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Abstract

We study ridge estimation of the precision matrix in the high-dimensional setting where
the number of variables is large relative to the sample size. We first review two archetypal
ridge estimators and note that their penalties do not coincide with common quadratic
ridge penalties. Subsequently, starting from a proper `2-penalty, analytic expressions
are derived for two alternative ridge estimators of the precision matrix. The alterna-
tive estimators are compared to the archetypes with regard to eigenvalue shrinkage and
risk. The alternatives are also compared to the graphical lasso within the context of
graphical modeling. The comparisons may give reason to prefer the proposed alternative
estimators.

Keywords: graphical modeling, high-dimensional precision matrix estimation,
multivariate normal, `2-penalization, precision matrix

1. Introduction

Let Yi, i = 1, . . . , n, be a p-dimensional random variate drawn from Np(0,Σ). The
maximum likelihood (ML) estimator of the precision matrix Ω = Σ−1 maximizes:

L(Ω; S) ∝ ln |Ω| − tr(SΩ), (1)

where S is the sample covariance estimate. If n > p, the log-likelihood achieves its
maximum for Ω̂ML = S−1.

In the high-dimensional setting where p > n, the sample covariance matrix is singular
and its inverse is undefined. Consequently, so is Ω̂ML. A common workaround is the ad-
dition of a penalty to the log-likelihood (1). The `1-penalized estimation of the precision
matrix was considered almost simultaneously by [1], [2], [3], and [4]. This (graphical)
lasso estimate of Ω has attracted much attention due to the resulting sparse solution.
Juxtaposed to situations in which sparsity is an asset are situations in which one is in-
trinsically interested in more accurate representations of the high-dimensional precision
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matrix. In addition, the true (graphical) model need not be (extremely) sparse in terms
of containing many zero elements. In these cases we may prefer usage of a regularization
method that shrinks the estimated elements of the precision matrix proportionally [5] in
possible conjunction with some form of post-hoc element selection. It is such estimators
we consider.

We thus study ridge estimation of the precision matrix. We first review two archety-
pal ridge estimators and note that their penalties do not coincide with what is perceived
to be the common ridge penalty (Section 2). Subsequently, starting from a common ridge
penalty, analytic expressions are derived for alternative ridge estimators of the precision
matrix in Section 3. This section, in addition, studies properties of the alternative es-
timators and proposes a method for choosing the penalty parameter. In Section 4 the
alternative estimators are compared to their corresponding archetypes w.r.t. eigenvalue
shrinkage. In addition, the risks of the various estimators are assessed under multiple
loss functions, revealing the superiority of the proposed alternatives. Section 5 compares
the alternative estimators to the graphical lasso in a graphical modeling setting using
oncogenomics data. This comparison points to certain favorable behaviors of the pro-
posed alternatives with respect to loss, sensitivity, and specificity. In addition, Section 5
demonstrates that the alternative ridge estimators yield more stable networks vis-à-vis
the graphical lasso, in particular for more extreme p/n ratios. This section thus pro-
vides empirical evidence in the graphical modeling setting of what is tacitly known from
regression (subset selection) problems: ridge penalties coupled with post-hoc selection
may outperform the lasso. We conclude with a discussion (Section 6).

2. Archetypal Ridge Estimators

Ridge estimators of the precision matrix currently in use can be roughly divided
into two archetypes [cf. 6, 7]. The first archetypal form of ridge estimator commonly

is a convex combination of S and a positive definite (p.d.) target matrix Γ: Ω̂I(λI) =
[(1 − λI)S + λIΓ]−1, with λI ∈ (0, 1]. A common (low-dimensional) target choice is Γ
diagonal with (Γ)jj = (S)jj for j = 1, . . . , p. This estimator has the desirable property of
shrinking to Γ−1 when λI = 1 (maximum penalization). The estimator can be motivated
from the bias-variance tradeoff as it seeks to balance the high-variance, low-bias matrix
S with the lower-variance, higher-bias matrix Γ. It can also be viewed as resulting from
the maximization of the following penalized log-likelihood:

ln |Ω| − (1− λI)tr(SΩ)− λItr(ΩΓ). (2)

The penalized log-likelihood (2) is obtained from the original log-likelihood (1) by the

replacement of S by (1 − λI)S and the addition of a penalty. The estimate Ω̂I(λI) can
thus be viewed as a penalized ML estimate.

The second archetype finds its historical base in ridge regression, a technique that
started as an ad-hoc modification for dealing with singularity in the least squares normal
equations. The archetypal second form of the ridge precision matrix estimate would
be Ω̂II(λII) = (S + λIIIp)

−1 with λII ∈ (0,∞). It can be motivated as an ad-hoc fix
of the singularity of S in the high-dimensional setting, much like how ridge regression
was originally introduced by [8]. Alternatively, this archetype too can be viewed as a
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Figure 1: Ridge coefficient paths of nonredundant off-diagonal elements for the archetypal (dashed green)
and alternative (solid red) Type I (left panel) and Type II (right panel) ridge estimators. The 5 × 5
matrix S was generated as (S−1)j1,j2 = [(j1 × j2 + 1) mod 21]/25 if j1 6= j2 and (S−1)j1,j2 = 1 if
j1 = j2. The target matrix in the Type I case was taken to be the identity matrix I5. The penalty
parameter is generically indicated by λ. For archetype-to-alternative scaling of the penalty parameters
under Type I and Type II estimation see Section 4.1.

penalized estimate, as it maximizes [see also 9]:

ln |Ω| − tr(SΩ)− λIItr(ΩIp). (3)

The penalties in (2) and (3) are non-concave (their second order derivatives equal
the null-matrix 0). This, however, poses no problem under the restriction of a p.d.
solution Ω as the Hessian of both (2) and (3) equals −Ω−2. More surprising is that
neither penalty of the two current archetypes resembles the precision-analogy of what is
commonly perceived as the ridge `2-penalty: 1

2λ‖Ω‖
2
2 = 1

2λ
∑p
j1=1

∑p
j2=1[(Ω)j1,j2 ]2.

The graphical lasso uses a penalty that is in line with the `1-penalty of lasso regression.
It is a similar objective we have in the remainder. We embark on the derivation of
alternative Type I and Type II (graphical) ridge estimators using a proper `2-penalty.
Consider Figure 1 to get a flavor of the behavior of both the archetypal ridge precision
matrix estimators and our alternatives (receiving analytic justification in Section 3). It
is seen that ridge estimation based on a proper ridge penalty induces (slight) differences
in behavior. Differences that will be shown to point to the preferability of the alternative
estimators in Section 4.

3. Alternative Ridge Estimators of the Precision Matrix

In this section we derive analytic expressions for alternative Type I and Type II ridge
precision estimators. In addition, we explore their moments (Section 3.3) and consistency
(Section 3.4) as well as methods for choosing the penalty parameter (Section 3.5). Proofs
(as indeed all proofs in the remainder) are deferred to Appendix A.
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3.1. Type I

In this section an analytic expression for an alternative Type I ridge precision estima-
tor is given. Before arriving at a proposition containing some properties of this estimator,
we employ the following lemma:

Lemma 1 (Alternative Type I ridge precision estimator). Amend the log-likelihood
(1) with the `2-penalty

λa
2

tr
[
(Ω−T)T(Ω−T)

]
, (4)

with T denoting a symmetric p.d. target matrix, and where λa ∈ (0,∞) denotes a penalty
parameter. Under given penalty, an alternative (penalized ML) Type I ridge estimator is
obtained as:

Ω̂Ia(λa) =

{[
λaIp +

1

4
(S− λaT)2

]1/2
+

1

2
(S− λaT)

}−1
. (5)

Proposition 1. Consider the alternative Type I ridge estimator (5) from Lemma 1. For
this estimator, the following properties hold:

i. Ω̂Ia(λa) � 0, for all λa ∈ (0,∞);

ii. limλa→0+ Ω̂Ia(λa) = S−1;

iii. limλa→∞− Ω̂Ia(λa) = T.

limits of the proposed estimator are the (possibly nonexistent) inverse of the ML
estimator S and a target matrix, respectively. For a fuller understanding of the estimator
(5), consider the following remarks.

