
Visualizing the Effects of a Changing Distance on Data Using
Continuous Embeddings

Gina Gruenhage1,∗

Department of Computer Science, Technische Universität Berlin and BCCN Berlin,

Berlin, Germany

Manfred Opper

Department of Computer Science, Technische Universität Berlin, Berlin, Germany

Simon Barthelme

CNRS, GIPSA-lab, 11 Rue des Mathématiques, 38400 Saint-Martin-d’Hères, France

Abstract

Most Machine Learning (ML) methods, from clustering to classification, rely on a dis-
tance function to describe relationships between datapoints. For complex datasets it
is hard to avoid making some arbitrary choices when defining a distance function. To
compare images, one must choose a spatial scale, for signals, a temporal scale. The right
scale is hard to pin down and it is preferable when results do not depend too tightly on
the exact value one picked. Topological data analysis seeks to address this issue by focus-
ing on the notion of neighbourhood instead of distance. It is shown that in some cases
a simpler solution is available. It can be checked how strongly distance relationships
depend on a hyperparameter using dimensionality reduction. A variant of dynamical
multi-dimensional scaling (MDS) is formulated, which embeds datapoints as curves. The
resulting algorithm is based on the Concave-Convex Procedure (CCCP) and provides a
simple and efficient way of visualizing changes and invariances in distance patterns as a
hyperparameter is varied. A variant to analyze the dependence on multiple hyperparam-
eters is also presented. A cMDS algorithm that is straightforward to implement, use and
extend is provided. To illustrate the possibilities of cMDS, cMDS is applied to several
real-world data sets.

Keywords: Dimensionality Reduction, Multidimensional Scaling, Visualization, Data
Exploration

∗Corresponding author
Email addresses: gina.gruenhage@bccn-berlin.de (Gina Gruenhage),

manfred.opper@tu-berlin.de (Manfred Opper), simon.barthelme@gipsa-lab.fr (Simon Barthelme)
1Full Address: Gina Gruenhage, TU Berlin, Fakultät IV, Elektrotechnik und Informatik, Sekr. MAR

4-2, Marchsstrasse 23, D-10587 Berlin, Tel: 0049-30-314-75729, Fax: 0049-30-314-24913

Preprint submitted to Computational Statistics & Data Analysis August 29, 2018

ar
X

iv
:1

31
1.

19
11

v3
 [

st
at

.M
L

]
 1

 J
ul

 2
01

6

1. Introduction

The notion of distance is at the core of data analysis, pattern recognition and machine
learning: most methods need to know how similar two datapoints are. The choice of
distance metric is often a hidden assumption in algorithms. For complex data, distance
or similarity are not uniquely defined. On the contrary, they can be arbitrary to some
extent [1]. It is, for example, often possible to describe signals on different temporal or
spatial scales, and distance functions will give a certain scale more weight than another.
Each datapoint might describe several features, and there is often no unique, optimal
way to weigh the features when computing a distance measure: are two individuals more
alike if they have similar eye colour or hair colour, or do we think the shape of the nose
matters most?

There are ways around that problem. One is to select the distance function that is
best adapted to the task at hand, for example the one that gives the best performance
in classification (this is effectively what is done in kernel hyperparameter selection [2]).
Another is to give up on distance and rely instead on the weaker notion of neighbourhood
[3].

We argue here that a third option is available. One may study how the shape of the
data evolves under a change in the distance metric by representing the data in lower
dimension. We suppose that a family of distance functions dα(x, y) is defined by varying
a hyperparameter α ∈ [0, 1], where α can represent, for example, different scales or
the mixing proportion of features. Please note that α does not have to be defined on
this interval, but it seems natural to start with a setting that is familiar from, e.g.,
convex combinations. Suppose that for a given level of α the relative distances between
datapoints are well described by representing the datapoints as points on the line. As we
vary α the points will move, so that each point now describes a curve. Many scenarios
are possible, and we sketch them in Fig. 1. We may have full or partial invariance:
patterns in the data that hold regardless of the value of the hyperparameter (Fig. 1A).
On the other hand, the structure in the data may appear only for certain values of
α (intermediate values in Fig. 1B and rather small values in C), indicating that these
values are more useful than others for characterizing the data. Analyzing the evolution
of structures in the data might reveal interesting dependencies, for example, declustering
(Fig. 1C) or loss of information (Fig. 1D).

Figure 1: Sketches of different effects on the data structure that emerge when varying
a hyperparameter in a distance function. The x-axis shows the hyperparameter α, the
y-axis is the embedding dimension. A) Invariance: patterns hold independent of the
hyperparameter. B/C) Structure emerges only for certain values of the hyperparameter.
C) Declustering: clusters are lost with increasing hyperparameter. D) Information loss:
Structure collapses with increasing hyperparameter.

2

To visualize the effects of varying the distance function we suggest to embed data into
a space of smooth curves, forming what we call continuous embeddings: in continuous
embeddings each datapoint is embedded as a smooth curve in Rd. We will show that
this approach is quite general.

Our implementation of continuous embeddings is based on multi-dimensional scaling
(MDS), one of the most widely-used tools for dimensionality reduction [4, 5]. MDS
builds on the pairwise relation between single data points and has an intuitive way
of characterizing the structure in high-dimensional data. MDS supposes that one has
distance information available, that is, we can characterize the data by a distance matrix.
MDS seeks to find a set of points in a low dimensional Euclidean space, such that the
Euclidean distances between points approximate the original distances. An exception
is spherical MDS, where the embedding is constrained to a spherical manifold. MDS
goes back to the 1950s, when it was first introduced as classical scaling [6]. In classical
scaling, the distance matrix is transformed to a matrix of inner products from which
an embedding can be computed using eigendecompositions [6, 7, 8]. Classical scaling
finds a perfect embedding when the data can indeed be embedded exactly, but in all
realistic cases distance matrices are not exactly Euclidean and distance scaling is more
appropriate. Kruskal [9] introduced distance scaling by defining a cost function, Stress,
that directly measures the error between original and embedding distances. This cost
function is then optimized over the space of embedding matrices which can be done using
gradient descent. Since the early work on MDS many other variants and optimization
solutions have been discussed. So called non-metric variants of MDS seek to only recover
the ranks of distances [10]. Ramsay [11, 12] introduces a statistical model for MDS,
allowing for a maximum likelihood estimate. This approach is implemented in Multiscale
[13]. Other MDS variants based on Stress include Sammon’s mapping [14], elastic stress
[15], multidimensional unfolding [16] and local MDS [17]. Isomap [18] is also related
to MDS. Here, distances are computed as geodesic distances on a manifold, which are
then embedded with classical scaling. In terms of optimization one of the most popular
approaches is SMACOF, a majorization method for MDS [19, 20, 21, 22].

Here, we introduce a continuous version of MDS (cMDS) by adding a smoothing
penalty to the MDS cost function. Similar ideas have been used in the visualization of
dynamic networks. A network is commonly represented as a graph. A 2D embedding
of a static graph is often constructed using MDS or similar methods [23, 24]. In the
dynamical context, where a graph is measured over time, it is important to preserve the
so-called “mental map” when jumping from one timepoint to the next [25]. Early work
on such controlled stability was done by Böhringer and Paulisch [26], North [27]. Brandes
and Wagner [28] developed a more rigorous formulation of controlled stability based on
regularization in a Bayesian framework. There have been three different approaches
to the problem of preservation of the mental map: aggregation, anchoring and linking.
In aggregation methods, the graph is aggregated into an average graph which is then
visualized with a static layout algorithm [29, 30]. Anchoring methods use auxiliary edges
which connect nodes to stationary reference positions [28, 31, 32]. In linking, edges are
created that connect instances of a single vertex over time. The resulting graph is then
visualized using standard methods [33, 34, 35]. Linking has been formulated in more
rigorous ways in terms of regularized cost functions [36, 37]. Xu et al. [38] introduce
an additional grouping penalty. Brandes and Mader [37] provide a good overview on
dynamic graph layout. Another approach to dynamic embeddings is an extension of the

3

Hoff latent space model [39]. In functional MDS [40], individual solutions to the MDS
problems are rotated in a secondary step to minimize the length of the curves. This
does not allow for control of smoothness versus stress, which is true for most methods
described above.

