However, since the 
autocorrelation of the errors interacts with the autocorrelation of the regressor(s), and a 
constant term’s unit regressor is even more serially correlated than a trend line regressor, 
the biases and size distortions are slightly worse for the intercept than those depicted for 
the trend slope.  A less serially correlated regressor would have less bias and size 
distortion.      
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7.  AR(1) Unit Root Test 
 
 The Monte Carlo distribution of r1 for ϕ = 1, summarized at the right edge of 
Figure 5 above, provides a simple test for a unit root, under the assumption of Gaussian 
errors, that is exact to within Monte Carlo sampling error:  If r1 is less than say the 5th 
percentile of this distribution (0.778 for the illustrated trend line regression with n = 100), 
a unit root can be rejected with a 5% one-tailed test size.  The only practical way to 
perform this test is with a Monte Carlo simulation comparable to that required for 
Andrews’ (1993) Median Unbiased estimator, but since the test is optional, and even then 
the simulation only needs to be performed under the null ϕ = 1, it is not nearly as 
computationally demanding as the Median Unbiased estimator.   
 
8. Higher Order Autoregressive/Unit Root Models and Consistent Covariance 
Estimation 

 
 Although an AR(1) model is often a good first approximation to the 
autocovariation function of econometric time series regression errors, this model is 
unnecessarily restrictive.  The true model may not even be a finite order autoregressive 
process.  However, a finite order AR(p) model  

  ∑
=

− +=
p

j
tjtjt u

1
εϕε        (34) 

can approximate most covariance-stationary Gaussian processes to any desired precision, 
given a sufficiently high value of p.15  
 
 As in the AR(1) model, the unit root case is not an insurmountable obstacle.  
However, it does require separate treatment.  Following Anderson and Chen (1993), it is 
useful to rewrite (34) in the equivalent Augmented Dickey-Fuller (ADF) form  
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We will call the parameter α the (first order) persistence of the process.   
 

                                                
15  One notable exception is a non-invertible MA process.  However, such a process would be only rarely 
encountered in practice, except as an inappropriately first differenced white noise.  Long memory 
fractionally integrated processes (Hosking 1984) may require much higher values of p than will short-
memory processes, and may require special consideration.  These interesting processes go beyond the 
scope of this paper. 
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A necessary condition for stationarity is 1≤α .  Although 1<α  is not a sufficient 
condition for stationarity, the case 1=α  is the most common form of nonstationarity for 
the errors in econometric time series regressions.  Hence, we will assume that 1=α  is 
the only type of nonstationarity that may be present, and that when such a unit root is 
present, the θj define a stationary process for the first differences.   In other words, we 
assume that the process is either stationary or integrated of order 1.  More formally, we 
assume that the vector ( )ʹ′= pϕϕ ,,1 …φ  of AR(p) coefficients is an element of the set Φ 
for which either all the reciprocal roots of the characteristic polynomial are inside the unit 
circle, or for which only one root is on the unit circle, that root being 1 and the other 
reciprocal roots lying inside the unit circle.  
 
 If an AR(p) process is covariance stationary, the Yule-Walker equations  
  𝛾! = 𝜑!𝜑!𝛾 !!!

!
!!!

!
!!! + 𝜎!, 

  𝛾! = 𝜑!𝛾 !!!
!
!!! ,        𝑗 = 1,… ,𝑝 

may be solved for the first p+1 autocovariances γ0, ..., γp in terms of the AR(p) 
coefficients ϕj and the innovation variance σ2.  The remaining autocovariances may then 
be filled in recursively with  

   ∑
=

− −+==
p

k
kjkj npj

1
1,,1, …γϕγ . 

Conversely, the AR(p) coefficients may be found in terms of the first p+1 
autocovariances by means of   

  𝛗 =
𝜑!
⋮
𝜑!

=
𝛾! ⋯ 𝛾!!!
⋮ ⋱ ⋮

𝛾!!! ⋯ 𝛾!

!! 𝛾!
⋮
𝛾!

