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Abstract

To avoid specification of the error distribution in a regression model, we propose
a general nonparametric scale mixture model for the error distribution. For fitting
such mixtures, the predictive recursion method is a simple and computationally
efficient alternative to existing methods. We define a predictive recursion-based
marginal likelihood function, and estimation of the regression parameters proceeds
by maximizing this function. A hybrid predictive recursion–EM algorithm is pro-
posed for this purpose. The method’s performance is compared with that of existing
methods in simulations and real data analyses.
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1 Introduction

Consider the standard linear regression model,

y = Xβ + ε,

where y = (y1, . . . , yn)
⊤ is a n × 1 vector of response variables, X is a n × p matrix of

predictor variables, with ith row xi = (xi1, . . . , xip), β is a p × 1 vector of regression
coefficients, and ε = (ε1, . . . , εn)

⊤ is an n × 1 vector of independent and identically
distributed (iid) errors with common density f . In classical linear model applications,
one assumes that f is a normal distribution with mean zero and unknown variance σ2.
In this case, the ordinary least squares method provides the optimal estimates of (β, σ2).
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However, if f happens to be non-normal, in particular, if f has heavier-than-normal tails,
then the accuracy of the ordinary least squares solutions is lost.

When the error density f may be non-normal, one might consider an alternative
to the normal model and ordinary least squares. Model-free alternatives based on M-
estimation (e.g., Huber 1973, 1981) include methods based on minimizing an objective
function different from the sum of squared residuals, such as least absolute deviation, or
L1 regression. Surveys of these standard techniques are given in Rousseeuw and Leroy
(1987) and Ryan (2009). If a likelihood-based method is preferred, then one common
approach is to model the errors by a heavy-tailed Student-t distribution; see, for example,
Lange et al. (1989), Liu (1996), and Pinheiro et al. (2001). The standard implementation
of this approach uses the expectation–maximization (EM) algorithm (Dempster et al.
1977), which is based on a representation of the Student-t distribution as a scale mixture
of normals (Andrews and Mallows 1974; West 1987). The goal of this paper is to explore
a more general version of this latter heavy-tailed model.

Motivated by the Student-t’s normal scale mixture representation, we consider a more
general regression model specified by an arbitrary normal scale mixture for the error
distribution. Specifically, we write the error density f as a mixture

f(ε) =

∫
∞

0

N(ε | 0, u2) Ψ(du), (1)

where Ψ is an unspecified mixing distribution supported on (0,∞). By symmetry of the
normal kernel, the density f is symmetric. Moreover, (1) contains both the normal model,
N(0, σ2) and the Student-t model, tν(0, σ), as special cases, corresponding to Ψ a point-
mass at σ and a scaled inverse chi-square distribution, respectively. Since Ψ is completely
unspecified, an additional scale parameter would not be identifiable so, without loss of
generality, Ψ fully characterizes the error distribution in our regression model.

To fit this new semiparametric regression model, estimation of both β and Ψ is re-
quired and, even though the mixing distribution Ψ is a nuisance parameter, care is needed.
Maximum likelihood and Bayes approaches can be developed, and we discuss the com-
putational challenges faced by these in Section 2.1. The main contribution of this paper
is a computationally efficient alternative, an extension of the predictive recursion (PR)
method discussed in Newton et al. (1998), Newton (2002), Ghosh and Tokdar (2006),
Martin and Ghosh (2008), Tokdar et al. (2009), and Martin and Tokdar (2009). The PR
algorithm was originally designed for fast nonparametric estimation of a mixing distribu-
tion of a mixture model, but Martin and Tokdar (2011) developed a PR-driven marginal
likelihood approach for estimating structural parameters in semiparametric mixture mod-
els; see Section 2.2 for a brief review of the PR algorithm and related methods. Previous
applications of PR focused on location mixtures, and the special scale mixture formula-
tion in this paper requires new ideas. After writing down the PR marginal likelihood for
the semiparametric regression problem, in Section 3.2 we propose a hybrid PR–EM strat-
egy that takes advantage of the latent scale parameter structure in the mixture model (1).
This hybrid algorithm is fast and easy to compute, and in Section 3.3 we provide some
theoretical support for its ascent property. Some remarks on the robustness of the PR
method are given in Section 3.4. Section 4 demonstrates numerically that our proposed
approach provides accurate estimation of β compared to existing methods across a range
of different error distributions. Section 5 provides some concluding remarks.

