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Nonparametric mixture models with conditionally
independent multivariate component densities

Didier CHAUVEAU* Vy Thuy Lynh HOANG T

June 21, 2015

Abstract

Recent works in the literature have proposed models and algorithms for nonparametric
estimation of finite multivariate mixtures. In these works, independent coordinates con-
ditional on the subpopulation from which each observation is drawn is assumed, so that
the dependence structure comes only from the mixture. Here this assumption is relaxed,
allowing for independent multivariate blocks of coordinates, conditional on the subpopu-
lation from which each observation is drawn. Otherwise the blocks density functions are
completely multivariate and nonparametric. We propose an EM-like algorithm for this
model, and derive some strategies for selecting the bandwidth matrix involved in the non-
parametric estimation step of it. The performance of this algorithm is evaluated through
several numerical simulations. We also experiment this new model and algorithm on an
actual dataset from the model based, unsupervised clustering perspective, to illustrate its
potential.
keywords. EM algorithm, multivariate kernel density estimation, multivariate mixture,
nonparametric mixture.

1 Introduction

Populations of individuals may often be divided into subgroups. The task in examining a
sample of measurements to discern and describe subgroups of individuals, even when there
is no observable variable that readily indexes into which subgroup an individual properly
belongs, is sometimes referred to as “unsupervised clustering” in the literature, and in fact
mixture models may be generally thought of as comprising the subset of clustering methods
known as model-based clustering.

Finite mixture models may also be used in situations beyond those for which clustering
of individuals is of interest. For one thing, finite mixture models give descriptions of entire
subgroups (called components), rather than assignments of individuals to those subgroups.
Indeed, even the subgroups may not necessarily be of interest; sometimes finite mixture
models merely provide a means for adequately describing a particular distribution, such as the
distribution of residuals in a linear regression model where outliers are present. Much of the
theory of these models involves the assumption that the subgroups are distributed according
to a particular parametric form and quite often this form is univariate or multivariate normal.

*Univ. Orléans, CNRS, MAPMO, UMR 7349, Orléans, France, didier.chauveau@univ-orleans.fr
fyy-thuy-lynh.hoang@etu.univ-orleans.fr



The most general model for nonparametric multivariate mixtures is as follows: suppose
the vectors X1,..., X, are a simple random sample from a finite mixture of m > 1 arbitrary
distributions. The density of each X; may be written

go(@i) =Y \ifi(wi), (1)
j=1

where ¢; € R", and 8 = (A, f) = (M1,..., A, f1,..., fm) denotes the parameters of the
statistical model. In this model A\; denotes the proportion (weight) of component j in the
population; the A;’s are thus positive and ZT:l Aj = 1. The f;’s are the component densities,
drawn from some family of multivariate density functions F absolutely continuous with respect
to Lebesgue measure. Note that the univariate (r = 1) case will only be briefly considered,
since this paper focus on multivariate extensions.

Model is not identifiable if no restrictions are placed on F, where “identifiable” means
that gg has a unique representation of the form and also that we do not consider that
“label-switching” — i.e., reordering the m pairs (A1, f1), ..., (Am, fm) — produces a distinct
representation. The most common restriction in the mixture literature is to assume that the
family F is parametric, i.e. that any f € F is completely specified by a finite-dimensional
parameter. The most used and studied parametric mixture model is the Gaussian mixture,
where f; is the density of a (eventually multidimensional) Gaussian distribution with mean
p; and variance (matrix) ;. Section presents various ways of relaxing this parametric
assumption while preserving some sort of identifiability property.

1.1 The EM algorithm

Mixture models are deeply connected to the EM algorithm. This algorithm, as defined in the
seminal article Dempster et al. (1977)), is more properly understood to be a class of algorithms,
a number of which predate even Dempster et al.| (1977) in the literature. These algorithms
are designed for maximum likelihood estimation in missing data problems, of which finite
mixture problems are canonical examples because the unobserved labels of the individuals (as
in unsupervised clustering) give an easy interpretation of missing data. A recent account of
EM principle, properties and generalizations can be found in McLachlan and Krishnan| (2008)),
and mixture models are deeply detailed in McLachlan and Peel (2000).

In a missing data setup, the n-fold product of the pdf of the observations gg corresponds to
the incomplete data pdf, associated to the log-likelihood ¢4 (0) = >_7" | log go(x;). In mixture
models and many other missing data situations, maximizing ¢, (@) leads to a difficult problem.
Intuitively, EM algorithms replace this unfeasible maximization by the maximization of a
pseudo-likelihood that resembles the likelihood for some complete data y that is defined from
the model, so that this pseudo-likelihood is easy to maximize. Assuming y comes from a
complete data pdf gg, the EM algorithm iteratively maximizes the operator

Q(6/6") := E[log g§(y)|z, 6],

the expectation being taken relatively to the conditional distribution of (y|x), for the value
0 of the parameter at iteration ¢. Given an arbitrary starting value 0(0), the EM algorithm
generates a sequence (O(t))tzl by iterating the following steps:

1. E-step: compute Q(0]01)



2. M-step: set A1) = argmaxgcq Q(0|6).

In finite mixture models, the complete data associated with the actually observed sample
x is y = (@, Z), where to each individual (multivariate) observation «; is associated an
indicator variable Z; denoting its component of origin. Notationally, it is common to define
Zi = (Zi1, ..., Zim) with the indicator variables

m
Zi; = I{observation ¢ comes from component j}, Z Zij = 1.

From , this means that Pg(Z;; = 1) = A;, and (X;|Z;; = 1) ~ f;, j = 1,...,m. In this case,
the expectation is w.r.t. the conditional distribution of the Z;;’s,

Q06" ZZZ” log \; fj ()|, D).

i=1 j=1

Conveniently, the M-step for finite mixture models always looks partly the same: No matter
what form the f;’s take, the updates to the mixing proportions are given by

)\(t+1 pr , forj=1,.