.    (36) 

 
The ordinary Asymptotic Method of Moments (AMM) estimator of the AR 

coefficients directly replaces the asymptotic error autocovariance moments γj in (36) with 
their (weak) empirical counterparts sj/n as computed from the regression residuals: 
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Although this simple estimator is consistent, it takes no account of the distinction 
between the errors and residuals and so is biased in finite samples, particularly as the 
process becomes more persistent and approaches a unit root.16 
 
 Generalizing (15), we define the Moment Ratio Function of Order p to be the 
matrix “ratio” of the exact finite sample population moments corresponding to the sample 
moments used to compute AMMφ̂ :   

                                                
16  The MM estimator defined in (37) is virtually equivalent to the results of an OLS regression of the 
residuals on their own p lags, with the exceptions that it treats the first and last few residuals symmetrically, 
and uses weak rather than strong autocorrelations.     
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 (38) 

The scaled autocovariance matrix G = Γ /σ2 depends on the true autoregressive 
coefficients ϕ  but not on σ2.  This Moment Ratio Function depends on the autoregressive 
coefficients through G as well as the regressor matrix X through M, but fortunately the 
unknown innovation variance drops out.  If the stationarity restriction 1<α  were never 
binding, we could define the Moment Ratio Estimator MRφ̂  simply by setting 
( ) AMMMR φXφψ ˆ;ˆ =  and solving this system of p nonlinear equations in p unknowns.    

The Moment Ratio estimator may thus be thought of as the exact finite sample MM 
estimator, rather than a merely asymptotic MM estimator.  
 
 In the unit root case 1=α , the Yule-Walker equations readily determine the n × n 
normalized covariance matrix H of the error first differences   

1−−= ttt εεξ  
  ( ) 2/Cov σξH = ,        (39) 
in terms of the θj, since we have assumed that at least the first differences are covariance 
stationary.  Conditional on say ε0, the errors themselves then have finite covariance 
matrix,  
  NHN'ε 2

0 )|Cov( σε = , 
where N is the integrator matrix (28).  Since the regression is assumed to include an 
intercept, the residuals sum to 0 regardless of ε0, and so have finite conditional as well as 
unconditional covariance, determined by 
  ( ) ( ) MMNHN'ee 2

0 Cov|Cov σε == .  
In the case α = 1, we therefore define the Moment Ratio Function by  

( )
( ) ( )

( ) ( )

( )

( )⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ʹ′

ʹ′

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ʹ′ʹ′

ʹ′ʹ′

=

−

−

−

MNMNH

MNMNH

MNMNHMNMNH

MNMNHMNMNH
Xφψ

pp

p

tr

tr

trtr

trtr
;

1

1

01

10

!
"

!#!
"

. (40) 

 
 Generalizing (16) to the AR(p) case, we may now define the Moment Ratio 
Estimator MRφ̂  in terms of the point of nearest approach of the Asymptotic Method of 
Moments Estimator AMMφ̂  to the Moment Ratio Function, in terms of the Euclidean 
norm: 
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( )Xφψφφ
φ

,ˆminargˆ −=
Φ∈

AMMMR .17     (41) 

This problem was solved numerically for this paper with satisfactory results using a 
constrained Nelder-Mead simplex algorithm, subject to the explicit constraint α ≤ 1 and 
assigning a very high value to the objective function whenever other non-stationary roots 
were encountered.18  
 
 The last n–p  innovations of an AR(p) process may be computed from the errors 
by  
  εDu φ=  
where the (n-p)×n innovation-generating operator Dϕ = (dij) is defined by di,i+p = 1, di,i+p-h 
= -ϕh and di,j = 0 otherwise.  The innovations estimated from the residuals are then  
  MεDeDu φφ ==ˆ        (42) 
so that in the stationary case α < 1, 
  φφφφ DMGMDDMΓMDuu ʹ′=ʹ′=ʹ′ 2ˆˆE σ ,      

  ( )φφ DMGMDuu ʹ′=ʹ′ 0
2 trˆˆE σ ,  

whence  
  ( )φφ DMGMDuu ʹ′ʹ′= 0

2 tr/ˆˆˆ̂
MRσ  

would be an unbiased and consistent estimator of the innovation variance, if the true 
value of ϕ  were known.  When ϕ  is estimated consistently by MRφ̂ , 

( )MRφφ DMGMDuu ˆˆ0
2 ˆ/trˆˆˆ ʹ′ʹ′= MR
MR MRσ  

becomes a consistent and at least approximately unbiased estimator.19  The Moment 
Ratio estimator of the covariance matrix C of OLSβ̂  as given in (2) is then  
  112 )'(ˆ')'(ˆˆ −−= XXXGXXXC MR

MR
MR σ .    

