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Abstract

Clustered interval-censored failure time data can occur when the failure time of interest is 

collected from several clusters and known only within certain time intervals. Regression analysis 

of clustered interval-censored failure time data is discussed assuming that the data arise from the 

semiparametric additive hazards model. A multiple imputation approach is proposed for inference. 

A major advantage of the approach is its simplicity because it avoids estimating the correlation 

within clusters by implementing a resampling-based method. The presented approach can be 

easily implemented by using the existing software packages for right-censored failure time data. 

Extensive simulation studies are conducted, indicating that the proposed imputation approach 

performs well for practical situations. The proposed approach also performs well compared to the 

existing methods and can be more conveniently applied to various types of data representation. 

The proposed methodology is further demonstrated by applying it to a lymphatic filariasis study.
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1. Introduction

Correlated or clustered failure time data occur in many areas such as medical studies (Cai 

and Prentice, 1997). In many situations, the exact time of failure cannot be observed but is 

known to fall between two observation times. Such data are usually referred to as interval-

censored failure time data. Clustered interval-censored failure time data may naturally arise 

in periodic follow-up studies where each study subject is repeatedly measured at discrete 

time points and some subjects come from the same cluster or group such as sibling, family 
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and community. In this case, the interval-censored observations from the same cluster share 

certain unknown characteristics and are correlated as a result.

Several methods have been proposed for regression analysis of clustered interval-censored 

failure time data. These include parametric approaches (Bellamy et al., 2004; Zhang and 

Sun, 2010; Lam et al., 2010) and semiparametric approaches (Xiang et al., 2011; Zhang and 

Sun, 2013; Li et al., 2014). For most of the existing semiparametric methods, it is assumed 

that the failure time of interest follows the proportional hazards model (Pan, 2000). It is 

known that the proportional hazards model may not fit failure time data well sometimes and 

in this case, one of the alternatives is the additive hazards model. The additive hazards model 

describes a different aspect of the relationship between survival time and covariates and 

could be more plausible than the proportional hazards model in many situations (Lin and 

Ying, 1994). For example, in public health studies, people may be more interested in the risk 

difference described by the additive hazards model than the risk ratio described by the 

proportional hazards model (Breslow and Day, 1987). Li et al. (2012) investigated regression 

analysis of clustered interval-censored failure time data. However, they considered only the 

simple situation where each subject is observed only twice, or the failure time is left-, 

interval-, or right-censored. In the following, we will discuss general clustered interval-

censored failure time data.

We develop a multiple imputation approach to analyze clustered interval-censored failure 

time data. Our method reduces the analysis of clustered interval-censored data to that of 

right-censored failure time data. The algorithm is implemented in two steps. First, we apply 

a within-cluster resampling (WCR) procedure (Hoffman et al., 2001) to sample a single 

subject from each cluster and obtain independent interval-censored failure time data. In 

other words, one observation is randomly sampled with replacement from each of the N 
clusters and an independent interval-censored dataset of size N is formed. Then a multiple 

imputation procedure is applied to convert the interval-censored dataset to right-censored 

failure time data. Inference is made based on the right-censored failure time data taking 

advantage of an existing estimation procedure developed by Lin and Ying (1994). If the 

resampling process is repeated a large number of times, say Q, where each of the Q analyses 

provides a consistent estimator of parameter of interest, one can obtain the WCR estimate by 

taking the average of the Q resampling-based estimates.

The multiple imputation approach has been used in many fields. In particular, Lam et al. 

(2010) developed such a procedure for the same type of the data considered here but under a 

parametric gamma frailty model. In addition, their method requires some strong assumptions 

on the distribution of the unobserved frailty and the use of the EM algorithm for the 

implementation. In contrast, the presented procedure has the advantage of simplicity because 

it can be easily implemented by using a standard software for the additive hazards model. 