®) .

where pij = Py (Zij = 1|z;) is the posterior probability that the individual i comes from
component j. The updates for the f;’s depend on the particular form of the component
densities. In parametric mixtures (i.e. when the family F is completely specified by a finite-
dimensional parameter), the updates of these parameters is often easy, and can be looked like
weighted MLE estimates. This is the case for, e.g., Gaussian mixtures.

1.2 Previous work on semi- and non-parametric mixtures

In this work, the term “nonparametric” means that no assumptions are made about the form
of the f;’s, even though the weights X\ are scalar parameters. Note that other authors as, e.g.,
Lindsay| (1995)), speak of “nonparametric mixture modeling” in a different sense: The family
F is fully specified up to a finite-dimensional parameter, but the mixing distribution, rather
than having finite support of known cardinality m like here, is assumed to be completely
unspecified.

As said above, nonparametric mixture models are not identifiable if no restrictions are
placed on the family F to which the f;’s belong. The classical definition of identifiability
requires that any two different values @ # 6’ correspond to two different distributions gg and
gg'- Weaker notions of identifiability can be considered, and in the particular case of mixtures,
the fact that there always exists m! permutations of the labels in @ = (A1, ..., A\p, f1,- -+, fin)
that result in the same distribution gg is one of those. Sometimes, the essentially nonparamet-
ric density functions in F may be partially specified by scalar parameters, a case often called
semi-parametric. For instance, in the univariate (r = 1) case, |Bordes et al.| (2006)) and [Hunter
et al.| (2007) proved that when f;(z) = f(x — p;) for some density f(-) that is symmetric
about zero, the mixture admits a unique representation whenever m < 3, except in very



special cases. In the multivariate situation, Benaglia et al.| (2009al), and recently |Chauveau
et al.| (2015) propose some semiparametric mixture models as well.

On the multivariate situation, the common restriction placed on F in a number of recent
theoretical and algorithmic developments in the statistical literature is that each joint density
fj(+) is equal to the product of its marginal densities. In other words, the coordinates of the
X ; vector are independent, conditional on the subpopulation or component (f; through f,)
from which X; is drawn. Therefore, model becomes

go(@i) => N ] firlzin)- (2)

j=1 k=1

This conditional independence assumption has been introduced by |Hall and Zhou (2003),
who established that when m = 2, identifiability of parameters generally follows in r > 3
dimensions but not in fewer than three. Hall et al. (2005) extended this result, suggesting
that the condition on m gets less restrictive as r increases; intuitively, dimensionality together
with conditional independence help for identifiability. This results, nowadays known as the
“curse of dimensionality in the reverse”, says that for a given number of components m, there
is a lower bound 7, that the dimensionality of observations must exceed for the model to be
identifiable. Allman et al.| (2009) finally established the fundamental result of identifiability
for model if r > 3, regardless of m.

Several authors addressed the problem of estimating the parameters of these semi- or non-
parametric mixture models. In the univariate case, |Bordes et al.| (2006) and [Hunter et al.
(2007) both propose estimators based on a minimum contrast approach, a method impossible
to extend beyond m = 2 components. For the multivariate model (2)), [Hall et al.| (2005) give
estimators based on inversion of the mixture, that apply only in the case when m = 2 and
r = 3, due to analytical difficulties appearing beyond this case.

The difficulties associated to these theoretically well grounded approaches encourage the
development of estimation strategies based on the EM principle. In the univariate case,|Bordes
et al.| (2007) first propose a univariate semiparametric (and stochastic) “EM-like” algorithm
for a location-shift semiparametric mixture model

ge(x) = Z)\jf(x — i), TR, 0=(Apn,f).
j=1

The novelty that is hidden behind the term EM-like is that the M step is not a genuine
maximization step. It is a hybrid algorithm that introduces a nonparametric, Weighted Kernel
Density Estimation (WKDE) step. This algorithm hence gives kernel-density-like estimates
for f. It is also a stochastic algorithm since, at each iteration, each observation in the dataset
is randomly assigned to one of the mixture components. This assignment is based on the
posterior probabilities of component membership. This algorithm is simple to program and
is applicable practically for any number m of components, even beyond the cases for which
identifiability has been proved.

For the multivariate model , an empirical “EM-like” algorithm for statistical estimation
of its parameter has been introduced in |Benaglia et al. (2009al). This algorithm called npEM
(non-parametric EM) eliminates the stochasticity of the univariate algorithm from |[Bordes
et al| (2007), but also relies on a WKDE step for the updates of the fjx’s. The corresponding
npEM function for this algorithm is publicly available in the mixtools package [Benaglia et al.



(2009b) for the R statistical software R Development Core Team| (2010)), and is designed
to estimate @ in model , and in some refinements of it. However, despite its empirical
success, this algorithm lacks any sort of theoretical justification; indeed, it can only be called
“EM-like” because it resembles an EM algorithm in certain aspects of its formulation. [Levine
et al.| (2011) corrects this shortcoming by introducing a smoothed loglikelihood function and
formulating an iterative algorithm with a provable monotonicity property that happens to
produce results that are similar to those of |Benaglia et al.| (2009b) in practice.

This article describes a new nonparametric mixture models that extends model in the
sense that it allows for conditionally independent multivariate and nonparametric component
densities. Importantly, this extensions allows for dependence structures within multivariate
subsets of coordinates, apart from the dependence induced by the mixture that is the unique
dependence allowed in model . Note that the idea of using conditionally independent
multivariate subsets of variables itself is not new in the world of usual parametric mixtures;
see, e.g., Hunt and Jorgensen| (2003)). But the idea there is usually motivated by specific
modelling needs, or for reducing the number of parameters in the covariance matrices of the
component distributions. Our objective here is motivated by the need to extend the currently
available nonparametric mixture models from the recent literature.

