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Penalized Principal Logistic Regression for Sparse

Sufficient Dimension Reduction

Seung Jun Shin and Andreas Artemiou
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Abstract

Sufficient dimension reduction (SDR) is a successive tool for reducing the di-

mensionality of predictors by finding the central subspace, a minimal subspace

of predictors that preserves all the regression information. When predictor di-

mension is large, it is often assumed that only a small number of predictors

is informative. In this regard, sparse SDR is desired to achieve variable selec-

tion and dimension reduction simultaneously. We propose a principal logistic

regression (PLR) as a new SDR tool and extend it to a penalized version for

sparse SDR. Asymptotic analysis shows that the penalized PLR enjoys the or-

acle property. Numerical investigation supports the advantageous performance

of the proposed methods.

Keywords: max-SCAD penalty, principal logistic regression, sparse sufficient

dimension reduction, sufficient dimension reduction

1. Introduction

It is often of primary interest to identify the relationship between the univari-

ate response Y and the p-dimensional predictor X ∈ Rp. Sufficient dimension

reduction (SDR) efficiently reduces the dimensionality of X by finding a lower

dimensional subspace of span(X) while preserving regression information in X.5

Specifically, SDR seeks a matrix B = (b1, · · · ,bd) ∈ Rp×d that satisfies

Y ⊥ X|B⊤X, (1)
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where ⊥ denotes statistical independence. Compared to conventional paramet-

ric models, (1) is less stringent since it does not assume any specific link func-

tions between Y and X. The space spanned by B satisfying (1) is called the

dimension reduction subspace (DRS). The central subspace, denoted by SY |X is10

defined as the intersection of all DRSes, and hence it is the lowest dimensional

DRS. (author?) [1] showed that SY |X uniquely exists under mild conditions. In

SDR, it is assumed that SY |X = span(B) to make B an identifiable target. The

dimension d of SY |X is referred to as structural dimension, another important

quantity to be inferred from the data.15

Since the seminal paper on sliced inverse regression [SIR, 2], there have been

various methods developed to estimate SY |X, which include but are not limited

to sliced averaged variance estimation [SAVE, 3], directional regression [DR, 4],

sliced regression [5], contour regression [6], and principal support vector machine

[PSVM, 7].20

Among many others, PSVM is a recently developed SDR method and brings

new insight by connecting SDR to penalized machine learning methods such as

the support vector machine (SVM). The idea of PSVM is simple as follows.

First, dichotomize the continuous response Y by introducing a pseudo response

Ỹ = 1 if Y is greater than a given cutoff value r, and −1 otherwise. A sequence25

of linear SVMs are then repeatedly trained for (Ỹr,X) as varying the cutoff

value r. (author?) [7] showed that normals of the optimal hyperplanes from

the linear SVMs lie on SY |X regardless of the value of r. Finally, SY |X can be

recovered by the spectral decomposition of these normals. PSVM is known to

perform better than classical SDR methods such as SIR, and it tackles both30

linear and nonlinear SDR in a unified framework via kernel trick, as SVM does.

In this article, we propose a principal logistic regression (PLR) as an alter-

native to PSVM. Namely, we apply the logistic regression to (Ỹ ,X) instead of

SVM. The advantages of the logistic regression over SVM are obvious since its

loss function is smooth and strictly convex (see Figure 1). PLR not only entails35

simpler asymptotic results under less stringent conditions but also is computa-

tionally stable. It is important to note that PLR is not a parametric method
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for SDR since we replace the loss in population level and a target of estimation

changes.
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Figure 1: SVM (hinge) loss versus logistic (binomial log-likelihood) loss: The (dashed blue)
logistic loss is a smooth, convex, and continuously differentiable function while the (solid red)
SVM hinge loss is not.

Sparse SDR that seeks a sparse representation of the basis of SY |X is often40

desired to achieve the dimension reduction and variable selection simultane-

ously. Sparse SDR facilitates the interpretation of the results and improves the

estimation accuracy by eliminating negligible uncertainties from the predictors

with weak signals [8]. Toward sparse SDR, several methods have been proposed.

See, for example, (author?) [8], (author?) [9], (author?) [10] and (author?)45

[11].

Sparse SDR assumes a unique partition X = (X⊤
+,X

⊤
−) that satisfies

Y⊥X−|X+, (2)

where X+ ∈ Rq and X− ∈ Rp−q for some q(≪ p) [12, 9]. We call X+ and X−

relevant and irrelevant variables, respectively. Without loss of generality we

assume that the first q predictors are the relevant ones throughout this article.

Under (1) and (2), the last p− q rows of B are all zeros, which makes B sparse50

and has an identical sparsity structure across different columns. That is, the

last p − q elements of B are zeros regardless of the cutoff values. In order to
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preserve such sparsity structure, we employ a max-SCAD penalty. The SCAD

penalty [13] is known to enjoy the oracle property, but its computation is more

challenging due to its nonconvexity. However, the logistic loss can minimize55

the additional computational burden thanks to its smoothness. As a result, we

establish the oracle property of the max-SCAD penalized PLR and develop an

efficient algorithm for its sample estimation.

The rest of the article is organized as follows. In Section 2 we propose PLR

and describe related details including its sample estimation, asymptotic prop-60

erties, and structural dimension estimation. The penalized PLR is developed

in Section 3 in which we establish its oracle property and develop an efficient

algorithm for the sample estimation. In Section 4, simulation studies are carried

out to investigate finite sample performances of both PLR and the penalized

PLR, and real data analysis results are given in Section 5. Final discussions65

follow in Section 6. All the technical proofs are relegated to Appendix.

2. Principal Logistic Regression For SDR

2.1. Principal Logistic Regression

We start by briefly introducing PSVM which motivates PLR. For a pair of

random variables (Y,X), (author?) [7] proposed PSVM by solving the following

optimization problem:

(a0,r,b0,r) = argmin
a,b

b⊤Σb+ CE

[∣∣∣1− Ỹr{a+ b⊤(X− E(X))}
∣∣∣
+

]
, (3)

where |u|+ = max{0, u},Σ = Var(X), and Ỹr denotes an artificially dichotomized

response having 1 if Y < r and −1 otherwise for a given cutoff value r. A fixed70

positive constant C is a cost parameter. Notice that (3) is akin to the linear

SVM for (Ỹr,X). (author?) [7] showed that b0,r ∈ SY |X for any cutoff r, and

thus span{b0,1, · · · ,b0,h} ⊆ SY |X where b0,k denote the minimizer of (3) when

r = rk, k = 1, · · · , h with r1 < · · · < rh being an arbitrarily given grid of r.