Another advantage of the proposed approach is the use of a semiparametric additive hazards 

model, which provides more flexibility in describing the relationship between the failure 

time and covariates than a fully parametric model. In addition, the procedure given below 

does not need the estimation of the unobserved frailty.
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In the following, before presenting the multiple imputation approach, we will first briefly 

introduce in Section 2 the additive hazards model and the inference procedure proposed by 

Lin and Ying (1994) for independent right-censored failure time data. The proposed 

estimation procedure is then presented in Section 3 and as mentioned above, it makes use of 

the method given in Lin and Ying (1994). Results from an extensive simulation study are 

reported in Section 4 for assessing the performance of our proposed approach and 

comparing to the existing method. Section 5 applies the proposed method to a set of well-

known clustered interval-censored failure time data arising from a lymphatic filariasis study. 

Section 6 contains some concluding remarks.

2. The additive hazards model and right-censored failure time data with 

independent samples

Consider a survival study and let T denote the failure time of interest and Z a vector of 

covariates that may depend on time t. We assume that given Z, the hazard function of T has 

the form

(1)

where λ0(t) denotes the unknown baseline function and β is the vector of unknown 

regression coefficients. That is, T follows the additive hazards model (Cox and Oakes, 

1984). In the following, as most authors, it will be assumed that the covariate Z(t) is known 

or can be observed at any time.

In this section, we will assume that instead of clustered data, one observes right-censored 

failure time data given by {Xi, δi, Zi, i = 1, … , n} from n independent subjects. Here Xi 

denotes the observed failure time defined as the minimum of the true failure time Ti and the 

censoring time for subject i and δi = 1 if the true failure time is observed and 0 otherwise. 

Also it will be assumed that the failure time and the censoring time are independent given 

covariates. Define Yi(t) = I(Xi ≥ t), the risk indicator process, and Ni(t) = I(Xi ≤ t, δi = 1), a 

counting process, i = 1, … , n.

To estimate β in model (1), Lin and Ying (1994) proposed to use the following estimating 

equation

where
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It can be easily shown that the solution to the equation above has the explicit form

(2)

where  for a vector a. Furthermore, Lin and Ying (1994) showed that 

 converges weakly to a normal vector with mean zero and a covariance matrix 

that can be consistently estimated by Σ = A−1 B A−1, where β0 denotes the true value of β,

and

Given , a natural estimate of the baseline cumulative hazard function  is 

given by

(3)

Note that the estimator (3) may not always be monotone in t. For this, Lin and Ying (1994) 

suggested using . In the next section, we will discuss the use 

of the estimators (2) and (3) in estimation of β when one observes clustered interval-

censored failure time data.

3. A multiple imputation approach for estimation of β with clustered 

interval-censored failure time data

Now we consider a survival study that includes n independent clusters with ni denoting the 

size of the ith cluster, where i = 1, … , n. Let Tij denote the failure time of interest for 

subject j in cluster i, j = 1, … , ni. Suppose that one observes clustered interval-censored 

failure time data on the Tij’s denoted by {(Lij, Rij], Zij(t), i = 1, … , n; j = 1, … , ni}, where 

Lij ≤ Rij. Here Lij = 0 represents a left-censored observation, Rij = ∞ corresponds to a right-

censored one, and Zij(t) is a possibly time-dependent covariate vector associated with subject 

j in cluster i. Note that for interval-censored data, all available information about Tij is the 

interval (Lij, Rij] with Tij ∈ (Lij, Rij]. We assume that Lij and Rij are independent of Tij given 
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the covariates Zij(t). Throughout this paper the Tij′s are considered to be independent for 

subjects in different clusters but could be dependent for subjects within the same cluster.

To describe the association within each cluster, we will assume that there exists a cluster-

specific latent variable bi with mean zero and unknown variance. Furthermore suppose that 

given covariates and bi, the failure times within each cluster are independent and Tij follows 

the additive hazards model

(4)

Here λ0(t) and β are defined as in model (1). To make inference about β, we propose to 

randomly sample with replacement one interval-censored observation from each cluster 

using the WCR approach (Hoffman et al., 2001) and construct a new independent sample of 

interval-censored observations. The left-censored and interval-censored observations in this 

resampled interval-censored data will be imputed to generate a right-censored failure time 

data. Then the problem is reduced to analyzing the imputed (right-censored) data, which can 

be handled with the inference procedure discussed in Section 2.

