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Abstract

A general hidden state random walk model is proposed to describe the
movement of an animal that takes into account movement taxis with re-
spect to features of the environment. A circular-linear process models the
direction and distance between two consecutive localizations of the animal.
A hidden process structure accounts for the animal’s change in movement
behavior. The originality of the proposed approach is that several environ-
mental targets can be included in the directional model. An EM algorithm
that enables prediction of the hidden states of the process is devised to fit
this model. An application to the analysis of the movement of caribou in
Canada’s boreal forest is presented.
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List of symbols

Data

T number of observed animal’s locations.
yt direction between the animal’s locations at time steps t and t+ 1
y0:T set of all observed directions y0, . . . , yT
dt distance between the animal’s locations at time steps t and t+ 1
d0:T set of all observed directions d0, . . . , dT
xit value of ith explanatory angle variable
zit value of ith explanatory real variable
Fo

t observed information: directions, distances and explanatory variables
gathered form time 0 up to time t

Hidden process

St state (behavior) in which the animal is at time step t
Skt indicator function equal to 1 if St = k and 0 otherwise
S0:T set of all states S0, . . . , ST

F c
t complete information: information in Fo

t and the hidden states
S0, . . . , ST

p(St|F c
t−1) conditional probability mass of the hidden state St

πhk state transition probability P(St = k|St−1 = h)

Observed trajectory

h(yt, dt|St,F c
t−1)conditional joint density of the observed data (yt, dt)

f(yt|St,F c
t−1) conditional density of the direction yt

fk density of the direction yt given that the hidden state is k at time t
κ(k) vector of parameter of fk
µ
(k)
t mean direction of the von Mises density fk
`
(k)
t concentration parameters of the von Mises density fk
g(dt|St,F c

t−1) conditional density of the distance dt
gk density of the distance dt given that the hidden state is k at time t

λ
(k)
1 , λ

(k)
2 shape and scale parameters of gk
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1 Introduction

In animal ecology, being able to understand and model the movement of animals is
fundamental ([1]). For example, animal behaviorists want to see to what extent an-
imals have preferred movement directions or are attracted towards several environ-
mental targets, such as food-rich patches and previously visited locations (spatial
memory effect) ([2]). The development of Global Positioning System (GPS) tech-
nology permits the collection of a large amount of data on animal movement. This
can be combined to data available from geographic information systems (GIS)
to investigate how the environment influences animal displacement. To achieve
this goal, robust statistical techniques and flexible animal movement models are
required.

Discrete time models for animal movement are actively being developed and
investigated ([3]). Because displacement in discrete time can be characterized
by the distance and the direction between two consecutive localizations, circular-
linear processes can be used to model movement in 2D. A basic model is the biased
correlated random walk (BCRW) of [4]; it predicts the next motion angle as a
comprise between the current one (often called directional persistence if the bias
is towards zero) and the direction towards a specific target (also called directional
bias). Several authors have built models to adapt or generalize the BCRW so that
it can be applied in different contexts. [5] directly model the (x, y)-coordinates
at a given time-step as a function of coordinates at the previous time-step with
bivariate normal distributions to deal with data acquired at irregular time intervals.
An alternative formulation of this model is proposed by [6], but this formulation of
the BCRW does not allow to include multiple directional biases. Despite the rapid
increase in the development of movement analysis, most quantitative techniques
still consider only two directional targets when estimating the mean direction of
BCRWs. However, habitat selection studies demonstrate that animal movement
can be influenced simultaneously by more than one or two environmental features
([7]). Our first generalization of the BCRW is therefore to make the mean direction
of the process depend upon several directional targets. To do so, we embed the
directional model recently proposed by [8] within the BCRW and show how it is
easily interpretable. We also show that its estimation is numerically more stable
than other BCRW models.

Often, the movement trajectory of animals involves multiple movement states
or behaviors ([9]). For instance, in their analysis of bison movement, [10] iden-
tified two states, “exploratory” and “encamped”. The former has long traveled
distances and turning angles between two consecutive locations that tend to be
concentrated around zero, while the latter one is characterized by short distances
and almost uniformly distributed turning angles. Multiple movement behaviors
can be accounted for by introducing hidden states in the models. [11] give a gen-
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eral presentation of these models and [12], [5], [13] and [10] are examples of the
use of hidden state models to analyze angular-distance data in ecological appli-
cations. The second main contribution of our work is to introduce more flexible
hidden state models that can accommodate directional persistence as well as the
simultaneous influence of several environmental targets that can vary from state
to state. Further, by using the EM algorithm to fit the model, we are able to
compute the posterior probabilities of the hidden state for each step of the an-
imal’s trajectory. Because these probabilities take into account the targets that
are important in each hidden state, they can be used to understand the relative
roles of these individual targets on the overall movement and space-use patterns
of individuals. They can also serve as input values in movement simulations, such
as individual-based movement models (e.g., [2]). Finally, these probabilities can
highlight some regions in the landscape to be identified as patches of interest.

The proposed model for animal motion data, a multi-state circular-linear pro-
cess, is introduced in Section 2. Each state has its own angular regression model
featuring several environmental targets and directional persistence as introduced
in [8]. The new model is not a Hidden Markov Model (HMM); it belongs to a wider
class called switching Markov models investigated in [14] and [15]. Its parameters
are shown to be identifiable. We use the EM algorithm to maximize the likelihood,
using a filtering smoothing algorithm (see [15]), to carry out the expectation step;
details are given in Section 3. Section 4 investigates the finite sample properties of
the estimators by simulation. Section 5 shows an application of the method to the
analysis of the movement of caribou in the Cote-Nord region of Quebec, Canada.
Section 6 concludes the paper with a discussion.

2 A General Multi-State Random Walk Model

Let us suppose that we follow an animal equipped with a GPS collar which provides
the animal location at regular time intervals, for example every 4 hours. Additional
geographic information about multiple habitat features is available. The data set
consists of the time series

{(yt, dt,xt, zt) , t = 0, . . . , T} , (1)

where yt ∈ [0, 2π) and dt ≥ 0 represent the direction (bearing) and the distance,
respectively, between the animal’s location at time step t and time step t + 1
and xt = (x1t, . . . , xpt) (resp. zt = (z1t, . . . , zpt) ) are the values of p explanatory
angular (resp. real) variables measured that are potentially useful to predict yt or
dt. The explanatory variables xit, zit, i = 1, . . . , p are associated to the directions
to and the distances from these targets with respect to the position of the animal
at time t − 1. Explanatory variable zit can also be an indicator variable, see the
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D. For instance in the application of Section 5, xt = (x1t, x2t) are the angles of
the directions to the closest regenerating wood cut and the direction to the closest
“patch” visited by the animal in the past, respectively. We also denote the set of
all observed directions and distances by (y0:T , d0:T ) = {(yt, dt), t = 0, . . . , T}. We
often need to condition on all the information (directions, distances, explanatory
variables) gathered from time 0 up to time t; we denote this information by the
filtration Fo

t . Our goal is to develop a suitable model for this type of data, along
with the associated inference procedures.

2.1 A General Hidden State Model

Animals tend to adopt different movement behaviors at different times ([9]). Clearly,
such a change in behavior implies a change in the distribution of the values of the
observed directions and distances. Because the animal’s behavioral state over time
is unobserved, we consider here a hidden process St, with t = 0, . . . , T , that rep-
resents the state (behavior) in which the animal is at time step t. We denote
by {1, . . . , K} the set of possible states of St, we put S0:T = {S0, . . . , ST}. Con-
ceptually, it is useful to define quantities that depend on both the observed and
unobserved data. To this end, we define the complete data filtration F c

t as the
filtration generated by the observed data filtration Fo

t and the hidden information
up to time t.

