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Abstract

Consider the problem of sparse clustering, where it is assumed that only a
subset of the features are useful for clustering purposes. In the framework
of the COSA method of Friedman and Meulman, subsequently improved in
the form of the Sparse K-means method of Witten and Tibshirani, a natural
and simpler hill-climbing approach is introduced. The new method is shown
to be competitive with these two methods and others.
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1. Introduction

Consider a typical setting for clustering n items based on pairwise dis-
similarities, with §(7,7) denoting the dissimilarity between items i, j € [n] :=
{1,...,n}. For concreteness, we assume that 6(i,j) > 0 and 0(é,2) = 0 for
all 7,7 € [n]. In principle, if we want to delineate x clusters, the goal is
(for example) to minimize the average within-cluster dissimilarity. In de-
tail, a clustering into x groups may be expressed as an assignment function
C':[n] » [k], meaning that C'(7) indexes the cluster that observation i € [n]
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is assigned to. Let C!* denote the class of clusterings of n items into x groups.
For C e C, its average within-cluster dissimilarity is defined as

ALY ¥ o % A (1)

1,jeC~1(k)

This dissimilarity coincides with the within-cluster sum of squares commonly
used in k-means type of clustering algorithms, with §(¢,7) = ||z; — x;|?. If
under the Euclidean setting, we further define cluster centers

1
pe=— Y, x; with ke [k], (2)
T iec—1(k)

then the within-cluster dissimilarity can be rewritten as follows,

A[C] = Z |C 1(k)| Z Z Hxi_xjHQ: Z Z Hxi_ukHQ' (3)

i,jeC-1(k) ke[k]ieC-1(k)

Since this paper deals with non-Euclidean settings also, we will use the more
general within-cluster dissimilarity defined in (1). The resulting optimization
problem is the following:

Given (6(,7) : 4, € [n]), minimize A[C'] over C' € C2. (4)

This problem is combinatorial and quickly becomes computationally too ex-
pensive, even for small datasets. A number of proposals have been suggested
[1], ranging from hierarchical clustering approaches to K-medoids.

Following in the footsteps of [2], we consider a situation where we have
at our disposal not 1 but p > 2 measures of pairwise dissimilarities on the
same set of items, with 0,(7,j) denoting the a-th dissimilarity between items
i,j € [n]. Obviously, these measures of dissimilarity could be combined into
a single measure of dissimilarity, for example,

0(i,5) = . 0a(i, ). ()

Our working assumption, however, is that only a few of these measures of
dissimilarity are useful for clustering purposes, but we do not know which
ones. This is the setting of sparse clustering, where the number of useful
measures is typically small compared to the whole set of available measures.



We assume henceforth that all dissimilarity measures are equally impor-
tant (for example, when we do not have any knowledge a priori on the relative
importance of these measures) and that they all satisfy

> 0a(i,j) =1, Vaelp], (6)
ije[n]
which, in practice, can be achieved via normalization, meaning,
da(,7)
Zz‘,j 50,(7:7 ])
This assumption is important when combining measures in the standard
setting (5) and in the sparse setting (8) below.

Suppose for now that we know that at most s measures are useful among
the p measures that we are given. For S c [p], define the S-dissimilarity as

5S(i7j): Z5a(7;7j)’ (8)

aeS

0a(t,]) < (7)

and the corresponding average within-cluster S-dissimilarity for the cluster
assignment C' as

1 o
Ag[C] = k%;] 1Co )] i,jze:C—%) 05(7, ) 9)

If the goal is to delineate x clusters, then a natural objective is the following:

Given (34(i,5) : a € [pl,i,j € [n]), (10)

minimize Ag[C'] over S c [p] of size s and over C € C?.

In words, the goal is to find the s measures (which play the role of features in
this context) that lead to the smallest optimal average within-cluster dissim-
ilarity. The problem stated in (10) is at least as hard as the problem stated
in (4), and in particular, is computationally intractable even for small item
sets.

Remark 1. In many situations, but not all, p measurements of possibly dif-
ferent types are taken from each item i, resulting in a vector of measurements
x; = (244 : a € [p]). This vector is not necessarily in a Euclidean space, al-
though this is an important example — see Section 2.2 below. We recover
our setting when we have available a dissimilarity measure 6,(7,j) between
%o and xj,. This special case justifies our using the terms ‘feature’ and
‘attribute’ when referring to a dissimilarity measure.



2. Related work

The literature on sparse clustering is much smaller than that of sparse
regression or classification. Nonetheless, it is substantial and we review some
of the main proposals in this section. We start with the contributions of [2]
and [3], which inspired this work.

