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Abstract

Multiple imputation is a commonly used approach to deal with missing

values. In this approach, an imputer repeatedly imputes the missing values

by taking draws from the posterior predictive distribution for the missing val-

ues conditional on the observed values, and releases these completed data sets

to analysts. With each completed data set the analyst performs the analysis

of interest, treating the data as if it were fully observed. These analyses are

then combined with standard combining rules, allowing the analyst to make

appropriate inferences which take into account the uncertainty present due to

the missing data. In order to preserve the statistical properties present in the

data, the imputer must use a plausible distribution to generate the imputed

values. In data sets containing variables with different measurement scales, e.g.

some categorical and some continuous variables, Multivariate Imputation by

Chained Equations (MICE) is a commonly used multiple imputation method.

However, imputations from such an approach are not necessarily drawn from
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a proper posterior predictive distribution. We propose a method to multiply

impute missing values in such data sets by modelling the joint distribution of

the variables in the data through a sequence of generalised linear models, and

use data augmentation methods to draw imputations from a proper posterior

distribution using Markov Chain Monte Carlo (MCMC). We compare the per-

formance of our method with MICE using simulation studies and on a genuine

data set taken from a breast feeding study.

Keywords:Data Augmentation; Latent variable; Missing data; Multiple imputation

1 INTRODUCTION

Missing data are a common problem in many fields and this can complicate statistical

analyses of interest. In addition, failure to handle the missing data appropriately can

result in biased inferences being made from the data. It is thus important to treat the

missing data problem with care. Methods such as complete case analysis or ad-hoc

single imputation strategies, while straight-forward to implement, might not always

be appropriate to use (White & Carlin (2010)).

Multiple imputation is a widely used and appealing approach to deal with missing

values (Rubin (1996), Gelman et al. (2005), Wallace et al. (2010), Moreno-Betancur

& Latouche (2013), Lee et al. (2012) and Wang et al. (2011)). The approach

models the joint distribution of the variables in the data set and, using this model,

imputes missing values from their posterior predictive distribution conditional on

the observed data. This is done m times to yield m multiply imputed data sets.

Analysts can perform the same standard analysis that would have been performed on

fully observed data on each of these completed data sets, and combine the analyses

across data sets using simple combining rules, thereby incorporating the additional

uncertainty due to the missing values.

It is crucial to draw imputations from an appropriate distribution to preserve

relationships present in the data set. There are often complications in drawing impu-
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tations from their posterior predictive distribution: (1) the pattern of missing values

in the data set may not be monotone, and (2) the variables in the data set may be

continuous or categorical. One way to simplify this problem is to model the joint dis-

tribution of variables in the data set through a sequence of generalised linear models

(GLMs) (Lipsitz & Ibrahim (1996), Ibrahim et al. (2005) and Mitra & D.D. (2010))

where the the link function of the GLM is determined by the measurement scale of

the variable being modelled; missing values can then be imputed on a variable by vari-

able basis. This approach has some advantages over multivariate imputation models

(Schafer (1997)), as it is easier to detect model inadequacies in each GLM than hav-

ing to assess the fit over a joint model for the whole dataset. Other benefits of this

modelling approach are noted in Chen & Ibrahim (2001). Still, to draw imputations

with a non-monotone pattern of missing values from their joint posterior predictive

distribution requires Markov Chain Monte Carlo (MCMC) methods (Little & Rubin

(2002)).

In this article we use the decomposition above and data augmentation methods

(Albert & Chib (1993)) to draw missing values from their posterior predictive distri-

bution. In data sets with continuous, binary and ordinal variables such an approach

allows imputations to be drawn within a Gibbs sampler. When data sets include

nominal variables, we develop a Metropolis within Gibbs sampler to impute missing

values with an innovative Metropolis-Hastings proposal distribution. We illustrate

the performance of this imputation strategy on simulated data as well as on a gen-

uine breast feeding study. We also compare the performance of this strategy with

the approach of multiple imputation via chained equations (MICE) in these scenar-

ios. MICE is a commonly used method for imputing missing values in these types of

situations (Raghunathan et al. (2001), Van Buuren (2011)) and so it would be inter-

esting to see if there were any advantages gained by using the more formal modelling

strategy proposed.

The remainder of the article is structured as follows; Section 2 briefly reviews

the approach of multiple imputation to deal with the problem of missing values.
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Section 3 describes the modelling strategy we propose for imputing missing values, and

briefly describes the approach of MICE to impute missing values, Section 4 illustrates

the performance of both approaches in a simulation study, Section 5 illustrates the

performances of both approaches in a genuine breast feeding study, finally Section 6

presents some concluding remarks.

2 Missing data and multiple imputation

In this section we briefly describe the missing data framework and how the multiple

imputation procedure is used for inference. We suppose that we have a n × p data

set X = (x1, . . . ,xp), where xj = (x1,j, . . . , xn,j)
′, j = 1, . . . , p is the j-th variable in

X. Also denote an n × p missing data indictor matrix M = (m1,j, . . . ,mn,j), where

mi,j = 1 indicates xi,j is missing and mi,j = 0 indicates xi,j is observed, for i = 1, . . . , n

and j = 1, . . . , p. We can then denote the observed and missing portions of X by

Xobs = {xi,j : mi,j = 0} and Xmis = {xi,j : mi,j = 1} respectively.

If the conditional distribution for p(M |X,φ) = p(M |Xobs,φ) where φ are the

parameters of the distribution, then the data are said to be missing at random (MAR).

If in fact p(M |X,φ) = p(M |φ) so that the missing values are a random sample in

X, then the data are said to be missing completely at random (MCAR). If data are

not MAR or MCAR then the data are said to be not missing at random (NMAR).

In this article we focus on MAR situations.

We assume that an analyst wishes to use the data to infer about some population

quantity Q, this might be for example the mean of j-th variable or it could be the

coefficient from a regression model for one of the variables on some other subset

of variables. To do this they obtain a point estimate, q, for Q, and an estimate

of its variance u. With the presence of missing data, analysts may no longer be

able to obtain these estimates. Common ad-hoc approaches to dealing with the

missing values, while easy to apply, can have undesirable properties. Complete case

analysis can result in biased estimates when the mechanism is not MCAR, while single
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imputation methods tend to underestimate the uncertainty due to the presence of

missing values (Schafer & Graham (2002), Little & Rubin (2002)), leading to biased

confidence intervals.

In multiple imputation, the missing values are imputed from their posterior pre-

dictive distribution p(Xmis|Xobs), this is done m times to generate m completed data

sets X
(1)
com, . . . ,X

(m)
com. Analysts can then treat each completed data set as a fully ob-

served data set to obtain m sets of point and variances estimates (qk, uk) from each

X
(k)
com, k = 1, . . . ,m. Appropriate inference for Q can then be made following sim-

ple combining rules (Rubin (1987)). Specifically the analyst computes the following

quantities,

q̄m =

∑m
k=1 qk
m

and Tm = (1 + 1/m)

∑m
k=1(qk − q̄)2

m− 1
+

∑m
k=1 uk
m

. (1)

Analysts can use q̄m as a point estimate for Q, and Tm as an estimate of the variance

in q̄m, which incorporates the additional uncertainty due to the presence of missing

values. Confidence intervals can be constructed using a t-distribution with ν degrees

of freedom where

ν = (m− 1)

(
1 +

1

m+ 1

∑m
k=1 uk
m∑m

k=1(qk−q̄)2
m−1

)2

.

(Rubin (1987) and Rubin & Schenker (1986)). Modified degrees of freedom have

been proposed by Rubin & Barnard (1999) when n is small, while Steele et al. (2010)

explore alternative strategies to making inferences when m is small.

A key challenge in the multiple imputation approach is to be able to draw im-

putations from a plausible distribution. Determining an analytical expression for

p(Xmis|Xobs) is not typically possible in most practical situations. It may however,

be possible to model p(X|Θ) where Θ represents a set of (unknown) parameters

in the model. Using this model and a suitable prior distribution, p(Θ), draws from

p(Xmis|Xobs) can be accomplished through Markov chain Monte carlo techniques that
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takes samples iteratively from p(Xmis|Θ(t),Xobs) (to generate a completed data set

X
(t)
com) and p(Θ|(X(t)

mis,Xobs) at each iteration t. Once samples (X
(t)
mis,Θ

(t)) have con-

verged to their stationary distribution, these can be assumed to come from the joint

distribution p(Xmis,Θ|Xobs), and the imputed data sets, X
(t)
com, can be assumed to

have been created using draws from p(Xmis|Xobs). Imputing missing values in this

way is often called data augmentation (Tanner & Wong (1987)). We now describe a

modelling strategy to impute missing values through data augmentation in data sets

containing variables with different measurement scales.