 
 When a unit root is present, the estimated innovations instead have finite 
covariance  
  ( ) ϕϕσ DMMNHN'Du ʹ′= 2ˆCov  
whence  
  ( )ϕϕσ DMMNHN'Du'u ʹ′= 0

2 /trˆˆˆ̂
MR  

                                                
17  An earlier version of this paper instead attempted to equate the first p sample autocorrelations directly to 
individual moment ratio functions.  However, this calculation turned out to be very ill-conditioned in the 
vicinity of a unit root.  Transforming the AR coefficients to the ADF persistence form before taking the 
norm in (41) will give the same answer if the unit root restriction is not binding, but a somewhat different 
answer when it is binding.  This alternative may be worth exploring in future work.   
18  Following Numerical Recipes (Press 1992: 402-6 ), with a linear restriction imposed.  In order to retain 
volume in the simplex, the linear restriction was never allowed to reduce the volume of the simplex in a 
single step by a factor less than 0.5.   
19  In order to treat the first and last residuals symmetrically, the residuals were in fact computed both 
forward and backward in time, and the resulting sums of squares averaged, in both the stationary and unit 
root case in the calculations that follow.  
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is an unbiased and consistent estimate of the innovation variance when the autoregressive 
order and parameters are known and have unitary first order persistence.  When the 
autoregressive parameters are consistently estimated and the estimate happens to have a 
unit root,  
  ( )MRMR

MR
MR ϕϕ

σ ˆˆ0
2 ˆ/trˆˆˆ DMN'HMNDu'u ʹ′=   

is a consistent and approximately unbiased estimator of the innovation variance.  The 
Moment Ratio estimator of the covariance matrix C of OLSβ̂  as given in (2) and 
conditional on ε0 is then  
  112

0 )'(ˆ')'(ˆˆ −−= XXXMN'HNMXXXC MR
MR

MR σ .    
Conditional on εt, similar reasoning yields  
  112 )'(ˆ')'(ˆˆ −−= XXXM'NHNMXXXC t
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t σ . 

 
 The autocovariation function and therefore the coefficient covariance matrix may 
now be estimated consistently for almost any covariance stationary or I(1) error process 
by setting the autoregressive order p equal to  
  ( )⎣ ⎦9/2100/4 np = ,       [26] 
the maximum lag considered by the formula (26) commonly used for the Newey-West 
HAC estimator.  As n increases, p as well as n1/2/p increase without bound, so that 
eventually every autocorrelation is utilized, and estimated consistently.  For sample size 
100, this formula gives p = 4.20   
 
9. Monte Carlo Performance of the MR(p) Estimator 
 
 Figures 10 and 11 show the Monte Carlo median and mean of the estimated slope 
variances using the OLS, HAC (m=4), AR(p=4) estimated by MM, and MR(p=4) 
covariance matrices.  Throughout the true DGP is AR(1) with the true value of 

11 ρϕϕ ==  indicated on the horizontal axis, using Gaussian errors and 10,000 
replications.   
 

Despite the nuisance parameters that have been added for consistency in case the 
process is not AR(1), the shapes are qualitatively similar to those in Figures 6 and 7 
where the true AR(1) structure is imposed.  In terms of median bias, MR(p) clearly 
dominates AR(p), which in turn clearly dominates HAC.  HAC does dominate OLS 
unless ϕ < 0.13.  As in the AR(1) case, MR(p) does have a positive mean bias, which 
peaks at ϕ = 0.95 but then reverses above ϕ = 0.98. 
 

                                                
20  No claim is made that (26) is optimal in any sense, but merely that it is adequate to consistently capture 
the autocorrelation structure.  The reader is of course welcome to substitute any other formula for which 
both p and n1/2p increase without bound with n. 
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Figure 10 

Monte Carlo median of estimated variance of slope coefficient, relative to true 
variance, versus true AR(1) parameter of error DGP, for a trend line regression 
with n = 100.  OLS is shown in blue, NW-HAC in green, conventional AR(p) in red, 
and MR(p) in cyan.   
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Figure 11  

Monte Carlo mean of estimated variance of slope coefficient, relative to true 
variance, versus true AR(1) parameter of error DGP, for a trend line regression 
with n = 100.  OLS is shown in blue, NW-HAC in green, conventional AR(p) in red, 
and MR(p) in cyan.   
 
 
 Figures 12 and 13 give the 95% confidence interval coverages using the MR(p) 
estimator of the slope standard error, versus OLS, HAC and AR(p) as in Figures 10 and 
11.  Despite the pronounced positive mean bias of the MR(p) estimator, its coverage is 
under 95%.  Nevertheless, MR(p) dominates all the competitors in terms of coverage 
bias, except of course for OLS when ϕ is very close to 0.   
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Figure 12 
Monte Carlo coverage of 95% confidence interval for slope coefficient in a trend 
line regression with n = 100.  OLS is shown in blue, NW-HAC in green, conventional 
AR(p) in red, and MR(p) in cyan. 
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Figure 13 

Detail of Figure 12. 
 
 The greater generality of the MR(p) and AR(p) estimators over MR(1) and AR(1) 
comes at the cost of somewhat greater bias and reduced coverage, because they are not 
restricted to the true (but in practice unknown) AR(1) DGP.  However, graphical 
comparisons (omitted here in the interest of space) show that this cost is small in 
comparison to the superiority of MR(p) over AR(p) and of AR(p) over HAC.   
 
