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Abstract

Defective distributions model cure rates by changing the usual domain of its parameters in a way that their survival

functions converge to a value p ∈ (0, 1). A new way to generate defective distributions to model cure fractions is

proposed. The new way relies on a property derived from the Marshall Olkin family of distributions. To exemplify

this new result we use the extended Weibull distribution and introduce ten new defective distributions. A regression

approach for these models is also proposed. Estimation by maximum likelihood is discussed and their asymptotes

verified through simulations. Practical use is illustrated by applications to four real data sets.

Keywords: Defective distributions, Extended Weibull distribution, Long-term survivors, Regression modeling,

Survival analysis.

1. Introduction

Modeling of a cure fraction, also known as long-term modeling, is a part of survival analysis. It studies cases

where supposedly there are observations not susceptible to the event of interest. Such cases require special theoretical

treatment, in a way that the modeling assumes the existence of such observations. In the standard theory of survival

analysis the survival function S (t) tends to zero as time increases. We need to use some strategy to make the survival

function converge to a value p ∈ (0, 1), representing the cure rate.

The method most commonly used is the standard mixture model, initially proposed by [8] and [7]. The model

is described by S (t) = p + (1 − p)S 0(t), where S 0(t) is a proper survival function. Common choices for S 0(t) are

the Weibull, Gompertz and lognormal distributions [19]. [39] proposed a non-mixture model defined in terms of a

cumulative hazard rate function. Its survival function has the form S (t) = pF0(t), where F0(t) represents a proper

distribution function. More about this method can be found in [28]. Many other methods are known for cure rate

modeling, see, for example, [11], [34], [29] and the book [26].

Recently, there has been much interest with respect to cure rate models and many different approaches have been

proposed to estimate quantities of interest. [10] proposed some Bayesian models to estimate cure fractions. [38]
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discussed maximum likelihood techniques for cure models having a Cox proportional hazards structure. [35] used the

Conway-Maxwell Poisson as the distribution of competing causes, as proposed in [34]. In [42], a unified approach

is presented based on the Box-Cox transformation. In [30], an extension of the model presented in [42] is proposed

and some model selection criteria are discussed. [1] proposed an expectation-maximization algorithm for estimation

of the model proposed in [35], where the time-to-event was assumed to follow the exponential distribution. [3], [2]

and [4] developed expectation-maximization algorithms with the time-to-event following the Weibull, lognormal and

generalized gamma distributions.

Another way to model cure rates is to use defective distributions as explored in this paper. Defective distributions

are characterized by having probability density functions which integrate to values less than 1 when the domain of

some of their parameters is different from that usually defined. There is not so much literature about these distributions.

There are at least two distributions in the literature that can be used for defective modeling: the Gompertz and inverse

Gaussian distributions. The use of these defective distributions became more appealing after the works of [5] and [6],

although some previous papers have used the same idea. In [41], the term “defective” was used to refer to the inverse

Gaussian distribution that allows one of its parameters to be negative.

The Gompertz distribution becomes defective when its shape parameter is negative. It first appeared in [17], where

it was used to model a breast cancer data set. [9] applied a modified version of this distribution to a pediatric cancer

data set. [15] extended the distribution to include covariates. More recently, [33] performed Bayesian estimation of

this distribution.

The inverse Gaussian distribution was first proposed in [37] for calculating the first time passage probability of a

one-dimensional Brownian motion (Wiener process). More details were studied in [40] and [41]. Defective versions

were investigated in [5] and [6], with classical and Bayesian approaches.

Having only two distributions is not enough to provide sufficient flexibility. In this paper, we derive a useful

property of the Marshall Olkin family [27] of distributions which allows one to generate new defective distributions.

The details are given in Section 2, including estimation by the method of maximum likelihood and an approach to

include covariate information. Simulation studies are performed in Section 3 in order to check the usual asymptotic

properties of maximum likelihood estimators and to assess the quality of maximum likelihood estimators. Four real

data applications of the proposed methodology are illustrated in Section 4. Some concluding remarks are given in the

last section.

In short, the contributions of this paper to the literature are: i) derive a new property of the Marshall Olkin family

of distributions which allows for the construction of numerous defective distributions; ii) propose ten new defective

distributions in order to exemplify the derived property; iii) illustrate the performance of such distributions through

simulations and applications to real data sets.
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2. Methodology

In this section, we present details about the Marshall Olkin family of distributions and derive a new property of

this family that can be very useful for cure rate modeling. We also discuss the extended Weibull family of distribu-

tions, which together with the Marshall Olkin family can generate a whole set of new distributions for cure fraction

estimation. Furthermore, we discuss details of maximum likelihood estimation and an approach to use the proposed

distributions as regression models.

2.1. The Marshall Olkin family

Let f (t), S (t) and λ(t) denote, respectively, the density, survival and hazard rate functions associated with a baseline

distribution. The Marshall Olkin (MO) family, proposed in [27], extends the baseline distribution by adding an extra

shape parameter, leading to a more flexible distribution often capable of providing better fits. The density, survival

and hazard rate functions of the Marshall Olkin family are

fMO(t; r) =
r f (t)

[1 − (1 − r)S (t)]2 , (1)

S MO(t; r) =
rS (t)

1 − (1 − r)S (t)
, (2)

λMO(t; r) =
λ(t)

1 − (1 − r)S (t)
(3)

for t > 0 and r > 0.

