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Abstract

A completely nonparametric method for the estimation of mixture cure models

is proposed. A nonparametric estimator of the incidence is extensively studied

and a nonparametric estimator of the latency is presented. These estimators,

which are based on the Beran estimator of the conditional survival function, are

proved to be the local maximum likelihood estimators. An iid representation

is obtained for the nonparametric incidence estimator. As a consequence, an

asymptotically optimal bandwidth is found. Moreover, a bootstrap bandwidth

selection method for the nonparametric incidence estimator is proposed. The

introduced nonparametric estimators are compared with existing semiparamet-

ric approaches in a simulation study, in which the performance of the bootstrap

bandwidth selector is also assessed. Finally, the method is applied to a database

of colorectal cancer from the University Hospital of A Coruña (CHUAC).
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1. Introduction

Thanks to the effectiveness of current cancer treatments, the proportion of

patients who get cured (or who at least survive for a long time) is increasing

over time. Therefore, data coming from cancer studies typically have heavy

censoring at the end of the follow-up period, and a standard survival model5

is inappropriate. To accommodate for the cured or insusceptible proportion

of subjects, a cure fraction can be explicitly incorporated into survival models

and, as a consequence, cure models arise. These models allow to estimate the

cured proportion (incidence) and also the probability of survival of the uncured

patients up to a given time point (latency). Note that cure models should not10

be used indiscriminately (Farewell, 1986), there must be good empirical and

biological evidence of an insusceptible population.

There are two main classes of cure models: mixture and non-mixture mo-

dels. The first papers in non-mixture models were due to Haybittle (1959),

Haybittle (1965). One category, belonging to this group, is the proportional15

hazards (PH) cure model, also known as the promotion time cure model, first

proposed by Yakovlev and Tsodikov (1996). The unknown terms in this model

can be estimated parametrically (Yakovlev et al., 1994; Chen et al., 1999, 2002)

or semiparametrically (Tsodikov, 1998, 2003; Zeng et al., 2006). Moreover,

Tsodikov (2001) proposed a nonparametric estimator of the incidence, but it20

cannot handle continuous covariates.

In this paper we consider a model which belongs to the other category of

cure models, called two-component mixture cure models. The mixture cure

model was proposed by Boag (1949) and it explicitly expresses the survival

function in terms of a mixture of the survival of two types of patients: those25

who are cured and those who are not. An advantage of this model is that it

allows the covariates to have different influence on cured and uncured patients.

Maller and Zhou (1996) provided a detailed review of this model. In mixture

cure models, the incidence is usually assumed to have a logistic form and the

latency is usually estimated parametrically (Farewell, 1982, 1986; Cantor and30

2



Shuster, 1992; Ghitany et al., 1994; Denham et al., 1996) or semiparametrically

(Kuk and Chen, 1992; Yamaguchi, 1992; Peng et al., 1998; Peng and Dear,

2000; Sy and Taylor, 2000; Li and Taylor, 2002; Zhang and Peng, 2007). Some

recent topics covered in the mixture cure models literature include multivariate

survival data (Yu and Peng, 2008), clustered survival data (Lai and Yau, 2010)35

and accelerated models (Zhang et al., 2013).

Due to the fact that the effects of the covariate on the cure rate cannot always

be well approximated using parametric or semiparametric methods, a nonpara-

metric approach is needed. In the literature, some nonparametric methods for

the estimation of the cure rate have been studied: Maller and Zhou (1992) pro-40

posed a consistent nonparametric estimator of the incidence, but it cannot han-

dle covariates. In order to overcome this drawback, Laska and Meisner (1992)

proposed another nonparametric estimator of the cure rate, but it only works for

discrete covariates. Furthermore, Wang et al. (2012) proposed a cure model with

a nonparametric form in the cure probability. To ensure model identifiability,45

they assumed a nonparametric proportional hazards model for the hazard func-

tion. The estimation was carried out by an expectation-maximization algorithm

for a penalized likelihood. They defined the smoothing spline function estimates

as the minimizers of the penalized likelihood. More recently, Xu and Peng (2014)

extended the existing work by proposing a nonparametric incidence estimator50

which allows for a continuous covariate. Although the above papers have a non-

parametric flavor, they fail to consider a completely nonparametric mixture cure

model which works for discrete and continuous covariates in both the incidence

and the latency.

In this paper, we fill this important gap by proposing a two-component55

mixture model with nonparametric forms for both the cure probability and

the survival function of the uncured individuals. Although we consider only

one covariate, the method can be directly extended to a case with multiple

covariates.

Very recently López-Cheda et al. (2016) have carried out a detailed study60

of the nonparametric kernel latency estimator proposed in this paper. They
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have proven asymptotic properties for the latency estimator and proposed a

bandwidth selector.

The rest of the article is organized as follows. In Section 2 we give a detailed

description of our nonparametric mixture cure model, we study the estimator65

of the incidence proposed in Xu and Peng (2014) and we introduce a nonpara-

metric estimator of the latency. Moreover, we address the model identifiability.

We also present a local maximum likelihood result as well as an iid represen-

tation and the asymptotic mean squared error for the nonparametric incidence

estimator. A bootstrap bandwidth selection method is introduced in Section 3.70

Section 4 includes a comparison between these nonparametric estimators and

the semiparametric one proposed in Peng and Dear (2000) in a simulation study

and assesses the practical performance of the bootstrap bandwidth selector. In

Section 5 we apply the proposed nonparametric method to real data related to

colorectal cancer patients in CHUAC. An appendix contains the proofs.75

2. Nonparametric mixture cure model

2.1. Notation

Let ν be a binary variable where ν = 0 indicates if the individual belongs

to the susceptible group (the individual will eventually experience the event

of interest if followed for long enough) and ν = 1 indicates if the subject is80

cured (the individual will never experience the event). The proportion of cured

patients and the survival function in the group of uncured patients can depend

on certain characteristics of the subject, represented by a set of covariates X.

Let p(x) = P (ν = 0|X = x) be the conditional probability of not being cured,

and let Y be the time to occurrence of the event. When ν = 1 it is assumed85

that Y =∞.

The conditional distribution function of Y is F (t|x) = P (Y ≤ t|X = x).

Note that the corresponding survival function, S(t|x), is improper when cured

patients exist, since limt→∞ S(t|x) = 1 − p(x) > 0. The conditional survival
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function of Y given that the subject is not cured is denoted by

S0(t|x) = P (Y > t|X = x, ν = 0).