3 MODELLING STRATEGY

In this section we describe our modelling strategy to multiply impute missing values.

First we describe the model when the data set only contains continuous, binary and

ordinal variables; we then extend the model to accommodate nominal variables in the

data set. Lastly we briefly describe an alternative commonly used multiple imputation

strategy based on chained equations.

3.1 Model for continuous, binary and ordinal variables

We model the joint distribution p(X|Θ) using a sequence of conditional regression

models:

p(X|Θ) = p(x1|θ(1))

p∏
k=2

p(xk|x1, . . . ,xk−1,θ
(k))

=
n∏
i=1

{
p(xi,1|θ(1))

p∏
k=2

p(xi,k|xi,1, . . . , xi,k−1,θ
(k))

}
, (2)

where θ(j) represents the vector of parameters in the regression model for xj and Θ =

{θ(j), j = 1, . . . , p}. Such a decomposition has been used by Ibrahim et al. (2005) and

Ibrahim et al. (1999) in imputing missing values; however, these approaches do not

draw imputations from their exact posterior predictive distributions in the case where

6



there are non-monotone patterns of missing data. We propose a modelling strategy

that allows imputations to be drawn from their posterior predictive distributions

through Markov chain Monte Carlo. As we are using a proper factorisation of the joint

distribution to impute missing values, we hereby refer to this modelling strategy for

imputation as the factored regression model (FRM). We assume here that all variables

have some missing values, if there were some variables that were fully observed the

modelling framework would remain the same, and we would condition on these fully

observed variables in every regression model.

We first consider the case when xk is either continuous, binary, or ordinal. If xk

is continuous, we use a normal linear regression model with x1, . . . ,xk−1 as covariates

in the model (for now assuming x1, . . . ,xk−1 are continuous), so that

p(xi,k|xi,1, . . . , xi,k−1,θ
(k)) = N(β

(k)
0 + β

(k)
1 xi,1 + · · ·+ β

(k)
k−1xi,k−1, φ

−1
k ),

where β(k) = (β
(k)
0 , β

(k)
1 , . . . , β

(k)
k−1) are the regression coefficients of the model, φk is

the residual precision, and θ(k) = (β(k), φk).

Secondly, if xk is binary, i.e. xi,k ∈ {0, 1} , i = 1, . . . , n, we introduce a latent vari-

able, denoted by x∗k where x∗k = (x∗1,k, . . . , x
∗
n,k)

′ and model the conditional distribution

of xk through the data augmentation approach suggested by Albert & Chib (1993).

We thus model p(xi,k|xi,1, . . . , xi,k−1,θ
(k)) (again for now assuming x1, . . . ,xk−1 are

continuous) by

xi,k = I(x∗i,k > 0), where

p(x∗i,k|xi,1, . . . , xi,k−1,θ
(k)) = N(β

(k)
0 + β

(k)
1 xi,1 + · · ·+ β

(k)
k−1xi,k−1, 1),

where I(·) is the indicator function, and θ(k) = β(k) = (β
(k)
0 , β

(k)
1 , . . . , β

(k)
k−1).

Thirdly if xk is an ordinal variable, i.e. xi,k ∈ {1, . . . , Jk} , i = 1, . . . , n with

Jk be the number of levels that the observations in xk can take, we can extend the

data augmentation representation above to model the conditional distribution of xk.

7



The distribution p(xi,k|xi,1, . . . , xi,k−1,θ
(k)) (again for now assuming x1, . . . ,xk−1 are

continuous) is then given by

xi,k = jk I(γ
(k)

jk−1
< x∗i,k < γ

(k)

jk
), where

p(x∗i,k|xi,1, . . . , xi,k−1,θ
(k)) = N(β

(k)
0 + β

(k)
1 xi,1 + · · ·+ β

(k)
k−1xi,k−1, 1),

with jk ∈ {1, . . . , Jk}, θ(k) = (β(k),γ(k)), where β(k) = (β
(k)
0 , . . . , β

(k)
k−1) as before, and

γ(k) =
{
γ

(k)

jk
: jk ∈ {1, . . . , Jk}

}
are threshold parameters, with γ

(k)
0 = −∞, γ

(k)
1 = 0

and γ
(k)
Jk

= ∞.

Now, if xi,q, q ∈ {1, . . . , k − 1} is not continuous we replace xi,q with x∗i,q in the

model for p(xi,k|xi,1, . . . , xi,k−1,θ
(k)). Thus, in our modelling strategy, we place a

multivariate normal model on the joint distribution of the continuous variables and

latent variables, which were introduced through the data augmentation representation

proposed by Albert & Chib (1993). Benefits of latent variable in modelling data sets

with these types of variables have been noted by De LEON & Carriègre (2007).

To complete a Bayesian specification we place prior distributions on all parame-

ters. We place independent Jeffreys priors on all regression coefficients and residual

precisions, i.e.

p(β(k)
q ) ∝ 1 for q = 0, . . . , k − 1, k = 1, . . . , p,

and

p(φk) ∝
1

φk
, k = 1, . . . , p.

We also place an improper uniform prior on γ(k) i.e.

p(γ(k)) ∝ I(γ(k) ∈ Ω(k)),

where Ω(k) =
{
γ

(k)

jk
: γ

(k)
0 = −∞ < γ

(k)
1 = 0 < γ

(k)
2 < . . . < γ

(k)
Jk−1

< γ
(k)
Jk

=∞
}

.
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With this modelling approach and choice of prior distributions, the full condi-

tional distribution of all unknowns: missing/latent values and model parameters, are

available in closed form. Draws from the joint distribution of all unknowns can then

be taken using a Gibbs sampler; in particular, the missing values in the data set are

imputed from their full conditional distributions on a variable by variable basis. The

full conditional distributions for all unknowns are presented in Appendix A; here we

only present the full conditional distribution that imputes values for x∗i,k with missing

xi,k (for notational convenience we assume that if xi,k is continuous then xi,k = x∗i,k).

The full conditional distribution for x∗i,k (given mi,k = 1) follows a normal distribution

with mean µ̃i,k and variance φ̃−1
k where

µ̃i,k = φ̃−1
k

{
µi,k

φ−1
k

+

p∑
s=k+1

β
(s)
k

φ−1
s

[
x∗i,s − (µi,s − β(s)

k x∗i,k)
]}

,

and

φ̃−1
k =

(
1

φ−1
k

+

p∑
s=k+1

(β
(s)
k )2

φ−1
s

)−1

,

where µi,k = β
(k)
0 +

∑k−1
j=1 β

(k)
j x∗i,j and µi,s = β

(s)
0 +

∑s−1
j=1 β

(s)
j x∗i,j.

Once we have imputed a value for x∗i,k, we define a function g(x∗i,k) to map each

x∗i,k back to its original measurement scale, where

g(x∗i,k) =


I(x∗i,k > 0) if x∗i,k is binary,

jk I(γ
(k)

jk−1
< x∗i,k < γ

(k)

jk
) if x∗i,k is ordinal, jk ∈ {1, . . . , Jk}

x∗i,k if x∗i,k is continuous.

In this way we create imputed data sets within the Gibbs sampler that samples from

the joint posterior distribution of all unknowns. By only focusing on the imputed

data sets, we are implicitly integrating over the other unknowns in the joint distri-

bution and thus creating imputed data sets from draws of the posterior predictive

distribution.
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3.2 Incorporating nominal variables

Of course in practice, data sets may also contain nominal variables, i.e. variables

that have no implicit ordering to their levels. If the variable only has two levels, then

the variable can be treated as a binary variable and dealt with using the framework

described before; we assume here that a nominal variable implies it has more than

two levels.

Suppose in our data set, xk, k ∈ {1, . . . , p} is a nominal variable. Then we can

use the same decomposition as proposed in Equation 2, with a a multinomial logistic

regression model for xk including covariates x∗1, . . . ,x
∗
k−1 in the model. Specifically,

for any unordered categorical observation xi,k ∈ {1, . . . , Lk}, where Lk is the number

of levels that the observations in xk can take, we model the distribution of xi,k as

p(xi,k = jk|x∗i,1, . . . , x∗i,k−1,θ
(k)

jk
) = π

(k)

i,jk

=
exp(β

(k)

0,jk
+ β

(k)

1,jk
x∗i,1 + · · ·+ β

(k)

k−1,jk
x∗i,k−1)∑Lk

s=1 exp(β
(k)
0,s + β

(k)
1,sx

∗
i,1 + · · ·+ β

(k)
k−1,sx

∗
i,k−1)

,

(3)

where θ
(k)

jk
= (β

(k)

0,jk
, . . . , β

(k)

k−1,jk
) is the vector of parameters in the regression model for

xi,k = jk, jk = 1, . . . , Lk. We set θ
(k)
1 equal to 0 for identifiability and the probability

that xi,k = 1 is thus given by

p(xi,k = 1|x∗i,1, . . . , x∗i,k−1,θ
(k)
1 ) = π

(k)
i,1

=
1

1 +
∑Lk

s=2 exp(β
(k)
0,s + β

(k)
1,sx

∗
i,1 + · · ·+ β

(k)
k−1,sx

∗
i,k−1)

.