 Although the MR(p) estimator greatly improves the coverage of 95% confidence 
intervals based on the standard Student t critical values with n−k degrees of freedom, it 
still has a systematic downward size distortion because estimation of the AR(p) 
parameters introduces an element of uncertainty that is not taken into account by this 
distribution, so that the true distribution of the t-ratio is in fact even more leptokurtic.  
Bartlett (1935) and Quenouille (1952) have suggested instead using a critical value based 
on the t distribution with a reduced “effective degrees of freedom” implied by the 
increase in variance caused by the serial correlation adjustment.  Using the MRE for 𝛽!, 
this would be 𝐸𝐷𝑂𝐹! = 𝑛 − 𝑘 𝑐!,!

!"#/𝑐!,!
!", and similarly for linear combinations of 

coefficients and for the denominator DOF in tests of joint hypotheses.  This modification 
would be worth trying in future research but is not implemented in the present paper. 
 
10.  An MR(p) Unit Root Test 
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 The MR(1) unit root test discussed in Section 7 above may easily be extended to 
the MR(p) case as follows:  1. Estimate AMMφ̂  via (37).  Designate the sum of these 
coefficients by AMMα̂ , which will be our test statistic.  2. Then, compute Moment Ratio 
estimates of the autoregressive coefficients using (41), but with the null hypothesis 
restriction that their sum URα̂  be unity.  3. Convert the resulting restricted standard 
coefficients URφ̂  to ADF form ( URα̂ , URθ̂ ) using (35).  4. Generate the desired number of 
random samples with covariance determined by URθ̂ .  5. Sum these to obtain unit root 
regression errors, and re-estimate the equation with the constructed unit root errors.  6. 
With synthetic data set i, re-estimate AMM

iφ̂  and thence AMM
iα̂ via (35).  The probability of 

obtaining a persistence as low as AMMα̂  under the null of a unit root (and with URθθ ˆ= ) is 
then estimated as the proportion pUR of the AMM

iα̂  that are less than AMMα̂ .  Since the 
simulations do not require solving (41) on each replication, they run quite fast: 10,000 
replications take less than 1.2 seconds in MATLAB on a laptop with a 2.50 GHz Intel® 
Core™ i5-2520M CPU for the case illustrated.   
 
 In the MR(1) case of Section 7, the unit root test size is correct by construction, to 
within Monte Carlo sampling error.  In the MR(p) case, however, the test depends on 
using URθ̂  as a proxy for θ , and therefore may have some size distortion.  This was 
investigated by constructing 10,000 trend line regressions with random walk errors and 
conducting the unit root test described above with 10,000 replications each.   
 

Figure 14 plots the actual size versus the nominal size.  The size distortion is 
generally moderate, though there is some positive distortion for nominal size in the range 
0 – 0.18.  Table 1 tabulates selected values.  For example,  if the nominal size is 5%, the 
test in fact falsely rejects a unit root 6.0% of the time  In order to obtain a true type I error 
of 5%, a nominal size of 4.1% would have to be used.  At a 5% test size, the Monte Carlo 
sampling standard error is approximately 0.2% on both pUR and the estimated actual size.   
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Figure 14 

Monte Carlo size distortion of MR(p) unit root test. 
Trendline regression with random walk errors, n = 100. 

 
 

       Table 1 
    Nominal versus Actual MR(p) Unit Root Test Size. 
Trendline regression with random walk errors, n = 100. 

Nominal Actual s.e. 
.200 .201 .004 
.100 .104 .003 
.050 .060 .002 
.010 .015 .001 
.198 .200 .004 
.089 .100 .003 
.041 .050 .002 
.006 .010 .001 

 
 
11.  A Blended Covariance Matrix 
 
 Figure 15 shows the coverage of a 95% confidence interval for the slope 
coefficient in our illustrative trend line regression, at the top (in blue) when a unit root is 
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imposed and at the bottom (in red) when the MR(p) standard errors are always used, as a 
function of the true AR(1) parameter ϕ of the error DGP, along with a horizontal black 
line indicating the 95% ideal value.  Always imposing a unit root leads to a “95% CI” 
that includes the true value in 10,000 cases out of 10,000, unless ϕ  is 0.95 or higher, and 
therefore is ordinarily far too conservative a strategy.  On the other hand, the pure MR(p) 
estimator, which only uses the unit root formula when the point estimate of the 
persistence is actually unity, can yield far too small a confidence interval.   
 