We present this model in Section [2| and verify that its parameters are identifiable using
results from Allman et al. (2009) that go beyond the conditionally independent univariate
case. We then focus on statistical estimation of these parameters in Section |3l We propose
a new “EM-like” algorithm called mvnpEM since it relies — and is a multivariate (mv) per
block extension of — the npEM algorithm introduced by Benaglia et al| (2009a). Like the
EM-like algorithms presented in this introduction, our algorithm requires a weighted kernel
density estimation step, which turns out here to be a multivariate WKDE. We thus describe
possible bandwidth selection strategies for this WKDE in Section Section [4] is devoted
to implementation considerations and a study of the algorithm through large scale Monte-
Carlo simulations. Section [5| describes an analysis, using our model, of an actual dataset
from the machine learning community. The perspective there is unsupervised model-based
clustering, illustrating the potential usefulness of our new mixture model approach relaxing
the conditional independence assumption.

2 Nonparametric mixture with multivariate blocks

We assume now that each joint density f; is equal to the product of B multivariate densities
that will correspond to conditionally independent multivariate blocks in the mixture model.
Let the set of indices {1, ..., 7} be partitioned into B disjoint subsets s;, i.e. {1,...,7} = UzB:1 s,
where 2 < B < r is the total number of such blocks, and d; is the number of coordinates in
Ith block, i.e. lth block dimension. Actually, we will impose B > 3 in practice in view of
Allman et al.| (2009) result implying that there is little hope to have an identifiable model for
less than 3 independent blocks (see Section [2.1] below).

Here, the indices 7, j, k and [ denote a generic individual, component, coordinate, and
block, 1 <i<n,1 <j<m,l1<k<rand1<1<B (m,r,B and n stand for the number
of mixture components, repeated measurements, blocks, and the sample size). Suppose f; is
equal to the product of f;;—the multivariate density function of jth component and /th block.



Then model becomes

m B
go(@i) =Y N [ [ flwis,), (3)
1

j=1 I=

where z;5, = {zi;, k € s;} is the multivariate variable which have its coordinates in lth block.
Hence this model assumes independence of blocks of multivariate densities, conditional on the
subpopulation from which each observation is drawn. This is a main difference in comparison
with the model of conditional independence (2 introduced by Hall and Zhou| (2003): here the
dependence structure does not come only from the mixture structure, since some additional
within-block dependence is allowed. This model thus brings more flexibility with respect
to the conditional independence assumption, that is in some applications a shortcoming of
model (see, for instance, our actual data application Section .

When all blocks are of size 1 (univariate blocks), then B = r and the model is the
conditional independence assumption model . Thus, to have at least 1 multivariate block
of size > 2, we assume B < r in the sequel. Note that “block” have a different meaning
in Benaglia et al. (2009a) and successive works on smoothed versions like |Chauveau et al.
(2015). There, block means a group of coordinates sharing a same univariate density f; for
component j, allowing for more parsimonious models motivated by some actual applications
from psychometrics.

2.1 Identifiability considerations

As reviewed briefly in Section Hall et al. (2005) explored the identifiability question
related to model with univariate conditionally independent marginals. They also suggest
that a similar result could be achievable for conditionally independent blocks of multivariate
densities, that is precisely our model . Then |Allman et al.| (2009)) proved a collection of
identifiability results, based on a representation of some latent variable model in terms of
3-way contingency tables. Their results are based on an algebraic result of Kruskal (1976,
1977)), who describes a 3-way contingency table that cross-classifies a sample of n individuals
with respect to three categorical variables, say Xi, k = 1,2,3, each X taking value in
a state space {1,...,k;} with ki possible categories. This model assumes existence of a
latent (unobservable) variable Z with values in {1,...,m} that is just an alternative coding
of our binary variables Z;;’s. It is also assumed that conditionally on knowing the exact
class {Z = j}, the 3 observed variables are mutually independent. This model is thus precisely
a version of model (2)) for per-components and coordinate finite measures. |Allman et al.| (2009)
denote this m-class, r = 3-features model M (m; k1, ko, k3). The full details are in their article,
and a survey-like shorter description for application to model can be found in |(Chauveau
et al.|(2015). We only summarize briefly this technique here, focusing on results concerning
our model .

The representation of the r = 3 conditionally independent finite measures is done by
defining matrices Ay, of size m x kg, k = 1,2, 3, where each Ay’s row j describes the probability
distribution of (X4|Z = j). Defining \; :% P(Z = j), and A; = diag(X)A;, the probability
distribution of the latent class model (the finite mixture) is associated to the k1 X kg X k3 tensor
[1211, Asg, As], that is the three-dimensional array whose element with coordinates (u1,uz,us)
is a sum of products of elements of these three matrices, with column numbers uq,uo, us



respectively, added up over the m rows:
_ m 3
[A17A27A3:| :Z)\]HP(Xk:uk’Z:])

Define the Kruskal rank of a matrix A, ranky(A), as the largest number I of rows such that
every set of I rows of A is independent, and let I, = rankg(Ay). Kruskal established that, if
I+ Iy + I3 > 2m+2, then [A;, Ag, A3] uniquely determines the Ay’s, up to simultaneous per-
mutation and rescaling of rows. Kruskal’s result is a cornerstone of several subsequent results
establishing identifiability criteria for various latent structure models. |Allman et al.| (2009)
first reformulate it, proving identifiability of model M(m; k1, K2, k3) (up to label switching),
providing that all entries of A are positive. Then they extend that to the r-variate model
M(m; K1, ..., k) with 7 > 3, under the condition that there exists a tripartition of {1,...,7}
into three disjoint nonempty subsets Sp, S, S3, such that Z?Zl min(m, ;) > 2m + 2, where
T = HkESz K-

Extension of Kruskal’s work to finite mixtures of conditionally independent univariate
nonparametric measures, that is model , is based on a judicious use of cut points to dis-
cretize the distributions associated to the f;;’s (Theorem 8). Considering 3 random variables
at a time only, each X} is associated to Y = {1{Xk61,i}’ "'71{Xkel,’:’“}}7 where R is parti-

tionned into kj consecutive intervals (I ,i, 1 <1 < Ki). Stochastic matrices are built from
this construction, using the fji’s associated c.d.f.s. It is possible to build these partitions
general enough and well-chosen so that Kruskal’s result applies to these matrices, and that
identifiability for the continuous model can be linked to identifiability of the discrete one.
This requires equivalence between linear independence of probability distributions and their
corresponding c.d.f.s.