(author?) [7] assumed the coverage condition that span{b0,1, · · · ,b0,h} = SY |X75
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whenever span{b0,1, · · · ,b0,h} ⊆ SY |X. The coverage condition is known to be

held in practice [14].

Motivated by PSVM, we propose PLR by replacing the hinge loss in (3)

with the logistic one. As shown in Figure 1 the logistic loss can be regarded as

a smooth approximation of the non-differentiable hinge loss function of SVM.

Now, the PLR objective function is given by

Λr(θ) = β⊤Σβ + CE
[
ln

(
1 + e−Ỹr{α+β⊤(X−E(X))}

)]
. (4)

where θ⊤ = (α,β⊤). The PLR objective function (4) is akin to that of the linear

kernel logistic regression [15] where its name comes from. Let θ⊤
0,r = (α0,r,β

⊤
0,r)

denote the minimizer of (4), which we call PLR solution. Theorem 1 provides80

a theoretical foundation of PLR for SDR.

Theorem 1. Under the linearity condition, β0,r ∈ SY |X for an arbitrary given

cutoff r.

Theorem 1 establishes the unbiasedness of β0,r for SDR defined in (1). Given a

grid r1 < · · · < rh where h > d, let θ⊤
0,k = (α0,k,β

⊤
0,k) = argminθ Λk(θ) where85

Λk(θ) = Λrk(θ), k = 1, · · · , h. By Theorem 1, we have span{β0,1, · · · ,β0,h} =

SY |X under the coverage condition.

The linearity condition states that E(X|B⊤X) is a linear function of B⊤X

where B is defined in (1), and it implies E(β⊤X|B⊤X) = β⊤PB(Σ)X where

PB(Σ) = B(B⊤ΣB)−1B⊤Σ. The linearity condition plays an essential role90

and is routinely assumed in many SDR methods. We remark that the linearity

condition is not testable but is known to be held whenX is elliptically symmetric

[16, 17] or p is large [18]. We remark that PLR is still a model-free approach

since the linearity condition restricts the marginal distribution of X only.

In the classification context, SVM is often preferred to the logistic regression95

since the logistic regression is fully parametric and fails to recover true classifi-

cation rule if the model assumption is violated. However, PLR replace the loss

function in the population level (4) and is free from the model misspecification.
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Robustness is another reason for popularity of SVM. We note, however, that the

relation between the logistic loss and the hinge loss is essentially different from100

that between the squared loss for mean regression and the absolute deviance

loss for median regression in the sense that the magnitude of their difference is

nearly fixed as the margin gets away from the origin. Therefore PLR can per-

form comparably well under the presence of outliers. Consequently, PLR and

PSVM show nearly identical performance while PLR enjoys additional benefits105

from smoothness of its loss function, which motivates PLR.

2.2. Sample Estimation

Given a set of data (yi,xi), i = 1, · · · , n, a sample version of Λk(θ) for

rk, k = 1, · · · , h is

Λ̂k(θ) = β⊤Σ̂β +
C

n

n∑

i=1

ln
(
1 + e−ỹik{α+β⊤(xi−x̄)}

)
, k = 1, · · · , h, (5)

where x̄ and Σ̂ denote the sample covariance matrix of the predictors, respec-

tively; and ỹik = 1 if yi > rk and −1 otherwise. Let the minimizer of (5) denote

θ̂
⊤

k = (α̂k, β̂
⊤

k ). To obtain θ̂
⊤

k , we consider linear transformations η = Σ̂
1/2

β

and x̃i = Σ̂
−1/2

(xi − x̄), then (5) becomes

η⊤η +
C

n

n∑

i=1

ln
(
1 + e−ỹik(α+η⊤x̃i)

)
(6)

which is equivalent to the objective function of the linear kernel logistic regres-

sion [15] with respect to (α,η). Now, we have β̂k = Σ̂
−1/2

η̂k where (α̂k, η̂k)

denotes the minimizer of (6). Finally, B = span(V̂) where V̂ = (v̂1, · · · , v̂d) is

a (p× d) matrix whose jth column, v̂j is the jth leading eigenvector of

M̂ =

h∑

k=1

β̂kβ̂
⊤

k ,

which we call the PLR working matrix.
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2.3. Large Sample Properties

For the sake of simplicity, the subscript k is omitted when a result holds for

an arbitrary chosen rk. Let X∗ = (1,X⊤)⊤, Z⊤ = (Ỹ ,X⊤), Σ∗ = Diag{0,Σ},
and

mθ(Z) = θ⊤Σ∗θ + C log
(
1 + exp{−Ỹ · θ⊤X∗}

)
,

and hence Λ(θ) = E[mθ(Z)].110

Theorem 2 states the consistency and asymptotic normality of θ̂.

Theorem 2. Under the regularity conditions in Appendix A.1,

a) θ̂
p→ θ0 and,

b)
√
n(θ̂ − θ0)

d→ N(0,H−1
θ0

Aθ0
H−1

θ0
), where H = E[m′′

θ0
(Z)] and A =

E[m′
θ0
(Z){m′

θ0
(Z)}⊤]115

where m′
θ and m′′

θ denote the first and second order derivatives of mθ with

respect to θ.

We remark that the asymptotic results for PLR are straightforward from the

standard M-estimation theory [19] and do not rely on any stringent technical

conditions while PSVM does.120

Let M0 =
∑H

h=1 β0,kβ
⊤
0,k and V0 = (v0,1, · · · ,v0,d) where v0,j is the jth

leading eigenvector of M0. Theorem 3 establishes asymptotic normalities of M̂

and V̂.

Theorem 3. Under the regularity conditions in Appendix A.1 and rank(M0) =

d,125

a)
√
n vec(M̂−M0)

d→ N(0,ΣM)

b)
√
n vec(V̂ −V0)

d→ N(0,ΣV)

for some variance matrices ΣM and ΣV explicitly given in Appendix A.4.
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2.4. Structure Dimensionality Determination

To estimate the structural dimension d, we consider the following estimate130

based on BIC-type criterion proposed by (author?) [7].

d̂ = argmax
d

G(d; ρ, M̂) =

d∑

j=1

υj − ρ
d log n√

n
υ1, (7)

where υj is the jth leading eigenvalue of M̂ and ρ is a tuning parameter. Con-

sistency of d̂, i.e., limn→∞ P (d̂ = d) = 1 directly follows from the asymptotic

property of M̂ in Theorem 3.