The joint density of the complete data is

f(y0:T , d0:T , S0:T ) =
T∏
t=1

p
(
St|F c

t−1
)
h
(
yt, dt|St,F c

t−1
)
, (2)

where p and h represent the densities of the hidden and observed data, respectively.
The next section proposes special cases of (2) appropriate for animal movement
data.

2.2 A General Directional Random Walk Model

In this section, we present some new angular-distance specifications for the joint
density of (2). The proposal relies on the following assumptions:

(A1). Given the hidden process S0:T , the observed processes y0:T and d0:T are in-
dependent, i.e.,

h(yt, dt|St,F c
t−1) = f(yt|St,F c

t−1)g(dt|St,F c
t−1), t = 1, . . . , T. (3)

Moreover we suppose that the observed processes y0:T and d0:T are Markovian
of order 1 with respect to the hidden process St,t = 1, . . . , T :
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(A2). Given the hidden process S0:T , we suppose that

f(yt|St,F c
t−1) = f(yt|St,Fo

t−1), t = 1, . . . , T. (4)

The Markovian assumption of order one is given by the distribution of yt
only depend on the present hidden state St and not St−1, . . . , S0.

(A3). Given the hidden process S0:T , we suppose that

g(dt|St,Fo
t−1) = g(dt|St), t = 1, . . . , T.

By assumption (A3), the distance dt is independent of dt−s, s = 1, . . . , t for every
time step t = 1, . . . , T . We made this assumption for computational time to be
reasonable, otherwise we would have to model the distances as an autoregressive
process. Let gk denote the density of dt given that the hidden process is in state
k at time t. For the observed directions y0:T , according to Assumption (A2),
f(yt|St,Fo

t−1) depends on St but also on {yt−s}s<t and on environmental variables
observed in Fo

t−1. Let fk(.|Fo
t−1) be the density of yt given the information in Fo

t−1
knowing that the hidden process is in state k at time t.

We now propose specific parametric forms for the functions fk and gk. For gk,
any density function on the positive real line can be used. We use (as [10]) Weibull
and gamma distributions in the data analysis section, while we use an exponential
distribution for the simulation study because estimation of its parameter is faster.
We denote by λ(k) the parameters of the density gk. For instance in the applica-
tion of Section 5, λ(k) = (λ

(k)
1 ,λ

(k)
2 ) where λ

(k)
1 and λ

(k)
2 denote respectively the

shape and the scale parameters of a gamma distribution. The construction of the
conditional circular densities is discussed next.
Circular multivariate regression model

Circular regression models for BCRW ([10] Appendix C, [16]) express yt as a von
Mises distributed with mean direction depending on yt−1 and on other explanatory
angles plus a homogenous error whose distribution depends on a fixed concentra-
tion parameter κ. [8] show that the log-likelihood for estimating the parameters
of such models is often multi-modal, making parameter estimation problematic.
Multimodal log-likelihoods also occur in multi-state models when the errors are
assumed to be homogenous. This is illustrated in C.4. The solution to avoid these
multimodal log-likelihoods is to adopt a consensus error model as defined in [8].
Knowing that the animal is in state k, a consensus error model for yt depends on
the vector

V
(k)
t = κ

(k)
0

(
cos(yt−1)
sin(yt−1)

)
+

p∑
i=1

κ
(k)
i zit

(
cos(xit)
sin(xit)

)
, t = 1, . . . , T, (5)
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where κ(k) = (κ
(k)
0 , . . . , κ

(k)
p ) are unknown parameters depending on the state k.

The mean direction, denoted µ
(k)
t , of the von Mises distribution is the direction of

V
(k)
t . The parameters κ

(k)
i ∈ R quantify the influence of target i on the animal’s

direction. When all κ
(k)
i = 0, i = 1, . . . , p, then µ

(k)
t = yt−1 and the animal tends

to move in the direction of its previous step; the model then simplifies to the
correlated random walk model (CRW). Conversely, if target i is highly attractive,

then κ
(k)
i is large. Similarly, a strongly negative value of κ

(k)
i means that the

target i has a repulsive effect and the animal tends to move away from it. We can
remark that the vector (5) can depend on angular explanatory variables (xit) or
real variables (zit) as explained at the beginning of Section 2.

In a consensus model, the concentration parameter, denoted `
(k)
t , of the von

Mises distribution is the length of V
(k)
t . Thus the concentration parameter depends

on the level of agreement between the various directional targets. If all targets
and yt−1 point in the same direction, then the concentration `

(k)
t is large and the

distribution of yt is concentrated around the mean direction µ
(k)
t . Under these

assumptions, we can write the density fk(yt|Fo
t−1) as

fk(yt|Fo
t−1;κ

(k)) =
1

2πI0(`
(k)
t )

exp
{
`
(k)
t cos(yt − µ(k)

t )
}
, t = 1, . . . , T, (6)

where I0 is the modified Bessel function of order 1 ([17], p. 36). As shown by [8]

and [16], since µ
(k)
t and `

(k)
t are the direction and length of the same vector (5) and

(6) give

fk(yt|Fo
t−1;κ

(k)) =
1

2πI0(`
(k)
t )

exp

{
κ
(k)
0 cos(yt − yt−1) +

p∑
i=1

κ
(k)
i zit cos(yt − xit)

}
,

for t = 1, . . . , T . This parametrization yields a numerically stable model, as the
κ
(k)
j are now the canonical parameters of a distribution in the exponential family.

We recover many models proposed in the literature as special cases of this von
Mises consensus model. A special case with a single state (p

(
St|F c

t−1
)

= 1 in
(2)) is for example Breckling (1989), who proposed an autoregressive consensus
von Mises distribution where xit = yt−i−1, i = 0, 1, . . . , p − 1. Another example
is the biased correlated random walk model (BCWR, see for example [4]). It has
h
(
yt, dt|St,F c

t−1
)

= f(yt|yt−1, x1t), see also [16] for additional discussion of the
consensus model when p = 1.

In a multistate framework, the covariate free model with µ
(k)
t = µ(k) and

`
(k)
t = κ(k) is the HMM studied by [13]. The HMM and hidden semi-Markov

model (HSMM) considered by [10] are also special cases of (2) where p
(
St|F c

t−1
)

=
p (St|St−1) and h

(
yt, dt|St,F c

t−1
)

= f(yt|yt−1, x0, St)g(dt|St), with x0 a bias towards
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a fixed location. Models such as (2) apply beyond animal movement. [18] use (2)
to model a wind time series, where yt is the wind direction and dt is the wind speed.
They have, p

(
St|F c

t−1
)

= p (St|St−1, yt−1) and h
(
yt, dt|St,F c

t−1
)

= f(yt|St,Fo
t−1).