Finally, the case of multidimensional blocks of conditionally independent measures, model ,
is covered using a similar but more cumbersome construction (Theorem 9 in Allman et al.|
2009). Discrete random variables Y}’s are defined based on indicator functions of dj-product
intervals, where d; is the [th block dimension. The equivalence between linear independence
of the probability distributions and corresponding multidimensional c.d.f.’s remains valid, so
that model is identifiable in general.

3 Estimating the parameters

The algorithm we propose is an extension of the original npEM algorithm that was designed
for estimation in the multivariate mixture model . The EM principle is first applied in
the E-step, i.e. computation of the posterior probabilities given the current value 0® of the
whole parameter. The EM machinery is also applied straightforwardly for the M-step of the
scalar parameters that are only the weights A. Then a nonparametric WKDE is applied to
update the component densities per blocks. The main difference is that in this model, we
need multivariate density estimates. This is also where this algorithm becomes “EM-like”,
since kernel density estimation is not a genuine maximization step.



3.1 A multivariate npEM algorithm (mvnpEM)

Given initial values 8(0) = ()\(0) f © )), the mvnpEM algorithm consists in iterating the following
steps:

1. E-step: Calculate the posterior probabilities (conditional on the data and O(t)), for

eachi=1,....nand j=1,...,m
AW £ ()
pg) =Py (Zij = 1|z) = S (4)

Py )\Sf) f;f) (i)
where f;t) (z;) = Hfil f;lt) (wis,)-

2. M-step for A:

3. Nonparametric kernel density estimation step: For any u in R%, define for each
component j € {1,...,m} and block [ € {1,..., B},

FED () =

5l (t)KHJl(u - xisz)v (6)

where K, is a multivariate kernel density function, typically Gaussian, and Hj; is a
symmetric positive definite d; x d; matrix known as the bandwidth matrix. This matrix
may depend on the Ith block and jth component, and even on the tth iteration, as it
will be precised in the next Section.

3.2 Bandwidth selection in multivariate KDE

The central decision in the nonparametric density estimation step of both the npEM and mvnpEM
algorithm is the selection of an appropriate value for the (scalar or matrix) bandwidth or
smoothing parameter. Firstly, as in Benaglia et al.| (2009al) it is possible to simply use a single
fixed bandwidth for all components per coordinate within each block, selected by default
according to a rule of thumb from Silverman| (1986). Secondly, we investigate a often more
appropriate strategy defining iterative and per component and coordinate bandwidths by
adapting Silverman’s rule of thumb as in |Benaglia et al.| (2011)).

Multivariate Kernel Density Estimation (KDE) has been used since a long time in multi-
variate data analysis (see, e.g., Scott, |[1992). Forgetting for now about blocks and components,
and considering a single sample (z1,...,x,) iid from a pdf f over R", the general form of a
multivariate KDE is

Z Kin(u =),

where, for u = (ug, us, ..., u,)" € R",

Ky(uw) = [H|7\V2K(H? ),



K is a multivariate kernel function, H is a symmetric positive definite r x r “bandwidth
matrix”, and H /2 w is the usual matrix product.

With a full bandwidth matrix, the corresponding kernel smoothing is equivalent to pre-
rotating the data by an optimal amount and then using a diagonal bandwidth matrix. The
bandwidth matrix can be restricted to a class of positive definite diagonal matrices, and then
the corresponding kernel function is often a product kernel (e.g. Gaussian). In this case, H =
diag(h?, h3, ..., h2) where hy, denotes the kth coordinate bandwidth. Then |H|Y/? = hy ---h,
so that (denoting informally by K both the multivariate and univariate kernels)

o1 wou L (e
KH(U')_hl---hrK<h1""’hr>_kl;[lth<hk)'

In the simplest case H = diag(h?,...,h?) we have
1 1

In our mixture model with multivariate blocks, we propose to consider two cases for the d; x d;
diagonal bandwidth matrix associated to the /th block.

Case (i) Same bandwidth per block for all components The bandwidth matrix
for block [ is diagonal with scalar bandwidths for each coordinates in the block: H; =
diagonal(h?l), where hy, = (hy)kes,- The multivariate kernel for block ! becomes

_ 1
HkGSl hk

where hy, is fixed and selected by default according to a rule of thumb from [Silverman| (1986)),
page 48:

Kp, (u) K(H, '), uweR%,

IQRy,
1.34

hi, = 0.9 min{SDy, Hn) ™Yo, (7)

and SDy and IQRy, are respectively the standard deviation and interquartile range of the n
univariate observations from the kth coordinate.

Case (ii) Adaptive bandwidth per block and component In this case the bandwidth
matrix for block [ is diagonal with scalar bandwidths for each coordinates in the block, but
it depends also on component j and current algorithm iteration ¢:

) _ g (t)y2 ) _ (p®
H;’" = diagonal((hj,)"), where by = (hjj)kes,-

The multivariate Kernel for block I, component j and iteration  is
1

)

HkESl hjk

The values of the per-block and component bandwidths are computed following the adaptive
bandwidth strategy from Benaglia et al| (2011), except that in the present definition of our
model there are no i.i.d. coordinates for which the n data can be pooled; as said previously,

K <(H(t))_1/2.u> . weR™

KHj.f) (u) = b



blocks in our model has a different meaning than in |Benaglia et al. (2009a). Each scalar
bandwidth is hence determined from the corresponding n scalar observations of coordinate k,
using a Silverman’s like rule weighted by the posterior probabilities at each iterations of the
mvnpEM algorithm:

(t+1)
IQR (t+1))71/5

Tag (1A (8)

hg':rl) =0. 9m1n{aﬁ€+1 ,

where n)\g-tﬂ) estimates the sample size in the jth component, and
(*) ®)
,u(tH) . Ez 1Pij Tik . Z? 1 Pij ik and
Jk o t) t+1)
Sapy o A
1/2
S (D)2
Tk - )\(t+1 Zp Tik — P )? ;

are the weighted empirical means and variances.