In order to select ρ, we propose the following algorithm: First, randomly split135

the data into the training and testing sets, respectively denoted by {(xtr
j , y

tr
j ) :

j = 1, · · · , ntr} and {(xts
j′ , y

ts
j′ ) : j

′ = 1, · · · , nts} where nts + ntr = n. We then

apply PLR to the training set {(xtr
j , y

tr
j ) : j = 1, · · · , ntr} and let M̂tr be the

corresponding working matrix. For a given appropriate grid of ρ, repeat the

following steps 1 to 4 and select ρ∗ that minimizes TC(ρ) defined below.140

1. Compute d̂tr = argmaxd∈{1,··· ,p} G(d; ρ, M̂tr).

2. Transform the test predictors by x̃ts
j′ = (V̂tr)⊤xtr

j′ , where V̂
tr = (v̂tr

1 , · · · , v̂tr
d̂tr

)

denotes the (p× d̂tr) eigenvector matrix of M̂tr.

3. For each rk, k = 1, · · · , h, apply the logistic regression to {(x̃ts
j′ , ỹ

ts
j′k) : j =

1, · · · , ntr} where ỹtsj′k = 1{ytsj′ > rk}.145

4. Compute TC(ρ) =
∑h

k=1

∑nts

j′=1 1{ỹtsj′,k 6= ŷtsj′,k} where ŷtsj′,k denotes a

predicted value of ỹtsj′,k from the logistic model obtained from Step 3 above.
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3. Penalized PLR for Sparse SDR

3.1. Penalized Principal Logistic Regression

Under the sparsity assumption (2), we have θ⊤
0 = (θ⊤

0,+,0
⊤) where

θ⊤
0,+ = (α0,+,β

⊤
0,+) = argmin

α,β
β⊤Σ+β + CE

[
ln
(
1 + e−Ỹ {α+β⊤(X+−E(X+))}

)]
,

(8)

with Σ+ = Var(X+). This is because β0 ∈ SY |X by Theorem 1 and β0 can be150

written as a linear combination of the columns of B whose q rows associated

with X− are all zeros, i.e. β⊤
0 = (β⊤

0,+,0
⊤
p−q). Therefore, β0,k, k = 1, · · · , h

should be sparse and share a common sparsity structure across k.

To impose such a sparsity structure, we propose a penalized PLR that min-

imizes the following objective function:

Q(Ω) =
h∑

k=1

Λ̂k(θk) +

p∑

j=1

pλ
(
max
1≤k≤h

|βjk|
)
, (9)

whereΩ is a (p+1)×h dimensional matrix whose kth column is θk, k = 1, · · · , h.
pλ denotes a nonconvex penalty function and depends on a tuning parameter λ155

that controls the sparsity of the solution. Because (9) penalizes the maximum of

|βjk| over k = 1, · · · , h, the entire elements in the same row of Ω simultaneously

shrink toward zero so that the desired sparsity structure is naturally attained.

It is crucial to tune λ in practice and we discuss this issue in Section 3.3.

For the penalty function, we exploit the SCAD penalty of (author?) [13]

which is defined through its derivative as

p′λ(θ) = λ

[
I(θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

I(θ > λ)

]
, θ > 0

for some a > 2. We set a = 3.7 as recommended by (author?) [13]. The SCAD160

penalty has been popular in the context of variable selection due to the oracle

property [13]. In order to establish the oracle property of the penalized PLR,

consider a partition of Ω⊤ = (Ω⊤
+,Ω

⊤
−), where Ω+ = (θ1+, · · · ,θh+) and Ω− =

9



(θ1−, · · · ,θh−
) with θk+ = (αk, β1k, · · · , βqk)

⊤ and θk− = (βjq+1 · · · , βjp)
⊤ for

k = 1, · · · , h, respectively. Theorem 4 states oracle property of the solution of165

the penalized PLR, Ω̂
⊤

= (Ω̂
⊤

+, Ω̂
⊤

−) = argminΩ Q(Ω). Namely, Ω̂
⊤

behaves

asymptotically as if we know which variables are relevant.

Theorem 4. (Oracle property) Let λ = λn to emphasize that λ is a function

of n. Suppose that λn → 0 and
√
nλn → ∞ as n → ∞. In addition to the

regularity conditions in Appendix A.1, we further assume that pλn satisfies

lim inf
n→∞

lim inf
θ→0+

p′λn
(θ)/λn > 0.

If λn → 0 and
√
nλn → ∞ as n → ∞, then with probability tending to one, the

√
n-consistent minimizer of Q(Ω) denoted by Ω̂

⊤
= (Ω̂

⊤

+, Ω̂
⊤

−) must satisfy

(a) Ω̂
−
= 0.170

(b) For k = 1, · · · , h,

√
n(θ̂k+ − θ0,k+) → N(0,H−1

k+Ak+H
−1
k+),

where H+ = E[m′′
θ0
(Zk+)] and A+ = E[m′

θ0
(Z+){m′

θ0
(Zk+)}⊤] with

Z⊤
k+ = (Ỹk,X

⊤
+).

3.2. Computation

For ease of representation, we assume that predictors are centered without

loss of generality (i.e.,
∑n

i=1 xi = 0). Now, the objective function (9) is equiva-

lently rewritten in a vector format as follows:

argmin
θ

θ⊤Sθ +
C

n

[
1⊤ ln

(
1 + e−ỹ⊙(Wθ)

)]
+

p∑

j=1

pλ
(
max
1≤k≤h

|βjh|
)
, (10)

10



where

θ⊤ = (θ⊤
1 , · · · ,θ⊤

h );

Ỹ⊤ = (ỹ⊤
1 , · · · , ỹ⊤

h ) with ỹ⊤
k = (ỹ1k, · · · , ỹnk);

S = Diag{Σ̂∗
, · · · , Σ̂∗} with Σ̂

∗
= Diag{0, Σ̂};

W = Diag{X∗, · · · ,X∗} with X∗ = (x∗
1, · · · ,x∗

n)
⊤ and x∗

i = (1,x⊤
i )

⊤,

and ⊙ denotes the Hadamard product. We slightly abuse the notation in (10)175

by elementwisely applying the exponential function to the power in a vector

form, i.e., ea = (ea1 , · · · , eap)⊤ for a vector a = (a1, · · · , ap)⊤.
It is not trivial to solve (10) with respect to θ due to the nonconvexity

of the SCAD penalty. There are several existing algorithms for solving the

SCAD-penalized problems that include, for example, local quadratic approxi-180

mation [13], minorize-maximize algorithm [20] and local linear approximation

[21] among many others. In this article, we employ the difference convex algo-

rithm [DC, 22, 23, 11] as described in the following paragraph.

First, we approximate the logistic loss to its second order Taylor expansion

at the value of the tth iteration denoted by θ(t). We then have a familiar form

of the iteratively reweighted least squares algorithm commonly used to fit the

logistic regression [24, 25]. In particular, θ can be updated at the tth iteration

as follows.