2.1. COSA, Sparse K-means and Regularized K-means

[2] propose clustering objects on subsets of attributes (COSA), which (in
its simplified form) amounts to the following optimization problem

minimize Y a(|C'(K)]) D Y (waba(i,j) + Mwglogw,), (11)
ke[r] 1,jeC~1(k) ae[p]
over any clustering C' and any weights wy, ..., w, > 0 subject to Z Wy = 1.
ae[p]

(12)

Here « is some function and A > 0 is a tuning parameter. When a(u) = 1/u,
the objective function can be expressed as

Y (waAu[C] + Awg log wy). (13)
ae[p]

When A = 0, the minimization of (13) over (12) results in any convex combi-
nation of attributes with smallest average within-cluster dissimilarity. If this
smallest dissimilarity is attained by only one attribute, then all weights will
concentrate on this attribute, with weights 1 for this attribute and 0 for the
others. In general, A\ > 0, and the term it multiplies is the negative entropy
of the weights (w, : a € [p]) seen as a distribution on {1,...,p}. This penalty
term encourages the weights to spread out over the attributes. Minimizing
over the weights first leads to

minimize Agys[C] = min Z (WA [CT + Awg logw,) (14)
Y aelp]
over any clustering C'. (15)

where the minimum is over the w’s satisfying (12). (Note that the A needs
to be tuned.) The minimization is carried out using an alternating strat-
egy where, starting with an initialization of the weights w (say all equal,
wy = 1/p for all a € [p]), the procedure alternates between optimizing with
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respect to the clustering assignment C' and optimizing with respect to the
weights. (There is a closed-form expression for that derived in that paper.)
The procedure stops when achieving a local minimum. [3] observe that an
application of COSA rarely results in a sparse set of features, meaning that
the weights are typically spread out. They propose an alternative method,
which they call Sparse K-means, which, under (6), amounts to the following
optimization problem

maximize Y. w, (L -A,[C]), (16)

ae[p]
over any clustering C' and any weights wy,...,w, >0 (17)
with |w]2 <1, |w]; <s. (18)

The ¢; penalty on w results in sparsity for small values of the tuning pa-
rameter s, which is tuned by the gap statistic of [4]. The ¢ penalty is also
important, as without it, the solution would put all the weight on only one
the attribute with smallest average within-cluster dissimilarity. A similar
minimization strategy is proposed, which also results in a local optimum.

As can be shown in later sections, Sparse K-means is indeed effective in
practice. However, its asymptotic consistency remains unknown. [5] pro-
pose Regularized K-means clustering for high-dimensional data and prove
its asymptotic consistency. This method aims at minimizing a regularized
within-cluster sum of squares with an adaptive group lasso penalty term on
the cluster centers:

1
minimize — Z Z | = pa|)* + Z AoV 1l + o+ 12 (19)
M ke[k] ieC1(k) ae[p]

over any clustering C' and any sets of centers iy, fio, -+, fix- (20)

2.2. Some methods for the Euclidean setting

Consider points in space (denoted z1,...,z, in RP) that we want to clus-
ter. A typical dissimilarity is the Euclidean metric, denoted by §(i,7) = |x; -
z;|?. Decomposing this into coordinate components, with x; = (z;, : a € [p]),
and letting 6,(7,7) = (iq — xj4)?, We have

6(i,j) = Z[:] 0a(i,])- (21)

A normalization would lead us to consider a weighted version of these dissimi-
larities. But assuming that the data has been normalized to have (Euclidean)
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norm 1 along each coordinate, (6) holds and we are within the framework
described above.

This Euclidean setting has drawn most of the attention. Some papers
propose to perform clustering after reducing the dimensionality of the data
(6, 7, 8]. However, the preprocessing step of dimensionality reduction is
typically independent of the end goal of clustering, making such approaches
non-competitive.

A model-based clustering approach is based maximizing the likelihood.
Under the sparsity assumption made here, the likelihood is typically penal-
ized. Most papers assume a Gaussian mixture model. Let f(x;u,3) denote
the density of the normal distribution with mean p and covariance matrix 3.
The penalized negative log-likelihood (when the goal is to obtain x clusters)
is of the form

- log[ > kak(ajﬁ,ukazk)] +pA(©), (22)

1€[n] ke[r]
where © gathers all the parameters, meaning, the mixture weights 7y, ..., 7,
the group means pq, ..., s, and the group covariance matrices X, ..., 2.

For instance, assuming that the data has been standardized so that each
feature has sample mean 0 and variance 1, [9] use

INCIEPII A TS (23)
ke[k]

This may be seen as a convex relaxation of

pA(0) =AY > Kuwa#0} =X Y [pxfo- (24)

a€[p] ke[k] ke[r]

Typically, this optimization will result in some coordinates set to zero and
thus deemed not useful for clustering purposes. In another variant, [10] use

pa(©) <A Y max . (25)

ac[p] ke[k

To shrink the difference between every pair of cluster centers for each variable
a, [11] use the pairwise fusion penalty

PA©) =AY > |ttha — twral- (26)

e[p] 1<k<k’<k



Taking into account the covariance matrices, and assuming they are diagonal,

[12] use

pAO)=A1 3, X kel + A2 D0 ) o, — 1 (27)

ke[k] ag[p] ke[k] ae[p]

The assumption that the covariance matrices are diagonal is common in high-
dimensional settings and was demonstrated to be reasonable in the context
of clustering [13]. Note that none of these proposals make the optimization
problem (22) convex or otherwise tractable. The methods are implemented
via an EM-type approach.