All these approaches and contributions in the field visualize temporal developments.
We show here that continuous embeddings can be applied to a great variety of data,
going far beyond the visualization of temporal dynamics in graphs. In particular, the
continuous variable can be used to visualize artificial dynamics. This makes the method
very general and is especially useful in the analysis of families of distance functions and
their effects on data structure. Continuous embeddings are thus a tool for making an
informed choice of the distance metric for use in further analyses.

We show how continuous embeddings can be efficiently computed using the Concave-
Convex Procedure (CCCP) for optimization [41]. The resulting algorithm is a simple
iterative procedure, in which the inner loops are nothing more than least squares regres-
sion with smoothing splines. We prove that the algorithm always leads to a stationary
point. This goes further than other proofs [42, 43] because the cost function is nondif-
ferentiable at certain points and doesn’t share the directional derivative with the upper
bound at those points. We provide an R package for cMDS which is available on github:
github.com/ginagruenhage/cmdsr. We illustrate the results of cMDS with several exam-
ples. We compare cMDS to a method based on k-means to exemplify that cMDS provides
a more informative way of understanding the data structure. We show that cMDS leads
to novel forms of data visualization and enhances the analysis of various meta-effects in
data, such as hierarchy levels in hierarchical clustering, weighting of different distance
measures and consensus requirements across subjects. Furthermore, we point out that
quantitative analyses on cMDS results are possible and useful. We show that cMDS
is especially well-suited to dynamic and interactive contexts [44]. We provide several
examples of interactive, web-based visualizations based on cMDS.

2. Methods

In order to present the cMDS algorithm, we introduce some notations and definitions.
We describe the objective of the algorithm and present the cost function that we need
to optimize. Optimization can be done in a coordinate-wise manner and we present the
optimization of single coordinates via the Concave-Convex Procedure and pseudocode
of the full algorithm in Section 2.2. In the subsequent section, we prove that the opti-
mization of single coordinates is first-order optimal, i.e. it leads to stationary points of
the original cost. We also show that this directly entails first order optimality of the full
cost.

We start by setting the notations. The original data or objects are denoted by
s1(α) . . . sN (α), where N is the number of objects in the data. The objects are de-
fined in an arbitrary metric space, e.g. RD. The parameter α measures a continuous
dimension. We will see that objects, such as images or networks, can be endowed with a
continuous dimension, for example by examining them at different scales, so that scale
plays the role of the continuous parameter. At this point we would like to note that we
discretize all equations from the beginning, because ultimately, in the implementation,
the hyperparameter has to be discretized. It would certainly be possible to develop all
the mathematics in a continuous matter. We prefer to present the mathematics in such a

4

https://github.com/ginagruenhage/cmdsr

way that the equations in the paper can be used as a direct reference for implementation.
However, important equations, such as the cost function and the penalty are given in
their continuous form as well, to improve the understanding of the problem definition.
Thus, α is represented on a grid α1 . . . αT . We use T to denote the maximum value of
α since time is the most natural framework to think about the hyperparameter. With
f(·) we refer to function values at all grid points while f(k) refers to a function value
at a specific value of α. The objects are endowed with a distance function d (x, y). The
appropriate distance function depends on the data-space and on the nature of the prob-
lem. Given a distance measure, we can define a distance array, D(·) ∈ RT×N×N , where
the entry dkij holds the distance between objects si and sj at αk. We assume that the
distances between datapoints give a good summary of the patterns in the data. The goal
of cMDS will be to extract these patterns.

2.1. Objective

The objective of cMDS is to retrieve curves or manifolds in Rd, d << D which

we denote as x
(·)
1 . . . x

(·)
N ∈ RT×d, such that the evolution of distances between the

curves represents the evolution of distances between the datapoints. When we talk
about curves, we mean the technical differential geometry sense of the word, namely, a
curve is a 1-dimensional manifold in Rd. The curves are represented as a configuration
array X(·) ∈ RT×d×N and for a given time-point αk Xk is a d×N matrix in which each
column represents the coordinates of a curve at time αk. In Rd we measure the distance
between two curves at αk with the Euclidean distance. Thus, for each configuration,
we have a distance array D̃(·) ∈ RT×N×N such that d̃kij = ‖xki − xkj ‖2. To denote that

D̃(·) is computed from X(·), we occasionally write D̃(·) (X(·)). These are the approximate
distances given by our embedding, and the objective is to make the approximate distances
as close as possible to the real distances. A natural expression of that objective is the
following cost function, which quantifies the distortion of the embedding:

L
(
X(·),D(·)

)
=

∫ 1

0

(
‖D̃α(Xα)−Dα‖F

)2
dα, (1)

where ‖·‖F denotes the Frobenius norm. This is the MDS cost function for continous
data. Its discretized form is:

L
(
X(·),D(·)

)
=

T∑
k=1

(
‖D̃k(Xk)−Dk‖F

)2
. (2)

In practice and for real datasets, MDS is a highly non-convex optimization prob-
lem with multiple local minima. Additionally, since distances are invariant to rotations,
translations and symmetries, so are the MDS embeddings. Minimizing (2) is equiva-
lent to solving MDS problems for different values of the hyperparameter individually.
The individual problems are known as Kruskal-Shephard scaling [9]. This would result
in solutions that are independent for different αk and thus might lie in quite different
local minima. However, one would expect that slight changes in the hyperparameter
lead to only slight changes in the embedding. To solve this problem, we will require
that each curve is continuous and smooth, which can be achieved by adding a suitable

5

penalty function Ω(X(·)) to the cost. The effect of the smoothing penalty can be inter-
preted as the goal of tracing one particular local minimum across different values of the
hyperparameter. This results in the cost function

C
(
X(·),D(·)

)
= L

(
X(·),D(·)

)
+ λΩ

(
X(·)

)
. (3)

Classical spline penalties [45] are particularly convenient. We introduce the penalty in
its continous form:

Ω (X(α)) =

∫ 1

0

∥∥∥∥∂2x(α)

∂α2

∥∥∥∥dα. (4)

In practice, we work with discrete one-dimensional manifolds in Rd for which the penalty
reads

Ω
(
X(·)

)
=
∑
d

diag

(∑
i

(x
(·)
i)T (D(2))TD(2) x

(·)
i

)

=
∑
d

diag

(∑
i

(x
(·)
i)T Mx

(·)
i

)
, (5)

where D(2) denotes the discrete second order differential operator. The parameter λ
controls how strongly the roughness of the curves is penalized. For λ = 0, we recover
the classical cost function of MDS, with the extension that we have T separate MDS
problems, one for each value of α. For λ → ∞ the resulting curves are straight lines,
independent of the original data. The value of λ is easy to set by visual inspection.
It should simply be large enough to result in fairly smooth curves, while keeping the
distortion reasonably small. A reasonable strategy for setting λ automatically is then to
maximize λ, under a constraint on the quality of the embedding. This quality can be
measured in various ways [46, 47]. The effect of the smoothing parameter λ is shown in
a supplemenatry material file.