There has been much work on the Marshall Olkin family of distributions. Many authors have derived details for

particular Marshall Olkin distributions. For some examples, see [21] for the Marshall Olkin-uniform distribution,

[12] for the Marshall Olkin-Pareto distribution, [14] for the Marshall Olkin-Weibull distribution, [13] for the Mar-

shall Olkin-Lomax distribution, [32] for the Marshall Olkin-gamma distribution and [20] for the Marshall Olkin-beta

distribution.

Theorem 2.1 derives a new property of the Marshall Olkin family that relates to the theory of defective distribu-

tions. This new property allows one to generate of new defective distributions.

Theorem 2.1. Suppose S (t) is an improper non-decreasing survival function satisfying lim
t→∞

S (t) = ∞, S (t) ≥ 1,

∀t ≥ 0, with the associated density function f (t) ≤ 0, ∀t ≥ 0. Then, the Marshall Olkin distribution given by (1) and

(2), for r < 0, is a defective distribution.

Proof: If lim
t→∞

S (t) = ∞ then

lim
t→∞

S MO(t; r) = lim
t→∞

rS (t)
1 − (1 − r)S (t)

L′H
=

rS ′(t)
(r − 1)S ′(t)

=
r

r − 1
,
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where L′H indicates the use of the L’Hôpital rule. If r < 0 then r
r−1 ∈ (0, 1). Also, if f (t) ≤ 0, ∀t ≥ 0 then fMO(t; r) is

a positive density. The survival function

S MO(t; r) =
rS (t)

1 − S (t) + rS (t)
=

−rS (t)
−rS (t) + [S (t) − 1]

is positive, since r is negative and S (t) ≥ 1. It is also non-increasing, as long as S (t) is non-decreasing. The proof is

complete. �

For example, the exponential distribution has survival function S (t) = exp(−at), a > 0. If a < 0, then lim
t→∞

S (t) =

∞, S (t) ≥ 1, ∀t ≥ 0, is non-decreasing and the respective density function is negative, for all t. Then the exponen-

tial distribution satisfies the conditions of Theorem 2.1. Therefore, the Marshall Olkin-exponential distribution is a

defective distribution when a < 0 and r < 0.

Theorem 2.1 still holds for other values of lim
t→∞

S (t). If lim
t→∞

S (t) = M, with M ≥ 0, we have the cases: i) M = 0 then

S (t) is a proper survival function and therefore there is no cure rate; ii) M ∈ (0, 1), then the distribution is defective by

definition; iii) M = 1, then the distribution is degenerate with the cure rate of 1 (no one would be susceptible to the

event of interest); iv) M > 1, then the limiting cure rate will be rM/(rM + 1 − M). If lim
t→∞

S (t) = M, with M < 0, or

lim
t→∞

S (t) = −∞, then Theorem 2.1 still holds if S (t) ≤ 1, ∀t > 0 and S (t) is non-increasing.

Note that S MO(t; r) = S (t) if and only if r = 1. If S (t) > 1 then S MO(t; r) increases as r becomes increasing

negative. If S (t) < 1 then S MO(t; r) decreases as r becomes increasing negative. Also lim
r→−∞

S MO(t; r) = 1.

Section 2.2 shows that a known family of extended Weibull distributions can give ideal choices for S (t).

2.2. The extended Weibull distribution

The extended Weibull (EW) distribution, firstly proposed in [16], generalizes the Weibull distribution by means

of a non-negative monotonically increasing function H(t,γ), where γ is a vector of k parameters. Its density, survival

and hazard rate functions are

fEW (t; v,γ) = v h(t,γ) exp
[
−vH(t,γ)

]
, (4)

S EW (t; v,γ) = exp
[
−vH(t,γ)

]
, (5)

λEW (t; v,γ) = v h(t,γ) (6)

for t > 0, v > 0 and h(t,γ) = dH (t,γ) /dt.

Different choices for H(t,γ) lead to different extended Weibull distributions. Table 1 lists ten extended Weibull

distributions which will be used to illustrate Theorem 2.1. They were selected from [36].

Some more distributions for positive data can be obtained from the extended Weibull family: the Pareto distribution

for H(t,γ) = log(t/a), t ≥ a; the log-logistic distribution for H(t,γ) = log (1 + ta); the Fréchet distribution for

H(t,γ) = t−a; the exponential power distribution for H(t,γ) = exp
[
(at)b

]
− 1; the Pham distribution for H(t,γ) =(

at)b
− 1, among others. For more details, see [36].
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Figure 1: From the left to the right, from the top to the bottom, the density and survival functions of the proposed distributions, in the same order

presented in Table 1. The parameter values used are u = (−0.2,−0.5,−1,−0.2,−0.5,−1), v = (−0.5,−0.5,−0.5,−2,−2,−2), a = (0.5, 0.5, 1, 1, 2, 2),

b = (1, 1, 2, 2, 0.5, 0.5) and c = (2, 2, 0.5, 0.5, 1, 1). The colors are (black, red, green, blue, light blue, pink).
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Table 1: Some particular cases of the extended Weibull distribution.

Distribution H(t,γ) Parameters in γ

Exponential t ∅

Rayleigh t2 ∅

Lomax log(1 + t) ∅

Weibull ta a > 0

Gompertz
[
exp(at) − 1

]
/a a > 0

Burr XII log (1 + ta) a > 0

Chen exp (ta) − 1 a > 0

Modified Weibull ta exp(bt) a ≥ 0, b > 0

Weibull extension a
{
exp

[
(t/a)b

]
− 1

}
a > 0, b > 0

Traditional Weibull tb [
exp (atc) − 1

]
a ≥ 0, b ≥ 0, c > 0

Note that some distributions in Table 1 are generalizations of others: the exponential and Rayleigh distributions are

particular cases of the Weibull distribution for a = 1 and a = 2, respectively; the Lomax distribution is the particular

case of the Burr XII distribution for a = 1; the Weibull distribution is the particular case of the modified Weibull

distribution for b = 0; the Chen and Gompertz distributions are particular cases of the Weibull extension distribution

for a = 1 and a′ = a−1, b = 1, respectively; the Weibull distribution is the particular case of the Chen distribution for

a = 1, b = 0.