More specifically, we randomly select one data point {(Li, Ri], Zi(t) with replacement from 

each cluster and generate a set of interval-censored failure time data. Let Q be a positive 

integer denoting the number of resamples. We repeat the resampling process Q times and 

generate Q sets of independent samples of interval-censored failure time data. For each set 

of the interval-censored failure time data, we propose the following estimation procedure to 

estimate β. Let K be a prespecified integer representing number of imputations.

Step 1. Choose initial estimates  and  of β and the baseline survival function S0(t) = 

exp{−Λ0(t)}, respectively.

Step 2. At the lth iteration, let  and  denote the estimates of β and S0(t) obtained 

at the (l − 1)th iteration and generate K sets of right-censored data {Xik, δik, Zik, i = 1, … , 

n; k = 1, … , K} as follows. If Ri = ∞ (right-censored), define Xik = Li and δik = 0; if Ri < 

∞, define δik = 1 and Xik to be a random number drawn from the survival function

(*)

given Li ≤ Xik < Ri, where  Zi(s) ds. The imputed value was drawn this way: 

suppose that, in interval (Li, Ri], the survival function (*) has probability mass {p1, … , pSi} 

at time points {t1, … , tSi}, then Xik was randomly drawn from {t1, … , tSi} with probability 

proportional to {p1, … , pSi}. Also for all i and k, define Zik = Zi.

Step 3. First define the estimate  as  given in (2) with {Xi, δi, Zi, i = 1, … , n} replaced 

by {Xik, δik, Zik, i = 1, … , n}. Then determine the estimate 
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, where  is given by (3) with {Xi, δi, Zi, i = 

1, … , n} replaced by {Xik, δik, Zik, i = 1, … , n}. Also calculate the covariance matrix 

as Σ given in the previous section based on {Xik, δik, Zik, i = 1, … , n}.

Step 4. Define the updated regression estimate  and the estimate of baseline survival 

as

and the covariance matrix can be estimated by

Step 5. Return to step 2 until the convergence is achieved.

To implement the procedure above, one needs to choose the initial estimates of β and S0. For 

β, a simple choice is to let  or use the estimate (2) based on the right-censored data 

{Xi, δi, Zi, i = 1, … , n}. To generate the Xi’s, one can simply impute Xi = (Li +Ri)/2 for the 

left- and interval-censored observations. Another alternative is to generate a uniform random 

variable from the interval (Li, Ri]. For , as with the second approach for β, one could 

apply the estimate (3) based on the same set of right-censored data and the relationship S0(t) 
= exp{−Λ0(t). For the convergence of the procedure, since the main purpose is to estimate β, 

one can apply the criterion

for a given positive constant ϵ.

Note that as the estimator (3), the estimator  may not be monotone. In this case, 

we replace it by mins≤t  in Step 4. Let  denote the estimate of β at 

convergence with the multiple imputation procedure above for a resampled interval-censored 

data. When n is large, the distribution of  can be approximated by the normal distribution 

(Rubin, 1987) with mean β0 and the covariance matrix that can be estimated by
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Let  and  denote the final estimate of β and Σ, respectively, for the qth resampled 

interval-censored failure time data with q = 1, … , Q. Following Hoffman et al. (2001), we 

estimate β by

and Σ by

In the numerical studies reported below, we used Fortran 77 for the implementation of the 

computational algorithm above on Redhat (2.6.9–34.EL), and the computational cost seems 

to be affordable for moderate sample sizes. For example, with a dataset of 100 clusters with 

the cluster size being between 2 and 5, it took about 50 s of CPU time on average on Dell 

Desktop (OPTIPLEX 7010 of 10 GB RAM, 1 TB hard disk) to achieve convergence with 10 

imputations and 1000 resamplings.