Remark 1. The target matrix T from Lemma 1 may in principle be nonnegative definite
(n.d.) for the statement to hold. As should be clear from Proposition 1, however, choosing
an n.d. target may lead to ill-conditioned estimates in the limit. Moreover, from a
shrinkage perspective, the interpretability of a p.d. target may be deemed superior.
Hence, Lemma 1 assumes the target matrix to be p.d. (as does the archetypal Type I
estimator). Section 3.2 considers as a special case the n.d. choice T = 0, in order to
arrive at an alternative for the archetypal Type II estimator.

Remark 2. It may be noticed that the penalty term (4) amounts to a proper ridge
penalty as λa

2 tr
[
(Ω−T)T(Ω−T)

]
= λa

2 ‖Ω−T‖22. When T = 0, we obtain λa

2 ‖Ω‖
2
2; a

special case that will be considered in Section 3.2.

Remark 3. From Proposition 1 it is clear that (5) is always p.d. when λa ∈ (0,∞).
However, as with any regularized covariance or precision estimator, the estimate is not
necessarily well-conditioned (in terms of, say, the spectral condition number) for any λa ∈
(0,∞) when S is ill-behaved. To obtain a well-conditioned estimate in such situations,
one should choose λa not too close to zero. In order to choose an optimal value of λa
for a problem at hand, one can employ (approximate) cross-validation or information
criteria (see Section 3.5).
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Remark 4. Lemma 1 considers regularized estimation of the precision matrix. It may
also provide an alternative Type I regularized estimator for the covariance matrix, by
entertaining

[Ω̂Ia(λa)]−1 ≡ Σ̂Ia(λa) =

[
λaIp +

1

4
(S− λaT)2

]1/2
+

1

2
(S− λaT).

Then: (i) Σ̂Ia(λa) � 0, for all λa > 0; (ii) limλa→0+ Σ̂Ia(λa) = S; (iii)

limλa→∞− Σ̂Ia(λa) = T−1. Say one wishes to shrink to a p.d. covariance target C,
one only has to specify T = C−1 in this case.

Remark 5. We note that (5) can also be obtained without inversion, by noticing

Ω̂Ia(λa) =
1

λa

[
Σ̂Ia(λa)− (S− λaT)

]
.

The basis for this claim is expression (8) from Section 3.3.

3.2. Type II

An alternative Type II ridge estimator for the precision matrix can be found as a
special case of Lemma 1:

Corollary 1 (Alternative Type II ridge precision estimator). Consider the alter-
native Type I ridge estimator (5) from Lemma 1. An alternative ridge proper Type II
estimator is obtained by choosing T = 0, such that

Ω̂IIa(λa) =

{[
λaIp +

1

4
S2

]1/2
+

1

2
S

}−1
. (6)

For this estimator, the following properties hold:

i. Ω̂IIa(λa) � 0, for all λa ∈ (0,∞);

ii. limλa→0+ Ω̂IIa(λa) = S−1;

iii. limλa→∞− Ω̂IIa(λa) = 0.

Similar to the archetypal II estimator, the right and left-hand limits are the (possi-
bly nonexistent) inverse of the ML estimator S and the null-matrix, respectively. The
alternative Type II analogies of Remarks 3–5 hold for (6). Note that the estimator (6)
was also considered by [10] in a different setting.

3.3. Moments

The explicit expressions for the alternative (Type I and II) ridge estimators facilitate
the study of their properties. For instance, the moments of the ridge covariance and
precision estimators can – in principle – be evaluated numerically to any desired degree
of accuracy. Consider the following exemplification. With respect to the alternative Type
I estimator we write:

Σ̂Ia(λa) =
√
λa

[
(Ip + U2)1/2 + U

]
,

5



where U = (S − λaT) / (2
√
λa). Express the (1 + x2)1/2 term as a binomial series to

obtain the series representation of the ridge covariance estimator:

Σ̂Ia(λa) =
√
λaU +

√
λa

∞∑
q=0

(
1/2

q

)
U2q.

Now, taking the expectation of the right-hand side yields the first moment of the alter-
native Type I ridge covariance estimator. To evaluate this expectation note that (under
normality) S follows a (singular) Wishart distribution, assume T to be non-random, and
restrict the binomial series to the degree that produces the desired accuracy. It then
suffices to plug in the required moments of the Wishart distribution.

From the moments of the ridge covariance estimator one can directly obtain the
moments of the ridge precision estimator. Hereto we need the identity:

2
√
λaU =

√
λa

[
(Ip + U2)1/2 + U

]
−
√
λa

[
(Ip + U2)1/2 + U

]−1
, (7)

with U as above. This equality is immediate after noting that all terms have the same
eigenvectors and using ready algebra to prove the identity 2x = x+(1+x2)1/2− [x+(1+
x2)1/2]−1, which applies to each eigenvalue in the eigen-decomposition (see also Section
4.1) of (7) separately. Reformulated we then have:

S− λaT = Σ̂Ia(λa)− λaΩ̂Ia(λa). (8)

This identity thus yields, via the moments of the alternative Type I ridge covariance
matrix, the moments of the alternative Type I ridge precision matrix. The moments of
the alternative Type II estimator can be obtained when considering T to be the null-
matrix.

Being able to evaluate the moments facilitates, e.g., the approximation of the bias of
the proposed ridge estimators. Hereto assume Yi ∼ Np(0,Σ) for i = 1, . . . n. Define the
sample covariance matrix S = 1

n

∑n
i=1 YiY

T
i . Then, it is well-known that nS follows the

Wishart distribution Wp(Σ, n). Recently, [11] have shown how E(nbSb) may be derived
analytically when b ∈ Z. Their results are exploited here to approximate the bias of the
proposed ridge estimators. When we ignore terms of order three and higher and limit
ourselves to the type II estimator with T = 0, the expectation may be approximated by
(see also Section 1 of the Supplementary Material):

E
[
Σ̂IIa(λa)

]
≈ 1

2
E(S) +

√
λaIp +

1

8
√
λa

E(S2)

=
1

2
Σ +

√
λaIp +

1

8
√
λa

[
n+ 1

n
Σ2 +

1

n
tr(Σ)Σ

]
,

in which the expectations of S and S2 are obtained from [11]. Section 1 of the Supple-
mentary Material contains a higher-order approximation and a simulation illustrating
the accuracy of the approximation.

3.4. Consistency

We will show that the alternative Type I ridge estimator (5) is consistent under fixed-
dimension asymptotics. To make this explicit, we (temporarily) modify the notation. Let
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Sn be the sample covariance matrix with index n indicating the sample size. Furthermore,
the penalty parameter is now denoted λa,n. This explicates the fact that the penalty
parameter is chosen in a data-driven fashion (cf. Section 3.5) and thus depends on the
sample size. In particular, it will be assumed that λa,n converges (in some sense) to zero
as n→∞−. This reflects the decreasing necessity to regularize the (inverse) covariance

estimator as the sample size increases. Finally, let Σ̂Ia
n (λa,n) be the alternative ridge

covariance estimator (see Remark 4) with S and λa replaced by Sn and λa,n.
In showing consistency, we need theasymptotic unbiasedness of our estimator. This

property is warranted by the following lemma:

Lemma 2 (Asymptotic unbiasedness). Let Sn be the sample covariance matrix from
a sample Y1, . . . ,Yn drawn from Np(0,Σ). Denote by λa,n a nonnegative random vari-
able that converges almost surely to zero and by T a nonrandom p.d. symmetric matrix.
Then:

lim
n→∞−

E
[
Σ̂Ia
n (λa,n)

]
−→ lim

n→∞−
E(Sn) = Σ.