We assumed in Equation 3 that x∗i,1, . . . , x
∗
i,k−1 were not nominal; if we conditioned

on a nominal variable x∗i,q = jq (for notational convenience we assume if xi,q is nominal,

taking values jq ∈ {1, . . . , Lq} then xi,q = x∗i,q) for 1 ≤ q ≤ k − 1, then we would

replace β
(k)

q,jk
x∗i,q with

∑Lq

jq=2 β
(k),jq

q,jk
I(x∗i,q = jq) in Equation 3. Note that when k = 1

there are no covariates apart from the intercept in the regression model, and so we
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can write

p(x∗i,1 = j1|θ(1)

j1 ) = π
(1)

j1 ,

where π
(1)

j1 =
exp(β

(1)

0,j1
)

1+
∑L1

s=2 exp(β
(1)
0,s)
, j1 = 1, . . . , L1, and so the distribution of x∗i,1 can be

written using the regular multinomial model.

To complete the Bayesian specification we place a diffuse multivariate normal prior

distribution on θ(k)(k > 1), i.e.

p(θ(k)) = MVN(0,Σ), (4)

where Σ is a diagonal matrix with large entries. For k = 1 we place a Dirichlet prior

on π(1) = (π
(1)
1 , . . . , π

(1)
L1

), i.e.

p(π(1)) ∝ Dirichlet(α1, . . . , αL1),

we set all αj1 = 0.5, j1 = 1, . . . , L1 (corresponding to the Jeffreys prior), another

common choice could be to set all αj1 = 0.

With this extension to our modelling framework, parameters in other conditional

regression models (where the response variable is not nominal) still retain their origi-

nal full conditional distributions and can be sampled accordingly. However, a missing

continuous covariate value or latent value x∗i,q, q ∈ {1, . . . , k − 1}, will not have a

full conditional distribution available in closed form. This is due to their presence in

Equation 3. In order to sample values of x∗i,q from their full conditional distribution, a

Metropolis sampler would need to be specified. To avoid this we decompose the joint

distribution so that if xq is nominal then x1, . . . ,xq−1 are also nominal. This means

that in any multinomial regression model, all the covariates will also be nominal. We

assume there are k nominal variables in our dataset, and in this way a missing x∗i,q,

q ∈ {1, . . . , k} can be imputed from its full conditional distribution in closed form,

11



which is given using Bayes rule by

p(x∗i,q = jq|x∗i,1 = j1, . . . , x∗i,q−1 = jq−1, x∗i,q+1 = jq+1, . . . , x∗i,k = jk, x∗i,k+1, . . . , x
∗
i,p,Θ),

= π̃
(q)
i,jq

where jq ∈ {1, . . . , Lq}, and

π̃
(q)
i,jq =

k∏
b=q

π
(b)

i,jb

p∏
b=k+1

exp

−φb
2

(x̃∗i,b − β(b),jq

q I(x∗i,q = jq)−
(b−1)∑
t=k+1

β
(b)
t x∗i,t)

2


Lq∑
u=1

π(q)
i,u

k∏
b=q+1

π
(b)

i,jb

p∏
b=k+1

exp

−φb
2

(x̃∗i,b − β(b),jq

q I(x∗i,q = u)−
(b−1)∑
t=k+1

β
(b)
t x∗i,t)

2


,

where

x̃∗i,b = x∗i,b − β
(b)
0 −

q−1∑
s=1

Ls∑
js=2

β(b),js

s I(x∗i,s = js)−
k∑

s=q+1

Ls∑
js=2

β(b),js

s I(x∗i,s = js)

Missing continuous covariate values or latent variable values can now be imputed

from their full conditional distributions in closed form as before. This is because they

do not appear as covariates in Equation 3 anymore.

Of course we must also sample the parameters, θ(q) = (θ
(q)
1 , . . . ,θ

(q)
Lq

) with

θ
(q)
jq = (β

(q)
0,jq , β

(q),2
1,jq , . . . , β

(q),L2

1,jq , . . . , β
(q),2
q−1,jq , . . . , β

(q),Lq−1

q−1,jq ), for jq = 1, . . . , Lq, where we

set θ
(q)
1 = 0 for identifiability. Rather than sample θ(1) we instead sample π(1) from

its full conditional distribution; this is because we have used the conjugate Dirichlet

prior for π(1) and so the posterior distribution for π(1) is available in closed form,

see Appendix A for the form of this distribution. However, for q = 2, . . . , k, the

full conditional distributions for θ(q) are not available in closed form, and so we use a

Metropolis-Hastings proposal to sample from these distributions. The full conditional
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distribution for θ(q) is proportional to

n∏
i=1

Lq∏
w=1


exp

β(q)
0,w +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,w I(x∗i,b = jb)


Lq∑
u=1

exp

β(q)
0,u +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,u I(x∗i,b = jb)





I(xi,q=w)

π(θ(q)),

where I(·) is the indicator function and π(θ(q)) is the diffuse prior given by Equation

4.

There is no closed form expression for this full conditional distribution, and so

to sample from this distribution we use a Metropolis-Hastings sampler; thus we de-

velop a Metropolis within Gibbs sampler to impute missing values. One approach

would be to specify an independent multivariate normal proposal distribution for

θ(q), N(µ(cc),Σ(cc)), where the µ(cc) and Σ(cc) are determined using the complete case

likelihood and large sample normal approximations to the posterior (Gelman et al.

(2004)). This would allow the proposal distribution to be fixed over iterations of the

Gibbs sampler. Specifically, the complete case log-likelihood for θ(q), lcc(θ(q); X(cc)) is

given by

lcc(θ(q); X(cc)) =

Lq∑
w=1

n∑
i=1

ln


exp

β(q)
0,w +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,w I(x∗i,b = jb)


Lq∑
u=1

exp

β(q)
0,u +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,u I(x∗i,b = jb)





I(xi,q=w)

I(mi,q = 0),

where I(·) is the indicator function. From this we can use the value of θ(q), that

maximises lcc(θ(q); X(cc)) for µ(cc), and −E[ δ2

δβ
(q)
j,wδβ

(q)

j̃,w̃

lcc(θ(q); X(cc))]−1
θ(q)=µ(cc) for Σ(cc),

i.e. the inverse of the Fisher information matrix for the complete case log-likelihood

evaluated at its maximum likelihood estimate. In practice however, we found that

this proposal distribution performed poorly in proposing plausible values. We thus
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consider an alternative proposal distribution based on the imputed data log-likelihood

at each iteration t, l(θ(q); X
(t)
com). We generate proposals for θ(q) from a N(µ(t),Σ(t))

distribution where µ(t) is the value that maximises l(θ(q); X
(t)
com) and Σ(t) is given by

−E[ δ2

δβ
(q)
j,wδβ

(q)

j̃,w̃

l(θ(q); X
(t)
com)]−1

θ(q)=µ(t) .

In the simulation studies and applications to the breast-feeding study in Sec-

tion 4 and Section 5, values proposed from a N(µ(t),Σ(t)) distribution were accepted

approximately 90% of the time, while proposal values drawn from a N(µ(cc),Σ(cc))

distribution were accepted only approximately 5% of the time. Thus the proposal

distribution based on the imputed data likelihood greatly improves the efficiency of

the Metropolis within Gibbs sampler, even with the additional computational burden

of having to recalculate the proposal density at each iteration. It may seem surprising

at first that even when the sample sizes are relatively large, a normal proposal based

on the complete case likelihood is inefficient. This is because when data are MAR,

parameter estimates based on the complete case likelihood are not closely matched

to estimates that would have been obtained from the complete data likelihood.