θ(t+1) = argmin
θ

θ⊤Sθ +
C

2n
(ũ(t) −Wθ)⊤G(t)(ũ(t) −Wθ) +

p∑

j=1

pλ

(
max
1≤k≤h

{|βjk|}
)
,

(11)

whereG(t) = Diag{p(t)
1 ⊙(1−p

(t)
1 ), · · · ,p(t)

h ⊙(1−p
(t)
h )} with p

(t)
k = (π

(t)
1k , · · · , π

(t)
nk)

⊤

and π
(t)
ik =

(
1 + exp{ỹik · {θ(t)

k }⊤x∗
i }
)−1

, and ũ(t) = Wθ(t)+{G(t)}−1(ỹ⊙p(t))185

for p(t) = ({p(t)
1 }⊤, · · · , {p(t)

h }⊤)⊤. The superscript is used to denote the quan-

tities obtained at the tth iteration.

The DC algorithm decomposes the SCAD penalty as the difference of two

11



convex functions as pλ(θ) = pλ,1(θ) − pλ,2(θ) where p′λ,1(θ) = λ, and p′λ,2(θ) =

λ
[
1− (aλ−θ)+

(a−1)λ

]
I(θ > λ).190

Letting ξj = max1≤k≤h |βjk| and ξ
(t)
j = max1≤k≤h |β(t)

jk |, we have a linear

approximation of pλ,2(ξj) ≈ p′λ,2(ξ
(t)
j )(ξj − ξ

(t)
j ) and, thus,

pλ
(
max
1≤k≤h

{|βjk|}
)
= pλ(ξj) ≈ {λ− p′λ,2(ξ

(t)
j )}ξj + Constant (12)

Plugging (12) into (11), we have a standard quadratic programming (QP) prob-

lem for updating θ and ξ = (ξ1, · · · , ξp)⊤:

(θ(t+1), ξ(t+1)) = argmin
θ,ξ

θ⊤Sθ +
C

2n
(ũ(t) −Wθ)⊤G(t)(ũ(t) −Wθ) +

p∑

i=1

(
λ− p′λ,2(ξ

(t)
j )

)
ξj

(13)

subject to ξj ≥ βjk and ξj ≥ −βjk, j = 1, · · · , p, k = 1, · · · , h. Existing software

can be readily applied to solve (13).

Finally, the algorithm to solve the max-SCAD penalized PLR is summarized

as follows.

1. Initialize θ(0) (e.g., unpenalized PLR solution) and ξ(0)195

2. Update (θ(t), ξ(t)) → (θ(t+1), ξ(t+1)) from (13).

3. Stop updating if ‖θ(t+1) − θ(t)‖/‖θ(t)‖ is sufficiently small, for example,

less then 10−4.

3.3. Tuning λ

It is important to tune λ that controls the degree of sparsity. To this end,

an L-fold cross-validation procedure is proposed as follows. First, we ran-

domly split the data into a training set (x
[ℓ]
j,tr, y

[ℓ]
j,tr), j = 1, · · · , ntr and test

set (x
[ℓ]
j′,ts, y

[ℓ]
j′,ts), j

′ = 1, · · · , nts, where the superscript ℓ = 1, · · · , L denotes

the ℓth fold. Next, we apply the penalized PLR to the training set for a

given λ and obtain V̂
[ℓ]
tr . Third, we project test predictors onto the estimated

SY |X from the training set, i.e., x̃
[ℓ]
j′,ts = {V̂[ℓ]

tr }⊤x
[ℓ]
j′,ts. Fourth, we compute

12



γ̂[ℓ] = d̂cor(y
[ℓ]
j′,ts, x̃

[ℓ]
j′,ts) where d̂cor(y,x) denotes the sample distance correlation

between y and x [DC, 26], which is defined by d̂cor(y,x) = d̂cov(y,x)√
d̂cov(y,y)d̂cov(x,x)

.

Here d̂cov(y,x) is the sample distance covariance between y and x and obtained

by

d̂cov(y,x) = Ŝ1 + Ŝ2 − 2Ŝ3.

where

Ŝ1 =
1

n2

n∑

i=1

n∑

j=1

‖yi − yj‖‖xi − xj‖,

Ŝ2 =
1

n4




n∑

i=1

n∑

j=1

‖yi − yj‖







n∑

i=1

n∑

j=1

‖xi − xj‖


 ,

Ŝ3 =
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

‖yi − yl‖‖xj − xl‖,

with ‖ · ‖ denoting the Euclidian norm.200

Finally, we repeat these steps and find an optimal λ that minimizes R(λ) =

1
K

∑L
ℓ=1 γ̂

[ℓ].

4. Simulation

We conducted a number of simulation studies to evaluate the finite sample

performance of the proposed methods under various scenarios. The data are

generated from the following nonlinear regression model:

yi = f(xi) + 0.2ǫ,

13



where xi
iid∼ N(0p, Ip) and ǫ ∼ N(0, 1) with n = 100 and p = 10, 20, 30. Three

different regression functions are considered as follows:

f1(x) =
b⊤
1 x− 1

0.5 + (b⊤
2 x+ 1)2

,

f2(x) = sin(b⊤
1 x) + (b⊤

2 x+ 1)2,

f3(x) = cos(b⊤
1 x+ 1)/ exp(b⊤

2 x)

with three basis matrices B = (b1,b2) to represent different sparsity structures:

(Case 1) b1 = b2 = 1p/
√
p,

(Case 2) b1 =

p/2∑

j=1

ej/
√

p/2, and b2 =

p∑

j=p/2+1

ej/
√

p/2,

(Case 3) b1 = e1, and b2 = e2.

Here ej denotes the p-dimensional vector whose jth element is 1 and 0 for all

others. Case 1 represents a nonsparse structure with q = p, and Case 3 is the205

most sparse with q = 2. Case 2 can be regarded as intermediate between Case 1

and 3 since q = p/2. The true structural dimension d is 1 for Case 1 and d = 2

for Case 2 and 3.

4.1. Dimension Reduction Performance

We compare two versions of PLR to the existing methods. For the con-210

ventional SDR without pursuing sparsity, SIR and PSVM are considered as

competing methods against PLR. For the sparse SDR, penalized SIR [PSIR,

11] and sparse partial least square regression [SPLS, 10] are compared to the

penalized PLR which we denote PPLR for short. For the two PLR methods as

well as PSVM, we set rk, k = 1, · · · , 9 as the (100 × k/10)th sample percentile215

of yi, and C = 1. It is empirically shown that the performance of PSVM is

not overly sensitive to the choices of either h or C [7], and hence PLR will not

as well. We set the number of slices to be 10 for both SIR and PSIR. PPLR

is tuned as described in Section 3.3. PSIR is tuned based on a BIC criterion

14



as suggested by (author?) [11]. For SPLS, we tried several different values of220

tuning parameters and reported the best result in each case.

