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Abstract

Approximate Bayesian computation (ABC) refers to a family of inference methods used
in the Bayesian analysis of complex models where evaluation of the likelihood is dif-
ficult. Conventional ABC methods often suffer from the curse of dimensionality, and
a marginal adjustment strategy was recently introduced in the literature to improve
the performance of ABC algorithms in high-dimensional problems. The marginal ad-
justment approach is extended using a Gaussian copula approximation. The method
first estimates the bivariate posterior for each pair of parameters separately using a
2-dimensional Gaussian copula, and then combines these estimates together to esti-
mate the joint posterior. The approximation works well in large sample settings when
the posterior is approximately normal, but also works well in many cases which are
far from that situation due to the nonparametric estimation of the marginal posterior
distributions. If each bivariate posterior distribution can be well estimated with a low-
dimensional ABC analysis then this Gaussian copula method can extend ABC methods
to problems of high dimension. The method also results in an analytic expression for
the approximate posterior which is useful for many purposes such as approximation of
the likelihood itself. This method is illustrated with several examples.

Keywords: Approximate Bayesian Computation (ABC), Gaussian copula, Likelihood
free inference, Marginal adjustment, Regression adjustment ABC.

1 Introduction

Part of the class of “likelihood-free” techniques, approximate Bayesian computation (ABC)

methods are commonly implemented to draw samples from an approximation to the poste-

rior distribution when the likelihood function is computationally intractable. This scenario

arises in an increasingly broad range of discipline areas (Beaumont et al. 2002; Bortot et al.

2007; Drovandi and Pettitt 2011b).

Denote the prior for a parameter vector θ = (θ1, · · · , θp)> ∈ Θp as p(θ), the computa-

tionally intractable likelihood function as L(y|θ), and the resulting posterior distribution
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as π(θ|yobs) ∝ L(yobs|θ)p(θ), for observed data yobs. The same basic mechanism underlies

most ABC algorithms. For each of i = 1, . . . , N candidate draws from the prior distribution,

θ(i) ∼ p(θ), an auxiliary dataset y(i) ∼ L(y|θ(i)) is sampled from the data generation process

given θ(i). Suppose that s = S(y) is a vector of summary statistics with dim(s) ≤ dim(y),

and that sobs = S(yobs). If ‖s(i) − sobs‖ is small, for some distance measure ‖ · ‖, then θ(i)

could credibly have generated the observed summary data sobs, so θ(i) is a possible draw

from π(θ|yobs). Conversely, if ‖s(i) − sobs‖ is large, then θ(i) is unlikely to have generated

the observed data, so θ(i) is not likely to be a draw from the posterior. Specifically, the

resulting samples (θ(i), s(i)) are draws from the joint distribution

πABCh (θ, s|sobs) ∝ Kh(‖s− sobs‖)L(s|θ)p(θ), (1)

where Kh is a standard smoothing kernel with scale parameter h > 0. A simple importance

sampling ABC algorithm describing this simulation process is given in Table 1. Note that

direct evaluation of the intractable likelihood function is circumvented.

Input:
An observed dataset, yobs.
A desired number of samples N > 0.
An importance sampling distribution f(θ), with f(θ) > 0 if p(θ) > 0.
A smoothing kernel Kh and scale parameter h > 0.
A low-dimensional vector of summary statistics s = S(y).
Compute sobs = S(yobs).

Iterate:
For i = 1, . . . , N :

1. Sample a parameter vector from importance distribution θ(i) ∼ f(θ).

2. Simulate a dataset from the likelihood y(i) ∼ L(y|θ(i)) given parameter vector θ(i).

3. Compute the summary statistics s(i) = S(y(i)).

4. Weight each sample θ(i) by w(i) ∝ Kh(‖s(i) − sobs‖)p(θ(i))/f(θ(i)).

Output:

A set of i = 1, . . . , N samples (θ(i), s(i)) with weights w(i), drawn from πABCh (θ, s|sobs).

Table 1: A simple ABC importance sampling algorithm.

Integrating out the auxiliary summary dataset from (1) results in the ABC approxima-

tion to the posterior

πABCh (θ|sobs) ∝
∫
Kh(‖s− sobs‖)L(s|θ)p(θ)ds. (2)
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This distribution has the property that if S(y) is sufficient for θ, and if h → 0 then

limh→0 π
ABC
h (θ|sobs) = π(θ|yobs), so that the exact posterior distribution is recovered. How-

ever, in practice sufficient statistics are typically unavailable for intractable models, and in

simulations s(i) 6= sobs (so that h > 0) in all but trivial settings. As a result, πABCh (θ|sobs)

will only approximate the posterior in general. For further details on ABC models and

alternative sampling algorithms see e.g. Beaumont et al. (2009), Sisson et al. (2007),

Marjoram et al. (2003), Drovandi and Pettitt (2011a).

One of the primary restrictions in the application of ABC methods in general is that

they suffer from the curse of dimensionality (Blum 2010). Casual inspection of (2) indicates

that ABC methods are based on a kernel density estimate of the likelihood function. Kernel

density estimation is well known to be reliable only in low dimensions. Here the relevant

dimension is in the comparison of s with sobs (not to be confused with the univariate

quantity ‖s−sobs‖). As dim(s) ≥ dim(θ) is required for reasons of parameter identifiability,

this means that ABC methods perform poorly in models with even a moderate number

of parameters. In practice, it is not uncommon that dim(s) >> dim(θ) (Allingham et al.

2009; Bortot et al. 2007), so πABCh (θ|sobs) can be a poor approximation of π(θ|yobs) even

for low dimensional models.

In some circumstances, the curse of dimensionality problem can be circumvented. This

can occur where the intractable likelihood function factorises in some way (Bazin et al.

2010; White et al. 2015; Barthelmé and Chopin 2014). For example, suppose that L(y|θ) =∏
j L(y(j)|θ) where y(j) represents some subset of y, and that conditional simulation from

L(y(j)|θ) is possible; in this case, the comparison of s and sobs can be directly reduced to

multiple lower dimensional (even univariate) comparisons. However, these approaches are

problem specific, and are not suitable for usage with general, non-factorisable models.