Thus, in complete data sets that contain categorical and continuous variables we

have proposed a modelling strategy that allows a Metropolis within Gibbs sampler to

sample all unknowns from their joint posterior distribution, and hence creates imputed

data sets by sampling from the posterior predictive distribution p(Xmis|Xobs). We

note that a related imputation modelling strategy has been developed by Goldstein

et al. (2009) in the context of multilevel models, that uses latent normal random

variables. Our approach differs fundamentally with Goldstein et al. (2009) in the

modelling of nominal variables, and thus also in the proposed method for posterior

computations here. We now briefly describe an alternative strategy that imputes

missing values in these data sets based on chained equations.
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3.3 Multivariate imputation via chained equations

Multivariate imputation via chained equations (MICE) (Van Buuren (2011), Van Bu-

uren et al. (1999)) is a commonly used approach to impute missing values. The

method is also known as sequential regression multiple imputation (SRMI) (Raghu-

nathan et al. (2001)), regression switching (Van Buuren et al. (1999)) and partially

incompatible MCMC (Rubin (2003)).

Like the approach described above imputations are performed on a variable by

variable iterative basis. Suppose D represents our set of fully observed covariates then

in the first iteration (t = 1), missing values in x1 are imputed using the distribution

p1(x1|D), denote the imputed variable x
(t)
1 . Then missing values in x2 are imputed

using p2(x2|x(t)
1 , D) to create an imputed variable x

(t)
2 , this continues sequentially until

an imputed variable x
(t)
p is created from pk(xp|x(t)

1 , . . . ,x
(t)
p−1, D). Flat prior distribu-

tions are used on all model parameters. The form of the model pk(·) depends on the

measurement scale of xk as with FRM, so for example if xk is continuous pk(·) will

take the form of a normal linear regression, while if xk is binary then pk(·) might take

the form of a logistic regression. In subsequent iterations (t > 1) the method cycles

through a sequence of conditional regressions gk(xk|D,x(t)
1 , . . . ,x

(t)
k−1,x

(t−1)
k+1 , . . . ,x

(t−1)
p )

to impute missing values in xk; again, flat prior distributions are used for all model

parameters and the form of gk(·) depends on the measurement scale of xk. Once the

method has cycled through a sufficient number of iterations the imputed values are

used to create an imputed data set; typically the number of iterations used is fairly

modest, often t = 5 or 10. The method is applied at m random starting points to

create m imputed data sets.

Imputations generated from this method are not guaranteed to be draws from the

posterior predictive distribution p(Xmis|Xobs), this is is because draws from each of

gk(xk|D,x(t)
1 , . . . ,x

(t)
k−1,x

(t−1)
k+1 , . . . ,x

(t−1)
p ) are not dervied from any joint posterior dis-

tribution as was the case with FRM. Problems with this modelling approach have

been noted by Gelman & Speed (1993), and limitations have also been noted by White
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et al. (2011). See Azur et al. (2011) for more details about the MICE method and

a discussion of its benefits and drawbacks. It would be interesting to see how FRM

compares with MICE in imputing missing values in data sets containing variables

with different measurement scales. In the next section we illustrate the performance

of both modelling approaches in a simulation study.

4 SIMULATION STUDY

We now illustrate the performance of our imputation modelling strategy through a

simulation. We simulate data sets that contain variables measured on binary, ordinal,

continuous and nominal (greater than two levels) scales. Specifically each data set

contains one binary variable, two ordinal variables, four continuous variables, and

two nominal variables. Variables are simulated in a sequential manner with each

variable conditional on a subset of variables already generated. We then introduce

missing values into all but one of the variables using a MAR mechanism, so that each

incomplete variable has approximately 30% missing values. Specific details of how

we simulated the incomplete dataset are given in Appendix B. We replicate this data

generation process 1000 times to generate 1000 incomplete data sets.

Using the FRM imputation strategy proposed in the previous section we multiply

impute the missing values in each incomplete data set m = 10 times. To generate

m independent imputed data sets, we run m Metropolis within Gibbs samplers, each

with a different starting value, with each sampler resulting in an imputed data set

after convergence. We assume analysts may be interested in making inferences about

various types of estimands arising from both univariate analyses, e.g. population

means of variables or the proportion in the population taking a particular level of

a categorical variable, as well as multivariate analyses, e.g. the coefficient from a

regression model. See Appendix B for a full list of the estimands considered. Using the

m imputed data sets, we apply the MI combining rules described in (1) to construct

point and interval estimates for these estimands. We also construct esimates for the
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same estimands when using MICE to multiply impute the missing values. To impute

missing values using MICE we use the MICE package in R (Van Buuren (2011)).

When implementing FRM or MICE for imputation, we consider two scenarios

representing the state of the imputer’s knowledge about the data generation mecha-

nism. In Scenario 1, we assume the imputer knows the data generation process and

so decomposes the joint distribution of the imputation model as described in (2). The

analysis of the imputed data sets will also respect the ordering of the variables used

to impute the missing values, the analysis model is thus congenial to the imputation

model (Meng (1994)). In Scenario 2, we assume the imputer has no prior knowledge

about how the data was generated; this will be the case in most practical situations.

We thus explore a different ordering of the predictors (to that used to generate the

data) to decompose the joint distribution and impute missing values. The analyses

performed are the same as those in scenario 1 and the analysis models are not con-

genial to the imputation model in scenario 2. Details of the decomposition used and

analysis models considered are given in Appendix B.
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Figure 1: The coverages of estimands in Scenario 1.

Figure 1 presents boxplots of coverages for the estimands using the 95% confidence

intervals constructed from the imputations generated by FRM and MICE over the

1000 datasets. These estimands include those arising from both univariate analyses
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and regression analyses. The first box plot presents coverages when there are no

missing data in the datasets. These coverage are as expected the closest to 0.95. The

second box plot shows the coverages from FRM while the third box plot shows the

coverages obtained from MICE. We see that the proposed method obtains coverages

much closer to 0.95 than the coverages obtained from using MICE.
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Figure 2: Absolute biases in estimates in Scenario 1.

To determine whether these low coverages seen from using MICE are due to a

result in biases in the estimates, in Figure 2 we plot the biases in the estimates

obtained from using FRM against the biases obtained from using MICE. We distin-

guish between estimates arising from univariate analyses and estimates arising from

multivariate analyses, i.e. regression coefficient estimates. We see that the major-

ity of the large biases are those arising from multivariate analyses, and are below the

y = x line, which indicates that MICE tends to obtain regression coefficient estimates

further from the true values than FRM.

Figures 3 and 4 present similar plots from Scenario 2 where we investigate a

different decomposition to the joint distribution (from that used to generate the data)

to impute missing values. We see that FRM again obtains similar gains over MICE in

obtaining coverages much closer to the nominal values, and smaller biases in general.
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Figure 3: The coverages of estimands in Scenario 2.
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Figure 4: Absolute biases in estimates in Scenario 2.
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5 APPLICATION TO A BREASTFEEDING STUDY

We now apply the modelling strategy to impute missing values in a subsample of the

1979 National Longitudinal Survey of Youth (NLSY79). We first describe the data

and the analysis of interest, we then apply our modelling strategy to multiply impute

the missing data in a simulation based on the complete cases, finally we apply the

imputation model on the full data sample.

5.1 NLSY dataset

This survey interviewed a sample of 12,686 youths, aged 14-22, on an annual basis

from 1979. A separate survey began in 1986 to the children born to female respondents

in NLSY79 known as the NLSY79 Children and Young Adults. The data set we

consider here is a subsample of the NLSY79 Children and Young Adults which looked

at the effect of breastfeeding on children’s cognitive development.

The study recorded the Peabody individual assessment math score (PIATM) ad-

ministered at five or six years of age, which we use as the measure of child’s cognitive

development. Following Mitra & Reiter (2011) we dichomotize the variable that mea-

sures duration of breast feeding so as to split units into two groups; the first group,

denoted the control group, comprises those units who were breastfed for less than 24

weeks, while the second group, denoted the treatment group, comprises those units

who were breastfed for 24 weeks or more. The threshold value, 24 weeks, has been

given by the American Academy of Pediatrics (Chantry et al. (2006)) and the World

Health Organization as a minimum standard for breast feeding duration. However,

the analysis could be repeated with different threshold values of the breast feeding

duration variable. We assume that an analyst is interested in determining the re-

lationship between PIATM and the effect of treatment after adjusting for relevant

pre-treatment variables. We adjust on thirteen background pre-treatment variables

that are a subset of those used in the analysis by Mitra & Reiter (2011); these were

the child’s race, whether the spouse or partner was present at birth, child’s sex,
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whether grandparents were present at birth, family income, the number of years be-

tween 1979 and when the mother gave birth, mother’s intelligence as measured by

an armed forces qualification test, mother’s highest educational attainment, child’s

birth weight, number of days that the child spent in hospital, number of days that

the mother spent in hospital, number of weeks that the mother worked in the year

prior to giving birth, and the number of weeks the child was born premature. The

first four variables in this list are categorical. Following Mitra & Reiter (2011) we also

categorised the last two variables due to their highly non-normal distributions (see

Appendix C for histograms of these variables), we categorised the number of weeks

that the mother worked in the year prior to giving birth into four categories, zero

weeks, 1-47 weeks, 47-51 weeks and 52 weeks, we categorised the number of weeks

the child was born premature into three categories, zero weeks, 1-4 weeks, greater

than 5 weeks. This resulted in six categorical variables (comprising binary, ordinal

and nominal variables) and seven continuous variables in the data set, see Appendix

C for more details.