If v < 0 then lim
t→∞

S EW (t; v,γ) = ∞ provided that H (t,γ) is non-negative and monotonically increasing. Also, it is

easy to check that S EW (t; v,γ) ≥ 1, is non-decreasing and fEW (t; v,γ) ≤ 0, ∀t ≥ 0, when v < 0. So, any member of

the extended Weibull family that uses v as a parameter can be used to generate a defective distribution. This class of

distributions is a good example on how one can build defective cure rate models. At first, there are no reasons why this

class is more compelling than any other choice. But the class incorporates several common choices in the literature

into one. Any function H (t,γ) that satisfies the conditions of the class can be used to generate a cure rate model.

The Marshall Olkin-extended Weibull (MOeW) distributions are obtained by combining (4), (5), (6) and (1), (2),

(3), i.e., by using the extended Weibull distribution as a baseline distribution for the Marshall Olkin family. It is

important to note that, for v < 0, (4) and (5) are no longer density and survival functions. In this sense, the MOeW

is not, precisely, a distribution belonging to the Marshall Olkin family. However, for convenience, we denote it as

a distribution of the family. Moreover, properties of these special functional forms have not been studied in the

literature, yet. Because of that, we cannot use properties of the extended Weibull family to derive any result for the

MOeW distribution. The resulting density, survival and hazard rate functions are

fMOeW (t; r, v,γ) =
r v h (t,γ) exp

[
−vH (t,γ)

]{
1 − (1 − r) exp

[
−vH (t,γ)

]}2 , (7)
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S MOeW (t; r, v,γ) =
r exp

[
−vH (t,γ)

]
1 − (1 − r) exp

[
−vH (t,γ)

] , (8)

λMOeW (t; r, v,γ) =
v h (t,γ)

1 − (1 − r) exp
[
−vH (t,γ)

] .
The extra parameter of the Marshall Olkin family shifts the hazard rate of the new distribution above, or below,

the hazard rate of the baseline distribution [? ]. This means that λMO(t) ≤ λ(t), when r ≥ 1 and λMO(t) ≥ λ(t),

when 0 < r ≤ 1, for all t. The resulting distribution under the Marshall Olkin family has a more flexible hazard rate

function than the baseline hazard rate function. On the other hand, one of the merits of the extended Weibull class is

the flexibility of its hazard rate function, given by (6). Therefore, one can expect a duplicated effect when both classes

are combined.

The ten different functions in Table 1 lead to ten different defective distributions. Figure 1 plots the density and

survival functions of all distributions proposed in Table 1. This collection of distributions can be very flexible. The

black and blue curves in the figure have the same cure rate of −0.2/(−0.2 − 1) = 1/6. The red and light blue curves

have the curve rate of −0.5/(−0.5 − 1) = 1/3. The green and pink curves have the cure rate of −1/(−1 − 1) = 1/2.

We have used the extended Weibull family to generate defective distributions. The generated distributions give

good fits to the data considered in this paper. But other distributions could have been used to generate defective

versions via Theorem 2.1. As an example, consider the Maxwell-Boltzmann distribution specified by the density and

survival functions

fMB(t; a) = a−3t2 exp
(
−

t2

2a2

)
√

2π−1,

S MB(t; a) = 1 − erf
(

t
√

2a

)
+

t exp
(
− t2

2a2

) √
2π−1

a

for t > 0, where a > 0 is a scale parameter and erf(t) = 2π−
1
2

∫ t

0
e−x2

dx denotes the error function. The error function

approaches 1 as t → ∞ and approaches −1 as t → −∞. If a < 0 we have

lim
t→∞

S MB(t; a) = 1 − (−1) + 0 = 2.

We also have that fMB(t; a) ≤ 0, S MB(t; a) ≥ 1 and S MB(t; a) is non-decreasing, ∀t > 0. So, this distribution under the

Marshall Olkin family is defective when a < 0 and r < 0. Its cure rate is 2r/(2r + 1 − 2) = r/(r − 0.5).

2.3. Inference

Here, we present a procedure to obtain maximum likelihood estimates for the MOeW distribution. We consider

data with right-censored information. LetD = (t, δ), where t = (t1, . . . , tn)′ are the observed failure times and δ =

(δ1, . . . , δn)′ are the right-censored times. The δi is equal to 1 if a failure is observed and 0 otherwise. Suppose

that the data are independently and identically distributed and come from a distribution with density and survival

functions specified by f (·, θ) and S (·, θ), respectively, where θ = (r, v,γ)′ denotes a vector of k + 2 parameters. The

7



log-likelihood function of θ can be written as

l (θ,D) = log L (θ,D) = const +

n∑
i=1

δi log f (ti, θ) + (1 − δi) log S (ti, θ) . (9)

By (7) and (8), the log-likelihood function for the MOeW distribution is

l (θ,D) = const + n log(r) − v
n∑

i=1

H (ti,γ) −
n∑

i=1

(1 + δi) log
{
1 − (1 − r) exp

[
−vH (ti,γ)

]}
+

n∑
i=1

δi log
[
vh (ti,γ)

]
.