Simultaneously, the expectation of its inverse Ω̂Ia
n (λa,n) tends to Ω = Σ−1 as n→∞−.

Lemma 2 follows directly from application of the continuous mapping theorem, the Port-
manteau lemma and Slutsky’s lemma [see, e.g., Theorem 2.3, Lemma 2.2, and Lemma
2.8 in 12]. By virtue of the same asymptotic results, the lemma may be generalized to
allow T to depend on data, as long as the data-dependent target Tn converges (almost
surely) to some T.

Lemma 2 is conducive in proving the consistency result (note that asymptotic unbi-
asedness and consistency of the alternative Type II estimator (6) follow as special cases
of Lemma 2 and Proposition 2):

Proposition 2 (Consistency). Let Sn be the sample covariance matrix from a sample
Y1, . . . ,Yn drawn from Np(0,Σ). Denote by λa,n a nonnegative random variable that
converges almost surely to zero and by T a nonrandom p.d. symmetric matrix. Then:

lim
n→∞−

E
(
‖Σ̂Ia

n (λa,n)−Σ‖2F
)

= 0,

where ‖·‖F denotes the Frobenius norm. Simultaneously, Ω̂Ia
n (λa,n) consistently estimates

Ω = Σ−1.

The consistency result in Proposition 2 takes p to be fixed, and thus does not concern
increasing-dimension asymptotics (in which p also tends to infinity). This is motivated by
practice. We have an applicatory focus on the reconstruction of (molecular) interaction
networks (see also Section 5). The (maximum) number of variates of such systems is
fixed. As such, the consistency result above is deemed appropriate.

3.5. Choosing λa

A well-informed choice of the penalty parameter λa is crucial in applications. The
literature contains many proposals for selecting an (in some sense) optimal value for the
penalty parameter in (precision) regularization problems. These can be classified [see
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13] in methods aiming at model selection consistency (e.g., BIC, EBIC), and methods
that aim to maximize predictive power (e.g., cross-validation, AIC). As the `2-penalty
does not automatically induce sparsity in the estimate, we are not after model selection
consistency. Rather, in our case it is natural to seek loss efficiency.

While both cross-validation (CV) and AIC [14] have similar asymptotic properties in
terms of minimizing Kullback-Leibler divergence, the data-driven nature of the former
makes it prone to have superior behavior in terms of accuracy. The K-fold CV score for
a generic regularized estimate Ω̂(λ) based on the generic fixed penalty λ can be given as:

ϕK(λ) =

K∑
k=1

nk

{
− ln |Ω̂(λ)−k|+ tr[Ω̂(λ)−kSk]

}
,

where nk is the size of subset k, for k = 1, . . . ,K disjoint subsets. Further, Sk denotes
the sample covariance matrix based on subset k, while Ω̂(λ)−k denotes the estimated
regularized precision matrix on all samples not in k. Highest predictive accuracy can
be obtained by choosing nk = 1, such that K = n. This is known as leave-one-out
CV (LOOCV). Unfortunately, LOOCV (as K-fold CV in general) is computationally
demanding for large p and/or large n.

Recently, [15] and [16] derived, based on the log-likelihood of the precision, an ap-
proximate solution to the LOOCV score. Based on their work, the approximate LOOCV
score for fixed λa, ϕ̃n(λa), is given for the alternative Type I ridge estimator as:

ϕ̃n(λa) = − 1

n
L[Ω̂Ia(λa); S] +

1

2n(n− 1)

n∑
i=1

γi, (9)

with

γi =

p∑
j1=1

p∑
j2=1

{[
[Ω̂Ia(λa)]−1 −YiY

T
i

]
◦
[
Ω̂Ia(λa)

(
S−YiY

T
i

)
Ω̂Ia(λa)

]}
j1,j2

,

and where ◦ denotes the Hadamard product. Naturally, the approximate LOOCV score
for the alternative Type II ridge estimator can be obtained by replacing Ω̂Ia(λa) in (9) by

Ω̂IIa(λa). We propose to choose λ∗a such that λ∗a = arg minλa∈R+ ϕ̃n(λa), which relates
to the minimization of Kullback-Leibler divergence and the maximization of predictive
accuracy. The expression ϕ̃n(λ) is computationally efficient, requiring only a single ma-
trix inversion (as opposed to n inversions for ϕn(λ)). In addition, the Hadamard product
has an efficient computational implementation [see 16].

Remark 6. We note that only a single spectral decomposition and a single matrix in-
version are required in order to obtain the complete solution path (over any λa in the
feasible domain) for the alternative Type II estimator and the alternative Type I esti-
mator under a scalar matrix target choice (cf. Section 4.1). This implies that, in these
cases, the computation of ϕ̃n(λa) over the (complete) solution path is particularly effi-
cient. This efficiency, coupled with the benefits of knowing the full solution path, may
be deemed to rival the benefits of a solution under an analytic choice of λa (see also next
remark).
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Remark 7. There exist analytic solutions to determining an optimal value for the
penalty parameter. [17], e.g., determine analytically, under a modified Frobenius loss,
the optimal value for the penalty parameter in an archetypal Type I setting under cer-
tain choices of T. For practical applications, however, one still needs to approximate
this optimal value, requiring variances and covariances of the individual entries of S [7].
When the variable to observation ratio grows more extreme, the approximation may pro-
pose (overly) conservative or even negative penalty values as optimal [cf. 18, 7], giving
us reason to prefer the computationally friendly, data-driven approach from above. In
addition, (9) is generic, meaning it can be used under any p.d. choice of T.

The estimates Ω̂Ia(λ∗a) and Ω̂IIa(λ∗a) may facilitate methods of (high-dimensional)
data analysis in need of a precision (or covariance) matrix that is not (necessarily) sparse
(cf. Sections 4 and 6). They may also be of interest in situations in which sparsity is
required, such as graphical modeling. One may pair, in such situations, the proposed
estimates with a posteriori methods of support determination (cf. Section 5).

4. Comparing Alternative and Archetypal Ridge Estimation

In this section the proposed alternative Type I and Type II ridge estimators are
compared to their corresponding archetypes w.r.t. eigenvalue shrinkage (Section 4.1).
Moreover, the alternative and archetypal estimators are subjected to a risk comparison
(Section 4.2).