Analysts can fit a regression model using PIATM as the response, and including

treatment plus the other relevant pre-treatment variables as covariates in the model.

The effect of treatment could then be estimated by the regression coefficient for

treatment. Of course, there is the possibility of unmeasured confounders that we have

not adjusted for, which can bias the treatment effect. Hence, we do not seek to make

definitive conclusions about the effect of breastfeeding on cognitive development; we

are simply using this analysis to illustrate the FRM approach to imputing missing

values and making subsequent inferences.

We only include the first born children in the analysis to avoid complications

arising from family nesting which resulted in 4886 units. Several variables in the

study were not fully observed, the response variable contains 48.2% missing values,

number of weeks that the mother worked in the year prior to giving birth contains

33.05% missing values, family’s income contains 25.69% missing values, both number

of days that the child spent in hospital and number of days that the mother spent in
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hospital contain approximately 10.0% missing values, two variables had no missing

values (the number of years between 1979 and when the mother gave birth, and the

child’s race) and the rest of the variables had missing data rates of less than 10% (see

Appendix C for more details). There were 1313 complete cases in this sample.

To impute the missing values we decompose the joint distribution of the vari-

ables in the study using a sequence of regression models as described in Section 3.

Variables without any missing values are conditioned on in every regression model.

The ordering of variables used in the decomposition is given in Appendix C. When a

regression model had a continuous response, we considered Box-Cox transformations

where necessary to improve the normality assumptions required in the imputation

modelling strategy; full details are given in Appendix C. We included the response

variable as the last variable in our decomposition. Inclusion of the response vari-

able in imputation models has been recommended by Little (1992), although we note

that others have suggested the response should not be included (D’Agostino & Rubin

(2000)). We could have repeated the analysis without including the response in the

imputations.

5.2 Simulation involving the complete cases

Before applying FRM to impute missing values in the full sample, we apply the impu-

tation model to a simulation involving the complete case subsample. We reintroduce

missing data patterns in the complete case subsample using the same fractions they

appeared in the full sample. We can then run FRM to multiply impute the missing

values in this incomplete subsample, perform the analysis using the imputed data,

and compare the results to the analysis performed on the subsample prior to in-

troducing missing values. We can also compare results to those from using MICE

to multiply impute the missing values. As MICE uses a full conditional regression

model to impute missing values in each variable, we considered potentially different

Box-Cox transformations for variables to improve the model fit here, more details are
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Table 1: Estimates of regression coefficients and standard errors (standard errors are
in parentheses)

No missing data FRM MICE
Intercept. 86.344 (3.386) 85.430 (6.061) 85.611 (4.897)

Treatment effect. 1.609 (0.948) 1.275 (1.586) 2.218 (1.230)
The number of years between

1979 and when the mother gave birth. -0.025 (0.099) 0.001 (0.182) -0.050 (0.135)
The child’s race-Black -1.244 (1.117) -0.933 (2.078) -0.610(1.495)
The child’s race-Other 2.346 (0.971) 4.159 (1.736) 4.153 (1.384)

Spouse present at birth. -1.595 (1.438) -1.860 (2.879) -1.492 (1.832)
Partner present at birth. -0.159 (1.104) 0.177 (1.818) -0.118(1.603)

Family income. 0.000 (0.000) 0.000 (0.000) 0.000(0.000)
Child’s sex. 0.811 (0.676) 0.130 (1.176) 0.062(0.929)

Grandparents were present at birth. -1.078 (1.151) -1.175 (1.867) -0.335 (1.581)
Mother’s intelligence. 0.081 (0.018) 0.057 (0.032) 0.054(0.026)

Mother’s highest educational. 0.606 (0.212) 0.628 (0.355) 0.556(0.313)
Child’s birth weight. 0.023 (0.021) 0.026 (0.032) 0.027(0.027)

Days that the child spent in hospital. -0.045 (0.052) -0.047 (0.089) -0.046(0.066)
Days that the mother spent in hospital. -0.283 (0.119) -0.387 (0.214) -0.388 (0.172)
Weeks that the mother worked-level 2 1.190 (0.984) 2.194 (1.556) 2.658 (1.666)
Weeks that the mother worked-level 3 0.038 (1.261) 1.653 (2.083) 1.790 (2.191)
Weeks that the mother worked-level 4 2.156 (1.102) 3.392 (2.003) 5.142 (1.778)

Child was born premature-level 2 1.265 (0.919) -0.233 (1.531) -0.137 (1.180)
Child was born premature-level 3 2.009 (2.248) -0.226 (3.718) -0.104(3.068)

given in Appendix C.

Table 1 presents estimates of the regression coefficients and variances obtained

from fitting the regression model for PIATM on treatment and other covariates. The

first column presents estimates prior to introducing missing values, the second column

presents results based on the FRM, the final column presents results from MICE .

From an analysts point of view, the key estimate is the coefficient on treatment, which

gives an estimate of the treatment effect; ideally the estimate from the incomplete

data should be close to that obtained from the fully observed data. We see that the

bias in the treatment effect estimate from using MICE is about 25.3% when compared

to the fully observed estimate, while the bias from using FRM is 20.7%. So, in terms

of estimating the treatment effect, there is a potential benefit from using FRM over

MICE.

In Figure 5 we also plot the absolute biases in the regression coefficient estimates
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Figure 5: Absolute biases in parameter estimates using FRM against MICE

from using FRM, again when compared to the fully observed estimates, against similar

biases from using MICE. We see that the majority of points (11 out of the 20) lie

below the y = x line, indicating that in general using FRM for imputation has

the potential to obtain estimates closer to those obtained from the fully observed

data than using MICE. We investigated how sensitive results were to three different

ordering of variables in the decomposition of the joint distribution, and we found

similar results to those obtained above.

5.3 Application to the full data sample

We now apply FRM and MICE to the full data sample. We used the same decompo-

sition for the joint distribution as was used in the previous section. For FRM we run

m = 50 Gibbs samplers at different starting points each for 20000 iterations to gener-

ate 50 imputed data sets, we also use MICE to generate 50 imputed data sets. Table

2 presents coefficient estimates from the regression model described above using both

sets of imputed data. We see that there is no real significant difference in the treat-

ment effect estimates here; they differ by approximately 0.1 points of the Peabody

score (standard errors from using FRM and MICE are 0.727 and 0.736 respectively).

While we cannot be certain which approach most closely reflects the estimates that
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Table 2: Estimates of regression coefficients and standard errors (standard errors are
in parentheses)

FRM MICE
Intercept. 85.222 (2.578) 84.562(2.605)

Treatment effect. 0.903 (0.727) 1.136 (0.736)
The number of years between

1979 and when the mother gave birth. 0.041 (0.071) 0.038(0.072)
The child’s race-Black -0.549 (0.776) -0.567 (0.811)
The child’s race-Other 3.093 (0.726) 3.176(0.765)

Spouse present at birth. -0.101 (1.227) 0.187(1.092)
Partner present at birth. 0.294 (0.824) 0.061 (0.931)

Family income. 0.000 (0.000) 0.000(0.000)
Child’s sex. 0.740 (0.468) 0.787(0.458)

Grandparents were present at birth. -0.537 (0.806) 0.040 (0.816)
Mother’s intelligence. 0.108 (0.014) 0.108 (0.014)

Mother’s highest educational. 0.580 (0.162) 0.583(0.161)
Child’s birth weight. 0.013 (0.016) 0.016 (0.016)

Days that the child spent in hospital. -0.055 (0.046) -0.057 (0.045)
Days that the mother spent in hospital. -0.104 (0.079) -0.106 (0.090)
Weeks that the mother worked-level 2 0.960 (0.704) 1.004 (0.793)
Weeks that the mother worked-level 3 1.040 (0.925) 0.828 (1.023)
Weeks that the mother worked-level 4 1.898 (0.871) 1.948 (0.890)

Child was born premature-level 2 0.811 (0.659) 0.749 (0.748)
Child was born premature-level 3 0.958 (1.372) 0.596(1.902)

would be obtained from the fully observed data, we saw that FRM tended to obtain

closer estimates than MICE in the complete case simulation. Of course we cannot

also be certain if the treatment effect estimate that would have been obtained from

the fully observed data is a reliable estimate of the true treatment effect, the standard

problems of unmeasured confounding and model mis-specification still apply. We use

this breast feeding study simply to illustrate the potential gains when using FRM to

achieve results closer to the complete data results over MICE.