As a performance measure, we compute the distance between the true and

estimated SY |X in terms of the following criterion:

‖P
B̂
−PB‖F , (14)

wherePB = B(B⊤B)−1B⊤ is a projection matrix to span(B) and ‖A‖F denotes

the Frobenius norm of a matrix A.

case f p
SDR sparse SDR

SIR PSVM PLR PSIR SPLS PPLR
10 0.296 (.091) 0.213 (.058) 0.220 (.064) 0.309 (.088) 0.403 (.143) 0.290 (.082)

f1 20 0.457 (.103) 0.358 (.091) 0.334 (.079) 0.439 (.113) 0.684 (.148) 0.392 (.084)
30 0.698 (.177) 0.544 (.113) 0.471 (.105) 0.664 (.152) 0.854 (.102) 0.526 (.095)
10 0.271 (.120) 0.172 (.064) 0.210 (.105) 0.296 (.120) 0.305 (.116) 0.279 (.112)

1 f2 20 0.411 (.141) 0.313 (.088) 0.344 (.126) 0.421 (.133) 0.601 (.139) 0.393 (.111)
30 0.593 (.244) 0.557 (.166) 0.506 (.182) 0.667 (.203) 0.807 (.109) 0.526 (.147)
10 0.290 (.112) 0.202 (.069) 0.236 (.106) 0.307 (.110) 0.498 (.344) 0.284 (.099)

f3 20 0.459 (.161) 0.363 (.115) 0.383 (.152) 0.464 (.147) 0.713 (.259) 0.415 (.130)
30 0.658 (.211) 0.590 (.183) 0.549 (.214) 0.642 (.210) 0.916 (.208) 0.549 (.179)
10 1.054 (.240) 0.985 (.244) 0.996 (.251) 1.146 (.231) 1.093 (.041) 1.057 (.240)

f1 20 1.370 (.128) 1.269 (.148) 1.256 (.156) 1.356 (.129) 1.208 (.064) 1.289 (.151)
30 1.529 (.097) 1.451 (.095) 1.419 (.096) 1.489 (.076) 1.308 (.073) 1.426 (.100)
10 1.145 (.240) 0.852 (.199) 0.852 (.208) 1.082 (.237) 1.071 (.043) 1.004 (.230)

2 f2 20 1.389 (.120) 1.180 (.157) 1.170 (.169) 1.318 (.154) 1.333 (.073) 1.219 (.159)
30 1.523 (.115) 1.383 (.124) 1.342 (.135) 1.446 (.118) 1.434 (.089) 1.362 (.146)
10 0.659 (.175) 0.633 (.149) 0.627 (.159) 0.709 (.161) 1.171 (.093) 0.686 (.151)

f3 20 1.133 (.201) 0.985 (.182) 0.955 (.179) 1.071 (.196) 1.315 (.093) 0.992 (.162)
30 1.530 (.174) 1.288 (.172) 1.220 (.188) 1.362 (.179) 1.413 (.079) 1.244 (.181)
10 1.049 (.252) 0.923 (.227) 0.965 (.232) 0.240 (.394) 1.029 (.026) 0.199 (.403)

f1 20 1.339 (.176) 1.278 (.162) 1.248 (.168) 0.338 (.436) 1.057 (.040) 0.230 (.385)
30 1.521 (.106) 1.438 (.113) 1.399 (.120) 0.394 (.391) 1.078 (.057) 0.246 (.422)
10 1.087 (.233) 0.850 (.207) 0.842 (.198) 0.410 (.515) 1.014 (.023) 0.263 (.408)

3 f2 20 1.383 (.135) 1.182 (.147) 1.174 (.162) 0.489 (.534) 1.025 (.030) 0.316 (.435)
30 1.534 (.094) 1.382 (.105) 1.343 (.124) 0.507 (.519) 1.034 (.037) 0.386 (.484)
10 0.610 (.147) 0.599 (.132) 0.595 (.140) 0.061 (.121) 1.080 (.056) 0.050 (.124)

f3 20 1.104 (.200) 0.978 (.155) 0.936 (.148) 0.061 (.071) 1.154 (.083) 0.056 (.101)
30 1.452 (.179) 1.267 (.150) 1.180 (.170) 0.090 (.092) 1.202 (.095) 0.043 (.069)

Table 1: Averaged distance measures (14) over 100 independent repetitions. Bold cases rep-
resent a winning method for each scenario. Corresponding standard deviations are given in
parentheses.

Table 1 contains averaged distance measure (14) over 100 independent repe-

titions. Under Case 1 representing a nonsparse scenario, PSVM and PLR show225

comparable performance, and outperforms all others including the three meth-

ods for sparse SDR, which we believe natural. Similar patterns are observed in

Case 2 whose bases are not very sparse. Under Case 3 representing a sparse

scenario, both PSIR and PPLR show nearly perfect results with PPLR being
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slightly and consistently better under all scenarios under consideration. We230

remark that the performance of SPLS is not very satisfactory since it can esti-

mate at most one basis of SY |X, which is one drawback of SPLS. We also note

that PPLR shows comparable performance to PLR even in Cases 1 and 2 with

nonsparse scenarios. This is because if the true signal is not sparse, then the

λ adaptively selected from the data would be sufficiently small and the effect235

of penalization becomes negligible. In practice, we are not aware of the true

sparsity of B and, hence, PPLR would be a safer choice because the tuning

procedure automatically takes into account the unknown sparsity structure.

4.2. Structural Dimension Estimation

We also check the performance of the proposed procedure for structural240

dimension estimation developed in 2.4. As a comparison, the sequential χ2-test

[2] is applied for SIR. Table 2 reports empirical probabilities (in percentage) of

correctly estimating d over 100 independent repetitions. It is clearly observed

that the proposed procedure provides quite promising results for both PLR and

PPLR in estimating d.245

f p
Case1 Case2 Case3

SIR PLR PPLR SIR PLR PPLR SIR PLR PPLR
10 95% 95% 90% 20% 85% 83% 31% 78% 83%

f1 20 40% 83% 77% 5% 83% 81% 6% 73% 74%
30 18% 74% 73% 4% 73% 77% 7% 70% 43%
10 94% 93% 91% 17% 86% 87% 21% 82% 85%

f2 20 50% 81% 79% 6% 79% 77% 11% 74% 77%
30 22% 79% 76% 2% 71% 71% 3% 70% 67%
10 95% 90% 82% 68% 98% 97% 81% 100% 100%

f3 20 52% 84% 75% 21% 93% 92% 21% 96% 97%
30 20% 70% 74% 7% 89% 77% 3% 89% 83%

Table 2: Empirical probabilities (in percentage) of correctly estimating true d based on 100
independent repetitions: The proposed procedure shows promising performance in estimating
structural dimension.