4. A simulation study

An extensive simulation study is conducted to assess the performance of the multiple 

imputation approach presented in the previous sections. In the study, we investigated the 

performance of the imputation method with clustered interval-censored observations 

represented in (Lij, Rij], i = 1, … , n, j = 1, … , ni. For comparison, we also studied the 

estimating equation-based procedure proposed by Li et al. (2012) under the same additive 

hazards model. For the generation of the censoring intervals, we considered both the 

situation where they are independent of covariates and the situation where they may be 

covariate-dependent.

To generate the failure time of interest, we took λ0(t) = 2 in model (4) and generated the 

Zij’s from the Bernoulli distribution with success probability p = 0.5. The latent variable bi 

was assumed to follow a normal distribution with mean zero and variance . For the 

generation of covariate-independent censoring intervals, we first generated multiple 

examination times for each subject to mimic many medical follow-up studies. For example, 

this would be the case if each subject is repeatedly monitored at discrete time points and 

some subjects are siblings or from the same family. More specifically, it was supposed that 

there were potentially eight examination times for each subject and the length or period 
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between two consecutive examination times, denoted as len, was assumed to be a uniform 

random variable over (0, 0.2). Denote τ0 = 0 and τ9 = +∞ for each subject, and suppose that 

τ1ij is the first random examination time generated from the uniform distribution U(0, 0.2). 

Then the following seven examination times were calculated as τkij = τ1ij + (k − 1) × len, k = 

2, 3, … , 8. It was assumed that a subject may miss the scheduled examination times with 

probability 0.1 for the first four and 0.2 for the latter four. Then the observed interval (Lij, 

Rij] was defined with Lij = τsij and Rij = τqij, where τsij and τqij with 0 ≤ s < q ≤ 9 are the 

two real adjacent observation times such that (τsij, τqij) contains the true failure time Tij.

For the generation of covariate-dependent censoring intervals, we used the same procedure 

as above except that the eight examination times τk, k = 1, … , 8 were assumed to follow the 

Cox models

with λk(t) = 9 − k and under the restricted order τ1ij < τ2ij < τ3ij < τ4ij < τ5ij < τ6ij < τ7ij < 

τ8ij. Here as before, we also assume τ0ij = 0 and τ9ij = +∞. For all situations, the cluster size 

ni was assumed to follow a uniform distribution U{2, 3, 4, 5}.

In the simulation study, for comparison, we also considered the estimating equation-based 

procedure given by Li et al. (2012), which assumed that each subject is observed twice at Uij 

and Vij with Uij ≤ Vij and Tij is known only Tij ≤ Uij, Uij < Tij ≤ Vij or Tij > Vij. That is, the 

observation on Tij is left-, interval- or right-censored. It is apparent that such data cannot 

give exact or right-censored data as the type of interval-censored considered here. To 

transform the observations with format (Lij, Rij] to that with (Uij, Vij), we set Uij = Rij and 

let Vij to be the largest observation times in the study if Lij 0. In the case of 0 < Lij < Rij < 

+∞, we set Uij = Rij and let Vij to be the largest observation times in the study if Lij = 0. In 

the case of 0 < Lij < Rij < +∞, we set Uij = Lij and Vij = Rij and if Rij = +∞, we took Vij = 

Lij and Uij to be the smallest observation time in the study. The results given below are based 

on 1000 replications with K = 10 and Q = 1000 for the multiple imputation approach.

Table 1 presents the simulation results for estimation of β with the true value, denoted by β0, 

of β taken to be −0.25, 0 and 0.25 with covariate-independent censoring intervals. The 

results with covariate-dependent censoring intervals are given in Tables 2 and 3 with the true 

value γ0 = −0.25 and 0.25, respectively. In both cases, we considered n = 100 and 200, and 

the results include the bias of β (BIAS), the means of the estimated standard deviations 

(ESD), the sample standard errors of the estimated β (SSE), and the 95% empirical converge 

probabilities (CP). It can be seen from the three tables that the imputation approach performs 

well as the estimator has negligible bias and the estimated standard deviation is close to the 

empirical standard error with proper coverage probability. But the estimates given in Li et al. 