6 CONCLUDING REMARKS

We have proposed a modelling strategy to impute missing values in data sets that

contain both categorical and continuous variables. When the data comprise only

binary or ordinal variables then the modelling strategy allows imputations to be
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drawn from their posterior predictive distributions using a Gibbs sampler. When

the data also comprise nominal variables then we propose a Metropolis within Gibbs

sampler with a novel Metropolis-Hastings proposal that can efficiently impute the

missing values. This can be seen to reduce the bias in estimates over using MICE.

It would be interesting to explore extending this approach to deal with more

complicated data structures. For example, we could consider incorporating variables

that are inherently nested through the development of multi-level models, variables

are also sometimes part continuous and part discrete, e.g. those that arise from

skip patterns; incorporating these variables would require a more complex modelling

strategy. It would also be interesting to consider broadening the class of models used,

for example using logistic regression models for binary responses, potentially using

computational techniques proposed in Kinney & Dunson (2007).
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8 Appendices

In this section we provide details that complement the material presented in the main

text. Appendix A presents the full conditional distributions needed to implement

FRM for imputing missing values. Appendix B presents details of how the simulation

studies in Section 4 were implemented. Appendix C presents some more details of

the data analysis in Section 5.

8.1 Appendix A - FRM strategy to impute missing values

In this section we present the full conditional distributions in the Metropolis within

Gibbs sampler required to generate imputed datasets using FRM mentioned in Section

3. We first express the joint posterior distribution of all unknowns; these comprise
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model parameters Θ, and the missing and latent values introduced through the data

augmentation, denote the set of all unobserved data as Xunobs. The joint posterior

can then be expressed as,

p(Θ,Xunobs|Xobs) ∝
n∏
i=1

{
p(xi,1|θ(1))p(θ(1))

p∏
j=2

p(xi,j|xi,1, . . . , xi,j−1,θ
(j))p(θ(j))

}
.

We assume that there are k nominal variables and following Section 3, we order

the variables so that x1, . . . ,xk are nominal, each xq, for q = 1, . . . , k taking a set of

possible values 1, . . . , Lq. Variables xk+1, . . . ,xp could then be measured on a binary,

ordinal or continuous scale. We provide expressions for each conditional regression

model p(xi,q|xi,1, . . . , xi,q−1,θ
(q)). First if q = 1 then,

p(xi,1|θ(1)) = Multinomial(π
(1)
1 , . . . , π

(1)
L1

),

where π
(1)

j1 = p(xi,1 = j1|θ(1)) =
exp(β

(1)

0,j1
)∑L1

s=1 exp(β
(1)
0,s)
, j1 = 1, . . . , L1. We place a Dirichlet

prior on π(1), i.e.

p(π(1)) ∝ Dirichlet(α1, . . . , αL1),

we set all αj1 = 0.5, j1 = 1, . . . , L1 (corresponding to the Jeffreys prior), another

common choice could be to set all αj1 = 0. For q = 2, . . . , k,

p(xi,q|xi,1, . . . , xi,q−1,θ
(q)) = Multinomial(π

(q)
i,1 , . . . , π

(q)
i,Lq

),

where

π
(q)
i,jq =

exp

β(q)
0,jq +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,jq I(xi,b = jb)


Lq∑
u=1

exp

β(q)
0,u +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,u I(xi,b = jb)

 ,

31



where jq = 1, . . . , Lq. Let θ(q) = (θ
(q)
1 , . . . ,θ

(q)
Lq

)

with θ
(q)
jq = (β

(q)
0,jq , β

(q),2
1,jq , . . . , β

(q),L2

1,jq , . . . , β
(q),2
q−1,jq , . . . , β

(q),Lq−1

q−1,jq ) for jq = 1, . . . , Lq and we

set θ
(q)
1 = 0 for identifiability . We specify the prior for each θ

(q)
jq , j

q = 2, . . . , Lq by

p(θ(q)) = MVN(0,Σ).

where Σ is a diagonal matrix with large entries.

For xq, q ∈ {k + 1, . . . , p} is continuous (for now assuming xk+1, . . . ,xq−1 are

continuous),

p(xi,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)) = N(β

(q)
0 +

k∑
b=1

Lb∑
jb=2

β
(q),jb

b I(xi,b = jb) +

q−1∑
b=k+1

β
(q)
b xi,b, φ

−1
q ).

We specify the standard non-informative prior for θ(q),

p(θ(q)) = p(β(q), φq) ∝ φ−1
q .

For xq, q ∈ {k + 1, . . . , p} is binary (for now assuming xk+1, . . . ,xq−1 are contin-

uous),

xi,q = I(x∗i,q > 0), where

p(x∗i,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)) = N(β

(q)
0 +

k∑
b=1

Lb∑
jb=2

β
(q),jb

b I(xi,b = jb) +

q−1∑
b=k+1

β
(q)
b xi,b, 1).

We specify a prior for θ(q) by,

p(θ(q)) = p(β(q)) ∝ 1.

For xq, q ∈ {k+1, . . . , p} is ordinal taking values in {1, . . . , Jq} (for now assuming
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xk+1, . . . ,xq−1 are continuous),

xi,q = jq I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq ), where

p(x∗i,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)) = N(β

(q)
0 +

k∑
b=1

Lb∑
jb=2

β
(q),jb

b I(xi,b = jb) +

q−1∑
b=k+1

β
(q)
b xi,b, 1),

where the γ
(q)
jq are threshold values, with γ

(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
Jq

= ∞, for jq

∈ {1, ..., Jq}.

We also specify a prior for θ(q) by,

p(θ(q)) = p(β(q),γ(q)) = p(β(q)|γ(q))p(γ(q)),

where

p(β(q)) ∝ 1.

and we place an improper uniform prior on γ(q) i.e.

p(γ(q)) ∝ I(γ(q) ∈ Ω(q)),

where Ω(q) =
{
γ

(q)
jq : γ

(q)
0 = −∞ < γ

(q)
1 = 0 < γ

(q)
2 < . . . < γ

(q)
Jq−1

< γ
(q)
Jq

=∞
}

.

If xi,q, q ∈ {k + 1, . . . , q − 1} is not continuous then we replace xi,q with x∗i,q in

the model for p(xi,q|xi,1, xi,2, . . . , xi,q−1,θ
(q)). For notational convenience when xi,q is

nominal or continuous we assume xi,q = x∗i,q, for q ∈ {1, . . . , p}.

With this model and prior specification we can present the full conditional dis-

tribution required to impute missing values in the Metropolis within Gibbs sampler.

Following Schafer (1997) we present this a data augmentation scheme and so first

present the “I-steps” followed by the “P-steps”.

In the “I-steps”, conditional on parameter values, first impute missing nominal
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values x∗i,q from the following discrete distribution

p(x∗i,q = jq|x∗i,1 = j1, . . . , x∗i,q−1 = jq−1, x∗i,q+1 = jq+1, . . . , x∗i,k = jk, x∗i,k+1, . . . , x
∗
i,p,Θ)

= π̃
(q)
i,jq ,

where jq ∈ {1, . . . , Lq}, and

π̃
(q)
i,jq =

k∏
b=q

π
(b)

i,jb

p∏
b=k+1

exp

−φb
2

(x̃∗i,b − β(b),jq

q I(x∗i,q = jq)−
(b−1)∑
t=k+1

β
(b)
t x∗i,t)

2


Lq∑
u=1

{
π

(q)
i,u

k∏
b=q+1

π
(b)

i,jb

}
p∏

b=k+1

exp

−φb
2

(x̃∗i,b − β(b),jq

q I(x∗i,q = u)−
(b−1)∑
t=k+1

β
(b)
t x∗i,t)

2

 ,

where

x̃∗i,b = x∗i,b − β
(b)
0 −

q−1∑
s=1

Ls∑
js=2

β(b),js

s I(x∗i,s = js)−
k∑

s=q+1

Ls∑
js=2

β(b),js

s I(x∗i,s = js),

Next impute missing continuous values x∗i,q or latent values x∗i,q with missing xi,q

from,

p(x∗i,q|x∗i,1, . . . , x∗i,q−1, x
∗
i,q+1, . . . , x

∗
i,k, x

∗
i,k+1, . . . , x

∗
i,p,Θ) = N(µ̃i,q, φ̃

−1
q ),

where

µ̃i,q = φ̃−1
q

{
µi,q
φ−1
q

+

p∑
s=q+1

β
(s)
q

φ−1
s

[
x∗i,s − (µi,s − β(s)

q x∗i,q)
]}

,

and

φ̃−1
q =

(
1

φ−1
q

+

p∑
s=q+1

(β
(s)
q )2

φ−1
s

)−1

,

where µi,q = β
(q)
0 +

∑k
b=1

∑Lb

jb=2 β
(q),jb

b I(x∗i,b = jb) +
∑q−1

b=k+1 β
(q)
b x∗i,b and

µi,s = β
(s)
0 +

∑k
b=1

∑Lb

jb=2 β
(s),jb

b I(x∗i,b = jb) +
∑s−1

b=k+1 β
(s)
b x∗i,b.
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Next impute latent values x∗i,q with observed ordinal variable xi,q from,

p(x∗i,q|x∗i,1, . . . , x∗i,q−1, x
∗
i,q+1, . . . , x

∗
i,p,Θ) =

I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq )N(µ̃i,q, φ̃

−1
q )

Φ(
γ
(q)
jq
−µ̃i,q
φ̃−1
q

)− Φ(
γ
(q)
jq−1

−µ̃i,q
φ̃−1
q

)

,

which is a normal distribution N(µ̃i,q, φ
−1
q ) truncated to (γ

(q)
jq−1, γ

(q)
jq ).