Then, the mixture cure model can be written as:

S(t|x) = 1− p(x) + p(x)S0(t|x), (1)

where 1− p(x) is the incidence and S0(t|x) is the latency. We assume that each

individual is subject to random right censoring and that the censoring time C,

with distribution function G, is independent of Y given the covariates X. Let

T = min(Y,C) be the observed time with distribution function H and δ = I(Y ≤90

C) the uncensoring indicator. Observe that δ = 0 for all the cured patients,

and it also happens for uncured patients with censored lifetime. Without loss

of generality, let X be a univariate continuous covariate with density function

m(x). Therefore, the observations will be {(Xi, Ti, δi), i = 1, . . . , n} independent

and identically distributed (iid) copies of the random vector (X,T, δ).95

In order to introduce the nonparametric approach in mixture cure models,

we consider the generalized Kaplan-Meier estimator by Beran (1981) to estimate

the conditional survival function with covariates:

Ŝh(t|x) =
∏
T(i)≤t

(
1−

δ(i)Bh(i)(x)∑n
r=iBh(r)(x)

)
, (2)

where

Bh(i)(x) =
Kh(x−X(i))∑n
j=1Kh(x−X(j))

(3)

are the Nadaraya-Watson (NW) weights with Kh(·) = 1
hK

( ·
h

)
the rescaled ker-

nel with bandwidth h→ 0. In the case of fixed design, the Gasser-Müller (GM)

weights (Gasser and Muller, 1984) are more common. Here T(1) ≤ T(2) ≤ . . . ≤

T(n) are the ordered Ti’s, and δ(i) and X(i) are the corresponding uncensoring

indicator and covariate concomitants. We will also denote F̂h(t|x) = 1− Ŝh(t|x)100

for the Beran estimator of F (t|x). The estimator (2) can be extended to the

case of multiple covariates X = (X1, . . . , Xq) using, for example, the product

kernel (Simonoff, 1996). Discrete covariates can also be included by splitting
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the sample into subsamples corresponding to the different category combina-

tion of the discrete covariates, for each subsample conducting a nonparametric105

regression on the continuous covariates. Another possibility is smoothing the

discrete covariates with certain kernel functions (Li and Racine, 2004).

Departing from the Beran estimator, Xu and Peng (2014) introduced the

following kernel type estimator of the incidence:

1− p̂h(x) =
n∏
i=1

(
1−

δ(i)Bh(i)(x)∑n
r=iBh(r)(x)

)
= Ŝh(T 1

max|x), (4)

where T 1
max = max

i:δi=1
(Ti) is the largest uncensored failure time, and proved its

consistency and asymptotic normality.

Using (1), we propose the following nonparametric estimator of the latency:

Ŝ0,b(t|x) =
Ŝb(t|x)− (1− p̂b(x)

p̂b(x)
, (5)

where Ŝb(t|x) is the Beran estimator of S(t|x) in (2), 1− p̂b(x) is the estimator110

by Xu and Peng (2014) in (4) and b is a smoothing parameter not necessarily

equal to h in (4).

The identifiability of a cure model is needed to obtain unique estimates of

the model functions. In a cure model, all observed uncensored lifetimes (δi = 1)

correspond necessarily to uncured subjects (νi = 0); but it is impossible to dis-115

tinguish if a subject with a censored time (δi = 0) belongs to the susceptible

group (νi = 0) or to the non-susceptible group (νi = 1), because some censored

subjects may experience failures beyond the study period. This leads to dif-

ficulties in making a distinction between models with high incidence and long

tails of the latency distribution, and low incidence and short tails of the latency120

distribution. To address this problem, we present Lemma 1.

Lemma 1. Let D be the support of X. Model (1), with p (x) and S0 (t|x)

unspecified, is identifiable if S0 (t|x) is a proper survival function for x ∈ D.

Since the proof is straightforward, it is omitted.
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2.2. Theoretical properties125

The Beran estimator of the conditional survival function has been deeply

studied in the literature. Dabrowska (1989), in Theorem 2.1, shows its asymp-

totic unbiasedness, considering NW weights. Furthermore, using GM weights,

González-Manteiga and Cadarso-Suárez (1994) give an almost sure iid repre-

sentation for the estimator, and Van Keilegom and Veraverbeke (1997a) prove130

an asymptotic representation for the bootstrapped estimator and obtain the

strong consistency of the bootstrap approximation for the conditional distribu-

tion function.

Let Λ̂h(t|x) be the estimator of the conditional cumulative hazard function:

Λ̂h(t|x) =
n∑
i=1

δ(i)Bh(i)(x)∑n
r=iBh(r)(x)

I(T(i) ≤ t) =

∫ t

0

dĤ1
h(v|x)

1− Ĥh(v−|x)
,

where

Ĥh(t|x) =
n∑
i=1

Bhi(x)I(Ti ≤ t)

and

Ĥ1
h(t|x) =

n∑
i=1

Bhi(x)I(Ti ≤ t, δi = 1)

are the empirical estimators of

H(t|x) = P (T ≤ t|X = x) and H1(t|x) = P (T ≤ t, δ = 1|X = x) ,

respectively. Let us define: τH(x) = sup {t : H(t|x) < 1}, τS0
(x) = sup {t :

S0(t|x) > 0} and τG(x) = sup {t : G(t|x) < 1}. Since S(t|x) is an improper135

survival function, then S(t|x) > 0 for any t ∈ [0,∞), and 1−H(t|x) = S(t|x)×

Ḡ(t|x) with Ḡ(t|x) = 1−G(t|x) the proper conditional survival function of the

censoring time C, we have τH(x) = τG(x).

Let τ0 = supx∈D τS0(x). As in Xu and Peng (2014), we assume

τ0 < τG (x) , ∀x ∈ D. (6)

This condition states that the support of the censoring variable is not con-

tained in the support of Y , which guarantees that censored subjects beyond140
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the largest observable failure time are cured. Hence, our estimator does not

overestimate the true cure rate. A similar assumption was used by Maller and

Zhou (1992, 1994) in homogeneous cases. As pointed out in Laska and Meisner

(1992), if the censoring variable takes values always below a time τG < τ0, for

example in a clinical trial with a fixed maximum follow-up period, the largest145

uncensored observation T 1
max may occur at a time not larger than τG and there-

fore always before τ0. In such a case, for a large sample size, the estimator

in (4) is an estimator of 1 − p(x) + p(x)S0(τG) which is strictly larger than

1 − p(x). This comment shows the need of considering the length of follow-up

in the design of a clinical trial carefully, so that S0(τG) is sufficiently small to150

take the estimator (4) of 1− p(x) + p(x)S0(τG) as a good estimator of 1− p(x)

for practical purposes. The simulations in Xu and Peng (2014) show that if the

censoring distribution G(t|x) has a heavier tail than S0(t|x), the estimates from

the proposed method will tend to have smaller biases regardless of the value of

τS0
(x).155

Maller and Zhou (1992) dealt with the problem of testing a similar condition

to (6) in an unconditional setting. They proposed to test H0 : τ0 > τG versus

the alternative H1 : τ0 ≤ τG. One of the weak points of this approach is

to include condition (6) in the alternative hypothesis. Since this is a neutral

assumption, it seems more reasonable to keep (6) if there are no strong evidences

against it. In that sense, it is more natural to include (6) in the null hypothesis.

Apart from that, the ideas by Maller and Zhou (1992) can be extended to a

conditional setting as follows. Let us consider Π(t) = E(δ|T = t) and define

τG = infx∈D τG(x). Condition (6) implies that ∃a < τG such that Π(t) = 0 ∀t ≥

a. Consequently, this condition can be checked in practice by the following

hypothesis test:  H0 : ∃a < τG / Π(t) = 0, ∀t ≥ a

H1 : ∀a < τG, ∃t ≥ a / Π(t) > 0
.

This can be tested by means of nonparametric regression estimators of Π(t)

based on the sample (T1, δ1), . . . , (Tn, δn). To do that, it is necessary to estimate

τG in a nonparametric way. This can be done by just estimating the support of
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every G(t|x), via the Beran estimator.

We need to consider the following assumptions, to be used in the asymptotic160

results for the incidence estimator:

(A1) X, Y and C are absolutely continuous random variables.

(A2) Condition (6) holds.