2.3 Markov and Semi-Markov Processes for the Hidden
States

The model that we propose for the hidden process S0:T is a homogeneous Markov
chain. At any time step t, the animal is in one of K possible states {1, . . . , K}
and p(St|F c

t−1) = p(St|St−1). It is convenient to describe S0:T as a homogeneous
multinomial process in discrete time. Let us define the sequence {St, t = 0, . . . , T}
of multinomial vectors St = (S1t, . . . , SKt) where we set Sjt = 1 and Sj′t = 0 for
all j′ 6= j when St = j, j, j′ = 1, . . . , K. At time t = 0, we set P(Sk0 = 1) =
(π0)k, such that (π0)k ≥ 0, k = 1, . . . , K and

∑K
k=1(π0)k = 1. For the rest of

the development we suppose that the initial distribution of the hidden process
{(π0)k, k = 1, . . . , K} is known. We also introduce the transition probabilities
πhk = P(Skt = 1|Sh,t−1 = 1), for h, k = 1, . . . , K. The contribution of the hidden
process to the complete data density given by (2) is a function of S0:T and of the
transition probabilities:

T∏
t=1

p(St|F c
t−1) =

T∏
t=1

K∏
h=1

K∏
k=1

π
Sh,t−1Skt

hk . (7)

Although the methodology presented in this paper works for any number of states
K, we focus on K = 2 in the simulation and data analysis sections. In the case
K = 2, we use the notation introduced below: π11 = 1− q1 and π22 = 1− q2.
A semi-Markov extension.
In some applications (for example, the study of the movement of bison, [10]), a
semi-Markov hidden process is more realistic. In a semi-Markov model, p(St|F c

t−1) =
p(St|St−1, τt−1), where τt−1 is the animal’s dwell-time in the state that it occupies
at time step t− 1, i.e., the number of consecutive time steps spent in that state.

Following [19], any semi-Markov process can be approximated to a high degree
of accuracy by a Markov process with an enlarged set of states. Each state of the
approximating Markov process corresponds to a pair (S,Q) where S = 1, . . . , K
is the state of the animal and Q = 1, . . . ,m is the number of time points since
the animal has arrived in this state. In the numerical example section we consider
two states, S = 1, 2, and assume that the two dwell time distributions are shifted
negative binomial distributions with parameters that depend on S. The transition
probabilities are then denoted π(g,k)(h,`)(ng, qg), g, h = 1, 2, where nh, qh denote
the parameters (size and probability, respectively) of the dwell time distribution
in state h. The quantity π(g,k)(h,`)(ng, qg) denotes the probability that the animal
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has been in the state g for k consecutive time steps and go into the state h for
` consecutive time steps. If nh = 1 for h = 1, 2, then the semi-Markov process
reduces to a Markov process. Given that one is in state (g, k), the probability of
staying in state g is then π(g,k)(g,k+1)(1, qg) = πgg(1, qg) = 1 − qg. Details of this
approximation are given in the B.

2.4 Global Model Properties

Figure 1 summarizes the dependence structure between the hidden process, the
explanatory variables and the observed bivariate process defined by (2). We note
that, in Figure 1, given St and Fo

t−1, St−1 is independent of the observed data from
time t to T (i.e. {Fo

t+s}s≥0 \ Fo
t−1). This is used in the implementation of the

filtering-smoothing algorithm presented in the A.

Observed distance: dt−1 dt
(λ(k), k = 1, . . . , K) ↑ ↑
Hidden regime: . . . −→ St−1 −→ St −→ . . .

(πhk, h, k = 1, . . . , K) ↓ ↓
Observed direction: yt−1 yt

(κ(k), k = 1, . . . , K) ↘ ↑ ↘ ↑
Explanatory variables: Fo

t−2 Fo
t−1

Figure 1: Dependence structure of the proposed model

The proposed model is identifiable, in the sense that (up to label switching)
different values of the parameters will result in different joint distributions for the
observed data. This is proved using an argument similar to that presented in [18].
We can also demonstrate that under the assumption that the hidden process S0:T

is ergodic and there is only one fixed explanatory variable {(xt, zt) = (x0, z0), t =
1, . . . , T} in the directional specification, then the observed data process (y0:T , d0:T )
is also ergodic; through this condition is sufficient, simulations suggest that it is
presumanly not necessary. In other words, in the long run (as T gets large), the
process converges to a stationary distribution. In the case that the angular process
yt is only predicted by past directions yt−s, s = 1, . . . , t, then the consistency of the
maximum likelihood estimators of the model parameters (up to label switching) is
a simple application of Theorem 1 of [14], who show the consistency of the MLE
for auto-regressive processes.
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3 Inferential Procedures

We now propose a procedure to estimate θ = (π,κ,λ), where π is a vector of
K×(K−1) transition probabilities, κ are the K×(p+1) unknown parameters for
the angular model and λ are the 2K parameters (scale and shape) of the model for
the distance variable. Given a series of observations {(yt, dt,xt, zt) , t = 0, . . . , T},
we can write the likelihood function of these parameters as a product of the one-
step ahead predictive densities, see for instance [20], which developed these models
called “regime switching models” for the applications in econometrics,

L(θ) =
T∏
t=1

(
K∑
k=1

fk(yt|Fo
t−1, κ

(k))gk(dt, λ
(k))P(Stk = 1|Fo

t−1,θ)

)
. (8)

Where the “predictive” probabilities: P(Stk = 1|Ft−1, θ), t = 1, . . . , T are evalu-
ated recursively using 15 in the filtering-smoothing algorithm given on A, allowing
the evaluation of (8). The method used by [10] to evaluate the likelihood of their
multi-state model and to estimate its parameters can be generalized to find the
parameter values that maximize (8). However, this method sums the unobserved
states out of the likelihood and does not allow to predict, at each time point, the
underlying state of the animal which has interesting ecological applications. This
is, however, possible with the EM algorithm hence our use of EM to maximize (8).

3.1 EM Algorithm

The EM algorithm is generally used for the maximization of likelihood functions
when some data are missing or unobserved. Here, y0:T and d0:T are the observed
data and S0:T is the missing data. The EM algorithm only requires evaluation of
the complete data log-likelihood function, which in our case is easily derived from
(2):

log Lcomplete(θ;F c
T ) =

T∑
t=1

K∑
h=1

K∑
k=1

Sh,t−1Sk,t log πhk(nh, qh)

+
T∑
t=1

K∑
k=1

Skt log fk(yt|Fo
t−1,κ

(k))

+
T∑
t=0

K∑
k=1

Skt log gk(dt|λ(k)).

The EM algorithm consists of iterating an expectation (E) and a maximization
(M) step. Let us denote by θ̂s the value of the estimate of θ after the s-th iteration
of the algorithm. Then the (s + 1)-th iteration of the algorithm starts with one
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application of the E-step, which evaluates the expectation of log Lcomplete with
respect to the conditional distribution of the missing values given the observed
data, as follows:

Q(θ|θ̂s) = ES0:T

[
log Lcomplete(θ;F c

T )|Fo
T , θ̂s

]
=

T∑
t=1

K∑
h=1

K∑
k=1

E(Sh,t−1Sk,t|Fo
T , θ̂s) log πhk(nh, qh)

+
T∑
t=1

K∑
k=1

E(Skt|Fo
T , θ̂s) log fk(yt|Fo

t−1,κ
(k))

+
T∑
t=0

K∑
k=1

E(Skt|Fo
T , θ̂s) log gk(dt|λ(k)).

Then the value of θ̂s+1 is calculated in the M-step as the value of θ that maximizes
Q(θ|θ̂s).

3.1.1 • E step

The function Q(.|θ̂s) involves two conditional expectations, E(Skt|Fo
T , θ̂s) and

E(Sh,t−1Sk,t|Fo
T , θ̂s). These can be efficiently computed by a forward-backward

(filtering-smoothing) algorithm for Markov chains, see [15]. The filtering-smoothing
algorithm starts from the initial time t = 0 and computes the “filtering” probabil-
ities P(St|Fo

t ) by using predictive probabilities P(St|Fo
t−1) (going forward in time).