2



−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β
(S

ca
le

d)
 L

ik
el

ih
oo

d

Figure 1: Plots of the (scaled) likelihood functions: profile likelihood based on nonpara-
metric maximum likelihood (gray) and PR marginal likelihood (black).

2 Background

2.1 Challenges faced by standard approaches

There are two natural likelihood-based approaches that one could consider for fitting the
semiparametric regression model with error distribution (1). The first is via nonparamet-
ric maximum likelihood. Start by writing a joint likelihood function for (β,Ψ):

L(β,Ψ) =

n∏

i=1

∫
∞

0

N(yi − xiβ | 0, u2)Ψ(du).

Next, define a profile likelihood Lp(β) = L(β, Ψ̂β), where Ψ̂β is the conditional maximum
likelihood estimator of Ψ for the given β. Then Lp(β) can be treated like a usual likelihood
function, to produce estimators, tests, or confidence regions for β. Existing algorithms for
nonparametric maximum likelihood estimation of mixing distributions (e.g., Wang 2007)
can be used to compute Ψ̂β and, in turn, the profile likelihood Lp(β). We claim that
this profile likelihood function is generally rough, so optimization over β is unstable and
computationally expensive. To justify this claim, we consider a simple special case of the
regression problem with no predictor variables, i.e., iid data with location β. In this case,
using Wang’s algorithm, we can easily evaluate and plot the profile likelihood function.
An independent sample of size n = 100 was drawn from a Student-t distribution with
df = 2, centered at β = 0, and the corresponding likelihood functions for β are plotted in
Figure 1. The profile likelihood has a number of local modes, so numerical optimization is
unstable. On the other hand, the likelihood function for our proposed method, described
in Section 3, is smooth with one global mode, so optimization is fast and easy.

A second approach is based on nonparametric Bayes, where a prior distribution for
Ψ is introduced. A reasonable choice would be to take a Dirichlet process prior for Ψ
(e.g., Ferguson 1973; Lo 1984; Müller and Quintana 2004). The idea is to integrate out Ψ
from the joint likelihood L(β,Ψ) with respect to the prior, leaving a marginal likelihood
function Lm(β) for β. Markov chain Monte Carlo algorithms (e.g., Escobar and West
1995; MacEachern and Müller 1998; Neal 2000; Carvalho et al. 2010), as well as software
(e.g., Jara et al. 2011), are available for evaluating this marginal likelihood but this is too
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expensive because each marginal likelihood evaluation requires its own Monte Carlo run,
and optimization requires several such runs. One can avoid repeatedly running Monte
Carlo if β is assigned a proper prior. That is, one can employ the technique in Chib
(1995) to get a marginal likelihood for β from a single, joint Monte Carlo run for (β,Ψ).
This single joint Monte Carlo is generally more expensive than our proposed PR-driven
strategy, so we do not explore this further here.

2.2 Review of predictive recursion

2.2.1 Nonparametric mixtures

PR is a fast algorithm designed for recursive estimation of mixing distributions in non-
parametric mixture models. It was first proposed as an alternative to Markov chain Monte
Carlo methods in fitting Bayesian Dirichlet process mixture models (Newton et al. 1998;
Newton 2002). To summarize the general case, let y1, . . . , yn be iid with density f(y),
where f = fψ is modeled as a mixture

∫
U
p(y | u)ψ(u) λ(du), p(y | u) is a known kernel,

and ψ is an unknown density with respect to a dominating σ-finite measure λ on U . The
PR algorithm estimates ψ and fψ as follows.

PR algorithm. Initialize the algorithm by choosing a λ-density ψ0 and a sequence of
weights {wi : i ≥ 1} ⊂ (0, 1). For i = 1, . . . , n, repeat the following steps.

1. Compute the mixture density:

fi−1(·) ≡ fψi−1
(·) =

∫

U

p(· | u)ψi−1(u) λ(du). (2)

2. Update the mixing density estimate:

ψi(u) = (1− wi)ψi−1(u) + wi
p(yi | u)ψi−1(u)

fi−1(yi)
. (3)

Return ψn and fn = fψn
as the PR estimates of ψ and fψ, respectively.