More generally applicable methods have been proposed, such as the regression and

marginal adjustments (Beaumont et al. 2002; Nott et al. 2014). The regression adjustment

takes advantage of the lack of an exact match between s(i) and sobs by constructing a

regression model to capture the relationship between the parameter vector and the summary

statistics. Beaumont et al. (2002) introduced the weighted linear regression model

θ(i) = α+ β>(s(i) − sobs) + εi,

where α is a p× 1 vector, β is a q × p matrix of regression coefficients (where q = dim(s))
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and εi are zero-mean iid errors, and where the weight for the pair (θ(i), s(i)) is given by

Kh(‖s(i) − sobs‖). Writing the least squares estimates of α and β as α̂ and β̂, and the

resulting empirical residuals as ε̂i, the linear regression adjusted vector

θ(i)∗ = θ(i) − β̂>(s(i) − sobs) = α̂+ ε̂i

is approximately a draw from π(θ|sobs) = limh→0 π
ABC
h (θ|sobs) if the assumptions of the

regression model hold. More flexible non-linear, heteroscedastic regression adjustments have

been developed (Blum and Francois 2010; Blum et al. 2013). The regression adjustment

can work well in improving the ABC posterior approximation, however it only mitigates,

rather than removes the underlying curse of dimensionality problem (Nott et al. 2014).

The marginal adjustment (Nott et al. 2014) first constructs estimates of π(θ|sobs) using

regular ABC with regression adjustment, and precise estimates of the univariate marginal

posterior distributions π(θi|sobs,(i)) for i = 1, . . . , p, where sobs,(i) is a subset of sobs infor-

mative for θi. The marginal posterior of θi can often be estimated well, due to the reduced

dimensionality of the marginal summary statistic sobs,(i). The marginal distributions of the

initial estimate of π(θ|sobs) are then adjusted to be those of the more precisely estimated

marginals, through an appropriate replacement of order statistics. The final adjusted pos-

terior can be a substantial improvement over standard ABC and regression adjustment

methods (Nott et al. 2014). While the marginal adjustment in itself avoids the curse of

dimensionality problem, and can be applied to analyses with non-factorisable likelihood

functions, the dependence structure within the initial estimate of π(θ|sobs) is not adjusted,

and so the final marginally adjusted sample can have a very poor dependence structure.

In this article we propose a new method for constructing an ABC approximation to

the posterior distribution that can be easily implemented in high dimensions, well beyond

current ABC practice, while maintaining a viable dependence structure. Our approach

is based on constructing a Gaussian copula to approximate the dependence structure of

π(θ|sobs), and on using the ideas behind the marginal adjustment to maintain full flexi-

bility in representing the univariate margins. The p-dimensional dependence structure of

the Gaussian copula can be efficiently determined from the Gaussian copula dependence

structures estimated from all bivariate parameter pairs (θi, θj). As such, an advantage of

this approach is that it plays to existing ABC method strengths: namely in only estimating

low-dimensional (bivariate and univariate) posterior distributions. The copula approach
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accordingly overcomes the curse of dimensionality inherent in standard ABC methods, per-

mitting the estimation of posterior distributions with viable dependence structures, for

arbitrarily large p-dimensional parameter vectors.

This article is structured as follows: In Section 2 we introduce the Gaussian copula,

and describe our proposed ABC method in detail. A simulated example and two real data

analyses are presented in Section 3. The first real data analysis, based on the multivariate

g-and-k distribution, estimates a p = 184 dimensional posterior distribution, which is,

in principle, comfortably beyond the capabilities of any previous ABC analysis. Higher

dimensional analyses could have been considered. The second real data analysis focuses on

robust Bayesian variable selection, and illustrates how copula ABC can outperform both

standard ABC and regular exact Bayesian inference even in moderate-dimensional analysis

(here p = 17) in a discrete posterior setting. Section 4 concludes with a discussion.

2 Gaussian copula ABC

According to the classical Bernstein-von Mises theorem (Van der Vaart 2000), under stan-

dard regularity conditions, the posterior distribution π(θ|yobs) is asymptotically normal.

This motivates the use of structured density estimation models for ABC which contain the

multivariate normal. In particular, we consider the meta-Gaussian family of distributions

(Fang et al. 2002), which model dependence through a Gaussian copula, as we describe

further below. Meta-Gaussian densities have the property that the p-dimensional joint den-

sity can be reconstructed from all bivariate marginal densities. In the present setting, if

bivariate marginal posterior densities can be well estimated using low-dimensional ABC

analyses, then meta-Gaussian approximations to these densities can be combined into a

meta-Gaussian approximation of the full posterior distribution. As it is constructed from

well estimated marginal densities, the resulting posterior approximation would avoid the

ABC curse of dimensionality problem, and can be expected to perform favourably compared

to existing ABC approaches in high dimensional models.

Suppose that the random vector θ = (θ1, . . . , θp)
> has a continuous multivariate density

g(·), with univariate marginal densities gi(·) and marginal distribution functions Gi(·) for θi,

i = 1, . . . , p. The copula C of θ is defined as the joint distribution of U = (U1, . . . , Up)
> =

(G1(θ1), . . . , Gp(θp))
>, and it contains full information on the dependence structure among
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the components of θ. Sklar’s theorem (Sklar 1959) states that the multivariate density can

be written as g(θ) = C(G1(θ1), . . . , GP (θp)), which permits a decoupling of the modelling

of the copula and the univariate marginal densities in order to model the joint density (e.g.

Joe 1997).

Define η = (η1, . . . , ηp)
> with ηi = Φ−1(Gi(θi)), for i = 1, . . . , p, where Φ is the standard

normal cumulative distribution function. If η is multivariate normal, η ∼ N(0,Λ), then the

copula of θ is called a Gaussian copula, and θ has a meta-Gaussian distribution with density

function given by

g(θ) =
1

|Λ|1/2
exp

{
1

2
η>(I − Λ−1)η

} p∏
i=1

gi(θi), (3)

where I denotes the identity matrix.

The multivariate normal family is embedded within the family of meta-Gaussian distri-

butions. Writing φ(·) as the standard normal density function, then the univariate normal

distribution N(µ1, σ
2
1) has density function f(x1) = φ(ω1)

σ1
where ω1 = x1−µ1

σ1
. For a p-

dimensional normal distribution N(µ,Σ), with mean µ = (µ1, . . . , µp)
> and covariance

matrix Σ, and writing ω = (ω1, · · · , ωp)> with ωi = xi−µi
σi

for i = 1, . . . , p, then the joint

normal density of x = (x1, . . . , xp)
> can be expressed as

f(x) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
=

1

(2π)p/2|R|1/2
exp

{
−1

2
ω>R−1ω

} p∏
i=1

1

σi

=
1

|R|1/2
exp

{
1

2
ω>(I −R−1)ω

} p∏
i=1

φ(ωi)

σi
, (4)

where R is the corresponding correlation matrix of Σ. Observe that R in (4) corresponds

to Λ in (3), meaning that the correlation matrix of the Gaussian distribution is exactly the

correlation matrix of the corresponding Gaussian copula.