2.2. Optimization via the Concave-Convex Procedure (CCCP)

The cMDS algorithm optimizes the cost in a curve-by-curve manner. This is possible
since the cost is a sum over costs per curve. Thus, we have an outer loop over curves

and an inner loop that performs conditional optimization on x
(·)
i . That is, we assume

that all curves x
(·)
j , j 6= i are fixed. The inner loop is a Maximization Minimization

procedure. Specifically, we use the Concave-Convex Procedure (CCCP) [41]. This way,
each minimization step is a simple spline regression. In effect, the algorithm only needs
to compute spline regressions with surrogate data.

We now outline the usage of CCCP for the optimization of a single curve. We expand
the first term of the cost function to identify the convex and concave parts. We denote
the cost of a single curve as f(·):

6

f
(
x
(·)
i

)
=
∑
kj

(∥∥xki − xkj
∥∥
2
− dkij

)2
+ λ(x

(·)
i)T Mx

(·)
i

=
∑
kj

(xki − xkj)T (xki − xkj)

−
∑
kj

2 dkij
∥∥xki − xkj

∥∥+
∑
kj

(dkij)
2

+ λ
(
x
(·)
i

)T
Mx

(·)
i

= fvex
(
x
(·)
i

)
+ fcave

(
x
(·)
i

)
+ const, (6)

where

fvex
(
x
(·)
i

)
=
∑
kj

(xki − xkj)T (xki − xkj) + λ (x
(·)
i)T Mx

(·)
i (7)

and

fcave
(
x
(·)
i

)
= −

∑
kj

2 dkij
∥∥xki − xkj

∥∥ . (8)

In the optimization, we can omit the constant term that doesn’t depend on x
(·)
i . The

iterative CCCP algorithm (x
(·)
i)t−1 7→ (x

(·)
i)t is given by

(x
(·)
i)t = arg min

x
(·)
i

u
(
x
(·)
i , (x

(·)
i)t−1

)
, (9)

where the convex upper bound is computed by taking the first-order Taylor expansion of
the concave part of f . The concave part is, however, non-differentiable at xki = xkj . We
thus work with a modified subdifferential.

~∇SDfcave
(
(xki)t−1

)
= 2

∑
k

∑
i

dkij


(xki)

t−1−xkj
‖(xki)t−1−xkj‖

if (xki)t−1 6= xkj

{u : ‖u‖ = 1} if (xki)t−1 = xkj

. (10)

In the latter case, u is chosen randomly. The usual definition of the subdifferential [48]
would yield a less strong condition on u, namely ‖u‖ ≤ 1. We choose the stronger variant
to achieve maximum descent in each optimization step. We introduce surrogate points

x̂
(·)
j .

x̂kj = xkj + dkij


(xki)

t−1−xkj
‖(xki)t−1−xkj‖

if (xki)t−1 6= xkj

{u : ‖u‖ = 1} if (xki)t−1 = xkj

, (11)

where, again, u is chosen randomly.
7

The resulting upper bound for the original cost is

u
(
(x

(·)
i)t, (x

(·)
i)t−1

)
=
∑
kj

(
(xki)t − xkj

)T (
(xki)t − xkj

)
− 2

∑
kj

dij‖(xki)t−1 − xkj ‖

− 2
∑
kj

(
(xki)t − (xki)t−1

)(
x̂kj − xkj

)
+ λ

(
(x

(·)
i)t

)T
M (x

(·)
i)t. (12)

The updating step is thus a simple spline regression and can be performed analytically.
Spline regression involves a matrix inversion with cost O(T 3), but the inverse needs to
be computed only once. Once the inverse has been obtained the cost of the spline
regression becomes O(T 2), with further savings possible using sparse matrix techniques.
For simplicity of notation, we rewrite the embedding points x(·) as column vectors in

RT ·d, ~xi = vecx
(·)
i .

~xti = (N ·ET ·d + λEd ⊗M)
−1

∑
j

~̂xj

 , (13)

where Ed is the identity matrix in Rd×d.
Agarwal et al. [49] introduce the same surrogate points based on geometrical consid-

erations for metric (non-continuous) MDS. There, they are defined as projecting xi on
the sphere Sj with center xj and radius dij . In our formulation, they arise naturally
from a natural splitting of the cost function into convex and concave parts. Additionally,
using the subgradient circumvents the problem of the surrogate points being undefined
for xi = xj , which Agarwal et al. [49] do not address.

Together with the iteration over the curves x
(·)
i we have everything we need for the

cMDS algorithm (see Fig. 2). The complexity of the algorithm is O(dT 2N2) per iteration
of the outer loop, since its function MM has complexity O(dT 2N) due to the matrix
product in the spline regressions.

The resulting algorithm can also be interpreted as a majorization-minimization algo-
rithm [20, 50, 51] which is true for any CCCP algorithm [42]. The majorization entails
the computation of the surrogate points, while minimization is the computation of the
updating step.

2.3. First-order optimality of the cMDS algorithm

The cMDS algorithm has the structure of a coordinate-descent method, with an outer
loop that improves the configuration curve-by-curve, and an inner loop that optimises
the objective for a given curve (using CCCP). As we will see it is difficult to make very
strong statements about the convergence of a coordinate-descent algorithm on a non-
convex, non-differentiable objective such as ours. The guarantee we can offer is that, if
cMDS converges, then it converges to a local minimum or saddle point. We begin with
a study of the inner loop, and discuss the outer loop in the next subsection.

8

function cMDS(D(·),X
(·)
0 , λ,M, δ)

maxIter = 50
k = 0
while k < maxIter do

for (i = 1 : N) do

x
(·)
i ← MM(D(·),X(·), i,params)

end for
k ← k + 1

end while
return X(·)

end function

function MM(D(·),X(·), i, params)
repeat

x̂(·) ← Majorize((X(·))t−1,D(·), i,params)
(X(·))t ← Minimize((X(·))t−1, x̂(·), i,params)

until

(
1
N

∑
i

∣∣∣(x(·))t−1−(x(·)
i)t

∣∣∣
1
N

∑
i

∣∣∣(x(·)
i)t

∣∣∣ > δ

)
return x

(·)
i

end function

Figure 2: The cMDS algorithm. The maximum number of iterations is set to 50. In
practice, this is a sufficient number of iterations for the outer loop. The parameters
passed to the MM function include, for example, N , d,T ,λ, weights (if used), the penalty
matrix M and the error tolerance.

9

2.3.1. First-order optimality of the inner loop

Since CCCP has become an important tool in machine learning, there is a vast lit-
erature on convergence proofs for CCCP in general. Lanckriet and Sriperumbudur [42]
analyze the convergence of CCCP, for smooth and differentiable cost functions. In this
case, the authors prove global convergence, in the sense that the algorithm arrives at a
stationary point, i.e. a local minimum or saddle point, from any initialization point. The
cMDS cost function, however, is nonsmooth and nondifferentiable at xki = xkj . Yen et al.
[43] focus on convergence rate of CCCP and work with nonsmooth objective functions.
They connect CCCP to more general block coordinate descent methods. They use re-
sults on convergence of coordinate descent on nonconvex and nonsmooth problems [52]
by showing that CCCP is an instance of block coordinate descent. However, the authors
constrain the class of objective functions to which their proof applies. The nonsmooth
part should be convex piecewise linear, which is not the case for cMDS. Razaviyayn et al.
[53] extend block coordinate descent methods to inexact block coordinate descend. This
allows the authors to treat nondifferentiable and nonconvex objective functions. The
authors unify convergence results for various methods such as CCCP and Expectation
Maximization. We follow ideas of this paper to show that a limit point of the optimiza-
tion chain of a single curve in cMDS via CCCP is a stationary, first-order optimal point
of the cost.