(A3) (a) Let I = [x1, x2] be an interval contained in the support of m, and

Iδ = [x1 − δ, x2 + δ] for some δ > 0 such that

0 < γ = inf[m (x) : x ∈ Iδ] < sup[m (x) : x ∈ Iδ] = Γ <∞

and 0 < δΓ < 1. For all x ∈ Iδ the random variables Y and C are

conditionally independent given X = x.165

(b) There exist a, b ∈ R, with a < b satisfying 1 − H(t|x) ≥ θ > 0 for

(t, x) ∈ [a, b]× Iδ.

(A4) The first derivative of the function m(x) exists and is continuous in x ∈ Iδ
and the first derivatives with respect to x of the functions H(t|x) and

H1(t|x) exist and are continuous and bounded in (t, x) ∈ [0,∞)× Iδ.170

(A5) The second derivative of the function m(x) exists and is continuous in

x ∈ Iδ and the second derivatives with respect to x of the functions H(t|x)

and H1(t|x) exist and are continuous and bounded in (t, x) ∈ [0,∞)× Iδ.

(A6) The first derivatives with respect to t of the functions G(t|x), H(t|x),

H1(t|x) and S0(t|x) exist and are continuous in (t, x) ∈ [a, b]×D.175

(A7) The second derivatives with respect to t of the functions H(t|x) and

H1(t|x) exist and are continuous in (t, x) ∈ [a, b]×D.

(A8) The second partial derivatives with respect to t and x of the functions

H(t|x) and H1(t|x) exist and are continuous and bounded for (t, x) ∈

[0,∞)×D.180

(A9) Let us define Hc,1(t) = P (T < t|δ = 1). The first and second derivatives

of the distribution and subdistribution functions H(t) and Hc,1(t) are

bounded away from zero in [a, b]. Moreover, H ′c,1(τ0) > 0.

(A10) The functionsH(t|x), S0(t|x) andG(t|x) have bounded second-order deriva-

tives with respect to x for any given value of t.185

9



(A11)

∫ ∞
0

dH1(t|x)

(1−H(t|x))2
<∞ ∀x ∈ I.

(A12) The kernel function, K, is a symmetric density vanishing outside (−1, 1)

and the total variation of K is less than some λ < ∞.

(A13) The density function of T , fT , is bounded away from 0 in [0,∞).

Assumptions (A1) , (A3)−(A9) and (A12)−(A13) are necessary in Theorem 3190

because its proof is strongly based on Theorem 2 of Iglesias-Pérez and González-

Manteiga (1999). Assumptions (A2) and (A10) are needed to prove Lemma 4

and, consequently, required so existing results in the literature, stated for a fixed

t such that 1 − H(t|x) ≥ θ > 0 in (t, x) ∈ [a, b] × Iδ, can be applied with the

random value t = T 1
max. Assumption (A11) is necessary to bound the result of195

an integral in Lemma 7.

In the next theorem we show that both the proposed nonparametric inci-

dence and latency estimators are the local maximum likelihood estimators of

1− p(x) and S0(t|x).

Theorem 2. The estimators 1 − p̂h (x) and Ŝ0,b(t|x), given in (4) and (5)200

respectively, are the local maximum likelihood estimators of 1−p (x) and S0(t|x)

for the mixture cure model (1), for any x ∈ D and t ≥ 0.

We also obtain an iid representation of the incidence estimator.

Theorem 3. Under assumptions (A1)− (A13), for any sequence of bandwidths

satisfying nh5(lnn)−1 = O(1) and lnn/(nh)→ 0, then

(1− p̂h(x))− (1− p(x)) = (1− p (x))
n∑
i=1

B̃hi(x)ξ (Ti, δi, x) +Rn (x) ,

where

B̃hi(x) =
1
nhK

(
x−Xi

h

)
m(x)

, (7)

ξ (Ti, δi, x) =
I(δi = 1)

1−H(Ti|x)
−
∫ Ti

0

dH1(t|x)

(1−H(t|x))
2 (8)

and

sup
x∈I
|Rn(x)| = O

((
lnn

nh

)3/4
)

a.s.
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Finally, from the representation in Theorem 3 with straightforward calcu-

lations, the asymptotic expression of the mean squared error of the incidence

estimator,

MSEx(hx) = E[(p̂hx
(x)− p(x))2], (9)

is given by:

AMSEx(hx) =
1

nhx
(1− p(x))2cKσ

2(x) +

[
h2x

1

2
dK(1− p(x))µ(x)

]2
, (10)

where the first term corresponds to the asymptotic variance and the second one

to the asymptotic squared bias, with dK =
∫
v2K(v)dv, cK =

∫
K2(v)dv and,

following a notation similar to that in Dabrowska (1992):

µ(x) =
2Φ′(x, x)m′(x) + Φ′′(x, x)m(x)

m(x)
,

σ2(x) =
1

m(x)

∫ ∞
0

dH1(t|x)

(1−H(t|x))2
,

where

Φ(u, x) =

∫ ∞
0

dH1(t|u)

1−H(t|x)
−
∫ ∞
0

1−H(t|u)

(1−H(t|x))2
dH1(t|x),

with Φ′(u, x) = ∂/(∂u)Φ(u, x) and Φ′′(u, x) = ∂2/(∂u2)Φ(u, x).

3. Bandwidth selection205

The choice of the bandwidth is a crucial issue in kernel estimation, since

it controls the trade-off between bias and variance. Most of the methods for

smoothing parameter selection in nonparametric curve estimation look for a

small error when approximating the underlying curve by the smooth estimate.

The asymptotically optimal local bandwidth to estimate the cure rate, 1−p(x),

in the sense of minimizing the asymptotic expression of the MSEx in (10), is

given by:

hx,AMSE =

(
cKσ

2(x)

d2Kµ
2(x)

)1/5

n−1/5,

which is an asymptotic approximation of the bandwidth hx,MSE that minimizes

the MSEx. The optimal bandwidth hx,AMSE depends on unknown functions
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through µ(x) and σ2(x). Considering Dabrowska (1989), a plug-in bandwidth

selector can be obtained by replacing those unknown functions by consistent

nonparametric estimates, giving rise to a never-ending process, which seems210

even harder than the original problem of incidence estimation. On the other

hand, unfortunately, the finite-sample behavior of the cross validation (CV)

bandwidth selector in this context turned out to be disappointing. The CV

bandwidth was highly variable and tended to undersmooth (results not shown).

3.1. Bootstrap bandwidth selector215

Another way to select the bandwidth is to use the bootstrap method. It con-

sists of minimizing a bootstrap estimate of the mean squared error, MSEx(hx).

We consider the simple weighted bootstrap, without resampling the covariate

X, which is equivalent to the simple weighted bootstrap proposed by Li and

Datta (2001). For fixed x and i = 1, . . . , n, we set X∗i = Xi and generate a pair

(T ∗i , δ
∗
i ) from the weighted empirical distribution F̂gx(·, ·|X∗i ), where

F̂gx(u, v|x) =

n∑
i=1

Bgxi(x)I(Ti ≤ u, δi ≤ v)

and Bgxi(x) is the NW weight in (3) with pilot bandwidth gx. The resulting

bootstrap resample is {(X1, T
∗
1 , δ
∗
1), . . . , (Xn, T

∗
n , δ
∗
n)}. From now on, we will

use the notation E∗ and P ∗ for bootstrap expectation and probability, i.e.,220

conditionally on the original observations.