(2012) seem to be biased and the biases appear to be more severe with covariate-dependent 

censoring intervals. A possible reason for this is that the data structure may not satisfy the 

requirement needed in Li et al. (2012). One can also see from the tables that as expected, 

both bias and variance decrease when the number of cluster increases.
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Note that in the above, we only considered the situation with one covariate. As suggested by 

a reviewer, we also performed some simulations with two covariates and Table 4 presents 

some results on estimation of two regression parameters β1 and β2 with Z1 and Z2 generated 

from the Bernoulli distribution with success probability p = 0.5 and the uniform distribution 

U(0, 5), respectively. Here the censoring intervals were assumed to be covariate-independent 

and all other set-ups were the same as with Table 1. The results again indicate that the 

presented approach seems to work well for the situations considered. We also investigated 

other set-ups and obtained similar results. Also suggested by a reviewer, we also investigated 

some different ways for generating covariate-dependent censoring intervals. In the results 

given in Table 5, for example, the observation times and censored intervals were generated 

as in Table 1, but with the length len following the uniform distribution U(0, 0.2) if Z ≤ 0.5 

and the uniform distribution U(0.2, 0.8) if Z > 0.5. Note that here the covariate Z was 

assumed to follow the uniform distribution U(0, 1). One can see that the results are similar to 

those given in Tables 2 and 3.

For the simulation results given above, we used Q = 1000 for resampling. To investigate the 

effect of Q on the performance of the procedure, we used Q = 2000 and obtained similar 

results. As mentioned above, in practice, one can approximate the distribution of the 

proposed estimator  by the normal distribution. To see this, based on the simulated data 

generated above, we obtained and evaluated the quantile plots of the standardized  against 

the standard normal variable. Figs. 1 and 2 present two such plots from the set-ups in Tables 

1 and 3, respectively. Both plots suggest that the normal approximation seems to be 

reasonable and the plots for other set-ups were similar.

5. An application

In this section, we apply the presented estimation procedure to a set of clustered interval-

censored failure time data arising from a lymphatic filariasis (LF) study (Dreyer et al., 

2006). It followed 47 men with LF, a debilitating parasitic disease that worms live in nests in 

human body. Among them, 22 received the co-administration of diethylcarbamazine (DEC) 

and albendazole (ALB) (new treatment), and the others were given DEC alone (standard 

treatment). ALB is an anti-parasitic drug, which is commonly used to treat interstim worm 

infections. When co-administered with DEC, it helps break the cycle of LF transmission 

between mosquitoes and humans. Using ultrasound a doctor can detect the movement of the 

living adult worms. One main goal of the study was to compare the effect of the co-

administration of DEC and ALB versus DEC alone for the treatment of LF. The variable of 

interest is the time to clearance of worms in each nest. The patients in the study were 

followed for one year since their treatment and periodically examined by ultrasound to see if 

the worms were still alive. Therefore only interval-censored data were observed with each 

patient as a cluster with n = 47 and the cluster size is number of nests of adult filial worms in 

each patient. In total, 78 adult worm nests were detected by ultrasound and the cluster size, 

ni, ranged from 1 to 5. Two covariates were of particular interest to the investigators. One is 

the treatment indicator, and the other is age of the patient in years at baseline. In the 

analysis, we define X1i to be 0 if the patient i was given the co-administration of DEC and 

ALB and 1 otherwise and let X2i be age of the patient at baseline, i = 1, … , 47. Note that 
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here we only have cluster-specific covariates. The data are given in the formulation Tij ∈ 
(Lij, Rij].