4.1. Eigenvalue Shrinkage

The alternative Type I estimator (5) is, as its archetypal counterpart, rotation equiv-
ariant when choosing the target to be a scalar matrix T = ψIp, with (for the alternative
Type I estimator) ψ ∈ [0,∞). That is, the effect of the ridge penalty on the precision es-
timate is then equivalent to shrinkage of the eigenvalues of the unpenalized estimate S−1.
To see this, let the eigen-decomposition of S be VDVT where D is a diagonal matrix
with the eigenvalues of S on the diagonal and V denotes the matrix that contains the cor-
responding eigenvectors as columns. The orthogonality of V implies VVT = VTV = Ip.
We then rewrite, using T = Ip for notational convenience, the inverse of (5) as follows:

[Ω̂Ia(λa)]−1 =

[
λaVVT +

1

4
(VDVT − λaVVT)2

]1/2
+

1

2
(VDVT − λaVVT)

= V

{[
λaIp +

1

4
(D− λaIp)2

]1/2
+

1

2
(D− λaIp)

}
VT, (10)

making clear that the ridge penalty deals with singularity and ill-conditioning through
shrinkage of the eigenvalues of S−1. The alternative Type II estimator (6) also has the
property of being rotation equivariant. This can be seen by:

[Ω̂IIa(λa)]−1 = V

[(
λaIp +

1

4
D2

)1/2

+
1

2
D

]
VT. (11)

The equivariance property can be used in the comparison of eigenvalue shrinkage between
the archetypes and alternatives. The following claims summarize:

9



Proposition 3. Let the regularization parameters of the archetypal and alternative Type
I ridge estimators – λI and λa respectively – map to the same scale. That is, choose
λI = 1 − 1/(λa + 1). In addition, consider a p.d. scalar matrix as the low-dimensional
target matrix T and let the archetypal Type I estimator have the same target in the
precision sense, i.e., Γ−1 = T. Then the alternative estimator Ω̂Ia(λa) displays shrinkage
of the eigenvalues of S−1 that is at least as heavy as the shrinkage propagated by the
archetypal estimator Ω̂I(λI).

Proposition 4. Let the regularization parameters of the archetypal and alternative Type
II ridge estimators – λII and λa respectively – map to the same scale. That is, choose
λa = λ2II. Then the archetypal estimator Ω̂II(λII) displays shrinkage of the eigenvalues
of S−1 that is at least as heavy as the shrinkage propagated by the alternative estimator
Ω̂IIa(λa).

Corollary 2. The eigenvalue inequality of Proposition 4 implies:

L[Ω̂II(λII); S] ≤ L[Ω̂IIa(λa); S].

The alternative Type I estimator displays faster shrinkage to the target T than the
archetypal Type I estimator. The alternative estimator then can be expected to have
lower risk (in terms of, say, quadratic loss) than its archetypal counterpart when the
(low-dimensional) target is an adequate representation of the true precision matrix. In
such cases it can be shown under mild assumptions that, analogous to Corollary 2,
L[Ω̂I(λI); S] ≤ L[Ω̂Ia(λa); S]. In absence of a natural target T, Type II estimators
are an option. It is seen from proposition 4 that, as opposed to the Type I situation,
the alternative Type II estimator displays slower shrinkage to the null-matrix than the
archetypal Type II estimator. As the limiting null-matrix can indeed never be a good
representation of the true precision matrix, the alternative Type II estimator can also
be expected to have lower risk than its archetypal counterpart. The behavior of the
alternative Type I and Type II estimators with regard to shrinkage rate may initially
seem contradictory when evaluating Propositions 3 and 4. It is not if we notice that
the penalty parameter λa is more influential in the Type I alternative as its effect is not
diluted by a null T. The topics of Loss and Risk are explored in the next subsection.

4.2. Risk

The risks of the alternative Type I and Type II estimators for the precision matrix
are compared to that the of Type I and II archetypes. Let Ω denote a generic (p × p)
population precision matrix and let Ω̂(λ) denote a generic ridge estimator of the precision
matrix under generic regularization parameter λ. The following loss functions are then
considered in risk evaluation:

a. Squared Frobenius loss, given by:

LF [Ω̂(λ),Ω] = ‖Ω̂(λ)−Ω‖2F ;

b. Quadratic loss, given by:

LQ[Ω̂(λ),Ω] = ‖Ω̂(λ)Ω−1 − Ip‖2F .
10



The risk Rf of the estimator Ω̂(λ) given a loss function Lf , f ∈ {F,Q}, is then defined
as the expected loss:

Rf [Ω̂(λ)] = E{Lf [Ω̂(λ),Ω]},

which is approximated by the median of losses over repeated simulation runs.
The risk is evaluated on data sets drawn from a multivariate normal distribution with

four different (population) precision matrices:

1. Ωrandom with no conditional dependencies, generated as Ωrandom = 1
nYTY from the

(n× p)-dimensional matrix Y with n = 10, 000 and each Yij drawn from N (0, 1);

2. Ωchain representing a conditional independence graph with a chain topology. Its
element are (Ωchain)j,j = 1, (Ωchain)j,j+1 = 0.25 = (Ωchain)j+1,j for j = 1, . . . , p− 1,
and zero otherwise;

3. Ωstar representing a conditional independence graph with a star topology. Its ele-
ment are (Ωstar)j,j = 1, (Ωstar)1,j+1 = 1/(j + 1) = (Ωstar)j+1,1 for j = 1, . . . , p− 1,
and zero otherwise;

4. Ωclique representing a conditional independence graph with a clique structure. The
structure consists of five equally sized blocks along the diagonal, each with unit
diagonal elements and off-diagonal elements equal to 0.25.

Throughout the simulation the dimension of p is fixed at p = 100 while the sample size
varies: n = 5, 10 and 25. This represents varying degrees of high-dimensionality. For
each combination of precision matrix and sample size one hundred data sets are drawn.
For each draw the sample covariance matrix is calculated. The penalized estimates of the
precision matrix are obtained for a large grid of the penalty parameter using the Type II
null-matrix target (T = 0), a diagonal target (diag[T] = 1/diag[S]), and a target equal
to the true precision matrix (T = Ω). Note that in the comparison for the latter two
Type I situations the archetypal target Γ is taken to be T−1, so that the archetypal and
alternative estimators have the same target in the precision sense. For each penalized
precision estimate the quadratic and Frobenius loss are evaluated and subsequently the
risk (under given loss function) is approximated by the median loss over the hundred
draws. Figure 2 shows, for the star topology, the estimated risks under quadratic loss for
Type I ridge estimators (diag[T] = 1/diag[S] and T = Ω) plotted against the penalty
parameter (see Section 2 of the Supplementary Material for visualizations of all risk
comparisons).

The simulation results (as summarized in Figure 2 and Section 2 of the Supplement)
show that the alternative Type I ridge estimator outperforms its archetypal counterpart
with respect to both loss types (when shrinking towards either of the non-zero targets).
This behavior holds irrespective of the generated population precision matrix, the p/n
ratio, and the choice of target. The superior performance of the alternative Type I
estimator is strongest for small to medium-sized values of the penalty parameter (this
will correspond, in practice, to the most relevant part of the domain). For large values
of the penalty parameter the loss difference vanishes. This due to the fact that both
alternative and archetype shrink to the same target. For both estimators the spot-on
target (T = Ω) yields a lower loss for large values of λ than the diagonal target. The
gain of employing a spot-on target increases, as can be expected, with the p/n ratio.
With regard to Type II estimation the estimated risks of the alternative and archetypal
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Figure 2: Estimated risk vs. penalty parameter. All panels display, for the star topology, the estimated
risks under quadratic loss for Type I ridge estimators. The left panel compares the alternative and
archetypal Type I ridge estimators when the target is taken to be diag[T] = 1/diag[S]. The right hand
panel compares the alternative and archetypal Type I ridge estimators when T = Ω. The dashed lines
represent the archetypal estimator while the solid lines represent the alternative estimator. The orange,
red and purple line colorings represent the various sample sizes (n = 5, 10, 25, respectively). Note that
the fluctuations in the estimated risks in the left-hand panel are due to the data dependency of the
target. Also note that, for purposes of comparability, the scales of the λ parameter under the various
estimators were chosen in accordance with the eigenvalue comparison in Section 4.1.

estimators are similar, although the alternative estimator performs marginally better. In
all, the alternative ridge precision estimators outperform their archetypal counterparts
in this simulation study.