 
Figure 15 

Coverage of 95% confidence interval for trend line slope coefficient when a unit 
root is imposed always (blue line), or never (red line).  The intermediate green line 
uses a blended covariance matrix based on a linear combination the MR(p) and unit 
root precision matrices, assigning weight wUR = min(1, 10 pUR) to the unconditional 
unit root covariance matrix.  
 
 Ever since the seminal work of Nelson and Plosser (1982), econometric protocol 
has typically been to test for a unit root and then to either ignore the possibility of a unit 
root if it can be rejected at some convention test size, say 5%, or else to impose a unit 
root (typically by re-estimating the equation in first differences) if it cannot be rejected, 
even when the point estimate falls short of a unit root.  However, this practice 
unfortunately produces results that change discontinuously and substantially with the 
data.21   
 

                                                
21  Peron and Yabu (2009) discontinuously switch to a first differenced estimator whenever the estimated 
persistence is within an n-1/2  neighborhood of unity, where n is the sample size.  This has a very similar 
effect to basing the switch on the size of a unit root test.    
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    This discontinuous behavior can easily be corrected, however, simply by blending 
the unit root and non-unit root covariance matrices using a continuous function of the unit 
root test statistic pUR.22  It would be inappropriate to blend the covariance matrices 
themselves directly, since the unconditional unit root covariance matrix indicates infinite 
variance for the intercept.  However, the unconditional unit root precision matrix (inverse 
covariance matrix) merely has a zero in this position, which will not dominate the blend 
unless the unit root case is given a 100% weight.  Therefore our proposed blended 
covariance matrix takes the form:  

  𝐂!"#$% = 𝑤!"𝐂!"!! + 1− 𝑤!" 𝐂!"!!
!!
, 

where 𝐂!" is the unconditional unit root covariance matrix, constructed from MR
0Ĉ .as 

discussed at the end of Section 5.23   
 
 The central green line in Figure 15 shows the coverage using 𝐂!"#$%, with  
  𝑤!" = min  (1, 10𝑝!"). 
This formula effectively embraces the unit root estimate if a unit root cannot be rejected 
at the 10% level, but does not completely ignore it unless it can be absolutely rejected 
with pUR = 0.  It may be seen that this choice of wUR provides a very good correction of 
the coverage for all values of ϕ, and even slightly over-corrects for ϕ between 0.9 and 
0.96.  Replacing the 10 in the formula with 20 (corresponding to embracing the unit root 
if it cannot be rejected at the 5% level) was found to over-correct excessively, while 
replacing it with 5 (corresponding to a 20% test size) was found to under-correct 
consistently. 
 
12.  A Heteroskedasticity-Consistent MR Covariance Matrix 
 
 Although the primary emphasis of the present paper has been the case of 
regressor-conditional homoskedasticity, a Heteroskedasticity and Autocorrelation 
Consistent MR estimator (MR-HAC) may be constructed as a generalization of a slightly 
improved version of the White (1980) HCC estimator:  The original HCC estimator for 
the simple case of OLS regression is  
  11 )'(')'(ˆ −−= XXXFXXXC HCCHCC  
where  
  ( ) .,0;  with , 2 jifeff HCC

iji
HCC
ii

HCC
ij

HCC ≠===F  
This estimator has a downward finite sample bias because the regression residuals 
generally have smaller variance than the errors themselves.  Furthermore, when non-
trivial regressors are present, the residuals will be heteroskedastic even when the errors 
are homoskedastic.  In the benchmark case of regressor-conditional homoskedasticity and 
in the absence of serial correlation, (6) becomes  

                                                
22  Similarly, Bunzel and Vogelsang (2005) smoothly transition from I(0) to I(1) covariance estimators 
using a continuous function of a unit root test, while Harvey et al. (2007)  interpolate I(0) and I(1) t-
statistics using a continuous function of both an ADF unit root test and a KPSS stationarity test.   
23  MATLAB will appropriately invert 𝐂!" despite the ∞ entry in its (1,1) position, but will generate a non-
fatal error message.  This distracting message can  be avoided by replacing the ∞ with 1, inverting the 
resulting proper matrix, and then replacing its (1,1) entry with 0. 
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  ( ),)'E(E 22
ijmσσ === MMεεMee'  

rather than σ2I.  However, both the bias and the induced heteroskedasticity may easily be 
removed by defining the Unbiased HCC estimator (HCC-U) as  
  11 )'(')'(ˆ −−−− = XXXFXXXC UHCCUHCC     (43) 
where   
  ( ) .,0;/  with , 2 jifmeff UHCC

ijiii
UHCC

ii
UHCC

ij
UHCC ≠=== −−−−F  

 
 When serial correlation is present, our strategy will be to first approximate the 
serial correlation with a homoskedastic AR(p) process and to construct its MR estimator 
as above, and then to construct an unbiased and heteroskedasticity-consistent estimator in 
terms of the estimated innovations to the approximating process rather than the residuals 
themselves.   
 