To define the iterative interquartile range [ QR appearing in , we introduce a
weighted quantile estimate as in |Benaglia et al. (2011) Let aq,...,a, be real numbers and
w1, ..., w, be associated (nonnegative) weights, with W = w; + -+ + w,. Denote 7(-) the
permutation sorting the a;’s in non-decreasing order, a,y < --- < a,¢,). For a € (0,1), define
the weighted o quantile estimate to be a,;,), where

S
iq = min{s: ZwT(i) > oW},
i=1
is the smallest integer that gives at least a proportion a of the total sum of weights W. We
compute [ QRJ(.ZH) as the difference between the estimated 0.75 and 0.25 quantiles of the v = n
observations from the kth coordinate, using weights w; = pgﬂ)

that functions for computing these quantiles are provided in the mixtools package (Benaglia
et al., [2009b)).

for the jth component. Note

4 Implementation and simulated examples

We propose in this section some examples illustrating the performances of our algorithm, on
two synthetic multivariate models, after some details about implementation and experiment
settings. The mvnpEM algorithm defined in Section has been implemented in the develop-
ment version of the mixtools package Benaglia et al.| (2009b)) for the R statistical software |R
Development Core Team (2010), and will be made publicly available in a future version of it.
In particular, the step requiring nonparametric multivariate WKDE’s has been coded in C to
speed up the CPU time.

4.1 Initialization of the mvnpEM algorithm.

As it is typically the case for EM algorithms, the choice of the starting parameter value
0 is important. In parametric settings, a simple manner consists in starting the algorithm

10



from a parameter value “reasonably close” to the true value, that may be given by a priori
knowledge obtained from some expert on the model and data. When this sort of information
is not available, the usual practice consists in starting the algorithm from several values
randomly drawn from a uniform distribution on the parameter space (or a subset of it), and
retaining the EM estimate achieving the maximum of the observed likelihood among all the
trials. If this exhaustive exploration of the parameter support is done with enough precision
(enough random draws), then at least some of these randomly chosen 0©)s fall close enough
to the global maximum so that the final estimate corresponds to the location of the global
maximum.

In our nonparametric setup, we can see that the first E-step of mvnpEM requires initial

values for the f;o)’s (and )\g-o)’s) that themselves only require an initial n X m matrix of
posteriors PO .= (pz(-;)),i =1,...,n,j =1,...,m). To obtain this matrix, the most appealing
method consists in using a prior clustering of the data using any unsupervised algorithm
such as k-means, that assign each observation to one initial components as, e.g., in |Benaglia
et al. (2009al). At this point, the parallel of the parametric initialization method based on
some prior knowledge on the model and data consists in providing k-means with meaningful
cluster centers instead of letting it randomly choose m centers. These “weakly informative”
centers, even vaguely related to the true component means, usually help k-means finding an
initial clustering good enough for an EM algorithm to start with. If such even crude prior
information is not available, one can just provide k-means with the number of clusters m, so
that m data points are randomly chosen as the initial centers. To be fair in our experiments,
this completely blind, automatic and data-driven initialization is actually what we did in
all our simulated and real data situations hereafter. We never experienced any difficulties
(such as, e.g., the algorithm emptying one component after few iterations due to a very
poor initialization). Note also that this k-means based initialization is also often used in
standard EM algorithms for, e.g., multivariate Gaussian mixtures, where clusters means and
(co)-variances are used as initialization means and variances for the component Gaussian
distributions.

In even more complex situations where the above initialization strategies fail we can pro-
ceed by analogy with the parametric space exploration: drawing PO posterior matrices
randomly (uniformly) several times, and run several mvnpEM algorithm initialized with these
P)g. Then retain the 6 corresponding to the largest “observed loglikelihood” > i log g (i)
which is not in the nonparametric case a true likelihood but merely an empirical criterion.
The uniform simulation of P(9) can be done in several ways, e.g. simply by choosing, for each
row the j for which pg-)) = 1 uniformly in {1,...,m}. One can also use uniform Dirichlet if
non 0/1 weights are desired. There is also always the possibility to run a first parametric
Gaussian EM to get a first matrix of posteriors to start mvnpEM. We tried the initialization
strategy using uniform Dirichlet for ModelsA and B, and obtained the same results as with
the k-means initialization.

Handling the label-switching problem Not surprisingly, the data-driven initialization
without specifying centers to the k-means procedure generates more label-switching than when
proper centers are provided. As explained in Section [1], label-switching refers to the fact that
arbitrary re-orderings of the component indices (1,...,m) correspond to the same mixture
model. In a single real data study, label switching is not important since component index does
not change interpretation. But these re-orderings are possible when numerous instances of
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the same mixture problem are solved. Hence label-switching becomes problematic in Monte-
Carlo simulation studies and bootstrap estimation involving mixture models. For detailed
explanation, see discussion in |McLachlan and Peel (2000) (section 4.9), and for an illustrative
stochastic EM example see |Celeux et al.|(1996). In their study, Hall et al.| (2005]) dealt with
label-switching in the same context by enforcing the constraint A, < Ao. Here, we choose to
detect and “switch-back” the estimates (the final matrix of posteriors here, from which the
other estimates are computed) to be in accordance with the initial representation. Since in
all our experiments we set A\; < Ao, we decide that a switching occured after a replication if
A > ;\2, in which case we switch the parameters from 1% component to 2"¢ component and

inversely.