Another line of research on sparse clustering is based on coordinate-wise
testing for mixing. This constitutes the feature selection step. The clustering
step typically amounts to applying a clustering algorithm to the resulting
feature space. For example, [14] use a Kolmogorov-Smirnov test against the
normal distribution, while [15] use a (chi-squared) variance test. The latter
is also done in [16] and in [17]. This last paper also studies the case where
the covariance matrix is unknown and proposes an approach via moments.
In a nonparametric setting, [18] use coordinate-wise mode testing.

3. Our method: Sparse Alternate Sum (SAS) Clustering

Hill-climbing methods are iterative in nature, making ‘local’, that is,
‘small’ changes at each iteration. They have been studied in the context
of graph partitioning, e.g., by [19] and [20], among others. In the context
of sparse clustering, we find the K-medoids variant of [21], which includes a
hill-climbing step.

Many of the methods cited in Section 2 use alternate optimization in some
form (e.g., EM), which can be interpreted as hill-climbing. Our method is
instead directly formulated as a hill-climbing approach, making it simpler
and, arguably, more principled than COSA or Sparse K-means.

3.1. Our approach: SAS Clustering

Let C' be an algorithm for clustering based on dissimilarities. Formally,
C:DxNw C, where D is a class of d15$1m11ar1ty matrices and C := Un U.Cr
and for (6, %) e D x N with § of dimension n, C'(6,x) € C*. Note that C could
be a hill-climbing method for graph partitioning, or K-medoids (or K-means
if we are provided with points in a vector space rather than dissimilarities),
or a spectral method, namely, any clustering algorithm that applies to dis-
similarities. (In this paper, we will use K-means for numerical data and
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K-medoids for categorical data using hamming distances as dissimilarities.)
For S c [p], define

05=(04(i,7):aeS;i,je[n]) and & =0y, (28)

Our procedure is described in Algorithm 1.

Algorithm 1  Sparse Alternate Similarity (SAS) Clustering
Input: dissimilarities (0,(7,7) : a € [p],4,j € [n]), number of clusters &,
number of features s
Output: feature set S, group assignment function C'
Initialize: For each a € [p], compute C, « C(8,, ) and then A,[C,]. Let
S c [p] index the smallest s among these.
Alternate between the following steps until ‘convergence’:
1: Keeping S fixed, compute C' < C(dg, k).
2: Keeping C fixed, compute S « argming_, As[C].

The use of algorithm €' in Step 1 is an attempt to minimize C' - Ag[C]
over C' € C*. The minimization in Step 2 is over S c [p] of size s and it
is trivial. Indeed, the minimizing S is simply made of the s indices a € [p]
corresponding to the smallest A,[C']. For the choice of parameters x and s,
any standard method for tuning parameters of a clustering algorithm applies,
for example, by optimization of the gap statistic of [4]. We note that the
initialization phase, by itself, is a pure coordinate-wise approach that has
analogs in the Euclidean setting as mentioned Section 2.2. The hill-climbing
process is the iteration phase.

Remark 2. We tried another initialization in Algorithm 1 consisting of draw-
ing a feature set S at random. We found that the algorithm behaved similarly.
(Results not reported here.)

Compared with COSA and Sparse K-means, and other methods based on
penalties, we note that the choice of features in our SAS algorithm is much
simpler, using a hill-climbing approach instead.

3.2. Number of iterations needed

A first question of interest is whether the iterations improve the purely
coordinate-wise method, defined as the method that results from stopping
after one pass through Steps 1-2 in Algorithm 1 (no iteration). Although
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this is bound to vary with each situation, we examine an instance where the
data come from the mixture of three Gaussians with sparse means. In detail,
the setting comprises 3 clusters with 30 observations each and respective
distributions N (w,I), N(0,I) and N (-p,I), with g = (..., 11,0,...,0)
having 50 p’s and 450 zeros. We assume that x = 3 and s = 50 are both
given, and we run the SAS algorithm and record the Rand indexes [22] and
symmetric differences |S, A S | as the end of each iteration of Steps 1-2. The
setting is repeated 400 times. The means and confidence intervals under
different regimes (u = 0.6, = 0.7, = 0.8, p = 0.9) are shown in Figure 1.
At least in this setting, the algorithm converges in a few iterations and,
importantly, these few iterations bring significant improvements, particularly
over the purely coordinate-wise algorithm.

w=0.6 w=0.7

100

75

&
50 4
o
25 N
0 0
p) 4 6 8 10 2 4 6 8 10
w=0.8 ©w=0.9
100 [ 100
75 1 75
5y
50 | 50 <
_*
25 x R
0 0
2 4 6 8 10 2 4 6 8 10
Iteration number Iteration number

Figure 1: Means (and 95% confidence intervals of the means) of Rand indexes and sym-
metric differences.