In the ABC setting, if approximate normality of π(θ|sobs) holds, possibly after marginal

transformations of the parameters, then we may utilise a Gaussian copula model to esti-

mate the dependence structure of π(θ|sobs) in light of (4). As previously noted, all bivariate

marginal densities completely determine the joint density in a meta-Gaussian distribu-

tion, and these bivariate densities can usually be easily and precisely estimated in low-

dimensional ABC analyses. As such, it will be possible to obtain a reliable estimate of the
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joint posterior π(θ|sobs), even in high-dimensional problems, something which is in principle

comfortably beyond the capabilities of current ABC methods. In essence, we propose to

estimate each bivariate density using low-dimensional ABC methods, approximate these

with a 2-dimensional Gaussian copula, and then combine them to obtain an approximate

joint posterior using (3).

More precisely, the procedure we propose is as follows:

1. For each pair (i, j) with i = 1, · · · , p− 1 and j = i+ 1, . . . , p:

(a) Identify the summary statistics s(i,j) as a subset of s which are informative for

(θi, θj).

(b) Use conventional ABC methods to draw an approximate sample θ(1), . . . , θ(n)

from π(θ|s(i,j)). Extract the (i, j)th components from θ(1), . . . , θ(n) to form an ap-

proximate sample (θ
(1)
i , θ

(1)
j ), . . . , (θ

(n)
i , θ

(n)
j ) from the bivariate marginal π(θi, θj |s(i,j)).

(c) Let r
(1)
i , . . . , r

(n)
i be the ranks of θ

(1)
i , . . . , θ

(n)
i , and q

(1)
j , . . . , q

(n)
j be the ranks of

θ
(1)
j , . . . , θ

(n)
j . Set η

(`)
i = Φ−1(

r
(`)
i
n+1) and η

(`)
j = Φ−1(

q
(`)
j

n+1) for ` = 1, . . . , n.

(d) Calculate the sample correlation of (η
(1)
i , η

(1)
j ), . . . , (η

(n)
i , η

(n)
j ) and denote it Λ̂i,j

(= Λ̂j,i).

2. For i = 1, . . . , p:

(a) Identify the summary statistics s(i) as a subset of s which are informative for θi.

(b) Use conventional ABC methods to draw an approximate sample θ(1), . . . , θ(n′)

from π(θ|s(i)). Extract the ith component from θ(1), . . . , θ(n′) to form an approx-

imate sample θ
(1)
i , . . . , θ

(n′)
i from the univariate marginal π(θi|s(i)).

(c) Use density estimation methods to approximate the marginal density gi(θi) (de-

noted ĝi(θi)) based on θ
(1)
i , . . . , θ(n′).

3. Combine all Λ̂i,j ’s to form the p-dimensional correlation matrix Λ̂ with diagonal ele-

ments 1. The final Gaussian copula estimate of π(θ|sobs) is obtained via (3) with Λ

estimated by Λ̂ and gi(θi) estimated by ĝi(θi) for i = 1, . . . , p.

The above algorithm is easy to implement, and is computationally efficient as the calcu-

lations in Steps 1 and 2 can be performed in parallel for each i, j. While there is no restric-

tion on the types of ABC methods used to draw approximate samples from π(θi, θj |s(i,j))
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and π(θi|s(i)), one possible efficient implementation could be to estimate all bivariate and

univariate marginal densities using importance sampling (Table 1) using the same large

initial sample (θ(`), s(`)) ∼ L(s|θ)p(θ) for ` = 1, . . . , N . This approach is common in the

ABC literature (e.g. Nunes and Balding 2010; Blum et al. 2013; Prangle et al. 2014),

and is one we adopt in the analyses of Section 3. Alternatively, separate samplers could be

implemented (in parallel) for each univariate and bivariate margin, although at potentially

higher computational overheads.

A key element in the accurate estimation of the bivariate and univariate marginal den-

sities is the identification of suitable subsets of statistics s(i,j) and s(i). While this may

initially seem difficult, it is not uncommon to be able to identify specific summary statis-

tics as informative for specific parameters, particularly in some structured models (e.g.

Drovandi and Pettitt 2011b; Nott et al. 2014). However, in more general cases, established

techniques exist for the semi-automatic construction of a single summary statistic for each

model parameter (Fearnhead and Prangle 2012). This method is particularly useful in the

present framework.

As the meta-Gaussian distribution (3) is used as an approximation to π(θ|sobs), it is

sensible to examine the quality of the final approximation. This can be achieved through

existing diagnostic procedures for ABC approximations (Prangle et al. 2014), or during the

construction of the copula model itself. For the latter, note that bivariate Gaussian copula

models for each g(θi, θj) are available through (3), and can be estimated as g̃ij(θi, θj) given

ĝi(θi), ĝj(θj) and Λ̂i,j . Similarly, a bivariate kernel density estimate of π(θi, θj |sobs), denoted

ĝij(θi, θj), can be constructed from the samples (θ
(1)
i , θ

(1)
j ), . . . , (θ

(n)
i , θ

(n)
j ) in Step 1b.

If approximate normality of the posterior holds, then the bivariate dependence struc-

ture can be well described by a Gaussian copula, and hence g̃ij(θi, θj) will provide a close

approximation to ĝij(θi, θj). If for every bivariate pair (θi, θj) the Gaussian copula estimate

g̃ij(θi, θj) provides a close approximation to ĝij(θi, θj), this suggests that the full poste-

rior may be adequately modelled by a Gaussian copula. Of course, capturing all bivariate

dependence structures well does not necessarily mean that the full joint dependence will

be captured well. As such, some kind of application specific predictive validation of the

approximate joint posterior may be needed.

Finally, we note that the estimate Λ̂ obtained by combining the Λ̂i,j is not guaranteed to
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be positive definite (although in all our later analyses it was). If this occurs then alternative

procedures for constructing Λ̂ can be adopted, such as the methods considered in Løland

et al. (2013). We also note that the use of a plug-in estimator for Λ ignores the possibility

of large estimation errors. If this is a realistic possibility in any analysis, then a sensitivity

analysis should be performed.

3 Examples

3.1 A toy example

We first examine how the ABC Gaussian copula posterior (3) performs in a simple toy

example, where the posterior distribution is known. The model that we consider is y ∼

Np(θ,Σ) for p ≥ 2, where y = (y1, . . . , yp)
>, θ = (θ1, . . . , θp)

> and Σ = diag(σ0, . . . , σ0).