Two key properties of the PR algorithm are speed and ease of implementation. Also,
PR is able to produce an estimate of the mixing distribution which has a density with
respect to the prescribed dominating measure λ. Large-sample convergence properties
of the PR estimates are given in Tokdar et al. (2009). In particular, under suitable
conditions, the PR estimate fn of the mixture density is consistent and, if the mixing dis-
tribution is identifiable, then the PR estimate ψn of the mixing density is also consistent.
Martin and Tokdar (2009) provides bounds on the PR rate of convergence.

To end this subsection, we discuss a few specific properties of the PR algorithm that
are relevant to its implementation.

• The weights {wi} in the PR algorithm are required to satisfy
∑

∞

i=1wi = ∞ and∑
∞

i=1w
2
i <∞. Subject to these conditions, the practical performance of PR is not

too sensitive to the particular choice. Here we take wi = (i+ 1)−1.
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• The PR estimates depend on the order in which the data are processed. This de-
pendence can be weakened by averaging the PR estimates over several (random)
permutations of the data sequence. In our experience, averaging over 25 permuta-
tions is sufficient (Martin and Tokdar 2012) and, given the speed of PR, this does
not significantly increase the computational cost.

2.2.2 Semiparametric mixtures

As an extension of the nonparametric mixture model setup in the previous subsection,
consider the case where the kernel p(y | u) depends on an unknown parameter θ, i.e.,
p(y | u) = p(y | θ, u). In this context, the structural parameter θ is typically of primary
interest, while the mixing density ψ is a nuisance parameter.

For this problem, Martin and Tokdar (2011) proposed an extension of the PR algo-
rithm that produces a sort of likelihood function for θ to be used for inference. Let fk,θ
be the PR mixture density estimate based on data y1, . . . , yk, k = 1, . . . , n, and kernel
p(y | θ, u), where θ is taken to be fixed. Consider the function

Lpr(θ) =

n∏

i=1

fi−1,θ(yi).

This function is called the PR marginal likelihood for θ. Despite its familiar product-of-
densities form, this is not a genuine likelihood function for θ under the posited semipara-
metric model. Martin and Tokdar (2011) use PR’s natural connection to the Bayesian
Dirichlet process prior model to argue that Lpr(θ) is an approximate marginal likelihood
for θ. They also demonstrate the large-sample convergence properties of Lpr(θ), and give
some examples. See, also, Martin and Tokdar (2012) and Martin (2013).

3 PR maximum likelihood for regression

3.1 Formulation

Consider the linear model y = Xβ + ε, where ε is an n-vector of iid errors assumed to
have density f of the mixture form in (1), where the mixing density ψ, supported on
U ⊆ (0,∞) is unknown. As discussed in Section 1, f has heavier-than-normal tails,
so inference on β based on such a model will be less sensitive to extreme observations
compared to inference based on a basic normal model. To put this in the form suitable
for PR, write the mixture model for the residuals,

f(yi − xiβ) =

∫

U

N(yi − xiβ | 0, u2)ψ(u) du, i = 1, . . . , n.

Then we can apply the PR algorithm to the residuals, yi − xiβ, to estimate the mixing
density. If fk,β is the PR estimate of the mixture density for the given β based on
y1, . . . , yk, k = 1, . . . , n, then we get the following PR marginal likelihood for β:

Lpr(β) =
n∏

i=1

fi−1,β(yi − xiβ). (4)
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This is fast and easy to compute. As with all likelihood functions, we propose to esti-
mate β by maximizing this PR marginal likelihood or, equivalently, the PR log-marginal
likelihood ℓpr(β) = logLpr(β). More on this in Section 3.2.

There are three important remarks concerning implementation of this approach.

• For PR computations, a compact support U ⊂ (0,∞) is required; compact mix-
ing distribution support was also a general suggestion made in Rogers and Tukey
(1972). We take U = [Umin, Umax], where Umin is fixed at 10−5, and Umax is to be
specified. Since Umax helps to determine the overall scale of the error distribution,
we should select Umax to satisfy two criteria. First, Umax should be sufficiently large
so that the support is not overly restricted. Second, if the errors are actually normal
with scale σ, then the PR method should be able to recover this by producing an
estimate of ψ that is tightly concentrated around the usual root mean square error
estimator σ̂ of σ. A simple idea is to take Umax = max{50, 3σ̂}.