The last filtering probability P(ST |Fo
T ) is then used to compute the “smoothing”

probabilities P(St|Fo
T ) using Bayes theorem (going backward in time). We outline

the details of this implementation of the E-step in the A.

3.1.2 • M step

For the M-step, we see that Q(θ|θ̂s) is a sum of three functions that depend on
different sets of parameters and can thus be maximized separately:

• When the latent states follow a Markov process, there is a closed form ex-
pression for the maximizer of the hidden process part,

π̂
(s+1)
hk =

∑T
t=1 E(Sh,t−1Sk,t|Fo

T , θ̂s)∑T
t=1 E(Sh,t−1|Fo

T , θ̂s)
, h, k = 1, . . . , K, (9)

which represent the expected number of transitions from state h to state k
divided by the expected number of transitions leaving from state h.
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• Since fk(yt|Fo
t−1) has a consensus von Mises density, the log-likelihood for

the directional part is concave and the maximum is easily calculated; details
are available in [8].

• The maximization algorithm depends on gk(dt|λ(k)). For the exponential
distribution used in the simulation study, the maximizer has a closed form
expression. For the Weibull or gamma distributions used in the data analysis,
a numerical maximization (e.g., Newton-Raphson algorithm) of the weigthed
log-likelihood is needed to compute the estimates.

Semi-Markov specification
If the hidden process model is not saturated (e.g., semi-Markov specification),

then n̂
(s+1)
h , q̂

(s+1)
h cannot be computed explicitly from the function Q(.|θ̂s) and

numerical maximization is usually needed.

3.2 Sampling Distributions

Quantities that are usually required for inference such as the value of the max-
imized log-likelihood for the observed data or an estimation of the variance ma-
trix of θ̂ are not directly computed when using the EM-algorithm. The filtering-
smoothing algorithm is used to evaluate the likelihood for the observed data (8).
Moreover at each time t, one can evaluate the probability that the animal is in
state k using the value of E(Skt|FT ) in the “smooth” part of the algorithm (see 16).
Because we are able to compute log L(θ̂MLE), we can numerically approximate the
negative of its Hessian matrix, whose inverse, denoted v, is the usual estimate of
the variance matrix of the maximum likelihood estimators. A numerical approx-
imation of the Hessian matrix is available under most software implementations
of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm ([21]); in the data
analysis section we use the one provided in the R function optim.

3.3 Model Selection

The number of hidden states is usually unknown and its determination is a difficult
problem. We follow many applications ([10], [13], [18]) to animal or wind movement
and assume two states for the hidden process. In animal movement studies, a two
state model is stable and interpretable. The selection of the potential directional
targets can be done using the classical criteria (AIC, BIC) or Wald’s tests.
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4 Simulation Study

This section reports the results of a simulation study that investigates the sampling
properties of estimators presented in Section 3. We simulated the movement of
one animal in the plane. The “target” was placed at the center of a map and
the covariate xt represents the direction to this target at time step t. Then each
simulation scenario consisted in repeating the following steps 500 times: (i) a
two-state Markov chain S0:T with transition matrix π is generated; (ii) at time 0,
the animal is placed at a random position close to the south west corner of the
map; (iii) at each time step t, t = 1, 2, . . ., the location of the animal is obtained
by simulating a direction yt and a distance dt from the Markov switching model
proposed in Section 2.2 with yt generated according to a consensus von Mises model
with parameters κ

(k)
0 , κ

(k)
1 and explanatory angles yt−1 and xt and dt is simulated

from an exponential distribution with mean λ(k) units; (iv) the simulation stops
when the animal is within 30 distance units from the target.

We considered two different simulation scenarios. The values of the parameters
used in each one are given in Table 4. Scenario 1 is one where the animal shows high
directional persistence and high attraction to the target when in state 1, and high
directional persistence and a moderate repulsion from the target in state 2. The
second scenario shows moderate directional persistence and moderate attraction to
the target when in state 1, and little directional persistence and a weak attraction
toward the target in state 2. A characteristic trajectory of one simulation under
the first scenario is presented in C.5 since this scenario present attractive and
repulsive effect of the target on the trajectory of the animal in each state.

Table 4: Parameters for the two simulation scenarios.
parameter scenario 1 scenario 2

P =

(
1− q1 q1
q2 1− q2

) (
0.9 0.1
0.2 0.8

) (
0.6 0.4
0.1 0.9

)
κ
(1)
0 20 5

κ
(1)
1 10 4.5
λ(1) 0.7 2

κ
(2)
0 15 2

κ
(2)
1 -6.5 0.4
λ(2) 1.2 5

The average length of the series is 533 under the first scenario and 695 under the
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second scenario, the minimum (resp. maximum) was 420 (resp. 630) steps in the
first scenario, for the second scenario the minimum was 580 (resp. 870) steps. The
model was fitted to each simulation sample and the following statistical indicators
were calculated:

b(θ̂) =
1

500

500∑
i=1

(θ̂(i) − θ) (10)

Sd(θ̂) =

√√√√ 1

499

500∑
i=1

(θ̂(i) − θ̄)2 (11)

Ê
[√

v(θ̂)

]
=

1

500

500∑
i=1

√
v(θ̂(i)), (12)

with θ̂(i) the parameter estimate in the i-th simulation and θ̄ the mean of the
estimates over the 500 simulations. Equation (10) gives the bias of the estimator,
(11) its standard deviation and (12) is the mean of the standard error estimator.
We also computed the coverage of the nominal 95% Wald confidence interval as
the proportion of times that the true parameter θ belonged to θ̂(i) ± 1.96v(θ̂(i)).
The results are summarized in Table 5.
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Table 5: Result of the N = 500 simulations on the two simulation scenarios.

θ b(θ̂) Sd(θ̂) E
[√

v(θ̂)

]
95%interval

coverage

scenario 1
(n̄ = 533)

q1 0.1 0.002 0.020 0.021 0.950
q2 0.2 -0.003 0.039 0.039 0.954

κ
(1)
0 20 0.259 1.675 1.718 0.958

κ
(1)
1 10 0.125 1.089 1.051 0.960
λ(1) 0.7 -0.002 0.038 0.037 0.950

κ
(2)
0 15 0.322 2.065 1.944 0.950

κ
(2)
1 -6.5 -0.098 1.158 1.113 0.940
λ(2) 1.2 0.014 0.110 0.111 0.952

scenario 2
(n̄ = 695)

q1 0.4 -0.008 0.060 0.058 0.950
q2 0.1 -0.002 0.020 0.022 0.958

κ
(1)
0 5 0.137 0.864 0.804 0.950

κ
(1)
1 4.5 0.136 0.888 0.853 0.940
λ(1) 2 -0.003 0.162 0.167 0.956

κ
(2)
0 2 0.003 0.071 0.075 0.966

κ
(2)
1 0.4 -0.007 0.068 0.072 0.958
λ(2) 5 0.010 0.185 0.186 0.952

Table 5 shows that the inferential procedure presented has good statistical prop-
erties. First the maximum likelihood estimator appears to be unbiased (b(θ̂) ≈ 0)
for the coefficient of distance and for the transition probabilities. Estimates of
the κ parameters exhibit a weak bias, which is higher in the first scenario, a phe-
nomenon well known for the von Mises distribution ([17]). The quasi equality

between Sd(θ̂) and E
[√

v(θ̂)

]
indicates that our variance matrix approximation

of the variance of the parameter estimates is correct. Finally, the 95% Wald con-
fidence intervals based on v have an empirical coverage rate that is approximately
equal to 95%.