For the prior we specify the ‘twisted-normal’ prior of Haario et al. (1999) with density

function proportional to

p(θ) ∝ exp

− θ2
1

200
− (θ2 − bθ2

1 + 100b)2

2
−

p∑
j=3

θ2
j

 .

For p = 2, the third term in the exponent is set to be zero. This prior is essentially a product

of independent Gaussian distributions with the exception that the component for (θ1, θ2)

is modified to produce a ‘banana’ shape, with the strength of the bivariate dependence

determined by the parameter b. Simulation from p(θ) is achieved by first drawing θ ∼

Np(0, A) where A = diag(100, 1, . . . , 1) and then transforming θ2 → θ2 + bθ2
1 − 100b.

For the following we specify σ0 = 1, and b = 0.1 to produce strong prior dependence

between θ1 and θ2. We determine yobs = (10, 0, . . . , 0)> as a single observed vector, and

construct the vector of summary statistics as s = S(y) = y, the full, p-dimensional dataset.

We exploit knowledge of the model and set s(i) = si as the subset of summary statistics

that are informative for θi, with the exception of s(2) = (s1, s2) for θ2. The unions of these

informative subsets s(i) and s(j) are taken when constructing the subsets s(i,j) informative

for the bivariate parameter pair (θi, θj).

The following analyses are based on N = 1, 000, 000 samples (θ(`), s(`)) ∼ L(s|θ)π(θ),

` = 1, . . . , N . In sampling from each 1- and 2-dimensional ABC posterior approximation,

as required to construct the Gaussian copula approximation g̃(θ) of g(θ), we specify the

smoothing kernel Kh(·) as uniform over the range (−h, h) and determine h as the 0.01
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quantile of the N observed differences between simulated and observed summary statistics

(with different summary statistics for each marginal-posterior approximation), producing

n = n′ = 10, 000 equally weighted samples for analysis. In each case, both local linear

regression-adjustment (Beaumont et al. 2002) and marginal adjustment (Nott et al. 2014)

were implemented to improve the posterior approximation. Euclidean distance ‖s− sobs‖ =

[
∑p

i=1(si − sobs,i)2]1/2 was used to compare simulated and observed summary statistics.
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Figure 1: Contour plots of the (θ1, θ2) margin of various ABC posterior approximations (black lines)
to the p = 5 dimensional model, π(θ|sobs). True contours are shown in grey-dashed lines, and contour
levels indicate 0.1, . . . , 0.9 of maximum density estimate. Standard ABC approximations consist of
(a) rejection sampling, (b) rejection sampling with regression adjustment, (d) rejection sampling with
marginal adjustment, and (e) rejection sampling, with regression and marginal adjustment. Panel
(c) illustrates regression and marginal adjusted estimate ĝ1,2(θ1, θ2) of π(θ1, θ2|s(1,2)), whereas panel
(g) shows the copula ABC approximation g̃1,2(θ1, θ2).

Figure 1 illustrates contour plots of various estimates of the bivariate posterior margin

π(θ1, θ2|sobs) (solid lines), each derived from estimates of the full distribution π(θ|sobs) when

p = 5. Contour plots of the true bivariate margin are given by the grey dashed lines. The

left column of Figure 1 shows the estimates obtained via standard rejection ABC using
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the full vector of summary statistics sobs, both without (panel (a)) and with (panel (d))

marginal adjustment. The univariate margins for the marginal adjustment were obtained

from the p = 2 dimensional model. From panel (a), rejection sampling alone performs fairly

poorly – the correlation between θ1 and θ2 is captured reasonably well, but the univariate

margins are too dispersed. Following a marginal adjustment (panel (d)), the margins are

corrected to the right scale, but now it becomes evident that the dependence structure is

not perfectly estimated.

The centre column of Figure 1, shows the same information as the rejection-based es-

timates, except that a linear regression adjustment has been performed in each case after

the rejection stage, and before the marginal adjustment. Clearly the regression adjusted

samples (panel (b)) approximate the true posterior very well, to the extent that no further

visual improvements are apparent following a subsequent marginal adjustment (panel (e)).

Panel (c) displays the kernel density estimates ĝ1,2(θ1, θ2), obtained following regression

and marginal adjustments, but where each margin is only conditioned on the subvector

of summary statistics s(1,2) rather than on the full vector sobs. That the kernel density

estimates are largely the same as for the standard ABC analyses indicates that the subvector

s(1,2) is highly informative for the bivariate parameter pair, and that these are therefore

appropriate to use when fitting the copula model.

Panel (g) shows the fitted bivariate copula estimates g̃1,2(θ1, θ2) based on (3). As the

copula ABC approximation is highly similar to the kernel density estimate ĝ1,2(θ1, θ2), this

indicates that the copula model is both appropriate and accurate for these bivariate margins.

Similar qualitative comparisons can be made for all other bivariate marginal distributions

(results not shown), implying that the full copula model g(θ) may be extended as a good

approximation of π(θ|sobs).

Figure 2 shows the same estimates of the bivariate margin π(θ1, θ2|sobs) as Figure 1,

except that they are derived from estimates of the full distribution π(θ|sobs) when p = 50.

In this scenario, the limitations of standard ABC methods become apparent. Due to the in-

creased number of parameters, p, the rejection sampling estimate of the margin π(θ1, θ2|sobs)

is highly similar to the ‘banana’ prior distribution, π(θ). This deviation cannot be corrected

by adjusting the margins (panel (d)). The regression adjusted estimate (panel (b)) performs

better – it is centered on the right location, although the margins are too diffuse, and the

11
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Figure 2: Contour plots of the (θ1, θ2) margin of various ABC posterior approximations (black lines)
to the p = 50 dimensional model, π(θ|sobs). True contours are shown in grey-dashed lines and contour
levels indicate 0.1, . . . , 0.9 of maximum density estimate. Standard ABC approximations consist of
(a) rejection sampling, (b) rejection sampling with regression adjustment, (d) rejection sampling with
marginal adjustment, and (e) rejection sampling, with regression and marginal adjustment. Panel
(c) illustrates regression and marginal adjusted estimate ĝ1,2(θ1, θ2) of π(θ1, θ2|s(1,2)), whereas panel
(g) shows the copula ABC approximation g̃1,2(θ1, θ2).

posterior correlation has disappeared. Correcting the margins (panel (e)) improves this as-

pect, although it cannot recover the lost dependence structure. In comparison, the copula

marginal estimate g̃1,2(θ1, θ2) retains the same accuracy as for the p = 5 dimensional model

as it is constructed in exactly the same way.