3.8. Selection of the sparsity parameter
We consider the problem of selecting x, the number of clusters, as outside
of the scope of this work, as it is intrinsic to the problem of clustering and
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has been discussed extensively in the literature — see [4, 23] and references
therein. Thus we assume that x is given. Besides k, our algorithm has one
tuning parameter, the sparsity parameter s, which is the number of useful
features for clustering, meaning, the cardinality of set S in (10).

Inspired by the gap statistic of [4], which was designed for selecting the
number of clusters x in standard K-means clustering, we propose a permu-
tation approach for selecting s. Let A% denote the average within-cluster
dissimilarity of the clustering computed by the algorithm on the original data
with input number of features s. Let AY”™ denote the same quantity but
obtained from a random permutation of the data — a new sample is gener-
ated by independently permuting the observations within each feature. The
gap statistic (for s) is then defined as

gap(s) = log AP — E(log AP™). (20)

In practice, the expectation is estimated by Monte Carlo, generating B ran-
dom permuted datasets. A large gap statistic indicates a large discrepancy
between the observed amount of clustering and that expected of a null model
(here a permutation of the data) with no salient clusters.

The optimization of the gap statistics over s € [p] is a discrete optimiza-
tion problem. An exhaustive search for s would involve computing p gap
statistics, each requiring B runs of the SAS algorithm. This is feasible when
p and B are not too large.! See Algorithm 2, which allows for coarsening the
grid.

Algorithm 2 SAS Clustering with Grid Search
Input: Dissimilarities (8,(,7) : a € [p],4,j € [n]), number of clusters ,
step size h, number of Monte Carlo permutations B
Output: Number of useful features s, feature set S, group assignment C'
for s =1 to p with step size h do
Run Algorithm 1 to get the feature set S5 and group assignment Cj
Run Algorithm 1 on B permuted datasets to get the gap statistic G
end for
return Let § = argmax, G5 and return S; and C;

To illustrate the effectiveness of choosing s using the gap statistic, we
computed the gap statistic for all s € [p] in the same setting as that of

n our experiments, we choose B = 25 as in the code that comes with [3].
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Section 3.2 with p = 1. The result of the experiment is reported in Figure 2.
Note that, in this relatively high SNR setting, the gap statistic achieves its
maximum at the correct number of features.

15-

1.0-

gap statistic

0.5-

0.0-
0 100 200 300 400 500

sparsity parameter s

Figure 2: A plot of the gap statistic for each s € [p] for a Gaussian mixture with 3
components (30 observations in each cluster) in dimension p = 500.

In this experiment, at least, the gap statistic seems unimodal (as a func-
tion of s). If it were the case, we could use a golden section search, which
would be much faster than an exhaustive grid search.

4. Numerical experiments

We performed a number of numerical experiments, both on simulated
data and on real (microarray) data to compare our method with other pro-
posals. Throughout this section, we standardize the data coordinate-wisely,
we assume that the number of clusters is given, and we use the gap statistic
of [4] to choose the tuning parameter s in our algorithm.

4.1. A comparison of SAS Clustering with Sparse K-means and IF-PCA-
HCT

We compare our Algorithm 1 with IF-PCA-HCT [14] and Sparse K-means
[3] in the setting of Section 3.2. We note that IF-PCA-HCT was specifically
designed for that model and that Sparse K-means was shown to numeri-
cally outperform a number of other approaches, including standard K-means,
COSA [2], model-based clustering [24], the penalized log-likelihood approach
of [9] and the classical PCA approach. We use the gap statistic to tune
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the parameters of SAS Clustering and Sparse K-means. (SAS_gs uses a grid
search while SAS_gss uses a golden section search.) IF-PCA-HCT is tuning-
free — it employs the higher criticism to automatically choose the number
of features.

In Table 1a, we report the performance for these three methods in terms
of Rand index [22] for various combinations of x4 and p. Each situation
was replicated 50 times. As can be seen from the table, SAS Clustering
outperforms IF-PCA-HCT, and performs at least as well as Sparse K-means
and sometimes much better (for example when p = 500 and p = 0.7). We
examine a dataset from this situation in depth, and plot the weights resulted
from Sparse K-means on this dataset, see Figure 3. As seen in this figure, and
also as mentioned in [3], Sparse K-means generally results in more features
with non-zero weights than the truth. These extraneous features, even with
small weights, may negatively impact the clustering result. In this specific
example, the Rand index from Sparse K-means is 0.763 while our approach
gives a Rand index of 0.956. Let S, c [p] denote the true feature set and S
the feature set that our method return. In this example, |S, & S| = 12.