Next impute latent values x∗i,q with observed binary variable xi,q from,

p(x∗i,q|x∗i,1, . . . , x∗i,q−1, x
∗
i,q+1, . . . , x

∗
i,p,Θ) =

I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq )N(µ̃i,q, φ̃

−1
q )

Φ(
γ
(q)
jq
−µ̃i,q
φ̃−1
q

)− Φ(
γ
(q)
jq−1

−µ̃i,q
φ̃−1
q

)

,

which is a normal distribution N(µ̃i,q, φ
−1
q ) truncated to (γ

(q)
jq−1, γ

(q)
jq ) where the γ

(q)
jq

are threshold values, with γ
(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
2 = ∞.

Once we have imputed values for x∗i,q (with missing xi,q), we define a function

g(x∗i,q) to map each x∗i,q back to its original measurement scale, and thus create an

imputed data set. The mapping function is defined as follows,

g(x∗i,q) =



I(x∗i,q > 0) if x∗i,q is binary,

jq I(γ
(q)
jq−1 < x∗i,q < γ

(q)
jq ) if x∗i,q is ordinal, jq ∈ {1, . . . , Jq} ,

x∗i,q if x∗i,q is continuous,

x∗i,q if x∗i,q is nominal, jq ∈ {1, . . . , Lq} ,

Denote an imputed value for xi,q by x
(t)
i,q at iteration t, and an imputed data set

at iteration t by X
(t)
com. In the “P-steps”, conditional on an imputed data set, first

sample values for θ(1) from a Dirichlet (α) distribution with parameters

α =

(
α1 +

n∑
i=1

I(xi,1 = 1), α2 +
n∑
i=1

I(xi,1 = 2), . . . , αL1 +
n∑
i=1

I(xi,1 = L1)

)′
.

Next propose values for θ(q) = (θ
(q)
1 , . . . ,θ

(q)
Lq

)

with θ
(q)
jq = (β

(q)
0,jq , β

(q),2
1,jq , . . . , β

(q),L2

1,jq , . . . , β
(q),2
q−1,jq , . . . , β

(q),Lq−1

q−1,jq ), for jq = 1, . . . , Lq using

a Metropolis-Hastings step, where we set θ
(q)
1 = 0 for identifiability. We consider a
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proposal distribution based on the imputed data log-likelihood at each iteration t,

l(θ(q); X
(t)
com), which can be expressed as

l(θ(q); X(t)
com) =

Lq∑
w=1

n∑
i=1

ln


exp

β(q)
0,w +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,w f(x
(t)
i,b , xi,b,mi,b)


Lq∑
u=1

exp

β(q)
0,u +

q−1∑
b=1

Lb∑
jb=2

β
(q),jb

b,u f(x
(t)
i,b , xi,b,mi,b)





I(xi,q=w)

,

where f(x
(t)
i,b , xi,b,mi,b) = (I(x

(t)
i,b = jb)mi,b + I(xi,b = jb)(1 − mi,b)), with mi,b is a

missing data indicator with mi,b = 1 indicating xi,b is missing and mi,b = 0 indicating

xi,b is observed. We generate proposals for θ(q) from a normal distribution N(µ(t),Σ(t))

, and µ(t) is the value that maximises l(θ(q); X
(t)
com) and Σ(t) is given by

−E[ δ2

δβ
(q)
j,wδβ

(q)

j̃,w̃

l(θ(q); X
(t)
com)]−1

θ(q)=µ(t) .

Next sample values for θ(q) = (β(q), φq), q ∈ {k + 1, . . . , p} when x∗q is continuous

from the joint posterior distribution of

β(q) = (β
(q)
0 , β

(q),2
1 , . . . , β

(q),L1

1 , . . . , β
(q),2
k , . . . , β

(q),Lk

k , β
(q)
k+1, . . . , β

(q)
q−1) and φq given by

p(β(q), φq|X(t)
com) = p(β(q)|φq,X(t)

com)p(φq|X(t)
com),

where

p(φq|X(t)
com) = Gamma

(
n− q

2
,
RSS

2

)
,

and

p(β(q)|φq, X̃q,x
∗
q) = N(β̂(q), (X̃′qX̃qφq)

−1),
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with

β̂(q) = (X̃′qX̃q)
−1X̃′qx

∗
q,

and

RSS = (x∗q − X̃qβ̂
(q))′(x∗q − X̃qβ̂

(q)),

and X̃q = (x̃1,q, . . . , x̃n,q)
′, where

x̃i,q = (1, I(x∗i,1 = 2), . . . , I(x∗i,1 = L1), . . . , I(x∗i,k = 2), . . . , I(x∗i,k = Lk), x
∗
i,k+1, . . . , x

∗
i,q−1)

for i = 1, . . . , n.

Next sample values for θ(q) = (β(q)), q ∈ {k + 1, . . . , p} when xq is binary from

p(β(q)|X̃q,x
∗
q) = N(β̂(q), (X̃′qX̃q)

−1),

where β̂(q) and X̃q are as above.

Next sample values for θ(q) = (β(q),γ(q)), q ∈ {k + 1, . . . , p} when xq is ordinal.

We sample β(q) from

p(β(q)|X̃q,x
∗
q) = N(β̂(q), (X̃′qX̃q)

−1),

where β̂(q) and X̃q are as above. We then update the threshold values. The full

conditional distribution of the threshold values γ
(q)
jq for jq ∈ {1, . . . , Jq} is uniformly

distributed on the interval

[
max

{
max

{
x∗i,q : xi,q = jq

}
, γ

(q)
jq−1

}
,min

{
min

{
x∗i,q : xi,q = jq + 1

}
, γ

(q)
jq+1

}]
,

where γ
(q)
0 = −∞, γ

(q)
1 = 0 and γ

(q)
Jq

= ∞, for jq ∈ {1, . . . , Jq}.
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8.2 Appendix B - Simulation study in Section 4

In this section we present details of the simulation study in Section 4. We first

describe how we simulated an incomplete data set. We then describe how we impute

the missing data under the two scenarios representing the state of the imputer’s

knowledge, and the analyses we considered.

Data generation

We simulate xi,1, xi,2, . . . , xi,9, i = 1, . . . , 1000 in the following way:

xi,1 simulated from a discrete distribution taking values ∈ {1, 2, 3}

with probabilities 0.3, 0.4 and 0.3 respectively.

xi,2 ∼ p(xi,2|xi,1,θ(2)),

xi,3 ∼ N(5, 1),

x∗i,4 ∼ N(1 + 2xi,3, 1),

xi,4 = I(x∗i,4 > 11)

x∗i,5 ∼ N(2 + 5 ∗ I(xi,1 = 2) + I(xi,1 = 3) + xi,3, 2),

xi,5 = j5 I(c
(5)
j−1 < x∗i,5 < c

(5)
j ), j5 = 1, . . . , 4

xi,6 ∼ N(8, 3),

xi,7 ∼ N(2 + 2xi,6 − xi,3, 5),

x∗i,8 ∼ N(3 + 2xi,7, 5),

xi,8 = j8 I(c
(8)
j−1 < x∗i,8 < c

(8)
j ), j8 = 1, . . . , 8

xi,9 ∼ N(1 + 4 ∗ I(xi,2 = 2)− 3 ∗ I(xi,2 = 3) + 5 ∗ I(xi,2 = 4) + 2 ∗ I(xi,2 = 5) + 5x7, 3),

where

p(xi,2 = j2|xi,1,θ(2)) =
exp(θ

(2)