To illustrate more precisely the performance of each ABC posterior estimation method as

dimension p increases, Table 2 shows the mean estimated Kullback-Leibler (KL) divergence

between π(θ1, θ2|sobs) and the bivariate margin of each ABC approximation, based on 100

replicates. The number in parentheses is the standard error of this estimate. As dimension

increases, the performance of rejection ABC deteriorates drastically, as expected. As p gets

very large, the KL divergence will level off to that obtained by comparing π(θ1, θ2|sobs) to the
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Rejection Rejection Regression Regression Copula ABC
p (Marginal adj.) (Marginal adj.)

2 0.058 (<0.001) 0.040 (<0.001) 0.043 (<0.001) 0.035 (<0.001) 0.039 (<0.001)
5 0.807 (0.001) 0.053 (0.001) 0.613 (0.002) 0.037 (<0.001) 0.040 (<0.001)
10 1.418 (0.002) 0.100 (0.001) 1.078 (0.002) 0.061 (0.001) 0.040 (<0.001)
15 1.912 (0.002) 0.292 (0.002) 1.229 (0.003) 0.202 (0.001) 0.039 (<0.001)
20 2.288 (0.002) 0.450 (0.001) 1.280 (0.003) 0.292 (0.001) 0.039 (<0.001)
50 3.036 (0.003) 0.520 (0.002) 1.474 (0.009) 0.335 (0.001) 0.040 (<0.001)
100 3.362 (0.002) 0.524 (0.002) 1.619 (0.013) 0.341 (0.001) 0.039 (<0.001)
250 3.663 (0.003) 0.515 (0.002) 1.737 (0.015) 0.344 (0.001) 0.039 (<0.001)

Table 2: Estimated Kullback-Leibler divergence of the (θ1, θ2) margin of various ABC posterior
approximations to π(θ1, θ2|sobs), as a function of model dimension p. Numbers represent mean
divergences over 100 replicates with standard errors given in parentheses.

bivariate ‘banana’ prior p(θ1, θ2), as the ABC estimate of the posterior becomes equivalent

to that prior as p→∞. The marginally adjusted rejection sample performs better, though

only because it at worst maps the ‘banana’ prior to the region of high posterior density –

it otherwise performs poorly (see e.g. Figure 2(d)).

The regression-adjusted estimates perform better than the rejection ABC estimates, as

they exploit the linear relationship between θi and si in order to better identify the high

posterior density region. However, even regression adjustment is known to only mitigate the

curse of dimensionality in ABC (Nott et al. 2014). As p gets large, the best performance

will be obtained by performing regression adjustment on the prior distribution (which is

the limiting approximation for rejection sampling). Performing the marginal adjustment

can improve on this, but as all dependence structure has been lost with higher dimensions,

the best possible approximation here is a product of the independent marginal estimates

(Nott et al. 2014).

In contrast, the copula ABC approach is constructed from low dimensional (i.e. bivari-

ate) estimates of π(θi, θj |sobs), regardless of the dimension of the full model. As such, it can

near perfectly capture the dependence structure of all bivariate pairs of the full posterior

distribution, which is near Gaussian in this example. That is, its performance is completely

independent of model dimension.

3.2 A high-dimensional, multivariate g-and-k model

A multivariate version of the g-and-k distribution was introduced by Drovandi and Pet-

titt (2011b). This q-dimensional distribution is constructed by linking q univariate g-
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and-k marginal distributions (Rayner and MacGillivray 2002), with marginal parameters

(Ai, Bi, gi, ki) for i = 1, . . . , q, together with a Gaussian copula with correlation matrix

V for the dependence structure. The univariate g-and-k distribution has no closed form

density, but is defined through its quantile function as

Q(q|A,B, g, k) = A+B

[
1 + c

1− exp{−gz(q)}
1 + exp{−gz(q)}

]
(1 + z(q)2)kz(q), (5)

for B > 0, k > −1/2, where the parameters A,B, g and k control location, scale, skewness

and kurtosis respectively, and where z(q) denotes the q-th quantile of the standard normal

distribution function. The parameter c measures the overall asymmetry, and is fixed at 0.8

as a conventional choice (Rayner and MacGillivray 2002). Several ABC approaches to in-

ference for the univariate g-and-k and related distributions have previously been considered

(Allingham et al. 2009; Drovandi and Pettitt 2011b; Fearnhead and Prangle 2012; Peters

and Sisson 2006). The univariate g-and-k distribution is very flexible, with many common

distributions obtained or well approximated by appropriate parameter settings, such as the

normal distribution when g = k = 0. Given (A,B, g, k), simulations z(p) ∼ N(0, 1) drawn

from a standard normal distribution can be transformed into samples from the g-and-k

distribution through (5). To obtain draws from the multivariate model, first draw samples

from Nq(0, V ), and then adjust each of the q margins as for the univariate case.

Note that the use of a Gaussian copula for the multivariate g-and-k distribution is

completely distinct from our use of a Gaussian copula to approximate π(θ|sobs) through

(3). However, the copula construction of the multivariate g-and-k distribution does permit

the ABC analysis of a single model type with an arbitrarily large number of parameters. The

number of unknown parameters in this model consists of the four parameters (Ai, Bi, gi, ki)

for each of the q univariate margins, plus q(q − 1)/2 correlation parameters νij = νji for

i, j = 1, . . . , q, in the correlation matrix V = [ν]ij of the g-and-k copula. This gives

4q + q(q − 1)/2 parameters in total for the q-dimensional model.

The observed data consist of q = 16 foreign currency exchange log daily returns against

the Australian dollar (AUD) for 1,757 trading days from 1st January 2007 to 31st December

2013 (Reserve Bank of Australia 2014). Hence, our most complex model has 184 unknown

parameters. This is considerably beyond the scope of any previous ABC analysis that does

not rely on likelihood factorisation to perform the analysis.

For the univariate model margins, Drovandi and Pettitt (2011b) proposed the following
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robust summary statistics as informative for the four model parameters:

SA = L2, Sk = (E7 − E5 + E3 − E1)/SB,

SB = L3 − L1, and Sg = (L3 + L1 − 2L2)/SB,

where Li and Ej respectively denote the i-th sample quartile and j-th octile of the dataset

y. We adopt these statistics as directly informative for each respective model parameter in

defining s(i), so that e.g. SA is informative for A and Sg is informative for g. The exception

to this is that we specify (SB, Sk) as informative for B. The dependence of B on both of

these statistics is immediately apparent by regressing θ on s = (SA, SB, Sg, Sk) using the N

samples (θ(`), s(`)), in the mould of Fearnhead and Prangle (2012). Also following Drovandi

and Pettitt (2011b), we use the robust normal scores correlation coefficient (Fisher and

Yates 1948) as the informative summary statistic for each correlation parameter νij between

the i-th and j-th data margins. The unions of these informative subsets s(i) and s(j) are

taken when constructing the subsets s(i,j) informative for bivariate parameter pairs. So e.g.