While both SAS Clustering and Sparse K-means use the gap statistic to
tune the parameters, IF-PCA-HCT tunes itself analytically without resort-
ing to permutation or resampling, and (not surprisingly) has the smallest
computational time among these three methods. However, as can be seen
from Table 1la, the clustering results given by IF-PCA-HCT are far worse
than those resulted from the other two methods. In Table 1b, we report the
performance of SAS Clustering and Sparse K-means in terms of the running
time, under the same setting as that in Table 1a but with tuning parameters
for both of the methods given (so that the comparisons are fair). As can
be seen in Table 1b, SAS Clustering shows a clear advantage over Sparse
K-means in terms of the running time, and as p increases, the advantage
becomes more obvious. (Note that both SAS and Sparse K-means are im-
plemented in R code and, in particular, the code is not optimized.)

4.2. A more difficult situation (same covariance)

In Section 4.1, the three groups had identity covariance matrix. In this
section, we continue comparing our approach with Sparse K-means and IF-
PCA-HCT under a more difficult situation, where each of the 3 clusters
have 30 points sampled from different p-variate normal distributions (p =
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W methods p = 100 p = 200 p = 500 p = 1000
SAS_gs  0.907 (0.048) 0.875 (0.066) 0.827 (0.076) 0.674 (0.096)
0.6 SAS_gss  0.900 (0.054) 0.860 (0.066) 0.781 (0.008)  0.701(0.050)
" Sparse K 0.886 (0.068) 0.807 (0.064) 0.744 (0.046)  0.704 (0.043)
IF-PCA  0.664(0.042)  0.645(0.051)  0.605 (0.045)  0.593(0.038)
SAS_gs  0.953 (0.030) 0.965 (0.028) 0.960 (0.032) 0.855 (0.102)
0.7 SAS_gss  0.953 (0.031) 0.961 (0.031) 0.921 (0.088) 0.789 (0.104)
" Sparse K 0.942 (0.045) 0.915 (0.071)  0.802 (0.087)  0.790 (0.087)
IF-PCA  0.681(0.036)  0.653(0.044) 0.629(0.057) 0.614(0.055)
SAS_gs  0.986 (0.020) 0.985 (0.022) 0.987 (0.016) 0.966 (0.052)
0.8 SAS_gss 0.984 (0.020) 0.983 (0.019) 0.987 (0.0178) 0.892 (0.122)
" Sparse K 0.985 (0.020) 0.975 (0.029)  0.961 (0.07)  0.948 (0.074)
IF-PCA  0.691(0.043)  0.675(0.056) 0.639(0.068) 0.623(0.059)
SAS_gs  0.997 (0.008) 0.997 (0.008) 0.997 (0.007)  0.995 (0.010)
0.9 SAS_gss  0.996 (0.010) 0.996 (0.009) 0.997 (0.009) 0.969 (0.076)
" Sparse K 0.996 (0.010) 0.992 (0.013)  0.992(0.016)  0.993 (0.013)
IF-PCA  0.700(0.031)  0.682(0.051) 0.654(0.057) 0.627(0.065)
SAS_gs  0.999 (0.005) 1.000 (0.003)  1.000 (0.003)  0.999 (0.004)
10 SAS_gss  0.998 (0.007) 1.000 (0.003) 1.000 (0.004) 0.998 (0.006)
" Sparse K 0.998 (0.007) 0.999 (0.005) 0.996 (0.010)  0.996 (0.009)
IF-PCA  0.717(0.034)  0.710(0.039) 0.659(0.063) 0.639(0.060)

Table la: Comparison results for the simulations in Section 4.1. The reported values are
the mean (and sample standard deviation) of the Rand indexes over 50 simulations.

100,200,500, 1000), with different mean vectors

py =[1.02,1.04,...,2, 0,...,0 ],
—
p—-50 zeros

Mo =[1.02+6,,1.04+0,,....2+7,, 0,...,0 ],
——
p—-50 zeros

ps = [1.02+26,,1.04+20,,...,2+25,, 0,...,0 ],

——
p-50 zeros

and same diagonal covariance matrix 3 across groups, a random matrix with
eigenvalues in [1,5]. We used 50 repeats and varied d,, from 0.6 to 1.0. The
results are reported in Table 2a. We see there that, in this setting, our
method is clearly superior to Sparse K-means and IF-PCA-HCT. We also
report the symmetric difference |S, & S| between the estimated feature set
S and the true feature set S,, as can be seen in Table 2b. Our algorithm is
clearly more accurate in terms of feature selection.
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0,  methods p = 100 p = 200 p = 500 p = 1000