For readability we denote x = x
(·)
i in the following. It is easy to see that, by optimizing

single curves via minimization of an upper bound, we monotonically decrease the original
cost.

f
(
x1
)
≥ f

(
x2
)
≥ f

(
x3
)
≥ (14)

However, from this it is not yet clear (assuming convergence of the algorithm) that the
resulting configuration is a stationary point of the original cost, since the algorithm could
produce a non-increasing sequence that does not tend to an optimal point. Therefore,
we need to show that the limit point z of the inner loop is first-order optimal, i.e.
~∇f(x)

∣∣
x=z

= 0. Then, we prove that this entails first-order optimality of the inner loop.
Strictly speaking, this only holds with probability one, with respect to the randomisation
step in (10), which chooses the direction of the next step when an iterate ends on one
of the other data points. We will first show that with probability one, such a point will
never be a fixed point of the algorithm. For simplicity, we consider this for the standard
MDS cost function without the penalty term. The updating step is then

xti =
1

N

∑
j

x̂j . (15)

Now we assume, without loss of generality, that the current iterate xt−1i = xN . Using
the definition of the auxiliary points, we have:

xti =
1

N

∑
j

xj +

N−1∑
j=1

dij
xN − xj
‖xN − xj‖

+ diN u

 . (16)

If this point was a fixed point of the algorithm, i.e. xti = xt−1i , there would be only one
single direction u which fulfills the resulting linear equation (16). But this event has
probability zero when u is chosen randomly.

10

We thus know that for any fixed point, with probability one, u(·, z) and f(·) are
differentiable at x = z. Hence, with probability one, for any fixed point z of the algorithm
the following condition on the derivative holds:

~∇u(x, z)

∣∣∣∣
x=z

= ~∇f (z) . (17)

Theorem 1. Every limit point of the iterates generated by (13) is first-order optimal.

Proof. Let us assume that a subsequence xtj exists which converges to a limit point z.

u(xtj+1 , xtj+1) = f
(
xtj+1

)
≤ u(xtj+1 , xtj) ≤ u(x, xtj) ∀x.

The equality follows from the fact that u(y, y) = f (y). The first bound follows from
u(x, y) ≥ f(x) and the last inequality is due to the optimality of xtj+1 . We now perform
the limit j →∞ and arrive at

u(z, z) ≤ u(x, z) ∀x.

Thus u(·, z) has a local minimum at x = z. This implies that

~∇u(x, z)

∣∣∣∣
x=z

= 0,

since u(·, z) is a convex differentiable function. Combining this with (17) we obtain

~∇f(z) = 0.

2.3.2. Convergence of the outer loop

The outer loop has the structure of a (block)-coordinate descent algorithm (see [54],
for a review). Surprisingly, there are few results in the literature that could be used to
guarantee convergence of coordinate-descent on a non-differentiable, non-convex objec-
tive function. There are some examples to the contrary: Powell [55] gives an example of a
non-convex differentiable objective that leads coordinate descent to loop forever between
suboptimal points.

In our particular case, however, we have established that points of non-differentiability
cannot be fixed points of the inner loop, and that the set of fixed points of the inner
loop are first-order optimal (meaning the gradient of the cost with respect to curve xi
is 0). A global fixed point would therefore imply that all conditional gradients are null,
meaning that the fixed point is first-order optimal. Further, since the algorithm produces
a strictly non-increasing sequence of cost values, it can only converge to a local minimum
or saddle-point (if it converges at all).

This proof does not exclude the possibility of a limit cycle, meaning that there could
be several limit points with the same cost which the algorithm visits in turns. However,
in our implementation, we determine convergence based on the stationarity of the con-
figuration and not of the cost. Thus, if the inner loop converges, it converges to a unique
configuration which is a stationary point. If the algorithm did indeed jump between

11

several limit points, it would not converge and stop after a certain number of iterations.
However, this has never happened in our experience.

Beyond the fact that the algorithm does converge to an appropriate point, it would
be interesting to prove some results on the speed at which it converges. Unfortunately,
local convergence is very difficult to study in our case since most techniques rely on the
assumption that the cost function becomes quadratic in a neighbourhood of an optimum.
Due to the invariances inherent in the MDS cost function, it is not clear at all that a
local quadratic model is in any way appropriate.

2.4. cMDS with more than one hyperparameter

In certain cases it might be interesting to look at the effects of varying more than one
hyperparameter. An extension of cMDS is thus the use of two or more hyperparameters,
α and β. This allows to consider, for example, time plus an additional hyperparameter
such as scaling or weighting. Having multiple hyperparameters effectively only changes
the penalty matrix used in the spline regressions: instead of a penalty matrix appropriate
for parametric curves in R→ Rd, we need a penalty appropriate for curves in Rm → Rd,
where m is the number of parameters.

As an example, take the case where we have two hyperparameters, m = 2. Suppose
we have a grid α1 . . . αTα × β1 . . . βTβ . Then, our configuration matrix is X(·)(·) ∈
RTα·Tβ×d×N . If Tα 6= Tβ , we have two matrices for the discrete second order differential
operator, Mα and Mβ , of appropriate dimensionality. Thus, we get the following penalty
matrix for two hyperparameters:

M = Mβ ⊗ETα + ETβ ⊗Mα, (18)

defining a separable penalty across the two hyperparameters. For more on penalty ma-
trices, see for example [45].

The results can be visualised by selecting certain slices of the grid. In the case of
1-dimensional embeddings, selecting a certain value for one hyperparameter leads to the
visualization of curves that depend on the other hyperparameter. In case of 2-dimensional
embeddings, one can select a certain value of one hyperparameter and then analyze the
corresponding, possibly animated, scatterplot that varies with the second one.

2.5. Initialization

The cMDS algorithm needs to be seeded with a starting configuration. The optimiza-
tion works with a random initialization, but performance can be improved with a more
structured approach.

One possibility is to perform classical scaling [9, 6] or other standard MDS methods
such as SMACOF [20, 56] for each value of α. However, the separate solutions might be
difficult for cMDS to ”glue” together and thus form a poor initialization. A more robust
variant is initialization with an aggregated solution. To obtain this solution we average

each curve x
(·)
i over all values of α and then perform classical scaling on X̄. If some

patterns are very strong for only a certain range of α, they might influence the entire
embedding via the aggregated initialization. Thus, one should consider which kind of
initialization is suitable for the data at hand.

12

2.6. Embedding dimension

We would like to shortly comment on the choice of the embedding dimension. Since
we aim for visualization, one only needs to choose between d = 1 or d = 2. One way
to choose is to look at the so-called Shepard plots. In such a plot, embedding distances
are plotted against original distances. For an ideal embedding, all the points in such a
plot would fall on the diagonal. Thus, the spread from the diagonal can be used to judge
whether the embedding is meaningful or not. If the Shepard plot looks reasonable for
d = 1, one should choose this dimension. If there is a significant improvement for d = 2,
one should choose the higher dimension.

2.7. Variants of cMDS

There exists multiple variants of the standard MDS problem. All of them can be
implemented in cMDS. Most variants are defined over weights W(·) in the cost function:

C
(
X(·),D(·)

)
=

T∑
k=1

‖Wk ◦
(
D̃k −Dk

)2
‖F

+ λ
∑
i

(x
(·)
i)T (D(2))TD(2) x

(·)
i .