To analyze the data, we applied the multiple imputation procedure with Q = 1000 to the 

observation of the time to clearance of worms in a nest. We also investigated the effect of the 

number of imputations K on the performance of the procedure with K = 5, 10 and 500 and 

obtained similar results. The procedure yielded  = 0.0025 with the estimated standard 

error of 0.0015 for treatment effect (p-value = 0.0895 for testing of treatment effect) and 

= −2.2611 × 10−5 with the estimated standard error of 5.8895 × 10−5 for age effect (p-value 

= 0.7011 for testing of age effect). These results suggest that there seems to be no difference 

in cleaning the worms between the two treatments and the clearance of the worms is not 

significantly related to the age of the patients at baseline. These results are similar to those 

given in Li et al. (2012) under the same additive hazards model. However, one must be 

careful about interpreting the results due to the small number of patients.

6. Discussion and concluding remarks

This paper discussed regression analysis of interval-censored failure time data under the 

additive hazards model and for the analysis, a multiple imputation approach was presented 

and investigated. Compared to the existing methods for the problem, a major advantage of 

the imputation approach is its simplicity. It avoids estimating the correlation of interval-

censored observations within the same cluster by using a resampling-based method. The 

imputation approach converts the regression problem of interval-censored failure time data 

to that of right-censored failure time data which can be easily implemented by using existing 

software packages. The numerical studies showed that the imputation approach presented 

here is efficient and performs well for practical situations.

Compared to the regression approach proposed by Li et al. (2012), the imputation approach 

is less biased and provides much better coverage probabilities for all the situations 

considered. The approach by Li et al. (2012) only applies to clustered interval-censored 

failure time data given in (Uij, Vij) where U and V are two monitoring times assumed to 

follow a Cox model. However, in real situations, the failure time may only be known to lie 

within a time interval in the form of (Lij, Rij] with L ≤ R and both L and R belonging to (0, 

+∞). In this paper, we considered general clustered interval-censored failure time data given 

by (Lij, Rij] which arise naturally from longitudinal studies with periodic follow-up. The 

proposed approach can also be conveniently implemented with clustered interval-censored 

failure time data given by (Uij, Vij). It should be noted that the proposed approach does 

require estimation of the cumulative baseline hazard function.

There exist several directions for future research. One is that although the simulation 

suggests that the normal approximation seems reasonable to the distribution of  and  is 

efficient, it would be helpful to provide rigorous justification to it. By looking at the 

lymphatic filariasis study, one may be also interested in developing a procedure to measure 

the strength of correlation among subjects within the same cluster and incorporate the 

correlation in the imputation model. In this paper, we have focused on the situation where 

covariates are time-independent and subject-specific and it is easy to see that sometimes we 
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may face time-dependent and/or cluster-specific covariates. Although the proposed approach 

cannot be directly applied to this latter situation, it can be easily generalized to the situation. 

Note that the simulation studies have shown that the proposed method works well on the 

scenarios with moderate to larger number of clusters and small cluster size. Suggested by a 

reviewer, we also investigated the performance of the method for the scenarios with small 

number of clusters but large cluster size that may occur in practice, and the results indicate 

that one needs to be careful for the application of the method to the latter situations and may 

need to develop a more proper approach. Our simulation results suggest that one needs 50 or 

more clusters for the presented approach to perform properly.

Another possible direction is that sometimes one may face situations with an informative 

cluster size in the sense that cluster size is related to the failure time (Williamson et al., 

2008). It is apparent that it would be useful to generalize the proposed estimation procedure 

to the case of clustered interval-censored failure time data with informative cluster sizes 

under a semiparametric failure time model. In addition, one can see that the additive hazards 

model (4) assumes a normal distribution for the latent variable bi and one may want to 

consider the situation where the covariates may affect the latent variable.
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Fig. 1. 
Quantile plot of the estimates with covariate-independent censoring intervals (γ0 = 0, β0 = 

−0.25, n = 200).

Chen et al. Page 13

Comput Stat Data Anal. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Quantile plot of the estimates with covariate-dependent censoring intervals (γ0 = 0.25, β0 = 

0.25, n = 200).
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Table 1

Estimation of β with γ0 = 0 and covariate-independent censoring intervals.