In our Monte-Carlo experiments, we computed the errors in terms of the square root of the
Mean Integrated Squared Error (MISE) for the densities as in Hall et al.| (2005) and Benaglia
et al.| (2009a):

1SN [,
MISE; = 4 Z/(f;f)(u) — fi(u))*du,
s=1

where the integral over R% is computed numerically and fj(ls ) is the density estimate at replica-

(1)

tion s, computed from @ but using the final values of the p, y

after convergence of the algorithm that we denote p;;’s.

A difference with both Hall et al. (2005) and Benaglia et al.| (2009a) results is that in their
work the Integrated Squared Errors ISEj; = [( fﬂ — fjl)2 were evaluated using numerical in-
tegrations of univariate densities (since the fj’s were univariate only). Here, it appears that
estimating f;; for multivariate densities with strong dependence structure using a kernel den-
sity estimate (KDE) with diagonal bandwidth matrix is more difficult, and this difficulty may
results in overestimated MISE values, not necessarily implying a poor fitting of the mixture
by the algorithm. To illustrate that in a simple case, we ran .S = 300 replications of n = 300
observations of a single bivariate sample (i.e. no mixture, no posteriors, usage of standard un-
weighted KDE) from a centered bivariate Gaussian density f with unit variances and varying
correlation p. We then computed MISE; = %Zle J( F) — £)2 using a bandwidth matrix
following [Silverman| (1986)) as in (7). Results are in Table

’s, i.e. the posterior probabilities

p 0.25 0.5 0.8 0.95 0.99
MISE; 0.00339 0.00349 0.00601 0.03547 0.25591

Table 1: The effect of correlation p on MISE of the estimation of a centered bivariate Gaussian
density f with unit variances.

This shows that estimation of the MISE deteriorates as correlation increases. Using a
non-diagonal bandwidth matrix is thus an interesting perspective for future work, to better
recover multivariate and strongly correlated component and block densities. In our present
setup and experiment, in order to get results not too biased by this KDE problem i.e. to ob-
tain comparable MISFEj;’s between univariate and multivariate blocks, we selected variances
matrices X;’s with not too strong correlations (up to 50%).

We also computed the mean squared error (MSE) for the proportions that are the only
scalar parameters in these models. In our models with just m = 2 components, we have for

12



)\12
S
MSE), = Z AP = a2,

where, at replication s, ng) is computed using with the final values of the posterior prob-

abilities, p;;’s. Note that we computed and displayed as well MSE’s for other scalar empirical
moments like means and variances, but these are not genuine parameters of the model, i.e.
they are provided only as additional criteria. At each replication, these scalar measures are
weighted versions of the empirical estimates; for instance, the mean for component j and
coordinate k is given by
iy = izt Pig Bk Dic Pig Tik.
’ i1 Pij n;j

4.2 Model A: simple Gaussian data

We first introduce this simple model with two univariate blocks and one bivariate block, cho-
sen intentionally as close as possible to model (with conditionally independent univariate
marginals) used first by Hall et al.| (2005) to illustrate the performance of their estimation
technique based on inverting the mixture. Their example was considering r = 3 condition-
ally independent univariate Gaussian, all A(0,1) for component 1, and N'(3,1), N'(4,1) and
N (5,1) for component 2. This model has being used later in Benaglia et al. (2009a) for
comparison with the npEM algorithm.

We consider a r = 4 variables, m = 2 components Gaussian mixture which have 1 multi-
variate block, i.e. B = 3 blocks of coordinates with s; = {1}, s9 = {2}, s3 = {3,4}. Densities
fji are univariate normals for [ = 1,2, and bivariate Gaussian for block [ = 3, where the
means are given in Table [2, and the common covariance matrix of the bivariate block is

(5 )

Model A Block 1 Block 2 Block 3
Coordinate(s) 1 2 {3,4}

Component 1~ N(0,1) N(0,1) N ([g] ,Z)

Component 2 N (3,1) N(4,1) N ([g] ,E)

Table 2: Parameters for Model A.

Hence to allow comparison with the original npEM and both [Hall et al.| (2005) and |Benaglia
et al.| (2009a) results for the univariate coordinates, we kept individual densities as in their
examples for the first and the second block. We also kept their experiment settings: S = 300
replications of n = 500 observations each, where \; is varying from 0.1 to 0.4.
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Model A - adaptive bandwidth
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Figure 1: Square roots of MISE for the densities and square roots of MSE for the scalar
parameter \j, and other scalar measures that are not parameters in the model (means and
covariances), as a function of the proportion of the first component A\, for Model A, n =
500 and S = 300 replications, adaptive bandwidth. The gray line types in the legend are
identifying densities and scalar criterions, that are plotted colored by component.

Results for model A ran with the adaptive bandwidth strategy are given in Fig. We
obtained similar results with the same bandwidth setting; these results are omitted here for
brevity. For this model with similar ranges across components and blocks, the bandwidth
strategy does not make a noticeable difference. These results were obtained, as said in Sec-
tion [£.1] using k-means initialization with randomly chosen initial centers and checking for
label switching.

The stable behavior of the MSE’s for \; and for the other scalar measures (means, co-
variances) estimates show that the algorithm behaves well. In particular, density and scalar
estimates associated to component 1 (black curves) decrease when A; increases, as expected
since the proportion of data actually coming from this component increases with A;. Simul-
taneously, the estimates associated with component 2 increase (red curves). Moreover, the
results for the v MISEy, s are close to the results we can see on the plots on page 517, figure
2 of Benaglia et al.|(2009a) and outperform the plots on page 675, figure 2 of Hall et al.| (2005)
for univariate blocks.