Sammon’s mapping [14] can be implemented by setting wkij = (dkij)
−1. In elastic stress,

on the other hand, we have weights wkij = (dkij)
−2 [15]. This is equivalent to a Kamada-

Kawai layout in graph visualization [23]. Multidimensional unfolding is useful when
the data separates into groups [16]. Then, the weights corresponding to between-group
distances are set to zero. Local MDS (LMDS) [17] is a slightly more complex variant.
Here, the weights are set depending on local neighborhoods: If object skj is a k-nearest

neighbor of ski (which we denote as j ∈ Ni), then the corresponding term in the cost gets
weight wij = 1 and the original distance dij is used. In all other cases the weight w is set
to a small value (not dependent on i, j) and dij = D∞, where D∞ is a large constant.
This leads to a focus on local neighborhood structure and adds a repulsive force to avoid
a ’crumbling together’ of the embedding. The corresponding cMDS cost function is

C
(
X(·),D(·)

)
=

T∑
k=1

N∑
i=1

∑
j∈Ni

(
‖x(·)

i − x
(·)
j ‖2 − d

k
ij

)2
+

T∑
k=1

N∑
i=1

∑
j 6∈Ni

wk
(
‖x(·)

i − x
(·)
j ‖2 −D

k
∞

)2
+ λ

∑
i

(x
(·)
i)T (D(2))TD(2) x

(·)
i .

LMDS introduces an additional hyperparameter via w, that needs to be optimized
for the data at hand.

It is also possible to use ISOMAP [18] to visualize changes in manifold structure that
are induced by a change in metric. To this end, one constructs geodesic distances based
on different distances dα (x, y) and subsequently applies cMDS.

13

2.8. R package cmdsr

To make cMDS accessible we provide an R package, cmdsr, on github (here). The
heart of the package is the function cmds. Functions for plotting and summarizing
results are also available. To show the usability of cMDS we display exemplary function
calls here:

ComputeCmds(kDistances, kDim = 2, kLambda = 5, kWeights = “sammon”)

ComputeCmds(kDistances, kDim = 1, kLambda = 3, kInit = “smacof”)

where DL is a list of distance matrices of length T , k is the embedding dimension and l
is λ, the regularization parameter. W can be set to use different variants of MDS, such
as Sammon’s mapping, Kamada-Kawai and unfolding. Different initializations are also
available. There is also a built-in plotting function. For example, the Shepard plot can
be plotted like this:

PlotCmds(ComputeCmds(kDistances), kShepard = TRUE)

Further examples can be found in the package documentation.

2.9. Distance families

We would like to discuss some general properties of distance families.

Weighted distances. A very common case is that data can be described using different
features or sets of features. In that case, we can build two distance matrices D1 and D2

on one feature respectively. Then, we can construct a weighted metric using a convex
combination of the two. Using a convex combination ensures that each resulting matrix
is again a distance matrix.

D(·) =
√
αD2

1 + (1− α)D2
2 . (19)

We present examples of weighted distance in Section 3.

Changing inherent dimensionality. An interesting issue is a change in intrinsic dimen-
sionality in the distance function. In classical scaling, low dimensional embeddings are
projections of higher dimensional embeddings. For example, a 2d embedding is the pro-
jection of the 3d embedding. In reverse, this means that embedding high dimensional
data in lower dimensions leads to larger distortion. In continuous embeddings, the di-
mensions are not stacked, as in the classical case. However, it is still true that a larger
difference in dimensionality between original and embedded data leads to larger distor-
tion. We illustrate this by mixing a distance matrix based on low dimensional data
(d = 2) with one based on high dimensional data (d = 12). We embed this data in d = 2.
Plotting the distortion for each value of α, as defined in (2), shows that, as expected,
embedding the 2d data in d = 2 yields zero distortion. The distortion increases as the
high dimensional data gets more weight in the mixture.

14

https://github.com/ginagruenhage/cmdsr

0.00

0.05

0.10

0.15

0.00 0.25 0.50 0.75 1.00
α

D
is

to
rt

io
n

Figure 3: Change of inherent dimensionality: α = 0 represents a distance matrix based
on two dimensional data, α = 1 is based on 12-dimensional data. The mixture was
embedded in d = 2. It is clearly visible that, as the influence of the high-dimensional
data increases, the distortion also increases.

3. Examples

In the following examples we show how cMDS can be used to analyze the effect of
hyperparameters of distance functions on the data. The first example is a toy example,
where we illustrate how cMDS can visualize cluster structure in data and how it compares
to a more basic method based on k-means. In the second example, we use a weighted
metric: distances evolve according to the relative weight given to some of the dimensions.
In the third example, we work with brain connectivity data. We vary the distance func-
tion between networks according to different thresholding rules. In the fourth example,
we derive a multiscale representation of data using hierarchical clustering and visualize
changes in distance over scale.

3.1. Comparison of cMDS to clustering

We compare cMDS to a rudimentary method of tracking the influence of changing
distances on the data structure.

An approach based on traditional methods is to perform clustering on the original
data for multiple instances of the distance family dα(x, y). To track whether clusters in
the data emerge independently of the distance measure, we use the set of cluster indices
ci of a specific level of α for all levels of α and compute the corresponding quality of the
clustering result, for example, by comparing within and between cluster variance. By
good clustering quality, we mean data that has well seperated clusters. Low quality on
the other hand refers to strongly overlapping clusters. If the quality breaks down, this
should be visible in the cMDS result on first glance.

We demonstrate this with an artificial example. Suppose we draw five random cluster
centers in R5 and then let those cluster centers linearly collapse to zero, such that for
α = 0 we have well separated cluster centers and at α = 1 all cluster centers are at
the origin. In our example, we draw the cluster centers uniformly from a 5-dimensional
hypercube with coordinate-wise limits of [−10, 10] and sample 15 points from a linear

15

(a) (b)

Figure 4: (a) Clustering quality based on k-means clustering. We performed clustering
at α = 0 and used the resulting indices at all levels of α. One can see that the quality
decreases, thus indicating that the cluster structure that is present in the beginning is
not invariant. However, one cannot know what happens with the data exactly. (b) cMDS
on the toy example. α = 0 represents the distance matrix based on data in five clusters
in R5. α = 1 represents a random distance matrix. The results provide at a glance that
clusters dissolve at larger values of α. This information is difficult to obtain based on
k-means clustering alone.

approximation between the centers and the origin. We then simulate Gaussian data at
all values of α, using the respective cluster centers and simulating 10 points per cluster.
We use a variance of 0.3 to ensure that the clusters are well separated in the beginning.
We then compute the corresponding distance matrices for each level of α. Now, let us
assume we don’t know anything about the data. We compute a k-means clustering for
α = 0. We use the resulting cluster indices for all levels of α and compute cluster quality.
We use the following quality measure:

q =

(∑
i

dmax(xci)

dmin(ci)

)−1
i.e. for each cluster, we compute the maximum distance between two points in this
cluster and the minimum distance from this cluster’s center to another cluster center.
The inverse of the sum of those values gives our quality measure. Low quality (strong
overlap) of the clustering leads to low values of q. We run k-means and compute q ten
times to get an average measure for cluster quality. The results are shown in Fig. 4a. We
see that the quality of the clustering decreases with α. From this we can conclude only
that the clustering in the beginning is not present at the end. What we do not know is
what the data actually looks like. Are there no clusters in the end or maybe different
clusters than in the beginning? Let us now look at the cMDS embedding of the distance
matrices (Fig. 4b). Here we see that the clustering structure slowly degenerates with
increasing α and that no other clusters arise for large α. Thus, we gain a lot more insight
about the data without having to run k-means many times and computing average cluster
quality measures.

16

3.2. Economic and demographic descriptors of EU countries

Figure 5: Effects of changes in a weighted metric. Economic and demographic distance
measures are weighted according to D(α) =

√
α ·D2

E + (1− α) ·D2
D. Thus, the first

panel represents an embedding that is solely based on the demographic metric, while
the last one is based on the economic one. In between are samples of different weights,
denoted by α. The red labels depict the neighborhood relation between the Netherlands
(NLD) and Finland (FIN) which is invariant with respect to α, while the green ones,
Bulgaria (BGR) and Estland (EST), are an example of a strong dependency on α.