• For the initial guess ψ0 of the mixing density, there are many possibilities. Here we
make a “non-informative” choice, taking ψ0 to be a uniform density on U . One
could also consider an “informative” choice of ψ0, e.g., a gamma density, truncated
to U , with mode at the least squares estimator σ̂ of the normal scale σ.

• As discussed previously, to weaken the dependence of the PR estimates on the data
ordering, we recommend averaging over 25 data permutations. These permutations
can be selected at random, but it is important that the permutations remain fixed
throughout the optimization process.

To estimate β, we propose the PR maximum likelihood estimator β̂, the maximizer
of Lpr(β) or ℓpr(β). To compute the estimator, one strategy is to use a prepackaged
numerical optimization routine. However, for relatively high-dimensional problems, direct
optimization seems to be too costly, so we opt for a more efficient alternative based on
the structure of the mixture problem; see Section 3.2.

Theoretical questions about existence and uniqueness of the maximum PR likelihood
estimator are difficult to answer; this is a result of the complicated recursive structure of
the PR algorithm. Martin and Tokdar (2011) make the conjecture that, under some con-
ditions, ℓpr(β) is a concave function of β. Concavity would guarantee that a unique maxi-
mizer of ℓpr could be found in practice. Moreover, concavity could also be used to establish
asymptotic consistency of the PR maximum likelihood estimator (e.g., Hjort and Pollard
1993). A host of examples, including our Figure 1, support this conjecture, but currently
no theory is available; see Section 5.

3.2 Computation: a hybrid PR–EM algorithm

The goal is to maximize the PR likelihood Lpr(β) or the log-likelihood ℓpr(β). There
is a computational gain that comes from taking advantage of the special structure of
the problem. Along these lines, we present a hybrid PR–EM algorithm for maximizing
Lpr(β). The jumping off point here is an alternative interpretation of the scale mixture
formulation in (1) in terms of latent scale parameters U1, . . . , Un. Then we have the
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following trivial identity:

ℓpr(β) =

n∑

i=1

log

∫
N(yi − xiβ | 0, u2)ψi−1,β(u) du

=
n∑

i=1

logN(yi − xiβ | 0, U2
i )−

n∑

i=1

log
{N(yi − xiβ | 0, U2

i )

fi−1,β(yi − xiβ)

}
.

Since this holds for all U1, . . . , Un, it must also hold if we take expectation with respect
to some distribution over U1, . . . , Un. Our proposal is to integrate out Ui with respect to
the density

ψB
i,β̂
(u) =

N(yi − xiβ̂ | 0, u2)ψi−1,β̂(u)

fi−1,β̂(yi − xiβ̂)
, (5)

where β̂ is some estimate. This is exactly the Bayes posterior density based on “prior”
ψi−1,β̂ and “data” yi − xiβ̂. In particular, write

ℓpr(β) =

n∑

i=1

∫
logN(yi − xiβ | 0, u2)ψB

i,β̂
(u) du

−
n∑

i=1

∫
log

{N(yi − xiβ | 0, u2)

fi−1,β(yi − xiβ)

}
ψB
i,β̂
(u) du.

Write this as Q1(β | β̂) +Q2(β | β̂). Then Q1(β | β̂) simplifies to

Q1(β | β̂) = −
1

2

n∑

i=1

ω̂i(yi − xiβ)
2 + constant,

where the weight ωi, which depends on ψi−1,β̂ and yi − xiβ̂, is given by

ω̂i =

∫
u−2ψB

i,β̂
(u) du, (6)

the expected precision (inverse variance) under the distribution with density in (5). Both
ω̂i and the constant term depend on β̂, but not on β.

We are now ready to state the hybrid PR–EM algorithm. As with all EM algorithms,
we have written the objective function as a sum of two functions, and the idea is that
iteratively maximizing Q1 will generate a sequence of parameter values tending to the
maximizer of the the original objective function. This is a desirable approach because
maximizing Q1(β | β̂) corresponds to a weighted least squares problem, for which an
analytic solution is available. Justification for the claimed ascent property of PR–EM,
which involves some investigation into the Q2 function, is given in Section 3.3.

PR–EM algorithm. Initialize the algorithm by choosing β̂ = β̂
(1)

and setting the input
(U , ψ0, w1, . . . , wn) for the PR portion. At iteration t, do the following steps.