5 Application to the Analysis of the Movement

of Caribou

We now apply the model using data collected by [2] about the movement of forest
caribou in the Cote-Nord region of Quebec, Canada. This involved 23 animals
with different home ranges. The proposed two state model fitted well the data of
several animals. We observed strong variation among animals so in this section we
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focus on a single animal, wearing a collar recording its locations every four hours,
observed in the 2006-7 winter period. Its position was observed at T = 617 time
points and Figure 2 shows its trajectory, with distance expressed in meters, during
the observation period. In Figure 2 the distances traveled in four hour intervals
are generally small and the caribou is mostly observed around two different sites.
Because the individual travels between sites, two different states, encamped and
traveling, might be envisaged. The animal movement mostly takes place in the
NE-SW direction.

Figure 2: Caribou trajectory from December 28 2005 to April 15 2006. The
red circle corresponds to the start and the blue one to the end of the observed
trajectory. The yellow color corresponds to the locations with regenerating cuts.

Besides directional persistence, yt−1, several explanatory angles were considered
in the analysis. The ones kept for the final model were xcut, the direction to the
closest regenerating cut (i.e., a forest stand that has been cut between 5 and 20
years ago, the yellow in Figure 2), and the direction to the centroid of a cluster
of recently visited locations xcenter. At time t the locations visited by the animal
between times 0 and t − 1 are put in clusters. Cluster 1 is the set of locations
visited between time 0 and t1. The cluster ends at time t1 means that the distance
between the position at time t1 + 1 and the centroid of the cluster is, for the
first time, larger than a fixed number D = 1.6 km (see the Appendix of [2] for
more details). In the same way the second cluster is made of the locations visited
between time t1 + 1 and t2 and so on. At time t, the average locations for all
clusters are calculated and the cluster whose average location is closest to the
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current animal position is used to compute xcenter as the direction to the average
location of the closest cluster. The exploratory analysis in the D reveals that the
relative appeal for all these targets varies with the distance traveled. This suggests
fitting a two state model to the data.

5.1 Analysis with a Two-State Model

We now fit the proposed model with K = 2 states featuring directional persistence
and the two explanatory angles, xcut and xcenter, presented above. The distance
traveled was fitted using the Weibull and gamma distributions, both AIC and
BIC criteria select the gamma distribution (AICWeibull = 1620.60 and BICWeibull =
1673.70). Two models, with a Markov and a semi-Markov specification for the
hidden process, are considered. The results are summarized in Table 6.

Table 6: Estimation of the parameters of multistate models, with gamma dis-
tributed distances; λ

(k)
1 and λ

(k)
2 denote the shape and scale parameters of the

gamma distribution in the state k; nk and qk are the size and probability of the
negative binomial distribution of the state k’s dwell time.

Markov Semi-Markov
Estimate S.e. Estimate S.e.

q1 0.2799 0.0891 0.1290 0.1087
n1 1 . 0.3046 0.2529
q2 0.0231 0.0097 0.0157 0.0124
n2 1 . 0.6034 0.3828

κ
(1)
persist. 1.2666 0.3327 1.2617 0.3368

κ
(1)
center 0.3732 0.2994 0.4251 0.2995

κ
(1)
cut 0.1601 0.3013 0.1274 0.3043

λ
(1)
1 0.6477 0.1372 0.6670 0.1366

λ
(1)
2 3.0444 0.8450 2.9361 0.8122

κ
(2)
persist. 0.0274 0.0618 0.0263 0.0619

κ
(2)
center 0.2590 0.0694 0.2563 0.0695

κ
(2)
cut 0.1454 0.0679 0.1462 0.0698

λ
(2)
1 1.2626 0.0774 1.2704 0.0779

λ
(2)
2 0.1351 0.0119 0.1332 0.0119

(l,AIC,BIC) (-794.91,1613.82,1666.91) (-793.11,1614.22,1676.17)

In Table 6, state 1 is a traveling mode with a large estimate for the average dis-
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tance traveled λ̂
(k)

1 λ̂
(k)

2 , while state 2 is encamped. Most of the data points are in
state 2 and the information for the estimation of the state 1 parameters is limited.
The final model for data interpretation, selected as the one with the smallest BIC,
is the one with a Markovian hidden process. Table 6 shows two different regimes for
the direction and the traveled distance between steps. In the first state, the cari-
bou has a strong significant directional persistence (κ̂

(1)
persist. > 1.26, s.e. = 0.33).

The two κ parameters for the environmental targets are positive; however, because
of the limited data available in state 1, their standard errors are large and these
parameters are not significantly different from 0. In state 1, the animal moves at

an average speed of λ̂
(1)

1 λ̂
(1)

2 /4 ≈ 493 m per hour.

In the second regime the animal is almost stationary, moving by about 43 m

(λ̂
(2)

1 λ̂
(2)

2 /4) per hour. The directional persistence parameter κ
(2)
persist. is not sig-

nificantly different from zero. The parameters for the two environmental targets
are significantly larger than 0, suggesting that the caribou is attracted by loca-
tions previously visited and by the closest regenerating cut. The interpretation of
the significant parameter for wood regenerating cuts is challenging as the animal
never reaches them (Figure 2). It could be an accidental relationship: when in
the encamped state in the north-east corner of the map, the caribou moves in
the north-south direction and the wood regenerating cuts happen to be located
south of this area. Considering [22], the wood regenerating cuts could also act
as a proxy for the center of the animal’s current home range, the area where the
caribou relocated after the cuts.

The stationary distribution of the latent fitted Markov chain is in state 1 with
probability q̂2/(q̂2 + q̂1) = 0.076, showing that the caribou was observed traveling
about 47 out of T = 617 sightings. This explains why the parameter estima-
tors have a low precision in state 1. The state of the localization at time t can
be identified using the smooth probabilities P(Stk = 1|FT ; θ̂MLE), t = 1, . . . , T ,
k = 1, 2 calculated in the filtering-smoothing part of the E-step of the EM al-
gorithm. This is depicted in Figure 3 with a color gradient from red (state 1,
P(St1 = 1|FT ; θ̂MLE) = 1) to blue (state 2, P(St2 = 1|FT ; θ̂MLE) = 1).
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Figure 3: Hidden state probabilities at each time step of the trajectory of the
caribou.

[2] analyzed these data with single state models. They found directional per-
sistence to be an important determinant of caribou movement. Our analysis com-
plements theirs as we show that this variable is important only when the caribou
travels between sites (i.e., when the animal is in state 1). For more than 90% of
the observation times, the caribou was in state 2 (encamped mode) and its move-
ment was not determined by directional persistence. The angular analysis clearly
identified two environmental features, regenerating cuts and previous locations
visited, that influenced (attraction effect) caribou movement. Plots produced by
our method, such as the one shown in Figure 3, can thus be used to identify areas
of inter-patch movements (state 1, red) or of residency (state 2, blue) which tend
to be studied with two different models in ecological research (e.g., [23], [24] and
[25]).

Section 4 shows that the proposed model describes well the motion of animal
going towards a target. The data analyzed in this section, see Figure 2, is about
an animal going back and forth between two targets. Is model (8) suitable for such
data? C.6 shows that it is, through simulations. If an animal is attracted by two
targets and if the model at step t shows a directional bias only towards the closest
one, then (8) describes the motion of an animal moving back and forth between
the two targets. See C.6 for details.