For this example we use economic and demographic descriptors of the 27 EU countries.
The data are publicly available from the gapminder website. As economic variables we
use income per capita (2008), CO2 emissions per capita (2008) and number of granted
patents per capita (2002). Demographic variables are total fertility rate, life expectancy
at birth and the fraction of urban population. We scale all variables logarithmically. We
then build two distance matrices, one solely based on economic variables, DE , the other
on demographic variables, DD. Now, we put different weights on both variable groups
and have a continuous range with one extreme only considering demographic variables
and the other extreme only considering economic ones:

D(α) =
√
α ·D2

E + (1− α) ·D2
D

where α is between 0 and 1. We sample this continuum at N different values of α
and thus get a distance array in RN×27×27. For this example, a 1D embedding is not
sufficient to capture relevant trends in the data. Thus, we give snapshots of the 2D
results in Fig. 5. In this case, an interactive presentation of the results is much easier
to read and thus an advantageous choice. An interactive visualization is viewable at
http://tinyurl.com/cMDS-demo. We also implemented an interactive web application

17

http://tinyurl.com/cMDS-demo

with the R package shiny, which is online at http://ginagruenhage.shinyapps.io/EU-
App . The 2D embedding shows that the changes in weighting have significantly different
effects on the individual neighborhood relations. For example, some demographically very
similar countries start diverging when economic variables are taken into account and end
up far apart under the economic distance metric (e.g. Bulgaria and Estonia). Other
countries stay similar, independent of the weighting of different distances (e.g. Finland
and the Netherlands). These patterns are lost when deciding a distance measure a priori.
Using cMDS to visualize the effects of the hyperparameter makes them easier to discover
and understand. In the web application, one can also toggle quantitative analyses of the
cMDS output, such as a vector graphic showing local stability of various countries. It
is also possible to color countries according to their respective penalty, to judge overall
stability.

3.3. Diffusion Tensor Imaging

Figure 6: Embedding of thresholded networks acquired by DTI and tractography [57].
The hyperparameter α corresponds to the quantile of weakest connections that is ignored
for inter-subject comparisons. Measurements are compared based on the resulting binary
connectivity matrix using the Hamming distance between graphs. The analysis shows
that the two measurements for subject A, A1 and A2, differ about as much as other
pairwise comparisons. This is interesting because it highlights the relatively low reliability
of DTI tractography.

Brain regions are linked by white matter tracts, forming a network called the Con-
nectome [58]. Diffusion Tensor Imaging (DTI) is a form of magnetic resonance imaging
that can be used to find connections between brain regions (using tractography, [59]).
Here we use data obtained by Hagmann et al. [57], available here. DTI produces noisy
results and it is difficult to compare individual subjects. Consequently, connectivity must
often be averaged over individual subjects. There is by necessity some arbitrariness in
the averaging and we show here how cMDS can be used to visually compare different
subjects and to visualize changes in network structure as the averaging criterion is varied.
In the original data, the brain is segmented into 998 regions of interests that cover about
1.5 cm2 each and belong to one of 66 anatomical regions (33 per hemisphere). Here, we

18

http://ginagruenhage.shinyapps.io/EU-App
http://ginagruenhage.shinyapps.io/EU-App
http://www.cmtk.org/datasets/homo_sapiens_01.cff

Figure 7: Embedding of regional networks acquired by DTI and tractography [57]. The
different panels correspond to different threshold levels α when building consensus net-
works. The superior frontal cortex (SF) and superior parietal cortex (SP) are stable re-
gions in the core of the network, while the parahippocampal cortex (PARH), the caudal
anterior cingulate (CAC), and the transverse temporal cortex (TT) are stable peripheral
regions. Some regions are less stable, e.g. the pars orbitalis (PORB), the temporal pole
(TP), the medial orbitofrontal cortex (MOF) and the postcentral gyrus (PSTS).

19

do not work with the full network, but rather with regionally aggregated data for the

left hemisphere. That is, the data are adjacency matrices in R33×33, where A
(s)
ij is the

connection strength between regions i and j for subject s. Connections are measured for
five different subjects, with two separate measurements for subject A. To compare differ-
ent subjects and to evaluate whether strong connections are more stable across subjects
than weak ones, we perform a thresholding analysis. Our hyperparameter is the quantile
of weak connections that we ignore in the comparisons. Thus, α = 0.1 corresponds to
setting the weakest 10% of connections to zero. We then binarize the adjacency ma-

trix, B(s) > A(s), such that we have B
(s)
ij ∈ 0, 1 and compute the Hamming distance

between the graphs corresponding to different measurements. We use embeddings in R2

to represent the data (Fig. 6). Surprisingly, the approximate distances between the two
measurements of subject A, A1 and A2, are of the same order of magnitude compared to
the distances between distinct subjects. This is true across thresholding levels. This is a
curious finding, since these two measurements are averaged in Hagmann et al. [57] before
inter-subject averaging is performed. Our findings suggest that these two measurements
are not easily distinguishable from other pair comparisons. According to Hagmann et al.
[57], the correlation between the regional connectivity of A1 and A2 is r2 = 0.78, com-
pared to r2 = 0.65 between distinct subjects. The cMDS visualization suggests that A1
and A2 are not notably more similar than other pairwise comparisons.

Because of the relatively high noise in the data some form of averaging (over subjects)
may be useful to perform structural analyses on the regional network. Due to our findings
in the network thresholding analysis we treat measurements A1 and A2 separately. One
approach to perform averaging is to produce consensus networks out of the individual
networks, with the rule that a link is introduced in the 50% consensus network if and
only if it is present in at least 50% of the individual networks. Thus, we look at the

average adjacency matrix B̄, where B̄ij = (1/N)
∑
sB

(s)
ij and B(s) = A(s) > 0. We

then threshold it at different levels to produce different consensus networks. We use the
threshold level α as the continuous parameter in cMDS, such that B̄ij(α) = B̄ij > α. If
we take the shortest-path distance on the graph that is defined by Ā(α) as the distance
measure between two regions, then changing the threshold level is exactly the same as
changing the distance measure, as some links will start disappearing with higher threshold
values. We can therefore apply cMDS to visualize the changes in network structure as
the averaging rule is changed. For this example, we implement a weighted version of
the algorithm, to mirror the standard Kamada-Kawai layout methods [23]. The results
are shown in Fig. 7 for regions in the left hemisphere. We also present these results
interactively with a web application using the R package shiny which is viewable at
http://ginagruenhage.shinyapps.io/DTI-App. A first (and unsurprising) result is that
the network density decreases significantly with the threshold level. That is, as we start
requiring higher levels of consistency among the subjects, a lot of connections are rejected.
We would like to note, that in this case, integer distances are embedded in a continuous
space. However, aspects such centrality are recovered in the visualization: regions with
dense connections and high values of centrality and betweenness are placed at the center
of the configuration.

Results show that some regions are very stable: for example, the superior frontal
cortex (SF) and the superior parietal cortex remain at the core of the network, while the
parahippocampal cortex (PARH), the caudal anterior cingulate (CAC) and the temporal

20

http://ginagruenhage.shinyapps.io/DTI-App

cortex (TT) are examples of stable regions at the periphery of the network. What is
even more interesting is that some regions are rather unstable and change their role in
the network. The postcentral gyrus (PSTS) starts out in the periphery and then moves
to the center. Other regions move from the core to the periphery, e.g. the pars orbitalis
(PORB), the temporal pole (TP) and the medial orbitofrontal cortex (MOF). Since core-
periphery relationships are central to the interpretation of connectome data, it is crucial
to know which regions can be reliably called peripheral and others central [57]. cMDS
provides this information at a glance.