The maximum likelihood estimates are the simultaneous solutions of ∂l(θ,D)
∂r = 0, ∂l(θ,D)

∂v = 0 and ∂l(θ,D)
∂γ j

= 0. The

estimates are obtained using the BFGS algorithm of maximization, which is an option for the optim function in R

[31].

If θ̂ denotes the maximum likelihood estimator of θ then it is well known that the distribution of θ̂ − θ can be

approximated by a (k + 2)-variate normal distribution with zero means and covariance matrix I−1
(̂
θ
)
, where I (θ)

denotes the observed information matrix defined by

I (θ) = −

(
∂2l (θ,D)
∂θi∂θ j

)
for i and j in 1, 2, . . . , k + 2. This approximation can be used to deduce confidence intervals and tests of hypotheses.

For example, an approximate 100(1 − α) percent confidence interval for θi is
(
θ̂i − zα/2

√
Iii, θ̂i + zα/2

√
Iii

)
, where Iii

denotes the ith diagonal element of the inverse of I and za denotes the 100(1 − a) percentile of a standard normal

random variable.

Asymptotic normality of the maximum likelihood estimates holds only under certain regularity conditions. These

conditions are not easy to check analytically for our models. Section 3 performs a simulation study to see if the

usual asymptotes of the maximum likelihood estimates hold. Simulations have been used in many papers to check the

asymptotic behavior of maximum likelihood estimates, especially when an analytical investigation is not trivial.

2.4. Defective Marshall Olkin-G regression model

The use of covariate information is essential when analysing survival data. Here, we discuss an approach on how

to include covariate information to the proposed models. The approach has a simple interpretation as we shall see.

Suppose x′ =
(
1, x1, . . . , xp

)
is a vector of covariates from a data set and β′ =

(
β0, β1, . . . , βp

)
a vector of regression

coefficients. We are going to set r(x) = − exp (β′x) to link the cure rate to the covariates. This way, the Marshall

Olkin-G regression model is given by

S (t|x) =
r(x)S (t)

1 − [1 − r(x)] S (t)
=

exp (β′x) S (t)[
1 + exp (β′x)

]
S (t) − 1

for t > 0. If S (t) has a cure rate of p then that of S (t|x) is

p = lim
t→∞

S (t|x) =
r(x)

r(x) − 1
=

exp (β′x)
1 + exp (β′x)

. (10)
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This way, the cure fraction is easily calculated through the logit function. This approach is attractive because of

the way the cure rate depends on the regression coefficients, making it very easy to interpret. If β′x increases, so does

the cure rate (towards 1). If β′x decreases, so does the cure rate (towards 0).

The MOeW regression model is given by

S (t|x) =
r(x) exp

[
−vH (t,γ)

]
1 − [1 − r(x)] exp

[
−vH (t,γ)

] =
exp (β′x) exp

[
−vH (t,γ)

][
1 + exp (β′x)

]
exp

[
−vH (t,γ)

]
− 1

.

An application is presented in Section 4.4. A much more detailed application of the regression models will be the

focus of a future paper.

3. Simulation studies

Here, we assess the performance of the maximum likelihood estimates with respect to sample size to show, among

other things, that the usual asymptotes of maximum likelihood estimators still hold for defective distributions. The

assessment is based on simulations. The description of data generation and details of the distributions simulated from

are described below. All computations were performed in R [31].

Suppose that the time of occurrence of an event of interest has cumulative distribution function F(t). We want to

simulate a random sample of size n containing real times, censored times and a cure fraction of p. An algorithm for

this purpose is:

• Determine the desired parameter values, as well as the value of the cure fraction p;

• For each i = 1, . . . , n, generate a random variable Mi ∼ Bernoulli(1 − p);

• If Mi = 0 set t′i = ∞. If Mi = 1 take t′i as the root of F(t) = u, where u ∼ uniform(0, 1 − p);

• Generate u′i ∼ uniform
(
0,max

(
t′i
))

, for i = 1, . . . , n, considering only the finite t′i ;

• Calculate ti = min
(
t′i , u

′
i

)
. If ti < u′i set δi = 1, otherwise set δi = 0.

We took the sample size to vary from 50 to 1000 in steps of 50. Each sample was replicated 1000 times. The

variance of the cure rate p was estimated using the delta method with first order Taylor’s approximation. We chose

only four of our proposed distributions: the Marshall Olkin-Lomax distribution with (r, v) = (−1,−10), the simulation

results for which are shown in Figure 2; the Marshall Olkin-Weibull distribution with (r, v, a) = (−1,−2, 3), the

simulation results for which are shown in Figure 3; the Marshall Olkin-Chen distribution with (r, v, a) = (−1,−2, 2),

the simulation results for which are shown in Figure 4; the Marshall Olkin-Burr XII distribution with (r, v, a) =

(−1,−2, 2), the simulation results for which are shown in Figure 5. For the purpose of comparison, we have fixed

r = −1 for all simulations, which leads to a cure rate of 0.5.

We can observe the following from the figures: the biases for each parameter approach zero as sample size

increases; the biases for each parameter appear small enough for all n ≥ 600; the mean squared errors for each

parameter decrease to zero as sample size increases; the mean squared errors for each parameter appear small enough

9
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Figure 2: Mean squared errors, biases, coverage probabilities and coverage lengths of the estimators of r, v and p versus n for the Marshall

Olkin-Lomax distribution with (r, v) = (−1,−10).
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Figure 3: Mean squared errors, biases, coverage probabilities and coverage lengths of the estimators of r, v, a and p versus n for the Marshall

Olkin-Weibull distribution with (r, v, a) = (−1,−2, 3).
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Figure 4: Mean squared errors, biases, coverage probabilities and coverage lengths of the estimators of r, v, a and p versus n for the Marshall

Olkin-Chen distribution with (r, v, a) = (−1,−2, 2).
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Figure 5: Mean squared errors, biases, coverage probabilities and coverage lengths of the estimators of r, v, a and p versus n for the Marshall

Olkin-Burr XII distribution with (r, v, a) = (−1,−2, 2).
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for all n ≥ 600; the coverage probabilities for each parameter stay mostly in the interval (0.936, 0.964); the coverage

lengths for each parameter decrease fast to zero as sample size increases; the coverage lengths for each parameter

appear small enough for all n ≥ 600.