4.3. Variable Selection Performance in Sparse SDR

In order to evaluate the variable selection performance of the three methods

for sparse SDR, we consider three measures as follows: the number of nonzero

elements in the basis which are correctly estimated as nonzero (denoted by
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“CNZ”), the number of zero elements of the basis which are incorrectly set250

to nonzero (denoted by “INZ”), and the frequency of recovering the correct

sparsity structure of basis (denoted by “C”). Table 3 contains the three measures

averaged over 100 repetitions under Case 3 where only two elements in B are

nonzero and hence (CNZ, INZ, C) = (2, 0, 100) indicates perfect performance.

In terms of CNZ, all the methods performs reasonably well. However, PPLR255

outperforms others in terms of INZ and C. That is, PPLR is less likely to over-

select nonzero elements in the basis than PSIR and SPLS.

f p
CNZ INZ C

PSIR SPLS PPLR PSIR SPLS PPLR PSIR SPLS PPLR
10 2.00 2.00 1.99 1.63 2.15 1.45 41 28 62

f1 20 2.00 2.00 2.00 2.19 3.89 2.14 25 21 51
30 2.00 2.00 2.00 3.54 5.08 2.54 6 20 35
10 1.99 2.00 2.00 2.89 0.88 1.93 40 57 51

f2 20 1.98 2.00 2.00 5.22 1.55 3.13 19 42 39
30 1.96 2.00 1.98 5.46 2.33 4.45 13 33 29
10 2.00 1.98 2.00 0.86 2.75 0.63 55 9 74

f3 20 2.00 1.98 2.00 1.10 5.30 0.98 32 4 62
30 2.00 1.98 2.00 1.76 6.99 0.72 23 2 58

Table 3: In Case3, variable selection performance of the methods for sparse SDR are compared
over 100 independent repetitions. ‘CNZ’ denotes the number of nonzero elements of the basis
which are correctly estimated as nonzero; ‘INZ’ denotes the number of zero elements of the
basis which are incorrectly set to nonzero; and ‘C’ denotes the frequency of recovering the
correct sparsity structure of basis. PPLR outperforms all others.

5. Real Data Analysis

In order to carefully evaluate the proposed method on real data, we ap-

ply our method to Pyrimidines dataset which was collected to understand the260

quantitative structure-activity relationship (QSAR) in drug design. The data

are available at http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.

html. The Pyrimidines data set contains three versions of predicates of nine

properties (hence 27 predictors in total) for 74 nonhydrogen substituents. The

nine properties include polarity, size, flexibility, hydrogen-bond donor, hydro-265

genbond acceptor, π-donor, π-acceptor, polarizability, and σ-effect of the sub-

stituent. For each substituents, their biological activities are recored as response

and the goal of the study is to find relation between the biological activity and
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the aforementioned properties. Details of the Pyrimidines data can be found in

(author?) [27].270

We apply both PLR and PPLR to the Pyrimidines data. All tuning param-

eters including λ, C, and H are set in the same manner as described in Section

4. Structural dimension d is estimated as described in Section 2.4. To be more

precise, we first tune ρ in (7) which is selected as .00068 for PLR and .01081

for PPLR. Figure 2 depicts the BIC-type values in (7) as a function of d which275

results d estimated as 4 for both PLR and PPLR. It turns out that the sequen-

tial χ2 test for SIR also gives 4 for d estimate. Therefore, we conclude that

SDR reduces predictor dimension from 27 to 4 without much loss of regression

information.
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Figure 2: CVBIC for determining d for (a) PLR and (b) the penalized PLR. The tuning
parameters ρ in (7) are selected as .00068 for the PLR and .01081 for the penalized PLR.
Estimated d for the two methods are the same, 4, which is concordant with the sequential χ2

test for SIR under the significance level α = .05.

The final goal of SDR is to find a regression model on the central subspace,280

SY |X where complete regression information is contained. To this end, we train

both linear and nonlinear regression models for y and predictors projected on

the estimated SY |X, x⊤B̂. We employ local polynomial regression for fitting

nonlinear regression. We note that SDR is model-free and a final regression

model on SY |X does not need to be linear. Figure 3 depicts scatter plots of285

observed and fitted responses from both linear and nonlinear models built on
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the estimated SY |X by different SDR methods. If a SDR method performs

well, prediction accuracy of the final model on the estimated SY |X is to be

improved. In this context, PLR outperforms others in terms of prediction. SIR

is particularly unsatisfactory for this Pyrimidines data290

Finally, we conducted cross-validation to evaluate more precisely the per-

formance of different SDR methods for Pyrimidines data as follows. First,

we randomly split the data into training and testing data with approximately

equal sizes and apply different SDR methods to the training data to estimate

SY |X. Second, we project the test predictors to the central spaces estimated295

by the different SDR methods. Third, we compute the distance correlation

between the test response and the test predictors projected on the estimated

SY |X. This procedure is repeated 100 times for different random partition of

training and test data. Box plots of the cross-validated distance correlations for

different SDR methods are depicted in Figure 4. As a reference, we also include300

distance correlation between the test response and test predictors without ap-

plying SDR. All methods except SIR successively reduce dimensionality of the

predictors without losing regression information contained in the Pyrimidines

data. We note that PPLR shows the best performance in terms of preserv-

ing dependency structure between the response and predictors projected on the305

estimated central subspace by PPLR.

6. Discussion

In this paper, we propose PLR as an efficient tool for SDR. Its estimation

as well as asymptotic analysis are straightforward due to the similarity to the

conventional logistic regression. We then further develop its penalized version310

for sparse SDR. The max-SCAD penalized PLR adaptively takes into account

the unknown sparsity structure of the basis of the central subspace and presents

dramatic improvement when the true signal is indeed sparse.

A distinguished feature of PSVM which motivates PLR is that it can be

readily extended to the nonlinear SDR by employing the kernel trick. This315
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Figure 3: Scatter plots of y versus fitted ŷ from linear (plus) and local polynomial (circle)
regression models on the estimated central subspaces by different SDR methods. Values in
the legend are sum of squared residuals.
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test predictors projected on SY |X estimated by different SDR methods: As a reference, both
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and test predictors before projection are depicted.
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leads us to develop the kernel PLR by simply replacing loss function. However,

the penalized version is not straightforward due to the use of kernels that map

predictors to an infinite feature space.