(Sg, Sk) and (SA, SB, Sk) are taken as informative for (g, k) and (A,B) respectively. The

prior p(θ) is defined as uniform over the support of the parameter space for the (Ai, Bi, gi, ki)

margins and a Wishart(Iq, q) distribution with q degrees of freedom for V , where Iq denotes

the q × q identity matrix.

The following analyses are based on N = 500, 000 samples (θ(`), s(`)) ∼ L(s|θ)f(θ),

` = 1, . . . , N , where the importance sampling distribution f(θ) is defined by U(−0.1, 0.1)×

U(0, 0.05)×U(−1, 1)×U(−0.2, 0.5) for each g-and-k marginal parameter set (Ai, Bi, gi, ki),

and the Wishart(Iq, q) prior distribution for the correlation matrix V . The uniform range

for each marginal parameter was determined via a pilot analysis using a moderate number of

samples (θ(`), s(`)), following Fearnhead and Prangle (2012). The smoothing kernel Kh(·) is

uniform over (−h, h) where h is determined as the 0.01 quantile of the N differences between

simulated and observed summary statistics ‖s(`)− sobs‖. Mahalanobis distance was used to

compare simulated and observed summary statistics ‖s−sobs‖ = [(s−sobs)′Σ−1
0 (s−sobs)]1/2,

where Σ0 = Cov(s|θ0) was estimated as the sample covariance of 2000 samples from L(s|θ0),

and where θ0 is determined as the vector of means of the marginal density estimates ĝi(θi)

i = 1, . . . , p.

Figure 3 illustrates contour plots of various ABC approximations of the bivariate (B1, k1)

posterior marginal distribution. The top row corresponds to the q = 3-dimensional model
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with p = 15 parameters. The middle and bottom rows correspond to q = 10- and 16-

dimensional models with p = 85 and 184 parameters respectively. Column 1 shows the

ABC posterior approximation based on importance sampling and regression adjustment

only. Clearly the approximation is poor, regardless of the dimension of the model, with

the approximation becoming slightly variable as model dimension increases. The density

estimates in column 2 are based on rejection sampling and marginal adjustment only. Here,

while the marginal adjustment brings the posterior approximation to the right scale, the

previously observed negative dependence structure between B1 and k1 has been lost due to

the initially poor rejection sampling estimate (not shown).

Column 3 of Figure 3 illustrates conventional best performance ABC: rejection sam-

pling followed by both regression and marginal adjustments. In this scenario the estimated

marginal posterior seems credible for any model dimension, displaying viable scale and neg-

ative dependence structure. Column 4 shows the same posterior approximation as column

3, except that only the subset of summary statistics s(i,j) = (SB1 , Sk1) is used in the es-

timation, rather than the full p-dimensional vector, s. As the density estimate is broadly

equivalent to that using the full vector of summary statistics, this indicates that the sub-

set s(i,j) is indeed highly informative for this parameter pair. Moreover, the estimate of

π(B1, k1|s(i,j)) is more precisely estimated than the estimate of π(B1, k1|s), indicating that

there is some effect on the standard ABC approximation as the dimension of the vector

summary statistics gets large. This loss of precision is not seen when only using the sum-

mary statistic subset s(i,j). Finally, column 5 displays the bivariate copula margin estimate

of π(B1, k1|s), which is effectively the same as the kernel density estimate in column 4. This

indicates that the copula model provides a good approximation for this bivariate marginal

distribution.

What is notable in this analysis is that standard ABC methods are performing ad-

mirably well, even in p = 184 dimensions. Chiefly this is due to the relationships between

the sampled summary statistics and parameter pairs (θ
(`)
i , s

(`)
(i)) being highly linear, in com-

bination with the structured construction of the multivariate g-and-k model. The former

point enables the regression adjustment to estimate the linear dependence structure between

parameter pairs well, whereas the latter point means that the parameters (Ai, Bi, gi, ki) of

the i-th margin, are mostly (but not completely) determined by the data in the same mar-
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gin. In combination with the marginal adjustment, these allow standard ABC methods

to produce very good estimates of the posterior distribution. However, some improvement

is still clearly being brought by the copula approach. These results imply that while the

original paper that developed this multivariate quantile model for ABC only analysed data

with q = 2 dimensions (p = 9 parameters) (Drovandi and Pettitt 2011b), this model is

clearly viable for inference in much higher dimensions.

We use this example to illustrate another advantage of the copula approach. The fit-

ted copula model g̃(θ) provides an analytic approximation to the posterior distribution,

π(θ|sobs). From Bayes’ rule we have L(sobs|θ) ∝ π(θ|sobs)/p(θ), and hence g̃(θ|yobs)/p(θ)

is an approximation of a function proportional to the likelihood. We can use this approx-

imation to compute approximations of maximum likelihood estimates and the observed

information matrix and hence perform frequentist analyses that can be used for comparison

with the full Bayes analysis. It is also possible to compute marginal likelihoods for subsets

of parameters after integrating out the other parameters according to the conditional prior.

Grazian and Liseo (2015) recently considered the use of ABC for this purpose based on

kernel esitmation of the ABC marginal posterior. If the parameter of interest is of moder-

ate dimension it may be difficult to implement kernel estimation however. For our copula

method the idea is illustrated in column 5 of Figure 3, where the open circles denote the

approximate marginal MLE for (B1, k1) – obtained by maximising g̃1,2(B1, k1)/p(B1, k1) for

each respective model – and the dashed crosshairs denote +/- two standard errors.

Such analyses can often be useful for assessing whether there is conflict between the

marginal prior and marginal likelihood. We note that in applications where approximation

of the likelihood itself is the goal, the prior can be chosen to be whatever is convenient

(in the case of approximation of the marginal likelihood, it is the marginal prior for the

parameter of interest that can be so chosen). If there is prior-likelihood conflict then the

resulting estimated likelihood may be poor, since the quality of the approximation will be

very dependent on how well the tails of the posterior are estimated. It is an interesting

question how best to choose the prior when the goal is likelihood approximation and we do

not pursue this further here.
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3.3 Robust Bayesian variable selection

We consider the problem of Bayesian variable selection in regression, where the parameter

of interest is a vector of binary variables indicating which covariates are to be included in

the model for the mean response. This is a challenging problem because the parameter of

interest is discrete: all existing ABC regression adjustment techniques are concerned with

continuous parameters (Beaumont et al. 2002; Blum and Francois 2010; Blum et al. 2013).