5. Comparing Alternative Ridge and Graphical Lasso Estimation

A contemporary use for precision matrices is found in network reconstruction through
graphical modeling. Graphical modeling refers to a class of probabilistic models that uses
graphs to express conditional (in)dependence relations between random variables. In this
section we investigate how well the proposed ridge estimators of the precision matrix un-
cover conditional (in)dependencies from high-dimensional data. The performance of the
alternative ridge estimators is contrasted with the graphical lasso [3]; the lasso estimator
of the precision matrix. Two versions of each estimator are considered. On the ridge side
the Type II alternative ridge precision estimator with T = 0 and the Type I alternative
ridge estimator with diag[T] = 1/diag[S] are considered. The concordant graphical lasso
precision estimators employ penalization and no penalization of the diagonal elements,
respectively [see the glasso package: 19]. In order to avoid any bias towards either
method of estimation, the comparison makes use of real data while adhering to the ce-
teris paribus principle with regard to penalty parameter selection (see also below). In
the remainder of this section we will first review graphical modeling (Section 5.1) and
the data (Section 5.2), before focusing the comparison on loss (Section 5.3), sensitivity
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and specificity (Section 5.4), and network stability (Section 5.5), respectively.

5.1. Graphical Modeling

We consider graphs G = (V, E) consisting of a finite set V of vertices and set of
edges E . The vertices of the graph correspond to a collection of random variables with
probability distribution P, i.e., {Y1, . . . , Yp} ∼ P. Edges in E consist of pairs of distinct
vertices such that Yj − Yj′ ∈ E . The basic assumption is: {Y1, . . . , Yp} ∼ Np(0,Σ), with
Σ � 0. We thus focus on Gaussian graphical modeling by considering pairs (G,P ∼ N ).
(See Figure 6 for a visual example of a graphical model).

In this Gaussian case, conditional independence between a pair of variables corre-
sponds to zero entries in the precision matrix. Indeed, let Ω̂ denote a generic estimate
of the precision matrix and consider its transformation to a partial correlation matrix P̂.
Then the following relations can be shown to hold for all pairs {Yj , Yj′} ∈ V with j 6= j′

[see, e.g., 20]:

(P̂)jj′ = 0⇐⇒ (Ω̂)jj′ = 0⇐⇒ Yj ⊥⊥ Yj′ |V \ {Yj , Yj′} ⇐⇒ Yj 6− Yj′ ,

where V \ {·} denotes set-minus notation and where 6− indicates the absence of an edge.
Hence, model selection efforts in Gaussian graphical models focus on determining the
support of the precision matrix.

The graphical lasso [3] performs, next to shrinkage, automatic selection of conditional
dependencies. As the alternative ridge estimators will not generally produce sparse es-
timates, they will need to rely on an additional procedure for support determination.
Here, we resort to a multiple testing procedure. Specifically, we use the local false dis-
covery rate (lFDR) procedure [21] proposed by [7]. Let P̂Ia(λa) denote the regularized

precision estimate Ω̂Ia(λa) scaled to partial correlation form. For support determination,
we assume that the nonredundant off-diagonal partial correlation coefficients (indexed
by, say, j < j′) follow a mixture distribution:

f
{

[P̂Ia(λa)]jj′
}

= η0f0

{
[P̂Ia(λa)]jj′ ;κ

}
+ (1− η0)fE

{
[P̂Ia(λa)]jj′

}
,

with mixture weight η0 ∈ [0, 1], and where f0{·} denotes the distribution of a null-edge
while fE{·} denotes the distribution of a present edge. The former density can be found
to be a scaled beta-density [22, 23, 7]:

f0

{
[P̂Ia(λa)]jj′ ;κ

}
=
∣∣∣[P̂Ia(λa)]jj′

∣∣∣B{[P̂Ia(λa)]2jj′ ;
1

2
,
κ− 1

2

}
,

with κ degrees of freedom (note that in the last expression | · | is used to denote the
absolute value). In the p > n situation κ has to be estimated, next to η0 and fE{·}. See
[24] and [7] for details on obtaining estimates of these unknowns. Having these estimates
at hand, the lFDR is given as [7]:

P
(
Yj 6− Yj′ |[P̂Ia(λa)]jj′

)
=

η̂0f0

{
[P̂Ia(λa)]jj′ ; κ̂

}
η̂0f0

{
[P̂Ia(λa)]jj′ ; κ̂

}
+ (1− η̂0)f̂E

{
[P̂Ia(λa)]jj′

} ,
13



conveying the empirical posterior probability that the edge between Yj and Yj′ is null

given [P̂Ia(λa)]jj′ . Another useful quantity is 1− lFDR, indicating the analogous proba-
bility that an edge is present. Again, similar probabilistic statements can be made with
the alternative Type II estimator when replacing in the above P̂Ia(λa) by P̂IIa(λa). In
Sections 5.4 and 5.5 an edge will be selected when 1− lFDR ≥ .99.

While the two-step procedure of regularization followed by subsequent support de-
termination does not have the appeal of simultaneous estimation and model selection,
it does have the advantage that it enables probabilistic statements about the inclusion
(or exclusion) of edges. An additional advantage is that the procedure may lead to a
better representation of individual partial correlation or precision elements after sparsi-
fication: The closest, in a least-squares sense, p.d. sparsified representation of Ω̂Ia(λa)

(or Ω̂IIa(λa)), is indeed Ω̂Ia(λa) (or Ω̂IIa(λa)) with the zero-structure imposed as follows
from the lFDR test [cf. 25].

5.2. Data

The performance of the ridge and lasso precision estimators is evaluated on gene
expression data of three pathways from five oncogenomics studies. The Bioconductor
repository [26] offers five curated breast cancer data sets [27] generated on the same
microarray platform (Affymetrix hgu 133 platform). These datasets will be indicated as
follows: Mainz, Transbig, UNT, UPP, VDX. The data of these studies have been prepro-
cessed in a uniform manner [see 28]. Cancer of the breast is a hormone-related cancer,
with a central role for estrogen. Breast cancerous tissue may have many estrogen recep-
tors (ER+ breast cancer) or few estrogen receptors (ER− breast cancer). The genomic
pathways of ER+ and ER− breast cancers differ. Thus, to remove further heterogeneity
among the data sets, they are limited to ER+ samples. The chosen pathways, p53, apop-
tosis, and mTOR, are defined by KEGG [29]. The p53 gene is a tumor suppressor gene.
Cellular stress signals such as DNA damage can activate the p53-pathway, resulting in a
multilayered tumor suppressive mechanism [30]. The genetic p53-pathway is defined to
consist of those genes mediating the path from cellular stress signal to p53-induced tumor
suppressive response. Alterations of the p53 pathway are found in most human cancers
[31]. Apoptosis refers to the process of regulated cell death. The ability of cancerous cells
to resist apoptosis is considered to be one of the hallmarks of human cancer [32]. The
mTOR protein is a kinase (a phosphate transferring enzyme) that is frequently overex-
pressed in human cancers. This may lead to oncogenic signaling, making the cancerous
cell self-sufficient in survival and multiplication [30], another hallmark of human cancer
[32]. The underlying conditional dependency structure of the respective pathways is not
fully known but is (generally) believed to be (relatively) sparse.

For each data set the probe sets that interrogate genes mapping to the p53, apoptosis,
and mTOR pathways are selected. Whenever multiple probe sets map to the same gene,
their expression levels have been averaged sample-wise over the instances. The resulting
dimensions of the n × p pathway data sets are: n = 162 (Mainz), n = 134 (Transbig),
n = 86 (UNT), n = 213 (UPP), n = 209 (VDX), and p = 67 (p53), p = 83 (apoptosis),
p = 47 (mTOR). See Section 3 of the Supplement for R code on extracting the mentioned
data.