Similar observations held when the simulations were repeated for other defective distributions and for a wide range

of parameter values under the Marshall Olkin family. In particular, the biases always approached zero as sample size

increased, the biases for each parameter always appeared small enough for all n ≥ 600, the mean squared errors

always approached zero as sample size increased, the mean squared errors for each parameter always appeared small

enough for all n ≥ 600, the coverage probabilities always stayed mostly in the interval (0.936, 0.964), the coverage

lengths always decreased fast to zero as sample size increased and the coverage lengths for each parameter always

appeared small enough for all n ≥ 600.

4. Real data applications

Here, we present applications to four real data sets. For the first three data sets, we are only considering the event

times and censoring information, with no covariates. The fourth data set contains covariate information and is used to

illustrate the model proposed in Section 2.4. The ten defective distributions discussed in Section 2.2 are fitted to each

data set. The following are used to distinguish between the fitted distributions: the Akaike information criterion (AIC),

the Bayesian information criterion (BIC), the consistent Akaike information criterion (CAIC) and visual comparison

of the fitted survival curves and the Kaplan-Meier [22] curve. All the computations were performed using the R

software [31]. optim was used to maximize the log-likelihood function. The algorithm “BFGS” was chosen for

maximization. For computational stability, the observed times in each data set were divided by their maximum value.

The parameters r and v were set free to take any value on the real line. Negative estimates of r and v correspond to a

defective model. Positive estimates of r and v correspond to a proper survival model.

The four data sets were chosen to show a variety of survival curves and sample sizes. Each data set is supposed

to contain observations not susceptible to the event of interest. In practice, it is unknown if the event of interest could

be observed if enough time was given. An evidence of existence of cured individuals is when the Kaplan-Meier curve

reaches a plateau between zero and one. In some cases that is more clear than others, as one can see in our examples.

We can assume that some of the censored observations at the end of the study belong to the cured group. If everyone

censored at the end are indeed cured, then the plateau reached by the Kaplan-Meier curve is a good estimate of the

cure fraction. In general, a lower value of this plateau or a value close to it is an acceptable estimate.

4.1. Leukemia data

This data set relates to a study of recurrence of leukemia in patients who were submitted to a certain kind of

transplantation. Leukemia is a type of cancer that affects the white blood cells produced by the bone marrow and can

take several forms. There are 44 observed times, of which 9 were censored (20.45 percent). The overall survival is the
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average observed time in a study, including the censored elements. For this data set, the overall survival is 0.99 years.

For details of this data, see [23]. The Kaplan-Meier curve for this data stabilizes at 0.1988. It appears quite safe to

say that this value is an asymptote of the curve.

Table 2: MLEs for the fitted distributions and some measures for the leukemia data set.
MO-Distribution r̂ v̂ â b̂ ĉ p̂ AIC BIC CAIC

Exponential -0.2798 -3.5807 - - - 0.2186 -54.86 -51.29 -54.57

Rayleigh -0.1932 -37.6941 - - - 0.1619 -75.39 -71.82 -75.10

Lomax -0.2296 -2.9506 - - - 0.1867 -54.03 -50.46 -53.74

Weibull -0.2064 -33.0993 1.9246 - - 0.1711 -73.50 -68.15 -72.90

Gompertz -0.2557 -2.5202 6.3571 - - 0.2036 -58.31 -52.96 -57.71

Burr XII -0.2103 -35.3517 1.9384 - - 0.1738 -73.93 -68.58 -73.33

Chen -0.2015 -30.8096 1.9111 - - 0.1677 -73.00 -67.65 -72.40

Modified Weibull -0.2064 -33.224 1.9259 0.0002 - 0.1711 -71.50 -64.37 -70.48

Weibull extension -0.2053 -56.4223 1.935 1.9045 - 0.1703 -71.36 -64.22 -70.33

Traditional Weibull -0.2057 -1.6413 3.1087 1.5997 0.1237 0.1706 -69.09 -60.17 -67.51

The fitted results are summarized in Table 2 and Figure 6. Every distribution is estimated as a defective distribu-

tion. The cure rate estimates are around 0.02 lower than the value suggest by the Kaplan-Meier curve. The Marshall

Olkin-Rayleigh distribution gives the smallest values for AIC, BIC and CAIC, suggesting it fits better than the oth-

ers. Its estimate of the cure fraction is furthest from the one suggested by the Kaplan-Meier curve, 0.1619, but still

an acceptable estimate. The Marshall Olkin-Weibull, Marshall Olkin-Burr XII, Marshall Olkin-Chen and Marshall

Olkin-Modified Weibull distributions also provide reasonable fits. All other distributions perform poorly. Visual com-

parison of the fitted survival curves and the Kaplan-Meier curve shows that the Marshall Olkin-Exponential, Marshall

Olkin-Lomax, Marshall Olkin-Gompertz and Marshall Olkin-Weibull extension distributions provide the worst fits.