E-step. Compute the weights ω̂1, . . . , ω̂n by running the PR algorithm with the residuals

y1 − x1β̂
(t)
, . . . , yn − xnβ̂

(t)
as data.
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M-step. Choose β̂
(t+1)

to maximize Q1(β | β̂
(t)
), i.e., β̂

(t+1)
= (X⊤Ω̂X)−1X⊤Ω̂y, where

Ω̂ is a diagonal matrix of the weights ω̂1, . . . , ω̂n.

Stop when ‖β̂
(t+1)

− β̂
(t)
‖1 < δ, for a specified tolerance δ > 0, and return the corre-

sponding estimates of β and ψ, as well as the weights ω̂1, . . . , ω̂n.

In our implementation, we initialize β̂
(1)

at the ordinary least squares estimator, and
we take the input (U , ψ0, w1, . . . , wn) for the PR portion of the algorithm as discussed
in Section 3. The only adjustment required to the general PR algorithm in Section 2.2.1
is to add a step that calculates the weights ω̂i at each iteration.

3.3 On the ascent property of PR–EM

To motivate our choice for the density in (5) and to justify our calling this a hybrid
PR–EM algorithm, we will give a heuristic argument that the usual EM ascent property
holds, i.e., if Q1(β | β̂) ≥ Q1(β̂ | β̂), then ℓpr(β) ≥ ℓpr(β̂), at least approximately. We
start by rewriting Q2(β | β̂) as follows:

Q2(β | β̂) = −

n∑

i=1

∫
log

{N(yi − xiβ | 0, u2)

fi−1,β̂(yi − xiβ)

}
ψB
i,β̂
(u) du+ nDn(β, β̂),

where

Dn(β, β̂) =
1

n

n∑

i=1

log
fi−1,β(yi − xiβ)

fi−1,β̂(yi − xiβ)
.

The Dn term appears above because we have replaced fi−1,β(yi−xiβ) in the denominator
inside the integral with fi−1,β̂(yi−xiβ); the latter quantity is just the PR estimate fi−1,β̂

evaluated at yi − xiβ. It is easy to see that Dn(β̂, β̂) = 0, so

Q2(β | β̂)−Q2(β̂ | β̂) =

n∑

i=1

∫
log

{ ψB
i,β̂
(u)

gi,β,β̂(u)

}
ψB
i,β̂
(u) du+ nDn(β, β̂),

where

gi,β,β̂(u) =
N(yi − xiβ | 0, u2)ψi−1,β̂(u)

fi−1,β̂(yi − xiβ)
.

The integral on the inside is a Kullback–Leibler divergence and, therefore, is non-negative;
it equals zero if and only if β = β̂. Therefore, we have

ℓpr(β)− ℓpr(β̂) ≥ Q1(β | β̂)−Q1(β̂ | β̂) + nDn(β, β̂).

If we had that Dn(β, β̂) ≥ 0 with equality if and only if β = β̂, then we could conclude
that, by choosing β such that Q1(β | β̂) > Q1(β̂ | β̂), one achieves ℓpr(β) > ℓpr(β̂).
The following heuristics explain why the inequality Dn(β, β̂) ≥ 0 should hold, at least
approximately. Rewrite Dn as

Dn(β, β̂) =
1

n

n∑

i=1

log
f ⋆(yi − xiβ)

fi−1,β̂(yi − xiβ)
−

1

n

n∑

i=1

log
f ⋆(yi − xiβ)

fi−1,β(yi − xiβ)
,
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where f ⋆ is the true density of the errors. If we assume that β is the true value, then
the second term converges, as n→ ∞, to the smallest Kullback–Leibler divergence from
f ⋆ over all mixtures of the specified form (Martin and Tokdar 2011). It is not clear if
the first term will converge or not. If it does converge, then the limit would also be a
Kullback–Leibler divergence and, by definition, cannot be smaller than the limit of the
second term so, for large n, the difference would be non-negative. This argument is based
on the assumption that β is the true value. Therefore, the conclusion that we can reach
is that if values of β at or near the true value will increase Q1 for the given β̂, which is
intuitively quite reasonable, then we can expect that those same values will also increase
ℓpr. The obstacle to making this heuristic argument rigorous is that a theory of the
behavior of the PR estimates for the non-iid case is not yet available; see Section 5.