6 Conclusion

This paper proposes a multi-state model with a general directional specification
to describe the movement of an animal. It improves on classical BCRW because it
allows the animal to exhibit several movement behaviors. It is a general method
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to determine different behaviors, as it can handle and reveal the response of an
animal to an arbitrary number of environmental features. The method generalizes
the contribution of ([10]) whose statistical model, based on HMMs, only permits
the inclusion of one environmental characteristic in the analysis.

In ecology, the understanding of the interplay between animal movement and
habitat heterogeneity, including the characterization of strategies that animals use
to locate sites for forage and safety, has been a long standing problem ([26]). By
using recent techniques for the implementation of the EM algorithm in complex
settings, we provide new statistical tools to identify these hidden animal behav-
iors. The appeal of these new methods is that they can handle an arbitrary number
of explanatory variables associated to the animals’ environment. These explana-
tory variables can be directions to environmental features, or continuous variables
accounting for a time effect of some habitat characteristics. See [8] for a more
general discussion of single-state angular regression models featuring both angular
and continuous explanatory variables.

The directional component of the proposed angular-linear random walk pro-
cess has several important properties. It is based on a sound statistical method to
combine an arbitrary number of explanatory variables. From a numerical point of
view, the M-component of the EM algorithm is simple as it involves the maximiza-
tion of several convex functions, at least in the Markovian case. This is so because
of the consensus error specification for the angular part of the model. A regression
parameter κ is easily interpreted as the relative appeal of a particular target when
compared to the others. The κ estimates allow an accurate characterization of
the different behavioral modes of an animal, as illustrated in the analysis of the
caribou data.

[27] point out that because of the heterogeneity of the landscape, animals have
to move through various types of areas that are more or less suitable for their
current needs. They propose a technique to identify intensively used areas based
on distance traveled. The smooth probabilities obtained through the EM algorithm
are an alternative to identify these intensively used places that takes into account
both the trajectory and the landscape heterogeneity.

Technological advances in satellite telemetry, such as Argos archival data log-
gers, have allowed researchers to track animal movements and behavior in envi-
ronments that are difficult to study like marine systems ([28], [29]). Measurement
errors in the locations acquired with this technology should be taken into account
([5], [29]). In our application, the land animal is followed using the more accurate
GPS technology. In this case, the errors in the locations are small in comparison to
the image resolution, and this translates into errors in the directions and distances
between locations and targets that are negligible.

There are several possibilities for further extension of the method presented
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here. Because caribou exhibit heterogeneity in their movement behavior, the si-
multaneous analysis of the movement of many individuals would require a model
with random effects. Including these in the proposed multi-state model should be
relatively straightforward, but adapting the numerical procedure appears difficult.

When a semi-Markov structure is assumed for this hidden process, the Markov
approximation considered here involves a large number of states and is computa-
tionally demanding. Or when trying to model the behavior of an animal over a
long period of time (e.g., more than one “biological season”, see [30]), the time
homogeneity assumption can be unreasonable. Hence defining a directional model
based on a more complex hidden process could be an extension. Though the nu-
merical algorithm proposed here works really well when the hidden process is a
time-homogeneous Markov chain, a new numerical approach would presumably be
required if a different hidden process were assumed.
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A Filtering-Smoothing Algorithm for the Markov

Specification

In the E-step of the (s+1)-th iteration of the EM algorithm we have to compute
two posterior expectations involving the hidden Skt, k = 1, . . . , K, t = 0, . . . , T ,
conditionally on the observed data Fo

T :

E(Skt|Fo
T , θ̂s) = P(Skt = 1|Fo

T , θ̂s) (13)

E(Sh,t−1Sk,t|Fo
T , θ̂s) = P(Sh,t−1 = 1|Skt = 1,Fo

T , θ̂s)P(Skt = 1|Fo
T , θ̂s), (14)

where θ̂s is the maximized vector of parameters after the s-th step of the EM
algorithm. The first probability on the RHS of (14) can be computed with Bayes’
theorem because, as we can see from Figure 1 , St−1 is independent of the observed
data from time t to T (i.e. {Fo

t+s}s≥0 \ Fo
t−1) given St and Fo

t−1 :

P(Sh,t−1 = 1|Skt = 1,Fo
T , θ̂s) =

π̂
(s)
hkP(Sh,t−1 = 1|Fo

t−1, θ̂s)∑K
j=1 π̂

(s)
jk P(Sj,t−1 = 1|Fo

t−1, θ̂s)
, k = 1, . . . , K, t = 0, . . . , T.

Finally, to compute the remaining conditional probabilities in the posterior expec-
tations (13) and (14), we adapt the classical filtering-smoothing algorithm of [15].
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Filtering-smoothing algorithm to implement the E-step
of the (s+ 1)-th iteration of the EM algorithm.

Filter Compute P(Stl = 1|Fo
t , θ̂s), for every l = 1, . . . , K :

P(Slt = 1|Fo
t , θ̂s) =

fl(yt|Fo
t−1, θ̂s)gl(dt, θ̂s)P(Stl = 1|Fo

t−1, θ̂s)∑K
k=1 fk(yt|Fo

t−1, θ̂s)gk(dt, θ̂s)P(Skt = 1|Fo
t−1, θ̂s)

,

where P(Sl,1 = 1|Fo
0 , θ̂s) =

∑K
k=1 π̂

(s)
kl (π0)k

and

P(Slt = 1|Fo
t−1, θ̂s) =

K∑
k=1

π̂
(s)
kl P(Sk,t−1 = 1|Fo

t−1, θ̂s), (15)

for t = 2, . . . , T.

Smooth Compute P(Slt = 1|Fo
T , θ̂s), for every l = 1, . . . , K:

S-step 1 For t = T , set P(SlT = 1|Fo
T , θ̂s), the conditional probability computed

at the last filtering step.

S-step 2 Recursion: For t = T − 1, . . . , 0, compute:

P(Slt = 1|Fo
T , θ̂s) =

K∑
k=1

π̂
(s)
lk P(Slt = 1|Fo

t , θ̂s)P(Sk,t+1 = 1|Fo
T , θ̂s)∑K

j=1 π̂
(s)
jk P(Sjt = 1|Fo

t , θ̂s)
.

(16)

B Markov Approximation of a Semi-Markov Pro-

cess

We follow the idea of approximating a semi-Markov process by an extended Markov
chain as introduced by [19]. We present here the details for a two state process.

Let us suppose that S0:T is a two state semi-Markov process with Q1 and Q2 the
probability mass functions of the dwell times in both states. Then using notation
of Section 2.3, nh, qh denote the parameters (size and probability) of the dwell time
distribution in state h, Qh. The stochastic behavior of this process is approximated
by a Markov chain S̃0:T with state space {(i, k), i = 1, 2, k = 1, . . . ,mi}, where i
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still denotes the state of the animal and k is the dwell time in this state. Given that
S̃t = (i, k), two moves are possible: one is to go to state (3− i, 1) with probability

π(i,k)(3−i,1)(ni, qi) = Qi(k)/{Qi(k) +Qi(k + 1) + . . . },

or to state (i,min(mi, k+1)) with probability 1−π(i,k)(3−i,1)(ni, qi). In applications
the Qi are often chosen to be the probability mass functions of negative binomial
distributions and in this case, typical values of the mi’s are around 30.