The bootstrap bandwidth is the minimizer of the bootstrap version of

MSEx(hx) in (9),

MSE∗x,gx(hx) = E∗[(p̂∗hx,gx(x)− p̂gx(x))2], (11)

which consists of replacing the original sample by the bootstrap resample, the

kernel incidence estimator based on the sample by its bootstrap version and

the theoretical incidence function by the estimated incidence based on a pilot

bandwidth, g. It can be approximated, using Monte Carlo, by:

MSE∗x,gx(hx) ' 1

B

B∑
b=1

(p̂∗bhx,gx(x)− p̂gx(x))2, (12)

12



where p̂∗bhx,gx
(x) is the kernel estimator of p(x) using bandwidth hx and based

on the b-th bootstrap resample generated from F̂gx , and p̂gx(x) is the kernel

estimator of p(x) computed with the original sample and pilot bandwidth gx.

Considering a bandwidth search grid {h1, . . . , hL}, the procedure for ob-225

taining the bootstrap bandwidth selector for a fixed covariate value, x, is as

follows:

1. Generate B bootstrap resamples of the form:{(
X

(b)
1 , T

∗(b)
1 , δ

∗(b)
1

)
, . . . ,

(
X

(b)
n , T

∗(b)
n , δ

∗(b)
n

)}
, b = 1, . . . , B.

2. For the b-th bootstrap resample (b = 1, ..., B), compute the nonparametric230

estimator p̂∗bhl,gx
(x) with bandwidth hl, l = 1, 2, . . . , L.

3. With the original sample and the pilot bandwidth gx, compute p̂gx(x).

4. For each bandwidth hl in the grid, compute the Monte Carlo approximation

of MSE∗x,gx(hl), given by (12).

5. The bootstrap bandwidth, h∗x, is the minimizer of the Monte Carlo approxi-235

mation of MSE∗x,gx(hl) over the grid of bandwidths {h1, . . . , hL}.

Based on the results in Van Keilegom and Veraverbeke (1997a,b) for fixed

design with GM weights, the optimal pilot bandwidth, gx, could be chosen so

that it minimizes (11) for a given sample. However, simulation results showed

that the choice of the pilot bandwidth has a small effect on the final bootstrap240

bandwidth. Consequently, a simple rule is proposed to select gx (see equation

(13) below).

Remark. The bandwidth sequence gx = gn has to be typically asymptotically

larger than hx = hn. This oversmoothing pilot bandwidth is required for the

bootstrap bias and variance to be asymptotically efficient estimators for the245

bias and variance terms. The order n−1/9 for this asymptotically optimal pilot

bandwidth satisfies the conditions in Theorem 1 of Li and Datta (2001), and

it coincides with the order obtained by Cao and González-Manteiga (1993) for

the uncensored case.
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4. Simulation study250

In this section we compare the proposed nonparametric estimators with the

semiparametric estimators in Peng and Dear (2000), which are implemented in

the smcure package in R (Cai et al., 2012). These estimators assume a logistic

expression for the incidence and a proportional hazards (PH) model for the

latency.255

We carry out a simulation study with two purposes. First, we evaluate the

finite sample performance of the nonparametric estimators 1 − p̂hx
and Ŝ0,bx ,

both computed in a grid of bandwidths with the Epanechnikov kernel, and we

compare the results with those of the semiparametric estimators. Second, the

practical behavior of the bootstrap bandwidth selector is assessed. We consider260

two different models and for both, the censoring times are generated according to

the exponential distribution with mean 1/0.3 and the covariate X is U(−20, 20).

Model 1. For comparison reasons, this simulated setup is the same as the so-

called mixture cure (MC) model considered in Xu and Peng (2014). The data

are generated from a logistic-exponential MC model, where the probability of

not being cured is

p(x) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
,

with β0 = 0.476 and β1 = 0.358, and the survival function of the uncured

subjects is:

S0(t|x) =


exp(−λ(x)t)− exp(−λ(x)τ0)

1− exp(−λ(x)τ0)
if t ≤ τ0

0 if t > τ0

,

where τ0 = 4.605 and λ (x) = exp ((x+ 20)/40). The percentage of censored

data is 54% and of cured data is 47%. In Figure 1 (top) we show the shape

of the theoretical incidence and latency functions. Note that in this model the265

incidence is a logistic function and the latency is a function which is very close to

fulfill the proportional hazards model and that has been truncated to guarantee

condition (6). Therefore, the semiparametric estimators are expected to give

very good results in this model.
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Model 2. The data are generated from a cubic logistic-exponential mixture

model, where the incidence is:

1− p(x) = 1−
exp

(
β0 + β1x+ β2x

2 + β3x
3
)

1 + exp (β0 + β1x+ β2x2 + β3x3)
,

with β0 = 0.0476, β1 = −0.2558, β2 = −0.0027 and β3 = 0.0020, and the

latency is:

S0(t|x) =
1

2

(
exp(−α(x)t5) + exp(−100t5)

)
,

with

α(x) =
1

5
exp((x+ 20)/40).

The percentages of censored and cured data are 62% and 53%, respectively.270

Figure 1 (bottom) shows the theoretical incidence and latency in this model.

The incidence is not a logistic function and the effect of the covariate on the

failure time of the uncured patients does not fit a PH model anymore. So, the

results will show the gain of using the proposed nonparametric estimators, that

do not require any parametric or semiparametric assumptions, with respect to275

the semiparametric ones.

4.1. Efficiency of the nonparametric estimators

A total of m = 1000 samples of size n = 100 are drawn to approximate, by

Monte Carlo, the mean squared error (MSE) of the incidence estimators, and

the mean integrated squared error (MISE) of the latency estimators, for a grid280

of 100 bandwidths in a logarithm scale, from h1 = 1.2 to h100 = 20 for the

incidence function, and from b1 = 10 to b100 = 40 for the latency. The results

for both models are shown in Figure 2.

Regarding the MSE of the incidence estimators, Figure 2 shows that in Model

1 there is a range of bandwidths, from h50 = 4.83 to h70 = 8.53 (light blue lines)285

for which the nonparametric estimator is quite competitive with respect to the

semiparametric estimator in values x of the covariate near the endpoints of the

support of X, and it works much better when the value of the covariate is

around 0. In Model 2, as expected, the nonparametric estimator outperforms

15



Figure 1: Theoretical incidence (left) and latency (right) functions in Model 1 (top) and Model

2 (bottom).
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Figure 2: On the left, MSE for the semiparametric (black line) and the nonparametric esti-

mators of 1−p(x) computed with different bandwidths: from h1 = 1.2 (red line) to h100 = 20

(dark blue line). On the right, MISE for the semiparametric (black line) and the nonpara-

metric estimators of S0(t|x) computed with different bandwidths: from b1 = 10 (red line)

to b100 = 40 (dark blue line). The data were generated from Model 1 (top) and Model 2

(bottom).
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the semiparametric one for a wide range of bandwidths except for 3 singular290

values of the covariate x, those for which p′′(x) = 0 and the semiparametric

estimate is very close to the true value of (1− p(x)). These 3 values are specific

points in which the semiparametric estimation passes through the theoretical

function.

Considering the latency estimators, it is noteworthy that in Model 1, for295

values of the covariate from x = −20 to x = 10, there is also a very wide range

of bandwidths, specifically, between b30 = 15.01 (light green lines) and b100 = 40

(dark blue lines), for which the MISE of the nonparametric estimator is smaller

than the MISE of the semiparametric estimator, it can be seen in Figure 2 (top,

right). In Model 2, the nonparametric estimator of the latency, computed with300

bandwidths between b20 = 13.05 (yellow lines) to b100 = 40 (dark blue lines),

outperforms the semiparametric estimator for all the covariate values, except

for x ∈ [4, 9], where the semiparametric estimator is very competitive. In short,

the nonparametric estimators are quite comparable to the semiparametric ones

in situations where the latter are expected to give better results, as in Model305

1, and they outperform the semiparametric estimators when the incidence is

not a logistic function and the latency does not fit a PH model (Model 2).