When the approximating homoskedastic AR(p) process is stationary, let Q be the 
lower-triangular Cholesky decomposition of its scaled error autocovariance matrix  G: 
  '/ 2 QQΓG == σ . 
Then the n × 1 extended innovation vector24   
  εQu 1−=  
has covariance matrix σ2In and  

  
( ) ( )

( ).)'(''')'(E
)'()'(Eˆ

11

11

−−

−−

=

ʹ′ʹ′=

XXXQQuuXXX
XXXεεXXXβCov  

A natural estimator of u is   
  MεQeQu 11ˆ −− == , 
which has covariance matrix 

  
( )

( ).22

112

11

ijsσσ

σ

==

ʹ′=

ʹ′=ʹ′
−−

−−

S
QMGMQ

QMΓMQuuE
 

Define  
  ( ) .,0 and /ˆ with , 2 jivsuvv ijiiiiiij ≠===V  

Since ,ˆE 22
iii su σ= IV 2E σ= .  Replacing G, Q, S and V by their MR estimates, we 

define  

   11 )()(ˆ −−− ʹ′
ʹ′

ʹ′ʹ′= XXXQVQXXXC MRMRMRHACMR . 
In the absence of serial correlation, so that IQG == , this MR-HAC estimator reduces 
to the HCC-U estimator (43).   
 
 When the approximating homoskedastic AR(p) process has a unit root, let Z be 
the lower Cholesky decomposition of the scaled covariance matrix H of the error first 
differences as defined in (39): 
                                                
24  This extended innovation vector contains p more terms up front than the truncated innovation vector 
estimated by (42). 
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  ( ) ZZξξH ʹ′=ʹ′= 2/E σ . 
Then the n×1 extended innovation vector is given by  
  ξZu 1−=  
and may be estimated by  
  MNξNZMεNZeNZξZu 1111111ˆˆ −−−−−−− ==== . 
This has covariance matrix 

  
( )

( ).
ˆˆE

22

1112

UR
ij

UR sσσ

σ

==

ʹ′ʹ′ʹ′=ʹ′ −−−−

S
ZNMNMNHNZuu 1

 

Conditional on say 𝜀!, 

  
( ) ( )

( ).|)()(E

|)()(E|ˆ

0
11

0
11

0

ε

εε
−−

−−

ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′=

ʹ′ʹ′ʹ′ʹ′=

XXXNZuNZuXXX
XXXεεXXXβCov

 

Setting  
( ) jivsuvv UR

ij
UR
iii

UR
ii

UR
ij

UR ≠=== ,0 and /ˆ with , 2V , 
and replacing H, Z, SUR and VUR by their MR estimates, we define the unit root MR-
HAC covariance matrix, conditional on say 𝜀!, to be: 

   
.

)()(ˆ 11
0

−−−− ʹ′ʹ′
ʹ′

ʹ′ʹ′= XXXNZVNZXXXC MRMRURMRHACMR
. 

 
 Figures 16 and 17 illustrate the Monte Carlo median bias and 95% CI coverage 
for both the MR(p) and MR-HAC estimators.  Surprisingly, there is essentially no 
difference in performance, despite the here-unnecessary greater generality of MR-HAC. 
 

The comparisons made above in Figures 10 - 13 above between the MR(p) and 
NW-HAC estimators were not entirely fair, since NW-HAC attempts to be more general 
with its RCH correction.  This greater generality naturally costs it precision when the 
additional generality is not really necessary.  The comparisons between MR-HAC and 
NW-HAC in Figures 16 and 17 overcome this objection.   
 

An alternative way to make a fair comparison between the two approaches is to 
eliminate the RCH adjustment in NW-HAC by defining the “NW-AC” (for 
Autocorrelation Corrected) estimator, simply by replacing the eiej in (24) with their 
average value ( )jins ji −−− / .  In other words,  

  11 )'(ˆ')'(ˆ −−−− = XXXHXXXC ACNWACNW     (44) 
where  
  ( ))/(|)K(|ˆ jinsji ji

ACNW −−−= −
−H . 

(Compare equation (27).)  Coverages based on this covariance matrix are identified as 
“NW-AC” in Figures 16 and 17.   
 



 36 

 
 

Figure 16 
Monte Carlo median of estimated variance of slope coefficient, relative to true 
variance, versus true AR(1) parameter of error DGP, for a trend line regression 
with n = 100.  OLS is shown in blue, MR(p) in green, MR-HAC in red, Kiefer-
Vogelsang-Bunzel in cyan, NW-AC in magenta, and NW-HAC in dark yellow. 
 