In this article, we assume that p can be large but fixed. When p is diverging,

its asymptotic analysis becomes challenging because of the covariance matrix320

of the predictors in the objective function. For diverging p, we may need much

stronger conditions to guarantee that the covariance matrix estimators behave

nicely as p increases. We leave this as a further research topic.
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Appendix A. Appendix

Appendix A.1. Regularity Conditions

We assume the following regularity conditions.405

(A) Σ = var(X) is nonsingular.

(B) Zi are independent and identically distributed with probability density

fZ. fZ is identifiable and has a common support, and a unique solution

θ0 exists that satisfies

E [m′
θ(Z)] = 0

(C) E
[

∂2

∂θθ⊤mθ(Z)
]
is nonsingular at θ = θ0.

(D) E(X4
j ) < ∞ for j = 1, · · · , p

The regularity conditions are rather standard in the context of M-estimation.

See, for example, (author?) [19].410
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Appendix A.2. Proof of Theorem 1

Assume that E(X) = 0 without loss of generality, then, the objective func-

tion (4) is

Λ(α,β) = Var(β⊤X) + CE
[
ln
(
1 + e−Ỹ (α+β⊤X)

)]
.

We have that

Var(β⊤X) = Var[E(β⊤X|B⊤X)] + E[Var(β⊤X|B⊤X)] ≥ Var[E(β⊤X|B⊤X)],

(Appendix A.1)

and

E
[
ln
(
1 + e−Ỹ (α+β⊤X)

)]
= E

[
E
[
ln
(
1 + e−Ỹ (α+β⊤X)

) ∣∣Ỹ ,B⊤X
]]

(Appendix A.2)

≥ E
[
ln
(
1 + e−Ỹ (α+E[β⊤X|Ỹ ,B⊤X])

)]

= E
[
ln
(
1 + e−Ỹ (α+E[β⊤X|B⊤X])

)]

The inequality holds since the logistic loss function is convex, and the last equal-

ity is true under (1). Thus, the (possibly non-unique) minimum of (Appendix A.2)

is achieved at E[β⊤X
∣∣B⊤X] = PB(Σ)β ∈ SY |X for any α ∈ R.

Suppose β̃ /∈ SY |X is a minimizer of (Appendix A.2), then, Var(β̃
⊤
X|B⊤X) >

0 by (Appendix A.1) and

Λ(α, β̃) > Λ(α, PB(Σ)β̃).

Therefore, β̃ cannot be the minimizer of Λ(α,β). �415

Appendix A.3. Proof of Theorem 2

(a) - consistency

Toward (a), we have Λ̂(θ)
p→ Λ(θ) by weak law of large numbers and the

consistency of the sample covariance matrix, Σ̂. Notice that Λ(θ) is a strictly
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convex function of θ. By Convexity Lemma [28], pointwise convergence of Λ̂(θ)420

implies uniform convergence, that is, supθ |Λ̂(θ)− Λ(θ)| p→ 0. Finally, we have

θ̂
p→ θ0 by Theorem 2.1 of [29].

(b) - asymptotic normality

Notice that θ0 is a unique solution of

E [m′
θ(Z)] = E

[
2Σθ − CỸ (1− π) ·X∗

]
= 0,

where π =
{
1 + exp(−Ỹ · θ⊤X∗)

}−1

.

We remark that

i) A mapping θ → mθ(Z) is continuously differentiable for every Z.425

ii) E‖m′
θ0
(Z)‖2 < ∞

iii) there exists a constant A > 0 such that

∣∣∣∣
∂3m(θ,Z)

∂θi∂θj∂θk

∣∣∣∣ =
∣∣∣Cπ(1− π)(1− 2π) ·X∗

i X
∗
jX

∗
k Ỹ

∣∣∣ ≤ A‖X‖3.

by the condition (D).

Finally, under i) – iii) combined with the regularity condition (C), the desired

result follows from Theorem 5.41 of (author?) [19]. �

Appendix A.4. Proof of Theorem 3430

(a) - Asymptotic normality of M̂

Let S(θ0,k;Z) = Fθ0,k
m′

θ0
(Z) where Fθ0

is the last p rows of H−1
θ0

, then

√
n(β̂k − β0,k) = −n−1/2

n∑

i=1

S(θ0,k;Zi) + op(1).
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Let S̄(θ0,k,Z) = n−1
∑n

i=1 S(θ0,k;Zi) and S̄n(θ0,k;Z) = Op(n
−1/2) because

E[S(θ0,k,Z)] = 0. We then have

vec(M̂n)− vec(M0)

=

H∑

h=1

β̂n,k ⊗ β̂n,k −
H∑

h=1

β0,k ⊗ β0,k

=

H∑

h=1

{
β0,k − S̄n(θ0,k;Z) + op(n

−1/2)
}
⊗
{
β0,k − S̄n(θ0,k;Z) + op(n

−1/2)
}
−

H∑

h=1

β0,k ⊗ β0,k

=−
H∑

h=1

{
β0,k ⊗ S̄n(θ0,k;Z) + S̄n(θ0,k;Z)⊗ β0,k

}
+

H∑

h=1

S̄n(θ0,k;Z)⊗ S̄n(θ0,k;Z) + op(n
−1/2)

=−
H∑

h=1

{
β0,k ⊗ S̄n(θ0,k;Z) + S̄n(θ0,k;Z)⊗ β0,k

}
+ op(n

−1/2).

where ⊗ denotes the Kronecker product operator. Let Tu,v ∈ Ruv×uv denote

a commutation matrix that satisfies Tu,vvec(A) = vec(A⊤) for a matrix A ∈
Ru×v. It is known that the commutation matrix T has the following properties:

- Ti1,i2 = T⊤
i2,i1

.

- A⊗B = Ti1,i3(B⊗A)Ti4,i2 for A ∈ Ri1×i2 and B ∈ Ri3×i4 .435

Therefore

√
n{vec(M̂n)− vec(M0)} = − 1√

n

n∑

i=1

{
(Ip2 +Tp,p)

h∑

k=1

β0,k ⊗ S(θ0,k;Zi)

}
+ op(1),

Finally the desired result is then followed by Central Limit Theorem with co-

variance matrix ΣM as follows:

ΣM = (Ip2 +Tp,p)

h∑

k=1

h∑

k′=1

(
β0,kβ

⊤
0,k′ ⊗ E [S(θ0,k,Z)S

⊤(θ0,k′ ,Z)]
)
(Ip2 +Tp,p),

where Ip denotes the p-dimensional identity matrix.
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(b) - Asymptotic normality of V̂

Finally, asymptotic normality of V̂ follows as a direct consequence of that of M̂

and (author?) [30]. The asymptotic variance is given by

ΣV = (D−1U⊤ ⊗ Ip)ΣM(UD−1 ⊗ Ip)

where U is a p×d matrix with columns that are eigenvectors of M0 correspond-

ing to its nonzero eigenvalues, and D is a d×d diagonal matrix with the nonzero

eigenvalues as diagonal elements.440

�

Appendix A.5. Proof of Theorem 4

In order to prove Theorem 4, we first introduce two lemmas.