The efficiency of the nonparametric estimators depends on the choice of the

bandwidth, but although the optimal value of the bandwidth remains unknown,

the simulations show that, for quite wide ranges of bandwidths, the proposed310

nonparametric methods outperform the existing semiparametric estimator by

Peng and Dear (2000).

4.2. Efficiency of the bootstrap bandwidth selector for the incidence

In this simulation study, we consider sample sizes of n = 50, 100 and 200.

For m = 1000 trials, we approximate the MSEx and the optimal bandwidth,315

hx,MSE , of the proposed nonparametric estimator of the incidence. The MSEx,gx(h∗)

and the bootstrap bandwidth h∗x,gx are also approximated.

Note that minimizing MSE∗x,gx(hx) in hx for each value, x, of the cova-

riate, is a computationally expensive algorithm. For that reason, we carry out a
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two-step method with a double search in each stage. In the first step, we draw320

B = 80 bootstrap resamples and consider a number of 21 bandwidths equispaced

on a logarithmic scale, from h1 = 0.2 to h21 = 50 in the first search, whereas in

the second search the grid is centered around the optimal bandwidth obtained

in the first search. Then, we carry out the second step with also a double search

in a similar way we did for the first step, but now with two differences: we325

draw B = 1000 bootstrap resamples and we consider a finer smaller grid of 5

bandwidths in both the first and second search.

In view of the fact that the choice of gx has a low effect on the final boots-

trap bandwidth, we propose to use a naive selector, keeping the n−1/9 optimal

order. Since the distribution of the covariate is uniform, we consider the follo-

wing global pilot bandwidth, that does not depend on the value x for which the

estimation is to be carried out:

g =
X(n) −X(1)

107/9
n−1/9. (13)

Note that, for X ∈ U(−20, 20), when n = 100 the value of the global pilot

bandwidth g is (X(n) − X(1))/10 ' 4. Similarly, g ' 4.32 (g ' 3.70) when

n = 50 (n = 200). For a naive pilot bandwidth selector if the distribution for330

X can not be assumed uniform, see Section 5.

Figure 3 shows the MSEx evaluated at the median, 25th and 75th per-

centiles of the proposed bootstrap bandwidth, along the m = 1000 simulated

samples. The value of the MSEx for the nonparametric estimator, approxi-

mated by Monte Carlo and evaluated at the MSE bandwidth, hx,MSE , is also335

given as reference. We observe that the median, 25th and 75th percentiles of the

bootstrap bandwidths have an MSE close to the optimal value. As expected,

the similarity increases with the sample size. Moreover, we can also check how

MSEx(hx,MSE) and MSEx(h∗) decrease as n becomes larger.

The performance of the bootstrap bandwidth for Models 1 and 2 is shown340

in Figure 4. The optimal hx,MSE , approximated by Monte Carlo, is displayed

together with the median and the 25th and 75th percentiles of the 1000 boot-

strap bandwidths, h∗x. We can appreciate how the bootstrap bandwidth, h∗x,
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Figure 3: MSEx of the nonparametric estimator of the incidence evaluated at hx,MSE (red

line), and MSEx evaluated at the median (solid blue line), 25th (dotted blue line) and 75th

(dashed blue line) percentiles of the bootstrap bandwidth, h∗
x, along m = 1000 samples of

sizes n = 50 (top), n = 100 (center) and n = 200 (bottom), for Model 1 (left) and Model 2

(right).



approaches hx,MSE , adapting properly to the shape of hx,MSE for the three

sample sizes. The optimal bandwidth, hx,MSE , has got peaks at the values x345

of the covariate for which p′′(x) = 0. In other terms, those peaks only occur

at points x for which the asymptotically optimal bandwidth is infinitely large

because the best choice is to smooth as much as possible, and the best local fit

is a global fit. Note that if such large bandwidths are used, those values of x

correspond to the values where the MSEx shows deep valleys, that is, there is350

a noticeable improvement in the estimation of the incidence.

5. Application to real data

We applied both the semiparametric and the nonparametric estimators to a

real dataset of 414 colorectal cancer patients from CHUAC (Complejo Hospi-

talario Universitario de A Coruña), Spain. We considered two covariates: the355

stage, from 1 to 4, and the age, from 23 to 103. The variable Y is the follow-up

time (months) since the diagnostic until death. About 50% of the observations

are censored, with the percentage of censoring varying from 30% to almost 71%,

depending on the stage. In Table 1 we show a summary of the data set.

Table 1: Colorectal cancer patients from CHUAC

Stage Number of patients Number of censored data % Censoring

1 62 44 70.97

2 167 92 55.09

3 133 53 39.85

4 52 16 30.77

414 205 49.52

360

The incidence is estimated with both the semiparametric and the nonpara-

metric estimators. The age of the patients has been considered as a continuous

covariate, and the data have been split into four groups according to the cate-

gorical covariate stage.

For the nonparametric estimator of 1 − p, a naive pilot bandwidth selector

has been proposed in (13) if the distribution of X is uniform. The idea is to
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Figure 4: Optimal hx,MSE (red line), median (solid blue line), 25th (dotted blue line) and

75th (dashed blue line) percentiles of the bootstrap bandwidth, h∗
x, along m = 1000 samples

of sizes n = 50 (top), n = 100 (center) and n = 200 (bottom), for Model 1 (left) and Model 2

(right).



provide a data-driven pilot bandwidth which only depends on both the sample

size and on the distribution of the covariate, keeping the n−1/9 optimal order.

Taking into account that in this case the distribution of the covariate is not

uniform (see Figure 5), we propose to use the following local pilot bandwidth:

gx =
d+k (x) + d−k (x)

2
1001/9n−1/9,

where d+k (x) is the distance from x to the k-th nearest neighbor on the right,365

d−k (x) the distance from x to the k-th nearest neighbor on the left, and k a

suitable integer depending on the sample size. If there are not at least k neigh-

bors on the right (or left), we use d+k (x) = d−k (x) (or d−k (x) = d+k (x)) respecti-

vely. Our numerical experience shows that a good choice is to consider k = n/4.

Note that when n = 100 the value of the local pilot bandwidth gx is the mean370

distance to the 25th nearest neighbor on both the left and right sides.

For the nonparametric estimator, alongside the bootstrap bandwidth, we

have also used a smoothed bootstrap bandwidth. We followed Cao et al. (2001),

who applied a method for smoothing local bandwidths in another context. The

bootstrap bandwidths have been computed in the equispaced grid x0 < x1 <

· · · < xm of the interval [X(1), X(n)] given by xi = X(1) + ∆i, i = 0, 1, 2, . . . ,m

where ∆ = (X(n)−X(1))/m. The smoothed bootstrap bandwidth in point xl is

computed as follows:

h∗ smoothxl
=



∑l+5
j=0 h

∗
xj

l+6 , l = 0, 1, 2, 3, 4∑l+5
j=l−5 h

∗
xj

11 , l = 5, 6, 7, . . . ,m− 5∑m
j=l−5 h

∗
xj

m−l+6 , l = m− 4,m− 3,m− 2,m− 1,m

.