3.4 On robustness of PR maximum likelihood

Robustness is an important consideration for all statistical methods; some recent exam-
ples of detailed robustness studies include Paula et al. (2012) and Leiva et al. (2014). A
primary motivation for the flexible scale mixture model (1) for the error distribution is
to be able to accommodate “extreme observations” that might arise when the true error
distribution has heavier-than-normal tails. Therefore, it is important to discuss in what
sense the PR maximum likelihood method is robust to these extremes.

In general, a model-based method, such as our PR-based method, can be insensitive
to extreme data points only if the model in consideration is sufficiently broad. Our
proposed scale mixture model (1) includes many heavy-tailed distributions, including the
wide class of exponential power family densities (Box and Tiao 1973, Sec. 3.2.1) among
others. Since our model is broad, we can expect that the PR maximum likelihood method
will not be overly sensitive to extremes and, therefore, will be robust in this sense. The
numerical examples in Section 4 support this claim.

A formal theoretical study of the robustness of the PR maximum likelihood estimator
is challenging and beyond the scope of this paper. However, it will be helpful to have
some further insights on why the method is insensitive to extreme observations. For this,
recall the weights ω̂1, . . . , ω̂n, defined in (6), produced as a by-product of the PR–EM
algorithm in Section 3.2; see, also, Equation (3) in Lange et al. (1989). In particular,
the weight ω̂i is the expected value of U−2 where U is a positive random variable whose
distribution has a density, in (5), proportional to N(yi −xiβ̂ | 0, u2)ψi−1,β̂(u). The claim
is that, at PR–EM convergence, a weight will be small if the corresponding observed
response is an “outlier” and, therefore, based on the weighted least squares representation
of the PR maximum likelihood estimator in the M-step, that observation must not be
overly influential. To facilitate this discussion, we make the simplifying assumption that
the potentially extreme observation in question is yn; the averaging over permutations
implies that order of the data is (mostly) irrelevant in the model fitting so this is essentially
without loss of generality. Suppose that |yn − xnβ̂| is large, so that the normal density
factor, N(yn − xnβ̂ | 0, u2), in the density above will be large only when u is large.
Naturally, the extent to which the observation yn will be down-weighted depends on the
sample size n. Suppose first that n is small. Then the mixing density factor, ψn−1,β̂(u),
will be relatively close to the initial value, ψ0(u), so the normal density factor will be
dominant. Therefore, in this case, the weight ω̂n will be close to zero so yn will not
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be an influential observation. Now suppose that n is large. In this case, the mixing
density factor will likely be small for large u—see Figures 2(c) and 3(d)—so the the large
normal density factor may be dominated by the small mixing density factor. Therefore,
the weight ω̂n assigned to an equally extreme yn may not be particularly small. This
shows that PR–EM’s decision on how to weight observations is based not just on the size
of the residual but also on the sample size, among other things. This is desirable since
classifying an observation as “extreme” should be done relative to the available sample.

4 Numerical results

4.1 Methods

For the numerical results in this section, we compare our hybrid PR–EM method with
the following methods for robust regression; our computations are carried out using the
statistical software R (R Core Team 2013).

LS. Ordinary least squares, with the R function lm;

RLS. Robust least squares, with the default settings of the R function rlm;

ML. Maximum likelihood based on a Student-t error distribution, with df = 4, using
iteratively re-weighted least squares via lm;

L1. Least absolute error regression using the default settings of the R function rq in
the quantreg package (Koenker 2013).

The choice of df=4 in ML is based on Lange et al. (1989), Lange and Sinsheimer (1993),
Brazzale et al. (2007, Sec. 5.2), and Barros et al. (2009). R code to implement our pro-
posed method, denoted by PREM, is available at www.math.uic.edu/~rgmartin.

4.2 Real data analysis

Example 1. Consider a simple linear regression problem, where the predictor variable
is the year, ranging from 1950 to 1973, and the response variable is the number of in-
ternational phone calls from Belgium each year; so n = 24. These data, available in
the R software MASS library under the name phones, provide a classic example for ro-
bust regression (Rousseeuw and Leroy 1987). The scatterplot in Figure 2(a) immediately
reveals the presence of several vertical outliers. The fitted lines for four methods are
shown overlaid the scatter plot. An immediate conclusion is that the PREM estimate is
not influenced by the outliers at all, while the vertical outliers make the other methods’
estimates (except L1) too steep to fit the data at the later dates.