3.4. Hierarchical clustering

We mentioned in the introduction that distance is often computed relative to a certain
scale. For spatial or temporal data, scale corresponds to a concrete spatial or temporal
window, but there are other ways to obtain a multiscale representation. Hierarchical
clustering [60, 61] is such a technique. We focus here on agglomerative clustering, where
the algorithm starts with each observation in one cluster. At each level, the algorithm
merges the two closest clusters until only one cluster remains. Thus, there are N − 1
levels in the hierarchy, which gives a view of the data going from the roughest to the
most detailed level. cMDS provides an interesting visualization of the results.

We first define a distance function at each level of the hierarchy. For each level, we
build the distance matrix for the N datapoints as follows: if two datapoints are in the
same cluster we assign a very small positive distance. Specifically, we used the absolute
value of samples from a Gaussian with zero mean and standard deviation of 0.005. If
two datapoints are not in the same cluster we compute the euclidean distance between
the centers of their respective clusters. Here, we use the publicly available USArrests
dataset from the R datasets package. It contains data on murder arrests, assault arrests,
rape arrests and urban population for the different US states in 1973. We picked this
dataset because it is used as an example for the R hclust function. We use cMDS to
embed these data (Fig. 8). The result is a tree structure with the property that, at
each level of the tree, distances between branches are representative of distances between
clusters. This enables an immediate understanding of the hierarchical clustering results.
We also developed an interactive visualization based on a 2D embedding, which better
captures the potential of cMDS for such applications. We invite readers to have a look
at these results (online at http://tinyurl.com/cMDS-demo).

4. Discussion

We introduced an easy to implement and flexible version of continuous (or dynamic)
multi-dimensional scaling, namely cMDS. We showed that cMDS provides a fast and
informative way of understanding the data structure by presenting four examples. In
a toy example, we compared the results to a method based on k-means which gave
only an approximate idea of what was going on in the data, while cMDS yielded a very
concise representation of the data. With the second example on EU data we showed the
effects of changing a weighted metric, putting different weights on two feature classes.
Visualization revealed countries whose neighborhood relations are invariant to the change
in weights as well as countries whose relative position strongly depends on the weights.
In a brain connectivity example, where averaging over subjects is not straightforward,

21

http://tinyurl.com/cMDS-demo

Figure 8: Embedding of an hierarchical clustering results for the USArrests data set
which is publicly available as part of the R datasets package. We selected a sample of
17 states. We ran hierarchical clustering using the centroid of clusters for agglomeration.
Then, we built the distance matrix for each level: two datapoints are assigned a small
positive distance if they are in the same cluster and the distance between cluster centers
otherwise. The cMDS result is a visualization of the tree structure. At each level, the
distances between branches represents the distances between cluster centers.

we found a way to compare different subjects giving more and more weight to strong
connections. We found that cMDS suggests two measurements of the same subjects to
be as different as measurements of two different subjects. In a second analysis we found
that the shape of the network changes according to the averaging rule. With cMDS,
identifying stable and unstable regions turned out to be straightforward. Finally, we
showed how hierarchical clustering can be thought of as a multiscale representation of
data, and we used cMDS to visualize how the structure of the data changes across scale.

We only considered small datasets here, for which cMDS is very fast (with a runtime
of a few seconds at most). Like other MDS methods, it doesn’t scale well with n. It
hasn’t been proved to be better than O(n3), though it might be, which depends on how
many runs of the outer loop are needed. Practically, the runtime remains reasonable
with a few hundred datapoints, and straightforward extensions for larger datasets are
possible. One idea is to embed a subset of landmark points, as in landmark MDS [62].
Another is to use sparse weighting matrices, tying each datapoint to a random subset of
neighbours.

By visual inspection, cMDS immediately reveals qualitative structures in the neigh-

22

borhood dynamics for various datasets. Furthermore, quantitative analyses are possible.
For example, performing clustering on cMDS output can yield results that are robust to
changes in the distance measure. We leave these extensions to future work.

5. Conclusion

With cMDS, we address a fundamental problem in pattern recognition and machine
learning: the initial choice of a distance metric. This is a hidden assumption in various
methods. We argue that this choice should be addressed explicitly. Our suggestion is
to use continuous MDS techniques, which visualize the dynamics that (so far) arbitrary
choices in distance functions introduce in data. cMDS can deal with numerous sources of
arbitrariness in the distance metric, examples of which are varying scale or weighting. We
show that interesting and important dynamics, such as invariance and declustering, are
readily revealed by cMDS. Finally, we provide a cMDS algorithm that is straightforward
to implement, use and extend.

Acknowledgments

This work was partially supported by the Deutsche Forschungsgemeinschaft (GRK1589/1).

23

References

References

1. Carlsson G. Topology and data. Bulletin of the American Mathematical Society 2009;46(2):255–
308.

2. Schölkopf B, Smola AJ. Learning with kernels: support vector machines, regularization, optimiza-
tion and beyond. the MIT Press; 2002.

3. Lum PY, Singh G, Lehman A, Ishkanov T, Vejdemo-Johansson M, Alagappan M, Carlsson J,
Carlsson G. Extracting insights from the shape of complex data using topology. Scientific reports
2013;3.

4. Buja A, Swayne DF. Visualization methodology for multidimensional scaling. Journal of Classifi-
cation 2002;19(1):7–43.

5. Buja A, Swayne DF, Littman ML, Dean N, Hofmann H, Chen L. Data Visualization With Multi-
dimensional Scaling. Journal of Computational and Graphical Statistics 2008;17(2):444–72.

6. Torgerson W. Multidimensional scaling: I. Theory and method. Psychometrika 1952;17(4):401–19.
7. Torgerson WS. Theory and methods of scaling. Wiley; 1958.
8. Gower JC. Some distance properties of latent root and vector methods used in multivariate analysis.

Biometrika 1966;53(3-4):325–38.
9. Kruskal JB. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.

Psychometrika 1964;29(1):1–27.
10. Shepard RN. The analysis of proximities: Multidimensional scaling with an unknown distance

function. I. Psychometrika 1962;27(2):125–40.
11. Ramsay JO. Maximum likelihood estimation in multidimensional scaling. Psychometrika

1977;42(2):241–66.
12. Ramsay JO. Confidence regions for multidimensional scaling analysis. Psychometrika

1978;43(2):145–60.
13. Ramsay JO. Multiscale: Four Programs for Multidimensional Scaling by the Method of Maximum

Likelihood.[user’s Guide]. National Educational Resources; 1978.
14. Sammon JW. A nonlinear mapping for data structure analysis. Computers, IEEE Transactions on

1969;100(5):401–9.
15. McGee VE. The multidimensional analysis of ’elastic’distances. British Journal of Mathematical

and Statistical Psychology 1966;19(2):181–96.
16. Borg I, Groenen PJF. Modern Multidimensional Scaling: Theory and Applications (Springer Series

in Statistics). Second ed.; Springer; 2005.
17. Chen L, Buja A. Local multidimensional scaling for nonlinear dimension reduction, graph drawing,

and proximity analysis. Journal of the American Statistical Association 2009;104(485):209–19.
18. Tenenbaum JB, de Silva V, Langford JC. A Global Geometric Framework for Nonlinear Dimen-

sionality Reduction. Science 2000;290(5500).
19. Guttman L. A general nonmetric technique for finding the smallest coordinate space for a configu-

ration of points. Psychometrika 1968;33(4):469–506.
20. De Leeuw J. Applications of Convex Analysis to Multidimensional Scaling. In: Barra JR, Brodeau

F, Romier G, van Cutsem B, eds. Recent developments in statistics. Amsterdam, The Netherlands:
North-Holland; 1977:133–45.

21. De Leeuw J, Heiser WJ. Convergence of correction matrix algorithms for multidimensional scaling.
Geometric representations of relational data 1977;:735–52.