4.3 Model B: Gaussian, heavy-tailed and skewed data

We also experiment our method on a second model, with three bivariate blocks using the full
potential of our approach. We wanted here to show that our algorithm can compete to some
extent with fitting Gaussian mixtures where mixture components are indeed Gaussian, and do
better when they are non Gaussian, all this using a single model for brevity. Model B thus has
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one bivariate Gaussian block, one bivariate block with heavy-tailed (Student) distributions,
and one bivariate block with heavy-tailed and severely skewed distributions. Precisely, it has
r = 6 variables, m = 2 components, where \; is kept fixed to 30 %, and B = 3 blocks.
Block 1 involves bivariate Gaussian densities Na(p;1,%X)’s with some correlation structure;
block 2 involves bivariate non-central Student densities ta(j1;2,%)’s with same correlation
structure. The component densities of block 3 are themselves mixtures of bivariate Gaussian
contaminated by bivariate Student’s, thus generating skewed densities. This model involves
two covariance matrices,

Z:<1}4 1{4> and 2/:<1}2 11/12>’

where ¥/ is used only in block 3, component 2. The other parameters are given in Table [3]

Model B Block 1 Block 2 Block 3
Sl {152} {3a4} {576}

() e mem) e ()
R R R s e

Table 3: Parameters for Model B.

Before presenting a full Monte-Carlo experiment as for model A, we display in Figure 2] the
true marginal densities of this model, together with a result from a single run of the mvnpEM
algorithm and a result given by a standard Gaussian EM algorithm, the mvnormalmixEM
function from the mixtools package Benaglia et al.| (2009b)).
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Figure 2: Marginal density estimates for Model B, where column [ corresponds to the two
marginals of the /th bivariate block, | = 1,2,3. Each plot shows the true marginals (solid
lines), mvnpEM with adaptive bandwidth estimates (dashed lines), Gaussian EM estimates
(dotted lines). Estimates are based on a sample of size n = 1000. The final values of the
adaptive bandwidths are also given under each plot.

The estimate for the proportion in this run has been A1 = 0.284 for our nonparametric
method, and 0.282 for the Gaussian EM. We also computed the estimates of the covariances
for block 1 (the one for which the true values are given in ¥). Both mvnpEM and the Gaussian
EM gave estimates of about 0.236 in both components.

We then ran S = 300 replications of samples of sizes n = 400, 600, 800, 1000. As for model
A, we computed the MISE of the densities and the mean squared error (MSE) of the scalar
parameter (A1) and some other descriptive scalar measures (for the Gaussian block 1 only).
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Figure 3: Square roots of MISE’s for the densities as a function of the sample size n, S = 300
replications, for the two algorithm settings for Model B: mvnpEM adaptive bandwidth (left),
mvnpEM same bandwidth (middle) and Gaussian EM (right). MISE for Densities are plotted
in circles and solid lines (block 1), dashed lines (block 2) and dot-dashed (block 3).

Our purpose was also to build a model illustrating the performance of the adaptive band-
width strategy (Section , which is appropriate typically for models with different ranges
of observations per components and coordinates. Figure [3|confirm this behavior, with a slight
advantage for the adaptive bandwidth, particularly in block 3, as expected. Figure [3] also
shows that the MISE’s decrease when the sample size n increases, which can be understood
as numerical evidence of “convergence” (see the Discussion about these convergence-related
questions). Finally we can see, by comparing marginal densities in the single example Fig.
and MISE’s Fig. 3| across the nonparametric and parametric solutions block per block, that
our method performs slightly less better than the Gaussian method for the Gaussian block 1,
but better than it for the heavy-tailed block 2, and even better for the heavy-tailed and skewed
block 3. In blocks 2 and 3, the parametric estimates even show no convergence at all as n
increases.

5 An example on actual data

We consider in this section a real dataset from an experiment involving n = 569 instances
about Wisconsin Diagnostic Breast Cancer (WDBC). This database is available through the
UW CS ftp server. The attributes in the WDBC dataset are the Diagnosis (M = malignant,
B = benign) and ten real-valued features computed for each cell nucleus: Radius, Texture,
Perimeter, Area, Smoothness, Compactness, Concavity, Concave points, Symmetry and Frac-
tal dimension. These features are computed from a digitized image of a breast mass. The
mean, standard error, and “worst” (mean of the three largest values) of these features are
computed for each image, resulting in a total of 30 features.

This actual dataset has already been used as an illustration for comparing supervised
and unsupervised clustering methods. The principle of such a study from the unsupervised
clustering perspective consists in clustering the population based on the quantitative variables,
and after that compare these estimates with the observed classes. For model-based clustering
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using mixture models, the clustering is done using the Mazimum A Posteriori (MAP) strategy
deduced from the parameter estimate 0 given by any EM-like algorithm. The MAP consists
in setting
Zijo =1, where jo =argmax{p;j}, and Zij =0 for j # jo,
j=1,...m

where the p;;’s are as before the posterior probabilities after convergence of the algorithm.
The MAP classifier is compared here with the classes given by Diagnosis variable (62.74% B
and 37.26% M).

Our motivation in using this dataset is not to find a scientific definitive answer or the best
clustering algorithm. We have choosen this dataset because: (i) it illustrates the potential
and feasibility of our estimation algorithm for models involving blocks and data of moderate
to large dimensions; (ii) there are obvious dependence structures across some coordinates that
prevent the usage of the previous nonparametric npEM approach from Benaglia et al. (2009a))
since the conditional independence of coordinates is obviously violated (see Fig. 4| below); (iii)
it has been used recently in Hennig (2010), who propose a competitive alternative model-
based parametric but not simply Gaussian clustering: their method amounts to build clusters
by merging components obtained from a Gaussian mixture model fit. Hence their cluster
distributions are not Gaussian, they can e.g., be multimodal.

In their merging Gaussian method, [Hennig) (2010) just used the ten first features (means)
of the WDBC dataset. Hence we first tried our approach on this 7 = 10 dimensional dataset.
We had to define multivariate conditionally independent blocks prior to apply our mvnpEM
algorithm. A simple exploration of the data shows that there are some obvious correlations
across coordinates, not due to a mixture. Fig. |4| displays the most obvious such dependences
among the ten mean features. It is for instance clear that radius, perimeter and area must be
grouped in one block. Similarly, compactness, concavity and number of concave points can
be grouped in another block.

radius // / compact
2 ) e 1 :
N // perimeter / BB concave e
R / <] F
// /> area concave.pt - £

Figure 4: Pairs plots for selected “mean” features from the WDBC database; s; = {1, 3,4}
for block 1 (left), and sy = {6,7,8} for block 2 (right).