For more on PREM, we give three additional displays. First, in Figure 2(b), is a plot
of the weights ω̂i in (6). The observations with weights near 0 are exactly those apparent
outliers in Figure 2(a). That these observations are assigned nearly 0 weight explains
why they had essentially no influence on the fitting of the regression line. Figure 2(c)
shows a plot of the PREM mixing density ψ. Most of the mass is close to 0, consistent
with the fact that the fluctuations around the fitted line is minimal, but there is a wide,
almost imperceptible bump near u = 100 which is accounting for the vertical outliers.
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Figure 2: Results for the Belgian phone call data in Example 1.

Figure 2(d) displays the PR log-marginal likelihood path versus PR–EM iterations, and
the monotonicity of the path is confirmed.

Example 2. Here we consider the data presented in Hawkins et al. (1984), consisting of
n = 75 observations and three predictor variables. This example is considered as a bench-
mark for outlier detection methods. The first ten observations are regression outliers, i.e.,
deviations from the overall linear pattern, and the next four observations are x-outliers,
or leverage points. A plot of the LS residuals versus observation number is displayed in
Figure 3(a), which demonstrates the characteristics of these first 14 troublesome observa-
tions. A quantile plot of the least squares residuals, with simulated envelope (Atkinson
1985), is shown in Figure 3(b), which reveals the non-normality in the residuals. The
PREM weights (not displayed) assigned to the four leverage points are effectively zero, so
these points have no influence to the PREM fit. Figure 3(c) shows the PREM residuals,
and it is clear that the PREM fit is good for all points except the four leverage points
assigned weight near zero. The estimated mixing density is displayed in Figure 3(d), and
it concentrates its mass in a small interval around the least squares estimator σ̂ = 2.25.
This example shows that the PR–EM approach both removes the x-outliers in the model-
fitting step by assigning them negligible weight and accommodates the regression outliers
with a flexible model for the errors.
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Figure 3: Results for the Hawkins–Bradu–Kass data in Example 2.

Example 3. In the first two examples, the presence of outliers and/or non-normality was
clear; in this example, whether there is a departure from the standard Gaussian linear
regression assumption is less clear. Cox and Snell (1981, Example G) present an exam-
ple involving data on the construction of n = 32 light water reactor plants, and the
mean log-cost to construct a nuclear reactor is modeled as a linear function of several
predictor variables; see, also, Davison and Hinkley (1997), Brazzale et al. (2007), and
Koller and Stahel (2011). After an initial variable screening, a model containing six pre-
dictor variables is considered. Two of these six predictor variables, namely log(N) and PT,
which denote the number of nuclear power plants constructed by each architect–engineer
(on the log scale) and an indicator for those plants with partial turnkey guarantees,
respectively, are of primary interest here. In particular, these two variables are only
marginally significant based on standard regression techniques, so one could ask whether
the significance of these two variables is sensitive to the choice of error distribution.

Figure 4(a) shows a quantile plot of the studentized residuals from a least squares fit,
and this suggests a possibly heavier-than-normal tailed error distribution. This motivates
Brazzale et al. (2007, Sec. 5.2) to employ the ML method described in Section 4.1. Fig-
ure 4(b) plots 95% confidence intervals for the slope coefficients for log(N) and PT based
on the usual LS distribution theory, the first-order asymptotic normality of ML, and the
following method for PREM. Since ℓpr(β) is a sort of log-likelihood, Martin and Tokdar
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Figure 4: Results for the nuclear plant data in Example 3.

(2011) suggest that it can be used to construct confidence intervals in usual way. That is,
let J(β̂) denote the inverse of the Hessian matrix for −ℓpr(β) at β = β̂, the maximizer.
Then a nominal 95% confidence interval for βj is β̂j ± 1.96{J(β̂)jj}

1/2. In this case,
the estimated coefficients for PREM and LS are almost indistinguishable, so we expect
the confidence intervals to have roughly the same center. That the PREM confidence
intervals are a bit longer is also to be expected since we are fitting a semiparametric
model. However, Figure 4(a) suggests that the normal error model is reasonable, so it is
promising that the PREM intervals are not too much longer than the LS intervals. That
is, PREM does not substantially over-fit when a normal model is reasonable. Moreover,
when normality is questionable, it may be more reasonable to enlarge the model space, as
PREM does, rather than change the model. When the model space is enlarged, inference
should be more conservative, so we argue that the conclusions based on the PREM anal-
ysis might be more reasonable than those in Brazzale et al. (2007) and Koller and Stahel
(2011) which are more aggressive and conclude that PT is significant.