06 _ SAS 0.086 (0.031) 0.130 (0.044) 0217 (0.088) 0.271 (0.118)
" Sparse K 0.113 (0.034) 0.220 (0.053) 0.445 (0.101) 0.850 (0.156)
07 _ SAS 0077 (0.021) 0.104 (0.027) 0.207 (0.085) 0.316 (0.147)
' Sparse K 0.107 (0.028) 0.235 (0.057) 0.471 (0.123) 0.945 (0.194)
0g _ SAS 0,056 (0.019) 0.083(0.022) 0.182 (0.062) 0.313 (0.118)
© Sparse K 0.091 (0.029) 0.213 (0.051) 0.574 (0.134) 0.984 (0.262)
0o _ SAS 0.055 (0.017) 0.080 (0.024) 0.136 (0.048) 0.289 (0.131)
' Sparse K 0.094 (0.023) 0.196 (0.052) 0.482 (0.101) 0.982 (0.261)
Lo _ SAS T 0.051(0.012) 0.089 (0.021) 0.146 (0.045) 0.272 (0.095)
"~ Sparse K 0.095(0.019)  0.186 (0.044) 0.554 (0.107) 1.225 (0.270)

Table 1b: Comparison of running time of SAS Clustering (with the number of features
s given) and Sparse K-means (with known tuning parameter s in (18)) in the setting of
Section 4.1. Reported is the averaged running time (in seconds) over 100 repeats, with
sample standard deviation in parentheses.

015- ® o

0.10-

Weights

0.05-

0.00-

Feature Index

Figure 3: A typical example of the weights that Sparse K-means returns.

4.8. A more difficult situation (different covariances)

In both Section 4.1 and Section 4.2, the three groups have the same
covariance matrix. In this section, we continue comparing our approach with
Sparse K-means and IF-PCA-HCT under an even more difficult situation,
where the mean vectors are the same as in Section 4.2 with J, = 1.0, but
now the covariances are different: 3, 3y and X3 are random matrices with
eigenvalues in [1,2], [2,3] and [3,4], respectively. We used 50 repeats in
this simulation. The results, reported in Table 3, are consistent with the
results of Section 4.2: our method clearly outperforms Sparse K-means and
I[F-PCA-HCT, both in terms of clustering and feature selection.
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0,  methods p = 100 p = 200 p = 500 p = 1000
SAS_gs  0.718 (0.037) 0.702 (0.037) 0.611 (0.044) 0.574 (0.027)
0.6 SAS gss  0.714 (0.028) 0.692 (0.038) 0.635 (0.044) 0.595(0.026)
" Sparse K 0.590 (0.030) 0.594 (0.034) 0.595 (0.034) 0.571 (0.023)
IF-PCA  0.619(0.037)  0.590(0.037) 0.572 (0.024) 0.564(0.020)
SAS_gs  0.852 (0.047) 0.844 (0.052) 0.797 (0.066) 0.670 (0.082)
0.8 SAS_gss  0.848 (0.050) 0.819 (0.070) 0.752 (0.060) 0.686 (0.043)
" Sparse K 0.662 (0.057) 0.646 (0.063) 0.657 (0.062) 0.639 (0.054)
IF-PCA  0.646(0.040)  0.634(0.047)  0.603(0.046)  0.575(0.040)
SAS_gs  0.940 (0.035) 0.947 (0.033) 0.941 (0.037) 0.919 (0.065)
1.0 SAS_gss  0.935 (0.037) 0.941 (0.038) 0.922 (0.059) 0.799 (0.099)
" Sparse K 0.798 (0.085) 0.814 (0.078) 0.742 (0.080) 0.708 (0.070)
IF-PCA  0.677(0.041)  0.644(0.056)  0.618(0.052)  0.604(0.047)

Table 2a: Comparison of SAS Clustering with Sparse K-means and IF-PCA in the setting
of Section 4.2. Reported is the averaged Rand index over 50 repeats, with the standard
deviation in parentheses.

Notice that the 3 clusters are well separated in the first 50 features as
can be seen from the construction of the data, but when 450 noise features
are present in the datasets, the task of clustering becomes difficult. See Fig-
ure 4(b) as an example where we project a representative dataset onto the
first two principal components of the whole data matrix. However, if we are
able to successfully select out the first 50 features and apply classical cluster-
ing algorithms, then we are able to achieve better results. See Figure 4(a),
where we project the same dataset onto the first two principal components of
the data submatrix consisting of the first 50 columns (features). To illustrate
the comparisons, we also plot in Figure 4 the clustering results by these three
methods.

4.4. Clustering non-euclidean data

In the previous simulations, all the datasets were Euclidean. In this sec-
tion, we apply our algorithm on categorical data (with Hamming distance)
and compare its performance with Sparse K-medoids?. In this example, we
generate 3 clusters with 30 data points each from three different distributions
on the Hamming space of dimension p. Each distribution is the tensor prod-
uct of Bernoulli distributions with success probabilities g, € [0,1] for a € [p].