Figure B.4 is an example of the transition matrix contructed as exposed with
two states and m1 = 4, m2 = 4, it means that the enlarged Markov chain S̃0,T is
an 7 state Markov chain. We also give the basic example of m1 = m2 = 1, which
reduces to the classical Markov chain model:

( (1, 1) (2, 1)

(1, 1) 1− π(1,1)(2,1)(1, q1) π(1,1)(2,1)(1, q1)
(2, 1) π(2,1)(1,1)(1, q2) 1− π(2,1)(2,2)(1, q2)

)
=

( (1, 1) (2, 1)

(1, 1) 1− q1 q1
(2, 1) q2 1− q2

)
.

27



         

(1
,1

)
(1
,2

)
(1
,3

)
(1
,4

)
(2
,1

)
(2
,2

)
(2
,3

)

(1
,1

)
0

1
−
π
(1
,1
)(
2
,1
)(
n
1
,q

1
)

0
0

π
(1
,1
)(
2
,1
)(
n
1
,q

1
)

0
0

(1
,2

)
0

0
1
−
π
(1
,2
)(
2
,1
)(
n
1
,q

1
)

0
π
(1
,2
)(
2
,1
)(
n
1
,q

1
)

0
0

(1
,3

)
0

0
0

1
−
π
(1
,3
)(
2
,1
)(
n
1
,q

1
)

π
(1
,3
)(
2
,1
)(
n
1
,q

1
)

0
0

(1
,4

)
0

0
0

1
−
π
(1
,4
)(
2
,1
)(
n
1
,q

1
)

π
(1
,4
)(
2
,1
)(
n
1
,q

1
)

0
0

(2
,1

)
π
(2
,1
)(
1
,1
)(
n
2
,q

2
)

0
0

0
0

1
−
π
(2
,1
)(
2
,2
)(
n
2
,q

2
)

0
(2
,2

)
π
(2
,2
)(
1
,1
)(
n
2
,q

2
)

0
0

0
0

0
1
−
π
(2
,2
)(
1
,1
)(
n
2
,q

2
)

(2
,3

)
π
(2
,3
)(
1
,1
)(
n
2
,q

2
)

0
0

0
0

0
1
−
π
(2
,3
)(
1
,1
)(
n
2
,q

2
)

         
F

ig
u
re

4:
E

x
am

p
le

of
tr

an
si

ti
on

m
at

ri
x

w
it

h
K

=
2

st
at

es
,
m

1
=

4
an

d
m

2
=

3.

28



C Numerical Details

C.1 Finding the Global Maximum of the Likelihood Func-
tion

Due to the complexity of the model, the EM algorithm may converge to local
or spurious maxima of the likelihood function. We have observed that the EM
algorithm can quickly converge to spurious maxima (in less than 10 iterations).
This is due to the fact that for some parameters in κ, λ and π, the likelihood is
unbounded, a common phenomenon in the case of mixture models [31].

To deal with this, we run the EM algorithm with many random starting values
for a few iterations and check for spurious and local solutions. We then choose the
parameter values that yield the highest likelihood as the starting point of a new
EM algorithm that we run until convergence. This strategy of combining short-
and long-run EM algorithms to avoid possible local and spurious maxima is known
as the 1em-EM algorithm ([32]). To obtain an estimate of the variance matrix of
the maximum likelihood estimator we run one iteration of the quasi-Newton al-
gorithm to obtain the value of the inverse of the Hessian matrix of the observed
log-likelihood function evaluated at the maximum likelihood estimates. Here is an
algorithmic description of this procedure.

Finding the global maximum of the observed log-likelihood func-
tion

Preliminary step :

• Let θ1, . . . ,θN be N random initial starting values. (In our application of
this method, we chose N = 50.)

• For i = 1, . . . , N , run the EM algorithm until the first of (i) 50 iterations
or (ii) the greatest relative difference in parameter value between successive
iterations is less than 1%. Denote the estimators obtained at the end of this
step θ̂i, i = 1, . . . , N .

Avoid spurious maxima :

• For each θ̂i, i = 1, . . . , N , compute the stationary distribution of the Markov
chain, ν̂

(i)
k , k = 1, . . . , K.

• Only keep the {θ̂i, i ∈ I} such that

min
k=1,...,K

ν̂
(i)
k > ε and max

j=1,...,p;k=1,...,K
|κ(k)(i)j | < M.

(In our application of this method, we chose ε = 0.001 and M = 100.)
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Avoid local maxima :

• Put θ0 = arg maxi∈I L(θ̂i).

Long-run EM algorithm :

• Start the EM algorithm at θ0 and run it until the first of (i) 10 000 iterations
or (ii) the greatest relative difference in parameter value between successive
iterations is less than 10−8.

Quasi-Newton iteration :

• Run one iteration of the quasi-Newton algorithm with the output of the
long-run EM algorithm as initial value to get the final global maximum
likelihood estimators of the model parameters and an estimation of their
variance matrix.

C.2 A Note on the Initial Distribution (π0)k, k = 1, . . . , K

Calculation of either the observed or complete data likelihood involves the initial
distribution of the Markov chain, (π0)k, k = 1, . . . , K. We have decided to fit
the model twice. For the first fit we use (π0)k = 1/K, k = 1, . . . , K, the uniform
distribution over the K states. Then we fit the model again, but this time with
(π0)k = ν̂k, the stationary distribution of the chain computed from the first model
fit.

C.3 A Note on the Identifiability of the Model up to State
Label Switching

We can easily see that the value of the likelihood function remains the same if
we relabel the states. We therefore define the states at the end of each M-step as
follows: we give label i to the state with the i-th smallest κ̂

(k)
0 .

C.4 Multi modality of the log-likelihood function with ho-
mogeneous errors

In this section we want to illustrate the multi modality of the log-likelihood of the
biased correlated random walk model with homogeneous errors in a very simple
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example. Let us suppose that the Markov chain has K = 2 states and define the
vector

V
(k)
t = 1×

(
cos(yt−1)
sin(yt−1)

)
+ β(k)

(
cos(xt)
sin(xt)

)
, t = 1, . . . , T, (17)

where xt is uniformly distributed on the unit circle, β(1) = −0.2, β(2) = 0.7 and
let us denote µ

(k)
t and `

(k)
t the direction and the length of the vector (17). The

direction yt is simulated as a von Mises distribution with mean direction µ
(k)
t and

concentration κ(k), with κ(1) = 0.1, κ(2) = 0.3 .
The distances are simulated using different gamma distributions in each state

(λ
(1)
1 = 0.5, λ

(1)
2 = 2 and λ

(2)
1 = 1, λ

(2)
2 = 0.2) and the Markov chain’s parameters

are q1 = 0.1 and q2 = 0.2. All the parameters are assumed to be known except for
β1 and β2. Figure 5 gives contour plots of the log-likelihood for (β1, β2) obtained
with a simulated sample of size n = 50. It shows two local maxima, around (β1, β2)
equal to (−1.5, 0) and (−1, .5). Such a multimodal log-likelihood was obtained 4
times out of 20 simulations.

Figure 5: The log-likelihood function of the parameters (β(1), β(2)) with sample
size n = 50.

For standard angular regression problems, the concensus model has a concave
log-likelihood, see Section 2.2, that is easily maximized. We expect that these good
numerical properties will also apply to the general random walk directional model
introduced in Section 2.2. Actually, such a unimodal log-likelihood was obtained
20 times out of 20 simulations.
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C.5 Characteristic Trajectory Under First Scenario of Sim-
ulation

Figure 6: Characteristic trajectory of one simulation under scenario 1 in Table 4.
The first state (k = 1) is coloured in red, while the second state (k = 2) is blue.
The black cross is the starting point and the green cross is the target.