Further, the marginal adjustment strategy (Nott et al. 2014) is difficult to apply as it

needs to be implemented for each covariate model under consideration as the marginal dis-

tribution for each parameter will change conditionally on the covariates. This will rapidly

become impractical as the number of covariates increases. As a result these methods, which

were responsible for mitigating the ABC curse of dimensionality and obtaining performance

competitive with the ABC copula method in the multivariate g-and-k model analysis (Sec-

tion 3.2), are not available in this setting. While there is a growing literature on ABC

model choice (e.g. Marin et al. 2015) where multinomial regression has been used to adjust

model probabilities, such analyses have been confined to the situation where the number

of different models is relatively small. These methods do not extend in an obvious way to

problems like the one we consider here where the number of models considered is large.

We consider the US crime dataset of Ehrlich (1973) in which the response is crime rate,

measured as the number of offenses per 100,000 population, for 47 different US states in

1960, and there are 15 covariates, some of which are highly collinear. Choice of which

covariates to include gives a model selection problem with 215 distinct models. Suppose

that y = (y1, . . . , yn)> is the vector of responses and X is the n × 16 design matrix (with

the first column containing ones and the remaining columns containing the centred and

standardized covariates). Write γ = (γ1, . . . , γ15)> as a vector of binary indicators, where

γi = 1 means that covariate i is included in the model and γi = 0 otherwise (the intercept

is always included), and define Xγ to be the corresponding design matrix containing only

those covariates included in the model as indicated by γ.

We consider the linear model

y = Xγβγ + ε,

where βγ is the vector of regression coefficients in model γ (similarly considered as a sub-

vector of the full model coefficients β = (β0, β1, . . . , β15)>) and ε ∼ Nn(0, σ2In) is a vector

18



of independent zero mean normal residuals with variance σ2. We follow a common prior

specification for this framework (e.g. Kohn et al. 2001) and set a beta-binomial prior on

the number of active covariates in the model i.e. P (γi = 1|pγ) = pγ independently for each

i, and pγ ∼ Beta(a, b) with a = 2, b = 10. We adopt the g-prior of Zellner (1986) so that

βγ |γ, σ2 ∼ N(0, nσ2(X>γ Xγ)−1) and assume that σ2 ∼ InverseGamma(aσ, bσ), with aσ = 5,

bσ = 5 × 2002 which is a fairly diffuse prior centred on a reasonable prior guess for the

residual standard deviation. With these priors (βγ , σ
2) can be integrated out of the model

(e.g. Kohn et al. 2001) to give the marginal posterior π(γ|y) ∝ L(y|γ)p(γ) with

L(y|γ) ∝ (n+ 1)−qγ/2
(

2bσ + y>y − n

n+ 1
y>Xγ(X>γ Xγ)−1X>γ y

)−(aσ+n
2 )
,

where qγ denotes the number of columns of Xγ . For the US crime dataset, the number of

predictors is small enough to permit enumeration of all posterior probability of all models

(215 = 32, 768). The ten highest posterior probability models for this data set are listed in

Table 3 (column 1).

Exact probability Standard ABC Copula ABC Exact Copula ABC
(no outlier) (no outlier) (no outlier) (with outlier) (with outlier)

x3, x4, x13 – X – X
x1, x3, x4, x13 – X – X
x3, x4, x13, x14 – X – X
x1, x3, x4, x13, x14 – X – X
x4, x7, x13 – – X –
x1, x3, x4, x11, x13, x14 – X – X
x4, x13 – – – –
x1, x3, x4, x11, x13 – X – X
x4, x7, x13, x14 – – – –
x3, x5, x13 – – – –

Table 3: Ten highest posterior probability models for the US crime dataset (column 1).
Checkmarks (X) indicate those models also selected in the top 10 based on standard ABC
and a copula ABC posterior approximation. Analyses are repeated with the dataset modi-
fied to include an influential outlier.

So far ABC methods have played no role in this analysis since the marginal likelihood

for γ is directly computable. However, we may use ABC to compute an approximation to

the posterior distribution, π(γ|s) ∝ L(s|γ)p(γ), which is conditional on a summary statistic

s, constructed so that it’s distribution is insensitive to violations of the model assumptions

in the full data model π(γ|y). In particular, we select the summary statistics s to produce
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robust point estimates of βγ , which leads to a Bayesian variable selection framework which is

insensitive to outliers. In general the sampling distribution of the robust summary statistic is

intractable, even though the likelihood for the full data y is tractable, and so ABC methods

are needed. For more detailed discussion of the benefits of using insufficient statistics in

order to robustify Bayesian analyses see e.g. Lewis et al. (2014).

In order to estimate L(γ|s) via the copula approach, we first estimate π(γi|s) and

π(γi, γj |s) using ABC for each parameter i and parameter pair (i, j). Parameter specific

summary statistics are constructed as s(i) = T1i, the robust partial t-statistic for significance

of covariate i in the full model (computed using the robust regression method implemented

in the lmrob function in the R package robustbase (Rousseeuw et al. 2015) with the

Koller and Stahel (2011) method). In addition, we fit a reduced model including the co-

variates x1, x3, x4, x11, x13 and x14 – a “good” reduced model for the observed data which

contains only one covariate from any pair of covariates that are highly correlated. Then for

i ∈ G = {1, 3, 4, 11, 13, 14} the robust partial t-statistic for the corresponding variable in

this reduced model, T2i, is added to the summary statistic vector that is informative for γi.

That is, s(i) = (T1i, T2i) for i ∈ G and s(i) = T1i otherwise. As before, we construct s(i,j),

the vector of statistics informative for (γi, γj), as the union of the marginally informative

vectors s(i) and s(j).

The final estimates of π(γi|s) and π(γi, γj |s) are determined via ABC, by generating

N = 100, 000 samples (γ(`), s(`)) ∝ L(s|γ)p(γ) from the prior predictive distribution, and

retaining the n = n′ = 500 samples closest to the observed summary statistics using Eu-

clidean distance and a uniform smoothing kernel Kh(·). The frequency of γi = 1 within

these 500 samples provides an estimate of P (γi = 1|s) and hence an estimate π̂(γj |s(i)) of

π(γi|s). Similar estimates π̂(γi, γj |s(i,j)) can be obtained for the bivariate posterior distri-

bution π(γi, γj |s).