2We modified the function of Sparse K-means in the R package ‘sparcl’, essentially
replacing K-means with K-medoids, so that it can be used to cluster categorical data.
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0,  methods p = 100 p = 200 p = 500 p = 1000
SAS_gs 26.3(4.7) 37.7(7.9) 86.2 (20.5) 121.0(28.3)
SAS_gss 27.9(5.3) 44.1 (12.1)  100.5 (43.3) 143.1

06 (57.0)
" Sparse K 43.8 (7.3)  86.8(35.3)  163.9(105.9)  170.6 (124.6)
IF-PCA  49.4(3.8)  72.3(15.8)  129.7 (61.4)  185.8(126.3)
SASgs  17.4(3.9) 19.0(3.9) 317 (17.2) 94.2 (48.3)
0g SAS.gss 177 (46) 219 (65) 579 (43.7) 1329 (85.0)
© Sparse K 28.5(13.2)  63.4(28.5)  163.6 (102.9) 218.6 (129.9)
IF-PCA  50.8(5.2)  75.4(16.5)  126.9(61.2)  209.3(130.5)
SASgs 105 (3.7) 102 (3.4) 124 (3.7) 22.7(19.6)
Lo SASgss  1L7(39) 125 (41) 171 (12.8) 1002 (84.8)

Sparse K 13.6 (10.8) 49.7 (38.2) 204.88 (104.5) 265 (165.1)
IF-PCA  49.3(4.0)  67.9(14.1)  124.8(53.3)  226.3(146.7)

Table 2b: Comparison of SAS Clustering with Sparse K-means and IF-PCA in the setting
of Section 4.2. Reported is the averaged symmetric difference over 50 repeats, with the
standard deviation in parentheses.

Method SAS_gs SAS_gss Sparse K-means IF-PCA
Rand index 0.920 (0.054) 0.858 (0.098) 0.710 (0.022) 0.668 (0.041)
N 8.7 (3.8) 13.0 (7.9) 297.2 (75.6) 118.6 (56.8)

Table 3: Comparison of SAS Clustering with Sparse K-means and IF-PCA in the setting
of Section 4.3. Reported are the Rand index and symmetric difference, averaged over 50
repeats. The standard deviations are in parentheses.

For the first distribution, ¢, = ¢ for 1 < a < 5 and ¢, = 0.1 otherwise. For
the second distribution, ¢, = ¢ for 6 < a < 10 and ¢, = 0.1 otherwise. For the
third distribution, ¢, = ¢ for 11 < a <15 and ¢, = 0.1 otherwise. See Table 4,
where we compare these two methods in terms of Rand index for various
combination of ¢ and p. Each situation was replicated 50 times. As can
be seen from the table, SAS Clustering significantly outperforms Sparse K-
medoids in most situations. We examined why, and it turns out that Sparse
K-medoids works well if the tuning parameter s in equation (18) is given,
but it happens that the gap statistic often fails to give a good estimate of s
in this categorical setting. We are not sure why.

4.5. Comparisons as the number of clusters k increases

In Sections 4.1 — 4.4, we have fixed the number of clusters to be 3 and con-
sidered the effects of cluster separation (u, q), sparsity (p) and cluster shape
(Identity covariance, same and different covariance matrices across groups)
in the comparisons. In this section, we continue to compare our approach
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Figure 4: Projection of a dataset from Section 4.3 onto the first two principal components
of the data submatrix, where only the first 50 columns are kept. *Different from the other
5 subfigures, here the data points are projected onto the first two principal components of
the whole data matrix.

with Sparse K-means and IF-PCA-HCT as the number of clusters x increases
from 2 to 10. The set-up here is different from the above sections. We sam-
ple k sub-centers from a 50-variate normal distribution N'(0,0.4 x I5)? and
concatenate each of the sub-centers with 450 zeros to have x random centers,
Uy, B, of length 500, which carry at least 450 noise features. Once the
centers are generated, we construct x clusters with 30 (20 in the second set-
up) observations each, sampled from respective distributions N (p;, Isg0) with
1=1,2,--- k. Each setting is repeated 50 times. The means and confidence

3The constant 0.4 was chosen to make the task of clustering neither too easy nor too
difficult.
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q methods p =30 p =60 p = 100 p = 200

SAS_gs 0.878 (0.060) 0.872 (0.042) 0.864 (0.057) 0.863 (0.053)

Sparse K-medoids ~ 0.694 (0.045)  0.663 (0.054) 0.654 (0.049) 0.639 (0.044)

o7 SAS_gs 0.954 (0.023) 0.960 (0.026) 0.942 (0.026) 0.948 (0.033)
""" Sparse K-medoids  0.807 (0.126) 0.763 (0.077) 0.716 (0.060) 0.686 (0.062)
08 SAS_gs 0.989 (0.011) 0.984 (0.019) 0.983 (0.019) 0.978 (0.021)
*® Sparse K-medoids  0.946 (0.090) 0.889 (0.099) 0.846 (0.100) 0.787 (0.093)
00 SAS_gs 0.998 (0.005) 0.999 (0.003) 0.997 (0.007) 0.997 (0.006)
" Sparse K-medoids  0.997 (0.006) 0.994 (0.036) 0.983 (0.044) 0.966 (0.065)

Table 4: Comparison results for Section 4.4. The reported values are the mean (and
standard error) of the Rand indexes over 50 simulations.

intervals with different x’s are shown in Figure 5(a) and Figure 5(b). Once
again, the results were consistent with earlier results in that SAS Clustering
outperforms IF-PCA-HTC and performs at least as well as Sparse K-means
with different x’s. We also notice that the clustering results given by all these
three methods become better as x increases. This can be explained by the
increased effective sample sizes (30 x k or 20 x k) as k increases.