C.6 Validation

In order to compare the observed trajectory to trajectories simulated from the
fitted model, we first notice that the animal has two symetrical sub-trajectories.
In the first one, the animal is going from the departure (red circle in Figure 2)
to the bottom left corner of Figure 2. In the second one, the animal returns to
a final point (blue circle in Figure 2)) that is close to the starting point of the
first sub-trajectory. This symetry means that we can save computing time by
only comparing trajectories simulated by the model to one of the two observed
sub-trajectories; we chose to compare them to the first observed sub-trajectory.

To make the computational load manageable, we simulate trajectories using a
slightly modified model:

• we drop the variable xcut since it would take too much time to recompute at
each simulated time step and its effect in the model is weak;

• we simplify the variable xcenter, which would also take time to recompute,
and redefine it as the direction to the centroid of the locations in the bottom
left corner of Figure 2.

Except for these simplifications the trajectories are simulated using the esti-
mated parameters in Table 6. We simulate N = 500 trajectories to produce the
following figures and statistics. Figure 8 and Figure 7 depict, respectively, the
empirical cumulative distribution function and histogram of the number of time
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steps required to return to circle of diameter 2 km around of the centroid of the
locations in the bottom left corner. We stop the trajectory after 10,000 steps if it
does not reach the neighborhood (this happened only in 9 of the 500 simulations,
so less than 2% of the times.

Figure 7: Histogram of the number of
time steps needed for the simulated
trajectories to reach a neighborhood
of the centroid of the locations in the
bottom left corner of the map.

Figure 8: Cumulative of the number
of time steps needed for the simu-
lated trajectories to reach a neighbor-
hood of the centroid of the locations
in the bottom left corner of the map.

Table 7 gives estimates of the probabilities that the animal arrives in a neigh-
borhood of the centroid of the locations in the bottom left corner of the map based
on the 500 simulations.

Table 7: Quantiles of the return’s time steps distribution.
time steps 500 1000 2000 5000 10000

probability 0.098 0.25 0.472 0.826 0.982

Finally, we show some randomly chosen trajectories from the simulation model.
The color corresponds to the same state presented in the analysis of the caribou
data in Section 5 i.e., red for the exploratory state and blue for the encamped one.
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D Descriptive Statistics on the Trajectory of the

Caribou

We present an exploratory analysis of the trajectory data of the caribou. These
data consist of 617 observations of the form (yt, dt,xt), where yt and dt respectively
represent the direction (bearing) and the distance between the caribou location
at time step t and time step t + 1 and xt are the values of five exploratory angle
variables. Besides directional persistence, yt−1, several explanatory angles were
considered in the analysis. The ones kept for the final model are xcut, the direction
to the closest regenerating wood cut (that is an area where wood had been cut
between 5 and 20 years ago), and the direction to the centroid of the closest patch
xcentre. A patch is an aggregation of locations recently visited by the animal; at a
given step, the center of gravity of the patch’s locations is recalculated and xcentre
is the angle of the segment joining the animal’s position and the updated center
of gravity; see the Appendix of [2] for more details. In ecology, such a variable is
called spatial memory effect, because animals tend to come back to familiar areas
for forage and safety.

D.1 Observed Trajectory

Figure 9: Caribou trajectory from December 28 2005 to April 15 2006 .

35



Figure 9 shows the trajectory of the caribou. It strongly suggests two different
movement behaviours: an “encamped” state characterized by short traveled dis-
tances between two steps and an “exploratory” state with longer traveled distances.

D.2 Partitioning the Data According to the Distance Trav-
eled

To assess whether the directionality of the steps is different between the “en-
camped” and the “exploratory” states, we want to partition the dataset into two
subsets: one with “ short” traveled distances and one with “long” traveled dis-
tances. The cut point between “short” and “long” distances has to be precisely
defined.

Figure 10: Histogram of travelled distances of the caribou from December 28
2005 to April 15 2006.

Table 8: Summary statistics of the travelled distance (km).
n Min Q1 Median Mean Q3 Max

617 0.0015 0.0642 0.1259 0.312 0.249 10.04

The histogram shown in Figure 10 and the summary statistics from Table 8
indicate that most of the traveled distances are “short”, but with a non-negligible
proportion of much longer distances. We therefore fit a mixture of exponential
distributions to the sample of traveled distances and obtain the results given in
Table 9.
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Table 9: Fitted mixture of exponential distribution on the distance. For i =
1, 2, πi and λi respectively represent the weight and the mean of the exponential
distribution i.

π1 λ1 π2 λ2

0.09 0.4602 0.91 7.3119

Finally, we can define a critical distance (the cutoff point between the “en-
camped” and the “exploratory” states), dCritical, as the weighted mean of the two
exponential distributions in the mixture model:

dcritical =
π1
λ1

+
π2
λ2
≈ 0.3120 km.

This partitions the dataset into two subsets: one subset with 500 observations
with distances traveled less than dCritical and one subset with 117 observations
with traveled distances greater than dCritical.

D.3 Directionality of Movement Conditional on Distance
Traveled

We can now analyze the distribution of the turning angles (yt− yt−1, t = 1, . . . , T )
in the two subsets of the dataset defined by dCritical.

Table 10: Exploratory analysis of the distribution of the turning angles in each
subset of the data defined by dCritical.

Distance traveled < dcritical Distance traveled > dcritical

Circular histogram
Subset size 500 117

Mean direction (Rad) 1.933 0.40
Resultant length 0.0253 0.3199

pvalue, Kuiper’s test of uniformity > 0.15 < 0.01

Table 10 shows that when the distance traveled exceeds dCritical, the animal
path tends to be a concatenation of straight lines, as the turning angles are not
uniformly distributed over the circle, but rather concentrated around direction 0.
But when the distance traveled is less than dCritical, uniformity of the distribution
of the turning angles is not ruled out, implying that the animal tends to turn
around and does not have a preferred direction.
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The final step of our exploratory analysis is to see if the environmental tar-
gets have the same influence on the animal’s movement in the “encamped” and
“exploratory” states. To do so, we have fitted to the entire dataset our proposed
model with K = 1 state and the vector in the directional model (see (7) in the
main paper) as

V t = κ0

(
cos(yt−1)
sin(yt−1)

)
+ κ1

(
cos(xcut)
sin(xcut)

)
+ κ2

(
cos(xcenter)
sin(xcenter)

)
+ κ3 × zt

(
cos(yt−1)
sin(yt−1)

)
+ κ4 × zt

(
cos(xcut)
sin(xcut)

)
+ κ5 × zt

(
cos(xcenter)
sin(xcenter)

)
,

(18)

with zt take on value 1 if dt > dcritical and value 0 otherwise, for t = 0, . . . , T .
After a backward selection of the variables based on Wald tests with significance
levels of 0.05, we have obtained the model summarized in Table 11. These results
agree with the observations from Table 10 and suggest that the directionality of
the movement of the animal is different in the two subsets of the data defined by
dCritical.

Table 11: Parameter estimates of the final model for the directional model with
directional mean vector given by (18) fitted to the entire dataset.

κ0 κ1 κ2 κ3

Estimate 0.0300 0.1457 0.2687 0.4176

S.e. 0.0635 0.0642 0.0635 0.1515
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