In the discrete setting, a Gaussian copula model for γ is defined via a latent Gaussian

variable Z = (Z1, . . . , Z15)> ∼ N(0,Λ) where Λ is a correlation matrix. By setting γ′i =

I(Zi > Φ−1(pi)), where I(·) is the indicator function and pi = π̂(γi = 0|s(i)), for i =

1, . . . , 15, then the marginal distribution of γ′i is that of π̂(γi|s(i)). The correlation matrix

Λ can similarly be chosen so that the joint distribution of (γ′i, γ
′
j) is that of π̂(γi, γj |s(i,j)).
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In particular, Λij is chosen so that∫ ∞
Φ−1(pj)

∫ ∞
Φ−1(pi)

φ(zi, zj ; Λij)dzi dzj = π̂(γi = 1, γj = 1|s(i,j)),

where the solution for Λij of this nonlinear equation can be obtained numerically. Once the

copula parameters have been estimated, joint posterior model probabilities π(γ|s) for any

desired value of γ can be estimated via the copula approximation.

The middle column of Table 3 indicates which of the ten highest (exact) posterior model

probability models conditional on the full data y, are also among the ten highest posterior

model probabilities under the ABC copula approximation. Six out of the exact top ten

models are correctly identified as being in the top ten using the copula ABC approach. In

contrast, when performing standard ABC using the full 21-dimensional vector of summary

statistics (i.e. constructed as the union of the statistics in s(1), . . . , s(15)), none of the exact

top ten models are identified. In fact, the top ten models under standard ABC consist of the

null model, and 9 models with a single predictor. As these top posterior models effectively

coincide with the top models a priori, as the beta-binomial prior essentially favours models

with fewer predictors, this indicates that the standard ABC posterior approximation is very

poor, particularly in comparison with the copula ABC approximation.

As the original motivation for using ABC was to obtain a method for robust regression,

we now modify one of the observations so that it is an extreme outlier. In particular, for the

original dataset we modify the last response value by increasing its residual standard error

estimate (based on the lmrob fit for the full model) by a factor of 10. The last two columns

in Table 3 indicate which of the original exact ten highest posterior probability models are

still among the ten highest posterior probability models when using the modified dataset.

For the exact model probabilities, conditioning on y, the non-robustness of the regression

model to outliers is apparent as only one of the original models are still among the ten

highest exact posterior probability models. However, for the robust ABC estimates of the

model probabilities, both with and without outliers, the same 6 models remain in common

with the ten best models in the exact analysis without outliers. Clearly, the copula ABC

method conditioning on robust summary statistics seems useful for finding a set of good high

posterior probability models in datasets which might be contaminated by a small number

of outliers. Equally clearly, standard ABC methods are not useful for this purpose.
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4 Discussion

The standard construction of ABC methods, based on conditional kernel density estima-

tion, means that they do not extend well to high dimensional analyses due to a curse of

dimensionality on the vector of summary statistics, s. The copula approach introduced

in this paper constructs a Gaussian copula approximation to the full ABC posterior dis-

tribution. In this manner, the need to simultaneously match a high-dimensional vector of

simulated and observed summary statistics is circumvented in favour of separately match-

ing many low-dimensional vectors to form the copula approximation. The fitted copula is

not always appropriate to approximate certain highly complex posterior distributions, as

it assumes a Gaussian dependence structure (i.e. based on bivariate linear correlations),

albeit with flexible univariate marginal distributions. This means that non-linear depen-

dencies, or complex higher-order relationships between three or more parameters in the full

posterior π(θ|sobs) will not be accurately captured. However, copula ABC may be adequate

in many modelling situations, especially those where an accurately fitted Gaussian copula

approximation to a highly complex posterior may be more practically useful than a very

poor standard ABC approximation to the joint model (see e.g. Sections 3.1 and 3.3). The

copula structure will also become a more appropriate approximation to the true posterior

as the sample size increases, and the true posterior approaches normality. As such, cop-

ula ABC is a useful and viable general technique for directly extending ABC modelling to

high-dimensional problems.

One point of practical consideration for copula ABC is the requirement to select s(i)

and s(i,j) i.e. those subsets of s that are informative for θi and (θi, θj). In principle, this

could take the same amount of work in identifying the vector s that is informative for

θ, but repeated many times, over each univariate and bivariate posterior margin. The

semi-automatic work of Fearnhead and Prangle (2012) is useful here, in that it provides a

principled way of identifying linear combinations of the elements of a vector of summary

statistics that are informative for a subset of parameters (they are in fact, Bayes linear

estimates of those parameters; Nott et al. 2012). While it should be noted that these semi-

automatic statistics are only optimal for the posterior mean, rather than any measure on the

joint distribution, they have been successfully implemented in a large range of applications.

Beyond this, the analyst can alternatively make use of knowledge of the structure of the
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model in order to identify informative subsets of s. We used this approach (in combination

with the semi-automatic approach) with each of our analyses in Section 3, although an

alternative would have been to use the semi-automatic approach directly for each bivariate

margin. In general, the principled identification of summary statistics for ABC methods

remains a challenging practical problem (e.g. see Blum et al. 2013).

As well as improving estimation of the posterior dependence structure, copula ABC

may also be very valuable because it provides an approximate analytic expression for the

posterior density. As previously discussed, this can be used to build a likelihood approxi-

mation, and permit frequentist analyses that can serve as a reference for comparison with

a Bayesian analysis. Approximation of likelihood functions can also be important in the

context of setting informative priors in fully Bayesian analyses, for example in the so-called

power prior approach (Ibrahim and Chen 2000). Here, a tempered version of the likelihood

for past, indirect data z is used to set the prior for the analysis of the current data, y. Even

when the likelihood for the data y is tractable, our knowledge of the past data z might be

limited to summaries for which the corresponding likelihood is not tractable. Our copula

ABC approach would then provide a way to make the required likelihood approximations

for the past data in this situation.
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Figure 3: Contour plots of the (B1, k1) margin of various ABC posterior approximations to the
multivariate g-and-k model, π(θ|sobs). Rows correspond to the q = 3 (top), q = 10 and q = 16 (bot-
tom) dimensional model, which have p = 15, p = 85 and p = 184 parameters respectively. Standard
ABC approximations consist of (column 1) rejection sampling with regression adjustment, (column
2) rejection sampling with marginal adjustment, and (column 3) rejection sampling, with regression
and marginal adjustment. Column 4 illustrates the regression and marginal adjusted kernel den-
sity estimate ĝ(B1, k1) of π(θi, θj |s(i,j)), whereas column 5 shows the corresponding regression and
marginal adjusted copula ABC approximation g̃(B1, k1). The dot in each panel indicates the value
of θ0 used to estimate Σ0 in the Mahalanobis distance calculation. The crosshairs in column 5 show
the marginal MLE plus or minus approximately two posterior standard deviations.
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