4.6. Applications to gene microarray data

We compare our approach with others on real data from genetics. Specif-
ically, we consider the same microarray datasets (listed in Table 5) used by
[14] to evaluate their IF-PCA method. Each of these 10 data sets consists
of measurements of expression levels of p genes in n patients from x differ-
ent classes (e.g., normal, diseased). We notice from Table 5 that p is much
greater than n, illustrating a high-dimensional setting. We also mention that,
although the true labels are given by the groups the individuals belong to,
they are only used as the ground truth when we report the classification er-
rors of the different methods in Table 6. For detailed descriptions and the
access to these 10 datasets, we refer the reader to [14].

In Table 6, we report the classification errors of 10 different methods
on these datasets. Among these 10 methods, the results from K-means, K-
means—++ [25], hierarchical clustering, SpectralGem [26] and IF-PCA-HCT
[14] are taken from [14]. We briefly mention that K-means++ is Lloyd’s
algorithm for K-means but with a more careful initialization than purely
random; hierarchical clustering is applied to the normalized data matrix X
directly without feature selection; and SpectralGem is PCA-type method. In
addition to these 5 methods, we also include 3 other methods: AHP-GMM
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Figure 5: Comparison of SAS Clustering with Sparse K-means and IF-PCA in the setting
of Section 4.5. Reported are the means (and confidence intervals) of Rand indexes (y-axis)
as the number of clusters, x (z-axis), increases. For each sub-figure, we separately put the
same plot on the right with the results of SAS Clustering and Sparse K-means only, which
clearly outperform IF-PCA.

[10], which is an adaptively hierarchically penalized Gaussian-mixture-model
based clustering method, Regularized K-means [5], and Sparse K-means [3].

We can offer several comments. First, our method is overall compara-
ble to Sparse K-means and IF-PCA, which in general outperform the other
methods. It is interesting to note that SAS_gss outperforms SAS_gs on a
couple of datasets. However, we caution the reader against drawing hard
conclusions based on these numbers, as some of the datasets are quite small.
For example, the Brain dataset has x = 5 groups and a total sample size
of n =42, and is very high-dimensional with p = 5,597. Second, for Breast
Cancer, Prostate Cancer, SRBCT and SuCancer, all methods perform poorly
with the best error rate exceeding 31%. However, we note that even when
the task is classification where class labels in the training sets are given,
these data sets are still hard for some well-known classification algorithms
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(27, 28]. Third, we notice that in [5], clustering results of the Leukemia and
Lymphoma datasets have also been compared. The error rate on Lymphoma
given by Regularized K-means in [5] is the same as reported here, however,
the error rate on Leukemia is smaller than the result reported here. This is
due to the fact that they applied preprocessing techniques to screen out some
inappropriate features and also imputed the missing values using 5 nearest
neighbors on this data set. Interestingly, [10] also reported a better error
rate on SRBCT data using their AHP-GMM method. However, they split
the data into training set and testing set, fit the penalized Gaussian mixture
model and report the training error and testing error respectively.

# Data Name & P n (with sample size from each cluster)
1 Brain 5 5597 42 (10+10+10+4438)
2 Breast 2 22215 276 (183493)

3 Colon 2 2000 62 (22440)

4 Lung 2 12533 181 (150+-31)

5 Lung(2) 2 12600 203 (139+64)

6  Leukemia 2 3571 72 (47425)

7 Lymphoma 3 4026 62 (4249+11)

8 Prostate 2 6033 102 (50+52)

9 SRBCT 4 2308 63 (234+8+12+20)
10 SuCancer 2 7909 174 (83+91)

Table 5: 10 gene microarray datasets.

5. Conclusion

We presented here a simple method for feature selection in the context
of sparse clustering. The method is arguably more natural and simpler to
implement than COSA or Sparse K-means. At the same time, it performs
comparably or better than these methods, both on simulated and on real
data.

At the moment, our method does not come with any guarantees, other
than that of achieving a local minimum if the iteration is stopped when no im-
provement is possible. Just like other iterative methods based on alternating
optimization, such as Lloyd’s algorithm for K-means, proving a convergence
to a good local optimum (perhaps even a global optimum) seems beyond
reach at the moment. COSA and Sparse K-means present similar challenges
and have not been analyzed theoretically. IF-PCA has some theoretical guar-
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antees developed in the context of a Gaussian mixture model [14] — see also

[15].

More theory for sparse clustering is developed in [16, 17, 18].
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