4.2. Colon data

This data set arises from one of the first successful trials of adjuvant chemotherapy for colon cancer. The event

of interest here is the recurrence or death for the individual under the proposed treatment. There are 1858 observed

times, of which 938 were censored (50.58 percent). For this data set, the overall survival is 4.21 years. For details

of this data, see [24]. The Kaplan-Meier curve for this data stabilizes at 0.4651. However, we can see some subjects

failing near the end of the study. So, values of the cure rate a little lower than what the Kaplan-Meier curve suggests

are expected and acceptable.

The fitted results are summarized in Table 3 and Figure 7. All of the fitted distributions are estimated to being

defective. The Marshall Olkin-Lomax distribution estimates the cure fraction as 0.1858, far lower than the Kaplan-

Meier plateau. The Marshall Olkin-Exponential distribution gives the estimate 0.3699 and the Marshall Olkin-Weibull

distribution gives the estimate 0.4198. All others give a value very close to the Kaplan-Meier estimate. The Marshall

Olkin-Burr XII distribution has the smallest values for AIC, BIC and CAIC. This distribution gives a cure rate of
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Figure 6: Fitted distributions for the leukemia data set.
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Figure 7: Fitted distributions for the colon data set.
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Table 3: MLEs for the fitted distributions and some measures for the colon data set.
MO-Distribution r̂ v̂ â b̂ ĉ p̂ AIC BIC CAIC

Exponential -0.5871 -1.2272 - - - 0.3699 1531.10 1542.15 1531.10

Rayleigh -0.8655 -8.6495 - - - 0.464 1668.31 1679.36 1668.32

Lomax -0.2282 -0.4812 - - - 0.1858 1537.00 1548.06 1537.01

Weibull -0.8805 -3.6376 1.367 - - 0.4682 1462.36 1478.94 1462.38

Gompertz -0.9101 -1.6598 1.9054 - - 0.4765 1516.68 1533.27 1516.70

Burr XII -0.8381 -3.9545 1.4167 - - 0.456 1456.53 1473.11 1456.54

Chen -0.9114 -3.0808 1.2918 - - 0.4768 1474.74 1491.32 1474.75

Modified Weibull -0.8809 -3.6404 1.3672 0.0014 - 0.4683 1464.39 1486.50 1464.41

Weibull extension -0.8805 -14.1338 40.9902 1.366 - 0.4682 1464.42 1486.52 1464.44

Traditional Weibull -0.8805 -1.3754 1.2936 1.355 0.0068 0.4682 1466.37 1494.00 1466.40

0.456, slightly lower than the Kaplan-Meier estimate and is probably the best for this data. Note that the Marshall

Olkin-Weibull, Marshall Olkin-Modified Weibull, Marshall Olkin-Weibull extension and Marshall Olkin-Traditional

Weibull distributions give practically the same cure rate estimate of 0.4682, very close to the Kaplan-Meier estimate.

Visual comparison of the fitted survival curves and the Kaplan-Meier curve shows that the Marshall Olkin-

Rayleigh distribution gives the worst fit (and the worst measures for AIC, BIC and CAIC too). The Marshall Olkin-

Exponential and Marshall Olkin-Lomax distributions provide a better comparison, but their fits are worst than all

others (also in agreement with the AIC, BIC and CAIC values). The remaining distributions seem to fit the Kaplan-

Meier curve well. The cure rate asymptotes for the Marshall Olkin-Modified Weibull, Marshall Olkin-Exponential

and Marshall Olkin-Lomax distributions are after the end of the study.

4.3. Divorce data

This data set collected in the USA describes married couples and the event of interest is the divorce. Of course,

that event may never occur, there is a high censoring in this data set. The cure elements are those couples who will

never divorce. There are 3371 observed times, of which 2339 were censored (69.38 percent). The maximum observed

time was 73.07 years and the overall survival is 18.41 years. For details of this data, see [25]. The Kaplan-Meier

curve for this data stabilizes at 0.5566. It appears quite safe to say that this value is an asymptote of the curve. Almost

no failures were observed in the second half of the period of study. So, we can expect a real cure fraction quite close

to the Kaplan-Meier estimate.

The fitted results are summarized in Table 4 and Figure 8. The Marshall Olkin-Chen distribution has the smallest

values for AIC, BIC and CAIC. Its cure estimate is 0.5555, the closest to the Kaplan-Meier estimate. Its fit captures

the Kaplan-Meier curve very well. Therefore, we can consider Marshall Olkin-Chen distribution as giving the most

adequate fit. The Marshall Olkin-Modified Weibull, Marshall Olkin-Weibull extension and Marshall Olkin-Traditional

Weibull distributions also give very close fits as the Marshall Olkin-Chen distribution. Their measures differ basically

because of the difference in the number of parameters. The simplest Marshall Olkin-Exponential, Marshall Olkin-

18



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Event times

S
ur

vi
va

l C
ur

ve
s

Kaplan−Meier
MO−Exponential
MO−Rayleigh
MO−Lomax

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Event times

S
ur

vi
va

l C
ur

ve
s

Kaplan−Meier
MO−Weibull
MO−Gompertz

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Event times

S
ur

vi
va

l C
ur

ve
s

Kaplan−Meier
MO−Burr XII
MO−Chen

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Event times

S
ur

vi
va

l C
ur

ve
s

Kaplan−Meier
MO−Modified Weibull
MO−Weibull Extension
MO−Traditional Weibull

Figure 8: Fitted distributions for the divorce data set.
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Table 4: MLEs for the fitted distributions and some measures for the divorce data set.
MO-Distribution r̂ v̂ â b̂ ĉ p̂ AIC BIC CAIC