0,j2 + θ
(2)

1,j2I(xi,1 = 2) + θ
(2)

2,j2I(xi,1 = 3))∑5
s=1 exp(θ

(2)
0,s + θ

(2)
1,sI(xi,1 = 2) + θ

(2)
2,sI(xi,1 = 3))
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where j2 ∈ {1, . . . , 5} and θ
(2)
0,1 = θ

(2)
1,1 = θ

(2)
2,1 = 0 for identifiability, θ

(2)
0,2 = 1, θ

(2)
1,2 =

−1, θ
(2)
2,2 = −2, θ

(2)
0,3 = −1, θ

(2)
1,3 = 3, θ

(2)
2,3 = 1, θ

(2)
0,4 = −1, θ

(2)
1,4 = 2, θ

(2)
2,4 = 2, θ

(2)
0,5 =

−1, θ
(2)
1,5 = 2, θ

(2)
2,5 = 1, and I(·) is the indicator function. The threshold parameters

c
(5)
0 = −∞, c(5)

1 = 6.962, c
(5)
2 = 9.292, c

(5)
3 = 11.59, c

(5)
4 = ∞ and c

(8)
0 = −∞, c(8)

1 =

−2, c
(8)
2 = 4, c

(8)
3 = 9, c

(8)
4 = 13, c

(8)
5 = 17, c

(8)
6 = 22, c

(8)
7 = 28, c

(8)
8 =∞.

We introduce missing values into variables x2, . . . ,x9 in the following way:

p(mi,2 = 1) = 0.3 (MCAR),

p(mi,3 = 1) =

{
exp(1− 5 ∗ I(xi,2 = 2)− 4 ∗ I(xi,2 = 3))

1 + exp(1− 5 ∗ I(xi,2 = 2)− 4 ∗ I(xi,2 = 3))

}
(1−mi,2) (MAR),

p(mi,4 = 1) =

{
exp(−5.5 + 5xi,3)

1 + exp(−5.5 + 5xi,3)

}
(1−mi,3) (MAR),

p(mi,5 = 1) =

{
exp(−5.5 + 5xi,3)

1 + exp(−5.5 + 5xi,3)

}
(1−mi,3) (MAR),

p(mi,6 = 1) = 0.3 (MCAR)

p(mi,7 = 1) =

{
exp(60− 8xi,6)

1 + exp(60− 8xi,6)

}
(1−mi,6) (MAR),

p(mi,8 = 1) = 0.3 (MCAR),

p(mi,9 = 1) =

{
exp(6− xi,7)

1 + exp(6− xi,7)

}
(1−mi,7) (MAR),

where mi,j be the missing data indicator for xi,j, where mi,j = 1 indicates xi,j is

missing and mi,j = 0 indicates xi,j is observed.

Imputation and analysis

In scenario 1 we impute the missing values using the same order as the data generation

process, we then obtain the following estimates from an analysis of the imputed

datasets:

• Estimates of the means of x6,x7,x9.

• Estimates of the proportion of units with x2 = 1, . . . , 5, x4 = 1, x5 = 1, . . . , 4, x8 =

1, 2, . . . , 8
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• Estimates of the regression coefficients of a linear regression from the following

regression models: p(x2|x1), p(x7|x6,x3), p(x9|x2,x7).

In scenario 2 we impute the missing values using a different ordering to the pre-

dictors: x2,x1,x4,x5,x8,x6,x3,x9,x7. We obtain estimates from the same analyses

as above.

8.3 Appendix C - Breast-feeding data analysis

In this section we present the details of the breast-feeding data analysis mentioned in

Section 5. We first describe the ordering of the variables we used in the imputation.

As noted in Section 3, any variable that is fully observed will be conditioned on in

every regression model and so can be placed at the beginning in the order. We then

describe what transformations were applied to the variables in the study.

Description of variables

The ordering of the variables were as follows:

• x1 - The number of years between 1979 and when the mother gave birth. (Con-

tinuous, fully observed.)

• x2 - The child’s race. (Nominal: 1-Hispanic, 2-Black, 3-Others, fully observed.)

• x3 - Whether the spouse or partner was present at birth. (Nominal: 1-Partner

present, 2-Spouse present, 3-Absent, 3.54% missing values.)

• x4 - Family income. (Continuous, 25.69% missing values.)

• x5 - Breast-feeding duration. (Treatment variable, binary: 0-Control, 1-Treated,

6.24% missing values.)

• x6 - Child’s sex. (Binary: 0-Male, 1-Female, 0.1% missing values.)

• x7 - Whether grandparents were present at birth. (Binary: 0-Absent, 1-Present,

3.44% missing values.)
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• x8 - Mother’s intelligence as measured by an armed forces qualification test.

(Continuous, 5.16% missing values.)

• x9 - Mother’s highest educational attainment. (Continuous, 3.70% missing val-

ues.)

• x10 - Child’s birth weight. (Continuous, 3.64% missing values.)

• x11 - Number of days that the child spent in hospital. (Continuous, 10.36%

missing values.)

• x12 - Number of days that the mother spent in hospital. (Continuous, 10.66%

missing values.)

• x13 - Number of weeks that the mother worked in the year prior to giving birth.

(Ordinal: 1-Not worked, 2-Worked for 1 to 47 weeks, 3-Worked for 48 to 51

weeks, 4-Worked for 52 weeks, 33.05% missing values.)

• x14 - Number of weeks the child was born premature. (Ordinal: 1-not preterm

(zero weeks), 2- moderately preterm (one to four weeks), and very preterm (five

or more weeks), 7.78% missing values.)

• x15 - Peabody individual assessment test math score (PI-ATM) administered

to children at 5 or 6 years of age. (Continuous, 48.2% missing values.)

Transformations applied to the variables

We categorize the number of weeks the child was born premature into three levels:

1-not preterm (zero weeks), 2-moderately preterm (one to four weeks), and 3-very

preterm (five or more weeks), with threshold values determined from guidelines of the

March of Dimes (www.marchofdimes.com). The reason we categorize the variable is

because it has a very large spike at zero weeks, as shown in Figure 6.

From Figure 7 we notice that the the number of weeks that the mother worked

in the year prior to giving birth has a distinct U shaped histogram, which would be
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Figure 6: Histogram of weeks mother worked in the year before giving birth for subjects
in the breast-feeding study.

difficult to capture with a normal model. Hence, we categorize the variable into four

levels: 1-not worked at all, 2-worked between 1 and 47 weeks, 3-worked 48-51 weeks,

and 4-worked all 52 weeks.

When implementing FRM, to ensure that the residuals of the normal linear re-

gression models (where the response in the regression model is continuous) satisfy the

normal assumption, we transform the response variable in these regression models,

where the transformation is given by the Box & Cox procedure (Box & Cox (1964)).

We perform the following transformations: we take the natural log of family’s income

(x4), number of days that the child spent in hospital (x11) and number of days that

the mother spent in hospital (x12), we square child’s birth weight (x10) and Peabody

individual assessment test math score (PI-ATM) (x15), we take the square root of

mother’s intelligence as measured by an armed forces qualification test (x8).

The following diagnostic plots present normal probability plots, before and after

the transformation, of the residuals in regression models where a transformation of
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Figure 7: Histogram of weeks preterm for subjects in the breast feeding study.

the response was deemed necessary.

When implementing MICE, as each regression model to impute missing values

conditions on all other variables in the data we considered potentially different Box-

Cox transformations to improve normality assumptions, and hence improve the model

fit. All but one variable was transformed in the same way described above. Child’s

birth weight (x10), which was squared when applying FRM, no longer required a

transformation when applying MICE.
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Figure 8: Q-Q plot of the residuals in the linear regression model of family income, x4

before(left) and after(right) transformation (natural log).
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Figure 9: Q-Q plot of the residuals in the linear regression model of mother’s intelligence
as measured by an armed forces qualification test, x8 before(left) and after(right) transfor-
mation (square root).
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Figure 10: Q-Q plot of the residuals in the linear regression model of child’s birth weight,
x10 before(left) and after(right) transformation (square).
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Figure 11: Q-Q plot of the residuals in the linear regression model of number of days that
the child spent in hospital, x11 before(left) and after(right) transformation (natural log).
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Figure 12: Q-Q plot of the residuals in the linear regression model of number of days that
the mother spent in hospital, x12 before(left) and after(right) transformation (natural log).
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Figure 13: Q-Q plot of the residuals in the linear regression model of Peabody individ-
ual assessment test math score (PI-ATM), x15 before(left) and after(right) transformation
(square).
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