Figure 5 shows the estimations of the probability of being cured for the different

stages with respect to the age of the patients. We can see that the effect of the

age on the incidence changes with the stage. For example, using the nonpara-

metric incidence estimation, in Stage 1, patients have a probability of survival375

between 25% and 65%, depending on the age; whereas in Stage 3, for patients

above 60, in a 10 years gap that probability decreases considerably from 40%

to almost 0%. It is important to highlight the difference between the nonpara-
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metric and the semiparametric curves, that seems to indicate that the logistic

model is not valid for the data. The results in Stage 4 deserve some comments.380

A total of 11 in the 12 greatest lifetimes in Stage 4, including the largest lifetime,

are uncensored and, consequently, uncured. This causes that the nonparametric

estimation of the probability of being cured is equal to 0. Although it should

not be stated that it is impossible for a patient with Stage 4 colorectal cancer

to survive, this estimation reinforces the assertion that long-term survival in385

patients with Stage 4 colorectal cancer is uncommon (Miyamoto et al., 2015).

This fact, far from being a weakness of the nonparametric method, is an im-

portant advantage, since it allows to detect situations in which introducing the

possibility of cure does not contribute to improve the model.

Note that in order to obtain the optimal bootstrap bandwidth, B = 1000390

bootstrap resamples are used. In a similar way as we did in Section 4.2, we

carry out a one-step procedure with a double search. We consider a number

of 21 bandwidths equispaced on a logarithmic scale in both searches. The first

search is performed between 0.2 and the empirical range of X. The second

one is carried out using another grid centered around the optimal bandwidth395

obtained in the first search. We show the resulting bootstrap bandwidths, with

the corresponding local pilot bandwidths, for the different values of the covariate

age in Figure 6.

In Figures 7 and 8 we show the latency estimation for Stages 1, 2, 3 and 4 for

two different ages, 45 and 76. The nonparametric estimator Ŝ0,bx is computed400

with five different constant bandwidths: b = 10, 15, 20, 25 and 30. It is note-

worthy that in Stages 1 and 2 for 45 years, the bandwidth selection influences

considerably latency estimation. This is due to the low density of the covariate

around this age, as we can see in Figure 5. Suggested by the results in Section

4.1, it is reasonable to choose a large bandwidth. Nevertheless, the choice of405

the bandwidth for the latency estimation is out of the scope of this paper. This

issue has been very recently studied by López-Cheda et al. (2016).
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Figure 5: Semiparametric (black line) and nonparametric estimations of the incidence in

Stages 1-4 depending on the age computed with the bootstrap bandwidth h∗
x (solid blue line)

and with the smoothed bootstrap bandwidth h∗ smoothed
x (dashed blue line). The green line

represents the Parzen-Rosenblatt density estimations of the covariate age, using Sheather and

Jones’ plug-in bandwidth.
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Figure 6: Bootstrap bandwidth h∗
x (solid line), smoothed bootstrap bandwidth h∗ smoothed

x

(dashed line) and local pilot bandwidth gx (dotted line) used for the nonparametric incidence

estimator for patients in Stages 1-4.
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Figure 7: Estimated latency for patients of age 45 in Stages 1-4, using the semiparametric

(black line) and nonparametric estimators with 5 equispaced bandwidths ranging from b0 = 10

(light pink line) to b4 = 30 (dark pink line).
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Figure 8: Estimated latency for patients of age 76 in Stages 1-4, using the semiparametric

(black line) and nonparametric estimators with 5 equispaced bandwidths ranging from b0 = 10

(light pink line) to b4 = 30 (dark pink line).
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Appendix

Proof of Theorem 2. The idea is to estimate p (x) locally, maximizing the

observed local likelihood function around x. It can be proved that the maximum

likelihood estimator of the survival function S0(t|x) = 1 − F0(t|x) has jumps

only at the observations (Xi, Ti, δi) , i = 1, . . . , n with jumps

qi (x) = S0(T−(i)|x)− S0(T(i)|x).

The local likelihood of the model is

L (p (x) , S0 (·|x)) =
n∏
i=1

{
[p (x) qi (x)]

Bh(i)(x)δ(i) [1− p (x) + p (x)

×
(

1−
∑i−1
j=1 qj (x)

)](1−δ(i))Bh(i)(x)
}
.

Let Di (x) = Bh(i) (x) δ(i) and Pi (x) = p (x) qi (x), then

L (p (x) , S0 (·|x)) =
n∏
i=1

Pi (x)
Di(x)

1−
i−1∑
j=1

Pj (x)

Bh(i)(x)−Di(x)
 .

Consider now the functions λi (x) = Pi (x) /

(
1−

i−1∑
j=1

Pj (x)

)
satisfying

1−
k∑
j=1

Pj (x) =

k∏
j=1

(1− λj (x)). (A.1)

Straightforward calculations yield

L (λ1(x), . . . , λn(x)) =
n∏
i=1

λi (x)
Di(x) (1− λi (x))

n∑
r=i+1

Bh(r)(x)

.

Maximizing the likelihood of the observations for the cure model is equivalent

to maximizing

max
λi≥0;i=1,...,n

Ψ(λ1, . . . , λn),

where Ψ is the local loglikelihood:

Ψ(λ1 (x) , . . . , λn (x)) =
n∑
i=1

[
Di (x) log λi (x) +

(
n∑

r=i+1

Bh(r) (x)

)
log (1− λi (x))

]
,
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subject to
n∏
i=1

(1− λi (x)) = 1−
n∑
j=1

Pj (x) = 1− p (x) . (A.2)

Using standard maximization techniques, we obtain

λ̂i (x) =
Di (x)

n∑
r=i+1

Bh(r) (x) +Di (x)
=

δ(i)Bh(i) (x)
n∑

r=i+1

Bh(r) (x) + δ(i)Bh(i) (x)
.

Replacing λi in (A.2) by λ̂i(x), we obtain the estimator of 1−p (x) given in (4).410

With respect to the distribution of the uncured subjects, note that

F0

(
T(i)|x

)
=

i∑
j=1

qj (x) .

Since the jumps satisfy Pi (x) = p (x) qi (x) and using (A.1), we find that the

local maximum likelihood estimator is given by

F̂0

(
T(i)|x

)
=

1

p̂h (x)

1−
i∏

j=1

(
1− λ̂j (x)

) =
F̂h
(
T(i)|x

)
p̂h (x)

,

with F̂h
(
T(i)|x

)
the Beran estimator of F = 1− S computed at time T(i).

The following auxiliary results are necessary to prove Theorem 3.

Lemma 4 (Xu and Peng (2014)). Under assumption (A10),

T 1
max = max

i:δi=1
(Ti)→ τ0 in probability as n→∞.