The pathway data are not high-dimensional in the sense p > n. High-dimensionality is
achieved by subsampling with sample sizes n = 5, 10 and 25. One hundred subsamples are
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drawn of each mentioned sample size for each combination of pathway and breast cancer
data set. Optimal values of the penalty parameter for both versions of the alternative
ridge and lasso estimators are obtained for each subsample by way of LOOCV. The ridge
and lasso precision estimates for a subsample then correspond to these optimal penalty
parameter values. Finally, the estimates are standardized to have unit diagonal (the
standardized precision matrix is equal to the partial correlation matrix up to the sign of
off-diagonal entries).

5.3. Loss Comparison

The standardized precision estimates are evaluated in terms of quadratic and Frobe-
nius loss (as defined in Section 4.2). This requires the standardized population precision
matrix, which is unknown. As a proxy we take the sample version obtained from the data
with all samples, e.g., the standardized population precision matrix for the p53-pathway
in the UPP data is defined as the (67 × 67)-dimensional standardized sample precision
matrix over all n = 213 samples. The results of the loss evaluation are displayed in
Figure 3 and Section 4 of the Supplementary Material.

Figure 3 and Section 4.1 of the Supplement show that the quadratic loss of the lasso
estimate of the standardized precision matrix exceeds that of its ridge counterpart. In
general, this is a consistent observation over the sample sizes (n = 5, 10 and 25), the
pathways, and the data sets. This behavior also holds for the Frobenius loss and holds
irrespective of the choice of target. In several cases the loss difference between the
estimators decreases as n increases. This should not surprise, as the loss difference is
expected to vanish for large n under fixed p (also note that, naturally, loss decreases
with increasing n). Thus, the alternative ridge estimators of the standardized precision
matrix yield a lower loss than the corresponding lasso estimators, in particular for the
larger p/n ratios.

5.4. Sensitivity and Specificity

The evaluation of sensitivity and specificity of edge selection requires knowledge of
the true conditional dependencies. Such knowledge is absent as the (causal) biological
mechanisms underlying the pathway are mostly unknown (or at least uncertain). Hence,
we resort to defining a ‘consensus truth’, comprised of those conditional dependencies
that appear in the top 100α% of at least 4 out of the 5 breast cancer data sets by both
methods (graphical lasso and alternative ridge paired with lFDR edge selection). The top
100α% constitutes of the d 12p(p−1)αe edges with the largest selection frequency over the
hundred respective subsamples (see Section 5.2), with α = {0.005, 0.01, 0.015, . . . , 0.20}.
This yields a nested sequence of ‘consensus truths’. The range of α corresponds to
what is believed to be biologically plausible. Thus, with observed selected edges and
the ‘consensus truths’ at hand, sensitivity and specificity are estimated per subsample
over the range of α. The median sensitivity (specificity) over the hundred subsamples
over all data sets is taken as the estimate of the sensitivity (specificity) for a particular
combination of T, n, α, and pathway. Figure 4 and Section 4.2 of the Supplementary
Material visualize estimated sensitivity and specificity against α.

First note that the sensitivity is high for both the ridge estimator and the graphical
lasso (in both Type I and Type II situations), due to the stringent definition of ‘consensus
truth’. Furthermore, the Type I ridge estimator outperforms the corresponding lasso in
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Figure 3: Loss comparison between the Type I alternative ridge estimator with diag[T] = 1/diag[S] and
the corresponding graphical lasso estimator on the UPP apoptosis-pathway data. The left-hand panel
depicts Frobenius loss while the right-hand panel depicts quadratic loss.

terms of sensitivity. For the Type II setting it is seen that the graphical lasso fares
slightly better with regard to sensitivity. These behaviors are reversed when evaluating
specificity: The lasso fares better in the Type I setting, while the ridge outperforms the
lasso in the Type II situation. These observations hold for all pathways. These findings
can (at least in part) be traced to the utilization of lFDR edge selection on the ridge
estimators (cf. Section 5.1). Using T = 0 will (tend to), by enforcing more uniformity
among the partial correlation values, emphasize the null-edge distribution, leading to
improved specificity and (somewhat) diminished sensitivity. A p.d. target T, on the
other hand, will tend to preserve data signal, and will subsequently lead to improved
sensitivity and (somewhat) diminished specificity. These behaviors might suggest the
following (also taking into account the loss behavior and the stability of performance
over respective sample sizes): Give preference to the Type I alternative ridge estimator
when emphasizing the true positive rate, and give preference to the Type II alternative
ridge estimator when emphasizing the true negative rate.

5.5. Stability

The performance of the (Type I and II) ridge and lasso precision estimators can also
be evaluated in terms of network stability. Define an edge stable when it is selected
in the union of the top 100α% over the respective subsample sizes n = 5, 10, and 25.
When plotting the number of stable edges against α (see Figure 5 and Section 4.3 of
the Supplement), it is clear that the number of stable edges shows a faster increase,
with increasing α, for the ridge estimators than for the graphical lasso. This effect is
especially pronounced for the Type I ridge setting. The ridge estimators also sort more
stable behavior over the respective data sets.
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Analogous behavior can be shown with regard to the effect of sample size. Figure
6 contains conditional independence graphs for the Type I alternative ridge estimator
with diag[T] = 1/diag[S] and the corresponding graphical lasso on the UPP apoptosis-
pathway data. A represented edge means that it was selected at least 50 times over the
100 subsamples. It may be observed that the pairing of the alternative ridge estimator
with lFDR support determination selects more stable (in terms of network-structure
change) networks over the respective sample sizes. While usage of lFDR edge selection
on the ridge regularized precision matrix tends to gain in conservativeness with growing

Figure 4: Sensitivity and specificity comparison between the alternative ridge and graphical lasso es-
timators on the apoptosis-pathway data. The upper panels depict sensitivity results while the lower
panels depict specificity results. The left-hand panels depict results for diag[T] = 1/diag[S] while the
right-hand panels depict results for T = 0.
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Figure 5: The number of stable edges plotted against α for the apoptosis-pathway data. The left-hand
panel depicts results for diag[T] = 1/diag[S] while the right-hand panel depicts results for T = 0.

n, the network-structure changes over the respective sample sizes are much less dramatic
vis-à-vis the graphical lasso. This picture of stability holds for the remaining pathways
under diag[T] = 1/diag[S]. For the Type II comparison the alternative ridge estimator
tends to be more conservative than the graphical lasso for the higher sample sizes (cf.
explanation Section 5.4). This can again be taken as an indication that when the network
data at disposal do contain a sizeable signal, it is preferable to choose a non-null target
T for better signal preservation.

5.6. The Graphical Lasso as Reference

One may argue that the comparability may be obscured when the number of selected
edges differs considerably between methods. We thus, in addition to the exercises above,
take interest in comparing the alternative ridge estimators with the graphical lasso when
the latter dictates the number of edges the former may select. Say the graphical lasso
selects, within a certain subsample, τ edges; then for the corresponding ridge precision
estimator the τ edges are selected with the largest absolute partial correlation. It is ob-
vious that thresholding the ridge precision estimator on the basis of the graphical lasso
will favor the latter. In this setup the ridge estimators thus prove their strength through
non-inferiority. The results in Section 5 of the Supplementary Material show that, in-
deed, the alternative ridge estimators display non-inferiority with respect to sensitivity,
specificity, and stability in this situation.