β 0 n The proposed estimator Li–Wang–Sun’s estimator

BIAS ESD SSE CP BIAS ESD SSE CP

−0.25 100 −0.0134 0.2445 0.2516 0.936 0.0832 0.1779 0.2049 0.894

 0 100 −0.0091 0.2585 0.2599 0.942 −0.0008 0.1846 0.2199 0.907

 0.25 100 −0.0139 0.2708 0.2911 0.941 −0.1053 0.1916 0.2325 0.860

−0.25 200 −0.0037 0.1744 0.1792 0.943 0.0885 0.1238 0.1422 0.855

 0 200 −0.0059 0.1839 0.1773 0.954 0.0053 0.1290 0.1480 0.912

 0.25 200 0.0031 0.1932 0.2029 0.943 0.1433 0.1339 0.1564 0.840
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Table 2

Estimation of β with γ0 = −0.25 and covariate-dependent censoring intervals.

β 0 n The proposed estimator Li–Wang–Sun’s estimator

BIAS ESD SSE CP BIAS ESD SSE CP

−0.25 100 0.0056 0.2472 0.2521 0.952 0.0967 0.1958 0.2270 0.725

 0 100 −0.0011 0.2578 0.2572 0.958 0.1830 0.2077 0.2289 0.835

 0.25 100 0.0005 0.2720 0.2755 0.941 0.0964 0.2189 0.2441 0.903

−0.25 200 0.0044 0.1746 0.1715 0.952 0.2886 0.1376 0.1551 0.534

 0 200 −0.0002 0.1828 0.1819 0.954 0.1733 0.1461 0.1655 0.766

 0.25 200 0.0000 0.1928 0.1979 0.941 0.0947 0.1526 0.1793 0.849
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Table 3

Estimation of β with γ0 = 0.25 and covariate-dependent censoring intervals.

β 0 n The proposed estimator Li–Wang–Sun’s estimator

BIAS ESD SSE CP BIAS ESD SSE CP

−0.25 100 −0.0039 0.2565 0.2584 0.945 −0.0968 0.2191 0.2448 0.901

 0 100 −0.0135 0.2702 0.2871 0.936 −0.1745 0.2274 0.2579 0.870

 0.25 100 −0.0126 0.2859 0.2946 0.939 −0.2820 0.2357 0.2626 0.768

−0.25 200 −0.0016 0.1810 0.1755 0.942 −0.0852 0.1536 0.1642 0.893

 0 200 −0.0005 0.1900 0.1883 0.961 −0.1635 0.1592 0.1759 0.815

 0.25 200 0.0020 0.2025 0.2081 0.949 −0.2636 0.1655 0.1909 0.641
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Table 4

Estimation of β with two covariates and covariate-independent censoring intervals.

β 0 n BIAS ESD SSE CP

β10 = 0 100 −0.0115 0.1971 0.2023 0.942

β20 = 0 100 −0.0062 0.0703 0.0754 0.947

β10 = 0.5 100 0.0093 0.2103 0.2091 0.937

β20 = −0.25 100 0.0039 0.0767 0.0725 0.945

β10 = −0.25 100 −0.0156 0.3142 0.3210 0.941

β20 = 0.5 100 0.0197 0.1406 0.1338 0.930

β10 = 0 200 −0.0066 0.1429 0.1521 0.947

β20 = 0 200 0.0010 0.0675 0.0698 0.951

β10 = 0.5 200 −0.0067 0.1479 0.1470 0.943

β20 = −0.25 200 −0.0013 0.0519 0.0496 0.950

β10 = −0.25 200 −0.0078 0.2393 0.2381 0.946

β20 = 0.5 200 0.0083 0.0941 0.0956 0.938
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Table 5

Estimation of β with covariate-dependent censoring intervals.

β 0 n BIAS ESD SSE CP

−0.25 100 −0.0215 0.3974 0.4202 0.930

 0 100 −0.0051 0.4267 0.4724 0.914

 0.25 100 0.0067 0.4466 0.4770 0.922

−0.25 200 −0.0106 0.2835 0.2918 0.946

 0 200 −0.0021 0.2998 0.3171 0.940

 0.25 200 −0.0041 0.3192 0.3272 0.945
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