As expected, NW-HAC, with its here-unnecessary heteroskedasticity adjustment, 
is distinctly outperformed by NW-AC.  Nevertheless, MR(p) clearly outperforms even 
NW-AC except for some negative values of ϕ.     
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Figure 17 

Coverage of 95% confidence interval for the trend slope coefficient with n = 100.  
OLS is shown in blue, MR(p) in green, MR-HAC in red, Kiefer-Vogelsang-Bunzel in 
cyan, NW-AC in magenta, and NW-HAC in dark yellow. 
 
 

The additional lines “KVB” in Figures 16 and 17 are based on the covariance 
estimator of Kiefer, Vogelsang and Bunzel (KVB 2000), as modified by Kiefer and 
Vogelsang (2002):   

11 )'(')'(ˆ −−= XXBXXXXC cKVB ,  
where  
  ( )njinee ji /|)|( −−=B  
and c is an asymptotic correction for bias.  The analytical computations of Abadir and 
Paruolo (1996, 2002) demonstrate that in terms of the above 2002 version of the statistic 
(which differs by a factor of 2 from that in the 2000 paper), c = 5.588756592…  While 
KVB has the advantage that it makes no parametric assumptions about the form of the 
serial correlation, even as an approximation that loses its restrictiveness in large samples, 
it is inconsistent in that the limiting covariance estimate is merely an unbiased random 
variable, rather than a limit in probability.   
 
 It may be seen from Figures 16 and 17 that the KVB estimator is superior to NW-
HAC in terms of median bias for all positive values of ϕ, and in terms of 95% CI 
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coverage for all values of ϕ greater than approximately 0.25.  However, KVB in turn is 
dominated by MR-HAC by either measure for all values of ϕ illustrated.  
 
13.  Real GDP Growth 
 
 Figure 19 shows the logarithm of real US GDP for 1947Q1-2014Q2 (n = 270 
observations), along with a quadratic trendline fit by OLS: 

log yt = a + b(t/4) + c(t/4)2 + εt 
All variables were normalized to 0 in the last observation.  As a consequence, -a is a 
measure of the “output gap” during 2014Q2, and b is a measure of the trend rate of 
growth during the same quarter.  The integer time index was divided by 4 so that 100b 
has units of percent per annum.  The annual rate of change of the growth rate is 2c. 
 

  
Figure 18 

Log Real GDP (blue) and quadratic trend (black).   
All variables normalized to 0 in last quarter. 

 
 Table 2 gives the OLS estimates of the quadratic parameters, along with several 
measures of their standard deviations.  The estimate of the intercept a indicates that the 
“output gap” in 2014Q2 was -4.80% relative to the quadratic trend.  The estimate of the 
linear term b indicates that in the same quarter, the expected growth rate of GDP was 
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down to 2.30% per annum.  The estimate of the quadratic term c indicates that GDP 
growth is falling at a rate of 2.82 (2 × 1.41) percent per annum per century.   
 

Table 2 
log yt = a + b(t/4) + c(t/4)2 + εt 

1947Q1 – 2014Q2   (n = 270 obs.) 
pUR = 0.104 

 
coefficient: 100a 100b c×104 

OLS estimate: 4.796 2.293 -1.408 
s.e.:     
   OLS 0.613** 0.042**  0.064** 
   HAC(4) 1.576** 0.096**  0.127** 
   AR(4) 2.263* 0.155**  0.223** 
   MR(4) 3.294 0.225**  0.323** 
   Blend   ∞ 0.871**  1.144 

 
           †, *, ** indicate t-statistic exceeds nominal 10%, 5%, 1% critical value, resp. 

 
 The OLS standard errors, taken at face value, indicate that all three coefficients 
are strongly significantly different from zero.  The popular Newey-West HAC standard 
errors shown in the next row of Table 2 are 98 to 157% greater than the OLS standard 
errors, when a bandwidth of m = 4 is employed, as determined by (26), but still indicate 
that all three coefficients are strongly significantly different from zero.  However, 
although these standard errors are consistent, in finite samples they are triply biased 
downwards, as noted in Section 4 above, and hence still give pronounced size distortion, 
as demonstrated in the simulations above.   
 