4.3 Simulations

This section provides simulation results to compare the performance of PREM with that
of the competitors listed in Section 4.1, under a variety of error distributions. We consider
six error distributions: the two extreme exponential power distributions (West 1987),
namely, the standard normal and the standard Laplace; Student-t distributions with 1
and 2 degrees of freedom, respectively; and two non-standard normal scale mixtures, one
with respect to a standard exponential distribution, denoted by N–Exp, and the other
with respect to a uniform distribution supported on (0, 7), denoted by N–Unif. Both of
the latter two distributions are of the general form of our model, but our support U for
the mixing density ψ is misspecified in both cases. Also, N–Exp has slightly heavier tails
than the Laplace. These examples are far from exhaustive, but they do demonstrate that
the hybrid PR–EM algorithm, with its flexible semiparametric model, is both fast and
accurate compared to its competitors in a range of problems.

Scenario 1. In this case, we consider a regression with two predictor variables. The two
predictor variables are taken to be independent standard normal samples, and the true
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f LS RLS ML L1 PREM
N 0.029 0.031 0.033 0.047 0.037

Laplace 0.069 0.050 0.048 0.049 0.048
t1 82.2 0.127 0.117 0.0924 0.099
t2 0.281 0.065 0.060 0.068 0.067

N–Exp 0.060 0.019 0.018 0.007 0.008
N–Unif 0.500 0.317 0.292 0.212 0.229

Table 1: Empirical mean squared error for the indicated method and distribution in the
simulation described in Scenario 1.

f LS RLS ML L1 PREM
N 0.171 0.181 0.185 0.264 0.255

Laplace 0.388 0.290 0.280 0.311 0.336
t1 608 0.837 0.791 0.665 0.699
t2 1.412 0.375 0.347 0.373 0.394

N–Exp 0.359 0.127 0.123 0.079 0.066
N–Unif 2.770 2.034 1.906 1.603 1.865

Table 2: Empirical mean squared error for the indicated method and distribution in the
simulation described in Scenario 2.

parameter is β = 13. Table 1 gives the empirical mean square error of the estimators
over 100 replications in each configuration. PREM is the only semiparametric estimator,
and though it is not the best performer in all cases, it is not dominated by any other
method.

Scenario 2. Here we consider a higher dimensional version of the simulation described
in Example 1. This time we take p = 10 predictor variables, including the intercept,
β = 110, and, except for the intercept term, introduce some dependence in the predictor
variables by sampling each case from a (p−1)-dimensional normal distribution with mean
zero and autoregression covariance structure, with correlation parameter ρ = 0.5. The
same empirical mean square errors, as in Table 1, are presented in Table 2. Again, the
semiparametric PREM is competitive with existing parametric methods.

5 Discussion

This paper proposes a flexible semiparametric model in which the error distribution is
taken to be a general scale mixture of normals with unknown mixing distribution. We
estimate the regression coefficients β by maximizing the PR-based likelihood function
Lpr(β) and, for this purpose, we have developed a hybrid PR–EM algorithm based on
the scale mixture of normals model for the error terms. As a by-product of the hybrid
algorithm, scores are produced for each observation which can be used for outlier detection
and also justify the robustness of the estimator.
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The PR method in general has proved to be a useful tool in a variety of problems.
However, its complicated recursive structure makes it difficult to analyze theoretically.
For this reason, there remains a number of interesting open questions regarding its behav-
ior, both asymptotics and finite samples. In particular, as we discussed above, concavity
of the log-likelihood ℓpr(β) is important for various questions about the PR estimator,
i.e., existence of the estimator in finite samples, and asymptotic consistency. Theoretical
study of PR has been so far limited to iid models, but, as explained in Section 3.2, there
is a need for further work in the independent non-iid case. We hope that the work here
will motivate further studies of PR both in and beyond the iid setup.
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