Lemma 1. Under the regularity conditions, if bn = max1≤j≤p p
′′
λn

(max1≤k≤h |β0
jk|)

converges to 0, then there exists a local minimizer Ω̂ of Q(Ω) such that ‖θ̂k −445

θ0,k‖ = Op(n
−1/2+an) for k = 1, · · · , h where an = max1≤j≤p p

′
λn

(max1≤k≤h |β0
jk|)

with β0
jk being the jth element of β0,k.

Proof of Lemma 1. Let δn = n−1/2+an. We show that for arbitrary given ǫ > 0

a constant C1 > 0 exists such that

P

{
inf

‖E‖=C1

Q(Ω+ δnE) > Q(Ω)

}
≥ 1− ǫ

Now we have that

Q(Ω0 + δnE)−Q(Ω0)

≥
h∑

k=1

Λ̂k(θ0,k + δnek)− Λ̂k(θ0,k) +

q∑

j=1

(
pλn

( max
1≤k≤h

|β0
jk + δnejk|)− pλn

( max
1≤k≤h

|β0
jk|)

)

=:D1 +D2
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By Taylor expansion,

D1 = δn

h∑

k=1

e⊤k
∂

∂θ
Λ̂k(θ0,k)+

1

2
δ2n

h∑

k=1

e⊤k

{
∂2

∂θ2 Λ̂k(θ0,k)

}
ek(1+op(1)) := D11+D12.

Then,

|D11| ≤ δn

h∑

k=1

∣∣∣∣e⊤k
∂

∂θ
Λ̂k(θ0,k)

∣∣∣∣ ≤ δn

h∑

k=1

‖ek‖·
∥∥∥∥
∂

∂θ
Λ̂k(θ0,k)

∥∥∥∥ = Op(δnn
−1/2)

h∑

k=1

‖ek‖

and

D12 =
1

2
δ2n

h∑

k=1

e⊤k Hθ0,k
ek(1 + op(1)).

Now,

D2 =

q∑

j=1

p′λn
( max
1≤k≤h

|β0
jk|)( max

1≤k≤h
|β0

jk + δnejk| − max
1≤k≤h

|β0
jk|)+

q∑

j=1

1

2
p′′λn

( max
1≤k≤h

|β0
jk)( max

1≤k≤h
|β0

jk + δnejk| − max
1≤k≤h

|β0
jk|)2(1 + o(1)),

and hence

|D2| ≤
√
qδnan

h∑

k=1

‖ek‖+
1

2
δ2n max

1≤j≤q
p′′λn

(|β0
jk|)h

h∑

k=1

‖ek‖2.

Note that D12, which is always positive, dominates all other terms, hence, the

desired result follows by letting C1 = ‖E‖ = (
∑h

k=1 ‖ek‖2)1/2 sufficiently large.

�450

Lemma 2. Under the conditions of Theorem 4, for any given (q+1)×h subma-

trix Ω+ = (θ1+, · · · ,θh+) satisfying ‖θk+ − θ0,k+‖ = Op(n
−1/2), k = 1, · · · , h

and any (p− q)×h submatrix Ω− = (θ1−, · · · ,θh−
) satisfying ‖θk−−θ0,k−‖ ≤

C2n
−1/2 for a constant C2, k = 1, · · · , h, we have, with probability tending to
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one,

Q((Ω⊤
+,0

⊤
(p−q)×h)

⊤) = min
‖βk−

‖≤C2n−1/2
Q((Ω⊤

+,Ω
⊤
−)

⊤)

Proof of Lemma 2. It is sufficient to show that with probability tending to one

as n → ∞ for any given θk+ satisfying ‖θk+ − θ0,k+‖ = Op(n
−1/2) and any

constant C2 > 0, j = q + 1, · · · , p,

∂

∂βr
jk

Q(Ω) > 0 for 0 < βjk < C2n
−1/2 and βjk = max

1≤m≤h
|βjm|

∂

∂βl
jk

Q(Ω) < 0 for 0 < −βjk < C2n
−1/2 and βjk = − max

1≤m≤h
|βjm|

where ∂/∂βl
jk and ∂/∂βr

jk denote the left and right hand partial derivative,

respectively.

Applying Taylor expansion, we have

∂

∂βjk
Λ̂k(θk) =

∂

∂βjk
Λ̂k(θ0,k) +

p∑

l=1

∂2

∂βjk∂βlk
Λ̂k(θ0,k)(βlk − β0

lk) := E1 + E2.

Note that E1 = Op(n
−1/2) and E2 can be decomposed as

E2 =

p∑

l=1

[
∂2

∂βjk∂βlk
Λ̂k(θ0,k)− hlj

θ0,k

]
(βlk − β0

lk) +

p∑

l=1

hlj
θ0,k

(βlk − β0
lk) := E21 + E22

where hlj
θ0,k

denotes the (l, j)th element of Hθ0,k
. Now, it is clear that E21 =

Op(n
−1) and E21 = Op(n

−1/2) by applying Cauchy-Schwarz inequalities, re-

spectively. As a consequence, we have

∂

∂βjk
Λ̂k(θk) = Op(n

−1/2).

Finally, we have for βjk = max1≤m≤h |βjm|,

∂

∂βjk
Q(Ω) = λn

{
λ−1
n p′λn

(|βjk|)sign(βjk) +Op(n
−1/2/λn)

}
.
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By the assumptions that n−1/2λn → 0 and lim infn→∞ lim infθ→0+ p′λn
(θ)/λn >

0, the first term dominates the second term and the desired result follows. �

Proof of Theorem 4

Notice for the SCAD penalty that an = 0 and bn = 0 when λn < a−1 max1≤j≤p max1≤k≤h |β0
jk|.

By Lemma 1, a
√
n-consistent local minimizer Ω̂ of Q(Ω) exists. By Lemma 2,

Ω̂ = (Ω⊤
+,0(p−q)×h)

⊤ with probability tending to one, which proves part (a).

As a consequence, we are in effect minimizing

Q̃(Ω+) = β⊤
k+Σ̂βk+ +

C

n

n∑

i=1

ln(1 + e−ỹik{αk+β⊤

k+xi+})

over Ω+ with probability tending to one. This completes the proof of part (b).455

�
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