Exponential -0.7037 -1.3674 - - - 0.4130 1532.16 1544.41 1532.17

Rayleigh -1.2283 -16.5389 - - - 0.5512 1633.88 1646.13 1633.89

Lomax -0.2604 -0.5045 - - - 0.2066 1538.82 1551.07 1538.83

Weibull -1.2215 -5.8018 1.4083 - - 0.5499 1435.90 1454.27 1435.90

Gompertz -1.2622 -1.9082 3.9220 - - 0.5579 1471.46 1489.82 1471.46

Burr XII -1.1819 -6.1051 1.4355 - - 0.5417 1437.27 1455.64 1437.28

Chen -1.2498 -5.2752 1.3694 - - 0.5555 1435.01 1453.38 1435.02

Modified Weibull -1.2350 -5.3745 1.3820 0.2300 - 0.5526 1437.73 1462.22 1437.74

Weibull extension -1.2497 -5.2844 1.0033 1.3696 - 0.5555 1437.01 1461.51 1437.03

Traditional Weibull -1.2499 -5.2052 1.0112 0.0036 1.3651 0.5555 1439.02 1469.64 1439.04

Rayleigh and Marshall Olkin-Lomax distributions all give poor fits. The remaining distributions provide reasonably

good fits with respect to AIC, BIC and CAIC measures as well as visual comparison to the Kaplan-Meier curve. Their

cure rate estimates are quite close to the value suggested by the Kaplan-Meier curve.

4.4. Melanoma data

This data set collected in the period 1991-1998 is related to a clinical study in which patients were observed for

recurrence after a removal of a malignant melanoma. Melanoma is a type of cancer that develops in melanocytes,

responsible for skin pigmentation. It is a potentially serious malignant tumor that may arise in the skin, mucous

membranes, eyes and the central nervous system, with a great risk of producing metastases and high mortality rates

in the later stages. There are 417 observed times, of which 232 were censored (55.63 percent). The overall survival

is 3.18 years. This data set has covariate information, which is used to illustrate the regression model proposed in

Section 2.4. The covariate taken represents the nodule category (n1 = 82, n2 = 87, n3 = 137, n4 = 111). The overall

survival for the categories are 3.60, 3.27, 3.07, 2.55 years. For more details of this data, see [18].

Table 5: MLEs for the fitted regression models and the AIC measure for the melanoma data set.

MO-Distribution v̂ â b̂ ĉ β̂0 β̂1 p̂1 p̂2 p̂3 p̂4 AIC

Exponential -0.03 - - - -2.84 -0.43 0.0365 0.0240 0.0156 0.0102 354.12

Rayleigh -5.99 - - - 1.22 -0.51 0.6697 0.5485 0.4213 0.3036 306.38

Lomax -0.02 - - - -3.34 -0.41 0.0230 0.0154 0.0102 0.0068 363.34

Weibull -5.16 1.89 - - 1.19 -0.50 0.6647 0.5455 0.4209 0.3056 307.57

Gompertz -0.85 3.74 - - 1.12 -0.47 0.6560 0.5434 0.4263 0.3169 338.02

Burr XII -5.82 1.96 - - 1.17 -0.50 0.6609 0.5413 0.4167 0.3019 305.87

Chen -4.26 1.79 - - 1.19 -0.50 0.6665 0.5474 0.4227 0.3071 310.96

Modified Weibull -5.16 1.89 0.00 - 1.18 -0.50 0.6645 0.5454 0.4209 0.3058 309.58

Weibull extension -31.25 7.66 1.89 - 1.19 -0.50 0.6645 0.5450 0.4201 0.3047 309.63

Traditional Weibull -73.10 0.10 0.98 1.11 1.37 -0.51 0.7034 0.5875 0.4610 0.3393 335.90
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Figure 9: From the left to the right, top to bottom, the fitted regression models for the melanoma data set, in the same order as in Table 1. The

colors black, red, green and blue represent the nodule categories 1, 2, 3 and 4, respectively.
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The fitted results are summarized in Table 5 and Figure 9. The estimated cure rates p̂1, p̂2, p̂3 and p̂4 for groups

1, 2, 3 and 4, respectively, are calculated by (10). The Marshall Olkin-Lomax and Marshall Olkin-exponential distri-

butions give cure rates very close to zero but they have the worst AIC. Better AIC values are given by the Marshall

Olkin-Rayleigh, Marshall Olkin-Weibull, Marshall Olkin-Burr XII, Marshall Olkin-Chen, Marshall Olkin-modified

Weibull and Marshall Olkin-modified Weibull extension distributions. The lowest AIC found was for the Marshall

Olkin-Chen distribution with 305.87. The distributions giving the best AIC values capture the Kaplan-Meier curve

relatively well, but not so well for nodule category 1 and nodule category 3 near the tails.

The estimates of β0 and β1 are in agreement in all models. For β0, the value lies around 1.20 for most models

(except for Marshall Olkin-Lomax and Marshall Olkin-exponential distributions) and for β1, the value is around -0.50.

That means that the cure rate decreases when the nodule category increases.

The estimated cure rate for nodule category 1 is around 0.66. For nodule category 2, it is around 0.54. For

nodule category 3, it is 0.42. For nodule category 4, it is 0.30. The standard deviation of these cure rates can be

estimated using the standard deviations of β0 and β1 by the delta method. For the Marshall Olkin-Chen distribution,

the standard deviations of p1, p2, p3 and p4 are 0.0379, 0.0305, 0.0319 and 0.0395, respectively. The corresponding

95 percent (asymptotic) confidence intervals are (0.59, 0.74), (0.48,0.60), (0.36,0.48) and (0.23,0.38), respectively.