Lemma 5. Under assumption (A9), we have that

nα(τ0 − T 1
max)→ 0 a.s.

for any α ∈ (0, 1). In particular, for a sequence of bandwidths satisfying

nh5(lnn)−1 = O(1), we have

τ0 − T 1
max = o

((
lnn

nh

)3/4
)

a.s. (A.3)
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Proof of Lemma 5. Using the Borel-Cantelli lemma, it is sufficient to prove

that
∞∑
n=1

P
(
|an(τ0 − T 1

max)| > ε
)
<∞, for all ε > 0, (A.4)

where an = nα. Let us fix ε > 0 and consider:

P (|an(τ0 − T 1
max)| > ε)

=P

(
T 1
max < τ0 −

ε

an

)
=P

(
Ti < τ0 −

ε

an
, for all i = 1, 2, . . . n where δi = 1

)
=E

[
P

(
Ti < τ0 −

ε

an
, for all i = 1, 2, . . . n where δi = 1

∣∣δ1, δ2, . . . , δn)]
=E

[
n∏
i=1

P

(
Ti < τ0 −

ε

an

∣∣δi = 1

)δi]
= E

[
P

(
T1 < τ0 −

ε

an

∣∣δ1 = 1

)∑n
i=1 δi

]

=E

[(
Hc,1

(
τ0 −

ε

an

))∑n
i=1 δi

]
,

where

Hc,1(t) = P
(
T < t

∣∣δ = 1
)

=
P (T < t, δ = 1)

P (δ = 1)
=
H1(t)

ρ
,

with ρ = P (δ = 1) = E(δ) and H1(t) = P (T < t, δ = 1). Consequently, since∑n
i=1 δi

d
= B(n, ρ), we get:

P (|an(τ0 − T 1
max)| > ε) (A.5)

=E

[
Hc,1

(
τ0 −

ε

an

)∑n
i=1 δi

]
=

n∑
j=0

(
n

j

)
ρj(1− ρ)n−jHc,1

(
τ0 −

ε

an

)j

=
n∑
j=0

(
n

j

)[
ρHc,1

(
τ0 −

ε

an

)]j
(1− ρ)nj =

[
ρHc,1

(
τ0 −

ε

an

)
+ 1− ρ

]n
=

[
ρ

(
Hc,1(τ0)− ε

an
H
′

c,1(τ0) +
ε2

2a2n
H
′′

c,1(ξn)

)
+ 1− ρ

]n
=

[
ρ− ρ ε

an
H
′

c,1(τ0) + ρ
ε2

2a2n
H
′′

c,1(ξn) + 1− ρ
]n

=

(
1− ρ ε

an
H
′

c,1(τ0) + ρ
ε2

2a2n
H
′′

c,1(ξn)

)n
,

for some ξn ∈
[
τ0 − ε

an
, τ0

]
, since Hc,1(τ0) = 1.
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Using assumption (A9), supt≥0 |H
′′

c,1(t)| = C <∞. As a consequence, since

ε/an → 0 as n→∞, then there exists some n0 ∈ N such that for all n ≥ n0:∣∣∣∣ρ ε2

2a2n
H
′′

c,1(ξn)

∣∣∣∣ ≤ ρε2

2a2n
C ≤ ρ ε

2an
H
′

c,1(τ0). (A.6)

From (A.5) and (A.6), we have that:

P (|an(τ0−T 1
max)| > ε) ≤

(
1− ρ ε

2an
H
′

c,1(τ0)

)n
=

(
1− ε

2an
H
′

1(τ0)

)n
= bn/ann ,

(A.7)

where

bn =

(
1− ε

2an
H
′

1(τ0)

)an
−−−−→
n→∞

r, (A.8)

with r = exp

(
− εH

′
1(τ0)
2

)
< 1.415

Using (A.7) and (A.8), to prove (A.4) it suffices to show that
∑∞
n=1 r

n/an <

∞. For that purpose, we will prove that

rn/an < n−2, for n large enough (A.9)

and, since the hyperharmonic series
∑∞
n=1 n

−2 is convergent, the series
∑∞
n=1 r

n/an

will also be convergent.

Note that inequality (A.9) can be written as

2 logR n <
n

an
, (A.10)

with R = r−1 ∈ (1,∞). Recall that an = nα for some α ∈ (0, 1). Now condition

(A.10) becomes

2 logR n < n1−α,

which is true for n large enough, since n−(1−α)2 logR n→ 0. As a consequence,

nα(τ0 − T 1
max)→ 0 a.s. for any α ∈ (0, 1). On the other hand, note that:

n−α(
lnn
nh

)3/4 =

[
nh5

lnn

n4−20α/3

(lnn)4

]3/20
−−−−→
n→∞

0,

for α ≥ 3/5 and a sequence of bandwidths satisfying (ln n)−1nh5 = O(1). There-420

fore, the result in (A.3) holds. This completes the proof.
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In the next three lemmas, we use existing results in the literature for a fixed

t such that 1 − H(t|x) ≥ θ > 0 in (t, x) ∈ [a, b] × Iδ, and apply them to the

random value t = T 1
max. Note that if τ0 < τG(x) = τH(x) for all x ∈ Iδ, then

from Lemma 4, under assumption (A10), we have that:

T 1
max = max

i:δi=1
(Ti)→ τ0 < τH(x) in probability as n→∞.

Therefore, for n large enough, T 1
max ≤ τ0 < τH(x) for all x ∈ Iδ and taking

b = τ0 we can apply the results considering t = T 1
max.

Lemma 6. Under assumptions (A1)-(A5), (A10) and (A12), and if nh5/ lnn =

O(1) and lnn/(nh)→ 0, then the incidence estimator satisfies:

1− p̂h(x) = exp
(
−Λ̂h(T 1

max|x)
)

+Rn (x) , for all x ∈ I,

with

sup
x∈I
|Rn (x)| = O

(
(nh)

−1
)

a.s.

Proof of Lemma 6. The incidence estimator is equal to:

1− p̂h(x) = 1− F̂h(T 1
max|x),

where F̂h(t|x) = 1 − Ŝh(t|x) is the Beran estimator in (2). The result derives

directly for F̂h(t|x) from the so-called property 3) in the proof of part c) of425

Theorem 2 in Iglesias-Pérez and González-Manteiga (1999), when the data are

subject to random left truncation and right censorship, for which assumptions

(A1),(A3)-(A5) and (A12) are required. Assumptions (A2) and (A10) allow

to use the aforementioned property when t = T 1
max. González-Manteiga and

Cadarso-Suárez (1994) proved a similar result under right random censoring430

with fixed design on the covariate.

Lemma 7. Under assumptions (A1)-(A11) and (A13) for x ∈ I and if nh5/ lnn =

O(1), lnn/(nh)→ 0, then

Λ̂h(T 1
max|x)− Λ(T 1

max|x) =
n∑
i=1

B̃hi(x)ξ (Ti, δi, x) + R̃n (x) ,
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with B̃hi in (7), ξ in (8) and

sup
x∈I

∣∣∣R̃n (x)
∣∣∣ = O

((
lnn

nh

)3/4
)

a.s.

Proof of Lemma 7. Under assumptions (A1)-(A8), (A10) and (A13), we ap-

ply Theorem 2(b) of Iglesias-Pérez and González-Manteiga (1999) (similarly

Theorem 2.2 of González-Manteiga and Cadarso-Suárez (1994) with fixed de-

sign using GM weights) to t = T 1
max:

Λ̂h(T 1
max|x)− Λ(T 1

max|x) =
n∑
i=1

B̃hi(x)ξ (Ti, δi, x) +
n∑
i=1

(Bhi(x)− B̃hi(x))ξ (Ti, δi, x)

+
n∑
i=1

Bhi(x)
(
ξ̃ (Ti, δi, x)− ξ (Ti, δi, x)

)
+ ˜̃Rn (x) ,

(A.11)

with ξ in (8),

ξ̃ (Ti, δi, x) =
I(δi = 1)

1−H(Ti|x)
−
∫ T 1

max

0

I(t < Ti)

(1−H(t|x))2
dH1(t|x)

and

sup
x∈I

∣∣∣ ˜̃Rn (x)
∣∣∣ = O

((
lnn

nh

)3/4
)
a.s.