Proceeding like this, we are able to design some plausible models. One of the best ones in
terms of clustering precision is made of B = 5 blocks: the two trivariate blocks from Fig.
a block of size 2 (symmetry and fractal dimension), and two remaining blocks of size 1. The
results are given in Table |4 together with the basic k-means that we tried as well (and that
is used in our initialization of the mvnpEM, see Section [4.1]).
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Method B (over 357) M (over 212) (%) correctly-classified

k-means 355 122 83.831
merging Gaussian 344 178 91.740
mvnpEM & MAP 350 183 93.673

Table 4: The % of correct classification of the WDBC data using mvnpEM and the MAP
strategy, compared with the k-means clustering strategy and the merging Gaussian method
of [Hennig| (2010).

In experimenting some alternative block designs we somehow proceed like Hennig| (2010)
who try several (heuristical) merging criterions and reports the best result they obtained.
However, in our case, these alternative models (e.g., merging smoothness with the block in
Fig. 4l right) always showed results between 92.5 and 93.67% i.e. better than |[Hennig (2010).

We also tried more complex models by adding the other groups of available features,
the 10 standard errors (se), or the 10 “worst” variables keeping the same block structure
(also supported by the exploration of the scatterplots) but merging together corresponding
features. We found that adding the se’s where not bringing better results, whereas a r = 20
dimensional model made of the means and worst features with B = 5 blocks as before but of
double dimensions (e.g., s = 6 and block 1 made of radius, perimeter and area means and
se’s) gave a slightly better 94% of correct classification. Finally, we tried the full r = 30 model
with B = 5 blocks of sizes up to s1 = so = 9 with no better results. However, this showed us
that running the algorithm on these large dimensional model and n = 569 individuals only
took a couple of minute on a common laptop computer.

6 Discussion

We have proposed in this paper a nonparametric mixture model with conditionally inde-
pendent multivariate blocks of nonparametric components. The conditional independence
assumption has been introduced in several works in the literature, as e.g. in |[Hunt and Jor-
gensen| (2003)) in the context of parametric mixtures, but was limited so far in nonparametric
mixture models to conditionally independent univariate coordinates. The crucial novelty of
our model from a statistical modelling perspective is that it allows the dependence to be due
not only to the mixture but also to the internal (covariance) structure of the multivariate
distributions within each block.  The identifiability of the parameters of our new model
regardless the number of components m comes directly using a results from |[Allman et al.
(2009): actually we have merely pointed out that our model corresponds exactly to one of the
theoretical setup developed in Allman et al.| (2009).

We then proposed a multivariate EM-like algorithm for this model, called mvnpEM since
it extends the npEM algorithm from [Benaglia et al. (2009a). We have also introduced and
described two strategies to select the bandwidth involved in kernel density estimation step
of this algorithm. The performance of this model have been evaluated through numerical
simulations with two perspectives. First we experimented it focusing on parameter estimation
(including the nonparametric multivariate densities), on two synthetic models: one allowing
for comparison with the original npEM algorithm and results from |[Hall et al.| (2005) based
on an inversion method (both designed for univariate blocks only); the other showing how
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our algorithm behaves on Gaussian, non-Gaussian with heavy tails, and non-Gaussian with
both heavy tails and severely skewed data. We also showed there that some better estimates
can result from the adaptive bandwidth strategy we have introduced, compared to the more
immediate fixed bandwidth approach.

Second, we have experimented these new model and algorithm on an actual dataset, from
the perspective of model-based unsupervised clustering in dimensions from 10 to 30. We com-
pared our approach with the simple k-means algorithm, but also against a recent parametric
but non-Gaussian model-based clustering alternative Hennig| (2010). This example allows us
to illustrate, from a modelling perspective, the way to choose the conditionally independent
blocks from the structure of the data. By simple exploratory analysis of the data, one can rec-
ognize dependences between variables not obviously due to any mixture structure and group
these variables in blocks. We showed that, for several possible blocks design, a clustering based
on the Maximum A Posteriori (MAP) strategy using final posterior matrix produced by our
algorithm outperformed the two other approaches. The purpose of this example was also to
illustrate the applicability of our algorithm in real-size datasets and actual multi-dimensional
models.

Both strategies about bandwidth selection for the kernel density estimation step of our
algorithm use diagonal bandwidth matrices whose elements are computed from a fixed or
adaptive weighted Silverman’s rule. This rule is known to be somehow motivated by es-
timation of Gaussian-shaped distributions, which is too restrictive. Other strategies for the
smoothing parameter, i.e. non diagonal bandwidth matrices, or cross-validation strategies are
interesting perspectives for future investigations (see, e.g., Hyndman et al|(2004) for recent
research on multivariate bandwidth selection).

Our algorithm, like the original npEM algorithm for univariate blocks from |Benaglia et al.
(20092) has not yet theoretical justification, since it is not proved to maximize any objective
function, and since its weighted KDE step is not a genuine M-step. Like its predecessors
in recent literature, it however provides numerical evidence of consistency in the sense that
the scalar and density estimates “numerically converge” to the true values for MSE or MISE
criterion, when we let n increase, for all the models we tried. An ongoing work that is beyond
the scope of the present paper is precisely to show some type of convergence, extending the
ideas from Levine et al| (2011) introducing a non-linearly smoothed log-likelihood objective
function and developping an iterative algorithm with a monotony property as for a genuine
EM.

Finally, we reiterate that the mvnpEM algorithm introduced in this work will be publicly
available in a future version of the mixtools package Benaglia et al.|(2009b)) for the R statistical
software |R Development Core Team| (2010).
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