These indicate a significant difference between nodules categories 1 and 3, 1 and 4 and 2 and 4. Similar results can be

found for other models that performed well. These results agree with the results found in [35], [3] and [2].

4.5. Discussion

Here, we discuss some of the results in Sections 4.1, 4.2, 4.3, 4.4, a non-zero cure rate testing approach and

compare the fitted distributions with their respective mixture model versions.

Table 6 compares the results in Tables 3, 4, 5 to the standard mixture model given by S mix = p + (1 − p)S (t),

where S (t) is the same baseline distribution as in the Marshall Olkin defective distributions. The distributions were

compared in terms of the AIC and have the same number of parameters. The bold numbers represent the smaller AIC

value. In all data sets, the defective approach performs better in seven out the ten cases. The baseline distributions

performing better under a chosen approach are the same, regardless of the data analysed. The following distributions

performed better under the defective approach for each of the three data sets: the Marshall Olkin-Rayleigh, Marshall

Olkin-Weibull, Marshall Olkin-Burr XII, Marshall Olkin-Chen, Marshall Olkin-Modified Weibull, Marshall Olkin-

Weibull extension and Marshall Olkin-Traditional distributions. The remaining performed better under the standard

mixture approach. We can conclude that the defective distributions are good competitors for modelling cure rates.

They provide better fits more often than the mixture model.

Table 7 gives 95 percent asymptotic confidence intervals for r based on the normal approximation. We check this

table to see r is significantly lower than zero. Since the cure rate p only depends on r, the cure rate is significantly

greater than zero, implying the existence of cure fraction, if r is significantly lower than zero. Almost all of the

confidence intervals in Table 7 are in the negative side of the real line. The only exception is that for the Marshall
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Olkin-Lomax distribution fitted to the leukemia and divorce data sets. Even this confidence interval is almost all

negative. We can conclude therefore that the leukemia, colon and divorce data sets have non-zero cure rates.

Table 6: Comparison of the AIC value of the mixture and defective models.

Baseline Leukemia data Colon data Divorce data

distribution Mixture Defective Mixture Defective Mixture Defective

Exponential -64.41 -54.86 1509.62 1531.10 1503.66 1532.16

Rayleigh -55.71 -75.39 1879.82 1668.31 1770.51 1633.88

Lomax -63.77 -54.03 1518.33 1537.00 1518.61 1538.82

Weibull -68.54 -73.50 1481.29 1462.36 1439.79 1435.90

Gompertz -62.20 -58.31 1512.46 1516.68 1469.76 1471.46

Burr XII -69.58 -73.93 1470.14 1456.53 1439.09 1437.27

Chen -67.18 -73.00 1503.11 1474.74 1442.66 1435.01

Modified Weibull -63.19 -71.50 1464.69 1464.39 1441.13 1437.73

Weibull extension -66.50 -71.36 1483.39 1464.42 1456.22 1437.01

Traditional Weibull -64.54 -69.09 1485.29 1466.37 1443.79 1439.02

Table 7: Asymptotic 95 percent confidence intervals for r.

Baseline Leukemia data Colon data Divorce data

distribution Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI

Exponential -0.5486 -0.0109 -0.7249 -0.4493 -0.9083 -0.499

Rayleigh -0.3302 -0.0562 -0.9467 -0.7844 -1.3366 -1.1199

Lomax -0.5359 0.0767 -0.4271 -0.0294 -0.5376 0.0167

Weibull -0.3702 -0.0426 -0.9776 -0.7834 -1.3542 -1.0889

Gompertz -0.4619 -0.0495 -1.0096 -0.8107 -1.3825 -1.1419

Burr XII -0.3767 -0.0440 -0.9445 -0.7318 -1.3252 -1.0385

Chen -0.3620 -0.0409 -1.0032 -0.8197 -1.3752 -1.1244

Modified Weibull -0.3702 -0.0426 -0.978 -0.7838 -1.3744 -1.0956

Weibull extension -0.3679 -0.0397 -0.9777 -0.7833 -1.3797 -1.1197

Traditional Weibull -0.3652 -0.0418 -0.9776 -0.7834 -1.3796 -1.1203

All of the examples provided here show that the newly introduced defective distributions can be used to provide

adequate fits to several different kinds of data sets. The Marshall Olkin-Rayleigh distribution gives the best fit for the

leukemia data set, but it does not perform so well for the colon data set. The Marshall Olkin-Burr XII distribution

gives the best fit for the colon data set, while the Marshall Olkin-Chen distribution gives the most adequate fit for the

divorce data set and the emelanoma data set, as a regression model.

This shows how competitive the newly proposed distributions can be, even when competing with the standard

mixture models. More investigations are needed for these new distributions, but we hope we have provided strong

evidence of the competitiveness of the proposed distributions.

23



5. Conclusions

The theory on defective distributions has been quite limited. In this paper, we have derived a new property of

the Marshall Olkin family of distributions, allowing one to generate many new defective distributions as possible

models for a wide variety of data sets. We have constructed ten new defective distributions based on the new property.

The usual asymptotes of the maximum likelihood estimators for these distributions have been checked by simulation.

An approach to include covariate information has been proposed and illustrated in one of the applications. In total,

applications to four real data sets have been illustrated. We have presented sufficient evidence of the relevance and

competitiveness of the proposed distributions, covering a range of different scenarios and showing that they can

provide adequate fits. We have also shown that the proposed distributions can perform better than the standard mixture

models. Future work is to explore in detail the properties of our proposed models, as well as to compare with other

competitive cure rate models in the literature, in terms of interpretation and others measurements of model assessment

and selection.
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