Summarizing on the basis of the results in Sections 5.3–5.6: The alternative Type I
(Type II) ridge estimator paired with post-hoc edge selection is a contender in a graphical
modeling setting, especially when the p/n ratio tends to get more extreme and/or when
emphasis is placed on the true positive (negative) rate.
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Figure 6: Conditional independence graphs for the Type I alternative ridge estimator using lFDR edge
selection (left-hand figures) and the corresponding graphical lasso (right-hand figures) on the UPP
apoptosis-pathway data. For an edge to be represented in the conditional independence graphs above,
it must have been selected at least 50 times over the 100 replications (given sample size n = 5, 10 and
25, respectively).
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6. Discussion

We studied ridge estimation of the precision matrix. Estimators currently in use
can be roughly divided into two archetypes whose penalties do not coincide with the
common ridge penalty. Starting from the common ridge penalty we derived an analytic
expression of the ridge estimator of the inverse covariance matrix, on the basis of which
alternatives were formulated for the two archetypes. The alternative estimators were
shown to outperform the archetypes in terms of risk. An illustration using pathway data
also showed that the alternative ridge estimators perform better than the corresponding
graphical lasso estimators in terms of loss. They also tend to select more stable networks,
especially in situations where the variable to sample ratio is more extreme. The provided
expressions can also be of use in the study of theoretical properties of penalized inverse
covariance estimators.

The proposed estimators can facilitate methods and approaches of data analysis lean-
ing on the estimation of precision (or covariance) matrices in high-dimensional situations.
For example, the estimators may be used in supporting covariance regularized regression
[10], discriminant analysis, or canonical correlation analysis. In addition, in the context
of graphical modeling, the proposed estimators can be paired with post-hoc methods
for determining the support of the precision matrix, such as lFDR multiple testing [7].
Furthermore, regularized (inverse) covariance matrices stemming from the proposed esti-
mators can be used as input in covariance structure modeling efforts [33] (including factor
analysis and structural equation modeling as special cases), when p is large relative to n.

We see various inroads for further research. One would be to study the proposed
estimators from a Bayesian perspective. In addition, the Type I estimator may lend itself
for a natural framework of Bayesian updating regarding graphical modeling, where the
target is determined by previous rounds of fitting the estimator followed by subsequent
support determination. Another option would be to extend the proposed estimators
with a condition number constraint [34], so that it can be formalized which values for the
penalty parameter can be considered ‘too small’. Also, the results from the numerical
studies may be further supported with results on increasing-dimension asymptotics of the
proposed estimators. From a more applied perspective it may be deemed interesting to
compare multiple post-hoc methods for determining the support of the precision matrix.
These issues are the focal points of current research.

The ridge estimators employed in this paper are implemented in the R-package
rags2ridges [35] along with supporting functions to employ these estimators in a graph-
ical modeling setting. The package is freely available from the Comprehensive R Archive
Network (http://cran.r-project.org/) [36].
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Appendix A. Proofs

This appendix contains proofs for Lemma 1, Propositions 1, 2, 3 and 4, as well as
Corollaries 1 and 2. Consider first the following theorem:

Theorem 1. [37, p. 115] Let H be a p.d. Hermitian matrix. There exists a unique p.d.
Hermitian matrix h such that h2 = H. If H is real-valued, then so is h. The matrix h is
called the square root of H, and is denoted by h = H1/2.

This theorem is of use in the proof of Lemma 1:

Proof of Lemma 1. Define the penalized log-likelihood:

Lp(Ω; S,T, λa) ∝ ln |Ω| − tr(SΩ)− λa
2

tr[(Ω−T)T(Ω−T)].

Now, take the derivative of Lp(Ω; S,T, λa) w.r.t. Ω:

∂ Lp(Ω; S,T, λa)

∂Ω
= 2

[
Ω−1 − (S− λaT)− λaΩ

]
−
[
Ω−1 − (S− λaT)− λaΩ

]
◦ Ip

=
[
Ω−1 − (S− λaT)− λaΩ

]
◦ (2Jp − Ip) , (A.1)

where Jp denotes the all-ones matrix. It is immediate that (A.1) is 0 only when

Ω−1 − (S− λaT)− λaΩ = 0. (A.2)

We will approach the problem in (A.2) from a square-completion angle.
Post-multiply (A.2) by Ω−1. Subsequently adding 1

4 (S− λaT)2 to both sides of the
equality sign gives that Ω must satisfy:

λaIp +
1

4
(S− λaT)2 := Ω−2 − (S− λaT)Ω−1 +

1

4
(S− λaT)2. (A.3)

Notice that under pre-multiplication by Ω−1 the matrix Ω is also implied to satisfy:

λaIp +
1

4
(S− λaT)2 := Ω−2 −Ω−1(S− λaT) +

1

4
(S− λaT)2. (A.4)

Adding (A.3) and (A.4) and subsequently dividing by 2 thus yields:

λaIp +
1

4
(S− λaT)2 = Ω−2 − 1

2
Ω−1(S− λaT)− 1

2
(S− λaT)Ω−1 +

1

4
(S− λaT)2.

Now, complete the square to obtain:

λaIp +
1

4
(S− λaT)2 =

[
Ω−1 − 1

2
(S− λaT)

]2
. (A.5)

The left-hand side of (A.5) is p.d., which implies that the right-hand side is p.d. By
Theorem 1, both sides then have a unique square root that is p.d. and symmetric.
Taking this square root on both sides results in:[

λaIp +
1

4
(S− λaT)2

]1/2
= Ω−1 − 1

2
(S− λaT).

Finally, solving for Ω gives the desired expression (5). �
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Proof of Proposition 1.
(i) Let d(·)jj denote the j’th eigenvalue of the matrix term in brackets (·). Then

d
{

[Ω̂Ia(λa)]−1
}
jj

= d

[
1

2
(S− λaT)

]
jj

+

√√√√{d [1

2
(S− λaT)

]
jj

}2

+ λa > 0,

when λa > 0. Hence, Ω̂Ia(λa) is p.d. for any λa ∈ (0,∞).
(ii) The right-hand limit is immediate as:

Ω̂Ia(0) =

{[
0Ip +

1

4
(S− 0T)2

]1/2
+

1

2
(S− 0T)

}−1
= S−1.

(iii) For the left-hand limit we note that, when λa approaches ∞,

[Ω̂Ia(λa)]−1 =

[
λaIp +

1

4
(S− λaT)2

]1/2
+

1

2
(S− λaT) −→ T−1,

must hold for the property to hold. We will first embark on rewriting this implied con-
vergence behavior to a standard form. Note that we can rewrite such that, equivalently,

T1/2
{[
λaIp + 1

4 (S− λaT)2
]1/2

+ 1
2 (S− λaT)

}
T1/2

=
[
λaT

2 + 1
4 (S̃− λaT2)2

]1/2
+ 1

2 (S̃− λaT2) −→ Ip,

where S̃ = T1/2ST1/2, must hold for the property to hold. Note that the term [λaT
2 +

1
4 (S̃− λaT2)2]1/2 + 1

2 (S̃− λaT2) can be rewritten as:[
1

4

(
λaT

2 + 2Ip − S̃
)2

+
(
S̃− Ip

)]1/2
− 1

2

(
λaT

2 + 2Ip − S̃
)

+ Ip,

implying that the problem can be reduced to proving

lim
λa→∞−

[
B2(λa) +

(
S̃− Ip

)]1/2
−B(λa) = 0, (A.6)

where B(λa) = 1
2

(
λaT

2 + 2Ip − S̃
)

.

To prove this invoke Weyl’s eigenvalue inequality [38]. Let A, B, C = A + B be real,
symmetric p× p matrices with eigenvalues α1 ≥ α2 ≥ . . . ≥ αp, β1 ≥ β2 ≥ . . . ≥ βp, and
γ1 ≥ γ2 ≥ . . . ≥ γp, respectively. Weyl’s result then states:

αj + βp ≤ γj ≤ αj + β1 for all j.