22. De Leeuw J. Convergence of the majorization method for multidimensional scaling. Journal of
Classification 1988;5(2):163–80.

23. Kamada T, Kawai S. An algorithm for drawing general undirected graphs. Information processing
letters 1989;31(1):7–15.

24. Gansner E, Koren Y, North S. Graph Drawing by Stress Majorization. In: Pach J, ed. Graph
Drawing; vol. 3383 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2005:239–
50.

25. Misue K, Eades P, Lai W, Sugiyama K. Layout Adjustment and the Mental Map. Journal of
Visual Languages & Computing 1995;6(2):183–210.

26. Böhringer KF, Paulisch FN. Using constraints to achieve stability in automatic graph layout al-
gorithms. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’90; New York, NY, USA: ACM; 1990:43–51.

24

27. North S. Incremental layout in DynaDAG. In: Brandenburg F, ed. Graph Drawing; vol. 1027 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg; 1996:409–18.

28. Brandes U, Wagner D. A bayesian paradigm for dynamic graph layout. In: DiBattista G, ed. Graph
Drawing; vol. 1353 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 1997:236–47.

29. Brandes U, Corman SR. Visual Unrolling of Network Evolution and the Analysis of Dynamic
Discourse†. Information Visualization 2003;2(1):40–50.

30. Moody J, McFarland D, BenderdeMoll S. Dynamic Network Visualization. American Journal of
Sociology 2005;110(4):1206–41.

31. Diehl S, Görg C. Graphs, They Are Changing. In: Goodrich M, Kobourov S, eds. Graph Drawing;
vol. 2528 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2002:23–31.

32. Frishman Y, Tal A. Online Dynamic Graph Drawing. Visualization and Computer Graphics, IEEE
Transactions on 2008;14(4):727–40.

33. Erten C, Harding PJ, Kobourov SG, Wampler K, Yee G. Exploring the computing literature using
temporal graph visualization. In: Visualization and Data Analysis 2004. Edited by Erbacher, Robert
F.; Chen, Philip C.; Roberts, Jonathan C.; Gröhn, Matti T.; Börner, Katy. Proceedings of the
SPIE, Volume 5295, pp. 45-56 (2004).; vol. 5295. 2004:45–56.

34. Erten C, Kobourov S, Le V, Navabi A. Simultaneous Graph Drawing: Layout Algorithms and
Visualization Schemes. In: Liotta G, ed. Graph Drawing; vol. 2912 of Lecture Notes in Computer
Science; chap. 41. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004:437–49.

35. Dwyer T, Hong SH, Koschützki D, Schreiber F, Xu K. Visual analysis of network centralities. In:
Proceedings of the 2006 Asia-Pacific Symposium on Information Visualisation - Volume 60. APVis
’06; Darlinghurst, Australia, Australia: Australian Computer Society, Inc.; 2006:189–97.

36. Baur M, Schank T. Dynamic graph drawing in visone. Citeseer; 2008.
37. Brandes U, Mader M. A Quantitative Comparison of Stress-Minimization Approaches for Offline

Dynamic Graph Drawing. In: Kreveld M, Speckmann B, eds. Graph Drawing; vol. 7034 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg; 2012:99–110.

38. Xu K, Kliger M, Hero A. A regularized graph layout framework for dynamic network visualization.
Data Mining and Knowledge Discovery 2013;27(1):84–116.

39. Sarkar P, Moore AW. Dynamic social network analysis using latent space models. SIGKDD Explor
Newsl 2005;7(2):31–40.

40. Mizuta M. Multidimensional scaling for dissimilarity functions with continuous argument(functional
data analysis). Journal of the Japanese Society of Computational Statistics 2003;15(2):327–33.

41. Yuille AL, Rangarajan A. The Concave-convex Procedure. Neural Comput 2003;15(4):915–36.
42. Lanckriet GR, Sriperumbudur BK. On the Convergence of the Concave-Convex Procedure. In: Ben-

gio Y, Schuurmans D, Lafferty JD, Williams CKI, Culotta A, eds. Advances in Neural Information
Processing Systems 22. Curran Associates, Inc.; 2009:1759–67.

43. Yen IE, Peng N, Wang P, Lin S. On convergence rate of concave-convex procedure. In: Proceedings
of the NIPS 2012 Optimization Workshop. 2012:.

44. Cook D, Swayne DF. Interactive and dynamic graphics for data analysis: with R and GGobi.
Springer; 2007.

45. Ramsay JO, Silverman BW. Functional Data Analysis. New York: Springer Series in Statistics;
1997.

46. Kaski S, Peltonen J. Dimensionality Reduction for Data Visualization [Applications Corner]. Signal
Processing Magazine, IEEE 2011;28(2):100–4.

47. Mokbel B, Lueks W, Gisbrecht A, Hammer B. Visualizing the quality of dimensionality reduction.
Neurocomputing 2013;112:109–23.

48. Rockafellar RT. Convex analysis (princeton mathematical series). Princeton University Press
1970;46:49.

49. Agarwal A, Phillips JM, Venkatasubramanian S. Universal multi-dimensional scaling. In: Proceed-
ings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM; 2010:1149–58.

50. Leeuw J. Block-relaxation Algorithms in Statistics. In: Bock HH, Lenski W, Richter M, eds.
Information Systems and Data Analysis. Studies in Classification, Data Analysis, and Knowledge
Organization; Springer Berlin Heidelberg; 1994:308–24.

51. Hunter DR, Lange K. A tutorial on MM algorithms. The American Statistician 2004;58(1):30–7.
52. Tseng P, Yun S. A coordinate gradient descent method for nonsmooth separable minimization.

Mathematical Programming 2009;117(1-2):387–423.
53. Razaviyayn M, Hong M, Luo ZQ. A unified convergence analysis of block successive minimization

methods for nonsmooth optimization. SIAM Journal on Optimization 2013;23(2):1126–53.

25

54. Wright S. Coordinate descent algorithms. Mathematical Programming 2015;151(1):3–34.
55. Powell MJ. On search directions for minimization algorithms. Mathematical Programming

1973;4(1):193–201.
56. De Leeuw J, Patrick M. Multidimensional scaling using majorization: SMACOF in R. Journal of

Statistical Software 2009;31(3):1–30.
57. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O. Mapping the

Structural Core of Human Cerebral Cortex. PLoS Biol 2008;6(7):e159+.
58. Sporns O, Tononi G, Kötter R. The human connectome: A structural description of the human

brain. PLoS computational biology 2005;1(4):e42+.
59. Hagmann P, Thiran JP, Jonasson L, Vandergheynst P, Clarke S, Maeder P, Meuli R. DTI map-

ping of human brain connectivity: statistical fibre tracking and virtual dissection. NeuroImage
2003;19(3):545–54.

60. Kaufman L, Rousseeuw PJ. Finding groups in data: An introduction to cluster analysis. Wiley;
1990.

61. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer; 2009.
62. Silva VD, Tenenbaum JB. Global versus local methods in nonlinear dimensionality reduction.

Advances in neural information processing systems 2003;15:705–12.

26

	1 Introduction
	2 Methods
	2.1 Objective
	2.2 Optimization via the Concave-Convex Procedure (CCCP)
	2.3 First-order optimality of the cMDS algorithm
	2.3.1 First-order optimality of the inner loop
	2.3.2 Convergence of the outer loop

	2.4 cMDS with more than one hyperparameter
	2.5 Initialization
	2.6 Embedding dimension
	2.7 Variants of cMDS
	2.8 R package cmdsr
	2.9 Distance families

	3 Examples
	3.1 Comparison of cMDS to clustering
	3.2 Economic and demographic descriptors of EU countries
	3.3 Diffusion Tensor Imaging
	3.4 Hierarchical clustering

	4 Discussion
	5 Conclusion