Note that∣∣∣ξ̃ (Ti, δi, x)− ξ (Ti, δi, x)
∣∣∣ ≤ ∫ τ0

T 1
max

dH1(t|x)

(1−H(t−|x))2
for all i = 1, . . . , n.

Then, under assumption (A9) we apply Lemma 5, and assuming (A11), it is

easy to prove that for a sequence of bandwidths satisfying nh5(lnn)−1 = O(1),

the third term in (A.11) is,

sup
x∈I

∣∣∣∣∣
n∑
i=1

Bhi(x)
(
ξ̃ (Ti, δi, x)− ξ (Ti, δi, x)

)∣∣∣∣∣ = o

((
lnn

nh

)3/4
)
a.s.

For the second term in (A.11), it is important to note that:

n∑
i=1

(Bhi(x)− B̃hi(x))ξ(Ti, δi, x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
ξ(Ti, δi, x)

m(x)− m̂h(x)

m̂h(x)m(x)
,
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with m̂h(x) the Parzen-Rosenblatt estimator of m(x). Using Theorem 3.3 of

Arcones (1997), standard bias and variance calculations and Taylor expansions

lead to

sup
x∈I

∣∣∣∣∣ 1

nh

n∑
i=1

K

(
x−Xi

h

)
ξ(Ti, δi, x)

∣∣∣∣∣ = O

(
h2 +

√
ln lnn

nh

)
a.s.

Using again Theorem 3.3 of Arcones (1997), it is easy to prove that:

sup
x∈I

∣∣∣∣m(x)− m̂h(x)

m̂h(x)m(x)

∣∣∣∣ = O

(
h2 +

√
ln lnn

nh

)
a.s.

Therefore,

sup
x∈I

∣∣∣∣∣
n∑
i=1

(Bhi(x)− B̃hi(x))ξ(Ti, δi, x)

∣∣∣∣∣ = O

(h2 +

√
ln lnn

nh

)2
 a.s.

For a sequence of bandwidths satisfying nh5(lnn)−1 = O(1), it is immediate to

prove that

sup
x∈I

∣∣∣∣∣
n∑
i=1

(Bhi(x)− B̃hi(x))ξ(Ti, δi, x)

∣∣∣∣∣ = O

((
lnn

nh

)3/4
)

a.s.

This completes the proof.

Lemma 8. Under assumptions (A1)-(A8), (A10), (A12) and (A13) and if

nh5/ lnn = O(1), lnn/(nh)→ 0, then

sup
x∈I

∣∣∣Λ̂h (T 1
max|x

)
− Λ

(
T 1
max|x

)∣∣∣ = O

((
lnn

nh

)1/2
)

a.s.

Proof of Lemma 8. The equivalent result for a fixed t ∈ [a, b] is within pro-

perty 2) in the proof of part c) of Theorem 2 in Iglesias-Pérez and González-435

Manteiga (1999), for which assumptions (A1), (A3)-(A8), (A12) and (A13) are

required. Assumptions (A2) and (A10) are needed to apply that result to t =

T 1
max. For the uniform strong consistency of the Beran estimator F̂h(t|x), see

also Dabrowska (1989).

Proof of Theorem 3. The incidence estimator can be split into the following
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terms:

(1− p̂h(x))− (1− p(x))

= Ŝh(T 1
max|x)− (1− p(x))

= exp
[
−Λ̂h(T 1

max|x)
]
− exp

[
−Λ(T 1

max|x)
]

+R2(x) +R3(x), (A.12)

with

R2(x) = Ŝh(T 1
max|x)− exp

[
−Λ̂h(T 1

max|x)
]

and

R3(x) = S(T 1
max|x)− (1− p(x)) .

To the first term of (A.12) we apply a Taylor expansion of the function exp(y)

around the value y = −Λ(T 1
max|x):

exp
[
−Λ̂h(T 1

max|x)
]
− exp

[
−Λ(T 1

max|x)
]

= − exp
[
−Λ(T 1

max|x)
] (

Λ̂h(T 1
max|x)− Λ(T 1

max|x)
)

+R1(x),

with

R1(x) =
1

2
exp

[
−Λ∗(T 1

max|x)
] (

Λ̂h(T 1
max|x)− Λ(T 1

max|x)
)2

and Λ∗(T 1
max|x) = ηn (x) a value between Λ̂h(T 1

max|x) and Λ(T 1
max|x). Now,

adding and substracting 1 − p(x), and bearing in mind that S(T 1
max|x) =

exp[−Λ(T 1
max)|x],

exp
[
−Λ̂h(T 1

maxx)
]
− exp

[
−Λ(T 1

max|x)
]

= (1− p (x))
(

Λ̂h(T 1
max|x)− Λ(T 1

max|x)
)

+R1(x) +R4(x), (A.13)

where

R4(x) =
[
S
(
T 1
max|x

)
− (1− p (x))

] (
Λ̂h(T 1

max|x)− Λ(T 1
max|x)

)
.

Now, inserting (A.13) in (A.12), we have:

(1− p̂h(x))− (1− p (x))

= (1− p (x))
(

Λ̂h(T 1
max|x)− Λ(T 1

max|x)
)

+R1(x) +R2(x) +R3(x) +R4(x).

(A.14)
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The iid representation of 1 − p̂h(x) now follows, assuming (A1)-(A11) and440

(A13), from Lemma 7.

Let us study the remainder terms in (A.14), starting with R1(x). Taking

into account that exp
[
−Λ∗(T 1

max|x)
]

is bounded for all x ∈ I, and applying

Lemma 8, under the assumptions (A1)-(A8), (A10), (A12) and (A13), we have

sup
x∈I
|R1(x)| = O

(
lnn

nh

)
a.s.

Regarding R2(x), under the assumptions (A1),(A3)-(A5), (A10) and (A12),

directly from Lemma 6 and using lnn/(nh)→ 0 we obtain:

sup
x∈I
|R2(x)| = O

(
(nh)

−1
)

= o

((
lnn

nh

)3/4
)

a.s.

Focusing on R3(x), note that it can be bounded as follows:

sup
x∈I

∣∣R3(x)
∣∣ = sup

x∈I

∣∣S(T 1
max|x)− (1− p(x))

∣∣
= sup

x∈I

∣∣∣∣ [(1− p(x)) + p(x)S0(T 1
max|x)

]
− (1− p(x))

∣∣∣∣
= sup

x∈I

∣∣p(x)S0(T 1
max|x)

∣∣ ≤ sup
x∈I

∣∣S0(T 1
max|x)

∣∣
= sup

x∈I

∣∣S0(T 1
max|x)− S0(τ0|x)

∣∣
≤ sup

x∈I
|(T 1

max − τ0)S′0(τn|x)|, (A.15)

with τn ∈ [T 1
max, τ0]. From condition (A6), that implies that there exists some

λ > 0 such that sup(t,x)∈[a,b]×I |S′0(t|x)| ≤ λ, and using (A.3) and (A.15) for a

sequence of bandwidths satisfying nh5(lnn)−1 = O(1), we have that:

sup
x∈I
|R3(x)| = o

((
lnn

nh

)3/4
)

a.s.

Finally, from Lemma 8, the term R4 is negligible with respect to R3, and there-

fore:

sup
x∈I
|R4(x)| = o

((
lnn

nh

)3/4
)

a.s.

This completes the proof.
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