Applying this inequality to C(λ) = λA+B with λ > 0 (where λ is used generically) and
A and B as before, we obtain:

λαj + βp ≤ γj(λ) ≤ λαj + β1 for all j.
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Divide by λ and let λ tend to infinity (from the left), which is immediately seen to imply:

lim
λ→∞−

1

λ
γj(λ) = αj for all j.

Put differently, the eigenvalues of C(λ) tend to those of λA. Application of Weyl’s
eigenvalue inequality and the consequence derived above thus warrant that

lim
λa→∞−

[
B2(λa) +

(
S̃− Ip

)]1/2
−B(λa) = 0,

as indeed needed to be proven. �

Proof of Corollary 1. We first need to show that (6) stems properly as the unique
maximizer of the log-likelihood (1) amended with (4) under T = 0. We thus define the
penalized log-likelihood:

Lp(Ω; S, λa) ∝ ln |Ω| − tr(SΩ)− λa
2

tr(ΩTΩ).

Taking the derivative of Lp(Ω; S, λa) w.r.t. Ω gives:

∂ Lp(Ω; S, λa)

∂Ω
=
(
Ω−1 − S− λaΩ

)
◦ (2Jp − Ip) ,

which is 0 only when
Ω−1 − S− λaΩ = 0.

A strategy analogous to the one used in the proof of Lemma 1 will give the desired
expression (6). With regard to the properties of this estimator:

(i) Let d(·)jj denote the j’th eigenvalue of the matrix term in brackets (·). Notice

d
{

[Ω̂IIa(λa)]−1
}
jj

= d

(
1

2
S

)
jj

+

√√√√[d(1

2
S

)
jj

]2
+ λa > 0,

when λa > 0, implying Ω̂IIa(λa) is p.d. for any λa ∈ (0,∞).
(ii) The right-hand limit is immediate as:

Ω̂IIa(0) =

{[
0Ip +

1

4
S2

]1/2
+

1

2
S

}−1
= S−1.

(iii) For the left-hand limit we note that as λa approaches ∞,

[Ω̂IIa(λa)]−1 =

[
λaIp +

1

4
S2

]1/2
+

1

2
S

becomes a diagonally dominant matrix with near infinite diagonal values. The inverse of
which must necessarily approach the null-matrix. �
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Proof of Proposition 2. First, note:

E
(
‖Σ̂Ia

n (λa,n)−Σ‖2F
)

= E
{

tr

[(
Σ̂Ia
n (λa,n)−Σ

)T (
Σ̂Ia
n (λa,n)−Σ

)]}
= tr

{
Var

[
Σ̂Ia
n (λa,n)

]}
− tr

{
ΣE

[
Σ̂Ia
n (λa,n)−Σ

]}
tr
{
E
[
Σ̂Ia
n (λa,n)−Σ

]
Σ
}
.

By virtue of Lemma 2 and the continuity of the trace the latter two terms vanish as
n → ∞−. It remains to be shown that the first term converges to zero. To this end
note that the almost sure convergence of λa,n to zero implies limn→∞− P [λa,nd(T)11 <
d(Sn)pp] = 1 and Sn − λa,nT < 0 with probability 1 as n tends to infinity. Thus, in the
limit:

Σ̂Ia
n (λa,n) =

[
λa,nIp +

1

4
(Sn − λa,nT)2

]1/2
+

1

2
(Sn − λa,nT)

4

{[√
λa,nIp +

1

2
(Sn − λa,nT)

]2}1/2

+
1

2
(Sn − λa,nT)

= Sn +
√
λa,nIp − λa,nT.

From this it follows that

tr

[(
Sn +

√
λa,nIp − λa,nT

)2]
< tr

{[
Σ̂Ia
n (λa,n)

]2}
as n→∞−, which in turn gives:

tr
[
Var

(
Sn +

√
λa,nIp − λa,nT

)]
< tr

{
Var

[
Σ̂Ia
n (λa,n)

]}
as n→∞−.

The assumptions on λa,n, Sn and their covariance imply that the left-hand side tends to
zero. Finally, the dominated convergence theorem warrants that the right-hand side too
converges to zero as n→∞−. �

The proof of Proposition 3 will be based on the target T = Ip. The extension to
a general p.d. target scalar matrix is straightforward as it is a direct consequence, but
notationally slightly more cumbersome.

Proof of Proposition 3. Note that Ω̂I(λI) can be decomposed as:

[Ω̂I(λI)]
−1 = V[(1− λI)D + λIIp]V

T.

Juxtaposing this expression with (10) while writing djj = (D)jj , we are after establishing√
λa +

1

4
(djj − λa)

2
+

1

2
(djj − λa)

?
>=<

1

1 + λa
djj +

λa
1 + λa

,

which after some ready algebra can be rewritten as:√
ϕjj(λa)2 + djj − 1

?
>=<

1

1 + λa
(djj − 1) + ϕjj(λa),
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with ϕjj(λa) = 1
2λa−

1
2djj+1. Squaring both sides and simplifying the problem becomes:

djj − 1
?

>=<
1

(1 + λa)2
(djj − 1)2 + djj − 1− 1

1 + λa
(djj − 1)2,

which reduces to establishing the sign of:

(djj − 1)2

(1 + λa)2
− (djj − 1)2

1 + λa
.

The solution to which is readily found to be:

0 ≥ (djj − 1)2

(1 + λa)2
− (djj − 1)2

1 + λa
= −λa (djj − 1)2

(1 + λa)
.

Consequently, the alternative estimator Ω̂Ia(λa) displays shrinkage of the eigenvalues of
S−1 that is at least as heavy as the shrinkage propagated by the archetypal estimator
Ω̂I(λI) . �

Proof of Proposition 4. Note that the decomposition of the original ridge estimator
of the second type is

[Ω̂II(λII)]
−1 = V(λIIIp + D)VT.

Then, when writing djj = (D)jj while juxtaposing the above expression with (11), we
have:

λII + djj ≥
√
λ2II +

1

4
d2jj +

1

2
djj ,

as follows directly from (λII+
1
2djj)

2 ≥ λ2II+ 1
4d

2
jj . This indicates the archetypal estimator

Ω̂II(λII) displaying shrinkage of the eigenvalues of S−1 that is at least as heavy as the

shrinkage propagated by the alternative estimator Ω̂IIa(λa). �

Proof of Corollary 2. Note:

L[Ω̂II(λII); S] ∝ ln |Ω̂II(λII)| − tr[SΩ̂II(λII)] ∝ −
p∑
j=1

ln(λII + djj)−
p∑
j=1

djj
λII + djj

.

Similarly:

L[Ω̂IIa(λa); S] ∝ −
p∑
j=1

ln[γjj(λII)]−
p∑
j=1

djj
γjj(λII)

,

where γjj(λII) =
√
λ2II + 1

4d
2
jj + 1

2djj . It then suffices to show that

ln(λII + djj)− ln[γjj(λII)] +
djj

λII + djj
− djj
γjj(λII)

≥ 0.
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Using ln(1 + x) ≥ x/(1 + x) and djj + λII ≥ γjj(λII) ≥ djj (Proposition 4), the manipu-
lations below prove this:

ln

(
λII + djj
γjj(λII)

)
+

djj
λII + djj

− djj
γjj(λII)

≥

λII + djj − γjj(λII)
λII + djj

+
djj

λII + djj
− djj
γjj(λII)

=

[γjj(λII)− djj ][djj + λII − γjj(λII)]
γjj(λII)(λII + djj)

≥ 0.

�
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