 The standard errors identified as AR(4) in Table 2 were obtained by fitting an 
AR(4) model to the first 4 residual autocorrelations, as shown in Table 3, by means of the 
Yule-Walker equations.  These standard errors are another 44 to 76% larger than the 
HAC standard errors, depending on the coefficient.  With these standard errors, the 
output gap falls from “strongly significant” (test size .01 or lower) to merely “significant” 
(test size .05 or lower), but the other two coefficients remain strongly significant.  
However, these standard errors still understate the uncertainty because residual 
autocorrelations generally show less persistence than the true autoregressive process.   
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Table 3 

Residual autocorrelations and Method of Moments versus  
Moment Ratio autoregressive coefficient estimates for 

regression of Table 2. 
 

lag j rj MM
jϕ̂  𝑟!!" MR

jϕ̂  UR
jϕ̂  

1 0.956  1.251 0.971  1.311  1.434 
2 0.885 -0.212 0.921 -0.255 -0.362 
3 0.800 -0.112 0.860 -0.130 -0.145 
4 0.715  0.009 0.799  0.033  0.073 
α   0.936   0.958  1.000 

 
 The MR(4) coefficients in Table 3 show even more persistence than the AR(4) 
coefficients.  Although the difference in persistence is not great (α = 0.958 versus 0.936), 
the MR(4) standard errors in Table 2 are another 45 to 46% higher than the unadjusted 
AR(4) standard errors.  The “output gap” is now insignificant at even the very weak 10% 
level, but the other two coefficients remain highly significant. 
 
 Although the MR(4) estimate of the persistence α falls short of unity, the unit root 
test statistic pUR = 0.105 so that a unit root cannot be even weakly rejected.  This exceeds 
10%, so that the preferred “blended” covariance matrix simply equals the unconditional 
unit root covariance matrix.  These standard errors are shown in the last line of Table 2.  
Although the terminal growth rate of 2.30% per annum remains highly significant, the 
rate of change of the growth rate is now not even weakly significant.    
 
    In sum, although a quadratic trend line fits US log GDP quite well visually, there 
is no evidence that the estimated “output gap” of -4.80% for 2012Q2 is anything more 
than a statistical illusion.  Even by the pure MR(4) standard error of 3.29%, this value is 
not significantly different from zero.  The preferred blended standard errors are actually 
infinite.  The blended standard errors indicate that the apparent declining trend in the 
growth rate is not statistically significant.  However, the terminal growth rate estimate of 
2.30% per annum remains strongly significant, even using the blended covariance matrix, 
which here is equal to the unconditional unit root covariance matrix and therefore 
assumes no cointegrating relationship.25  
 
14.  Conclusions 
 
 The proposed Moment Ratio Estimator for the autoregressive parameters of the 
errors in an OLS regression is computed from the conventional residual autocorrelation 
coefficients, but gives far less bias bias, and provides coefficient confidence intervals 
with far less size distortion, than the available alternatives.  The estimator is in the spirit 
of the Median Unbiased estimator of Andrews (1993) and McCulloch (2008), but does 
                                                
25  FGLS based on the MR(4) autocovariance matrix would of course be more efficient than OLS and could 
give different results.  The present paper makes no attempt to implement this.  
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not require their Monte Carlo simulation, and provides smaller standard error bias in the 
illustrated case. 
 
 The presence of a unit root in the errors, and therefore the absence of a 
cointegrating relationship, does require reposing the problem, but does not by itself 
indicate that an OLS correlation between the variables is spurious.   
 
 It has been shown that despite their consistency, the popular HAC standard errors 
of Newey and West (1987) can greatly overstate the precision of OLS coefficient 
estimates with sample sizes and serial correlation commonly found in economic studies.  
Although the author does not believe that the regressor-conditional heteroskedasticity 
targeted by the Newey-West HAC estimator is typically as serious a problem in 
econometric data as serial correlation, a “Moment Ratio-HAC” procedure is proposed 
that attempts to incorporate this consideration.  Surprisingly, there is relatively little cost 
in terms of size distortion to employing it when errors are in fact independent of the 
regressors, at least in the simple model considered.   
 
 Although the factorizations that motivate the MR estimator rely on the very strong 
assumption that the errors are actually independent of the regressors, the author is 
optimistic that the MR estimator developed here will have favorable properties when the 
regressors are merely weakly exogenous.  Feasible GLS estimates would provide more 
efficient estimates of the regression coefficients than the OLS estimates considered here, 
but any such GLS estimates should be based on preliminary MR estimates of the 
covariance structure.   
 
The author thanks participants at the 2008 Econometric Society North American Summer 
Meetings, the 14th, 16th, and 17th annual Conference on Computing in Economics and 
Finance, and the Ohio State University and University of Washington Econometrics 
Seminars, several anonymous NSF and journal referees, and in particular Robert 
DeJong, Charles Nelson, Masao Ogaki, Frank Schorfheide, and James Stock for helpful 
comments and suggestions on previous versions of this paper.  All remaining errors and 
omissions remain the responsibility of the author.   
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