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Abstract

When modeling the distribution of a multivariate continuous random vector

using the so-called copula approach, it is not uncommon to have ties in the coor-

dinate samples of the available data because of rounding or lack of measurement

precision. Yet, the vast majority of existing inference procedures on the underlying

copula were both theoretically derived and practically implemented under the as-

sumption of no ties. Applying them nonetheless can lead to strongly biased results.

Some of the existing statistical tests can however be adapted to provide meaningful

results in the presence of ties. It is the case of some tests of exchangeability, ra-

dial symmetry, extreme-value dependence and goodness of fit. Detailed algorithms

for computing approximate p-values for the modified tests are provided and their

finite-sample behaviors are empirically investigated through extensive Monte Carlo

experiments. An illustration on a real-world insurance data set concludes the work.

Keywords: bootstrap; exchangeability; extreme-value dependence; goodness of fit;

parametric bootstrap; radial symmetry; statistical tests; ties.

1 Introduction

The copula approach to the modeling of multivariate continuous distributions is increas-
ingly applied in numerous fields such as environmental modeling (Salvadori et al., 2007),
quantitative risk management (McNeil et al., 2015) or econometric modeling (Patton,
2012), to name a few.

Let X1, . . . ,Xn be independent and identically distributed (i.i.d.) copies of a random
vector X with d-dimensional cumulative distribution function (c.d.f.) F . The use of cop-
ulas to model F from X1, . . . ,Xn becomes particularly meaningful when the d univariate
marginal c.d.f.s (margins for short) F1, . . . , Fd associated with F are assumed continuous.
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Indeed, in that case, the copula C (merely a multivariate c.d.f. with standard uniform
univariate margins) associated with F through the well-known representation

F (x) = C{F1(x1), . . . , Fd(xd)}, x ∈ R, (1.1)

is unique and is given by

C(u) = F{F−1
1 (u1), . . . , F

−1
d (ud)}, u ∈ [0, 1]d, (1.2)

in terms of the quantile functions (generalized inverses) F−1
1 , . . . , F−1

d associated with
F1, . . . , Fd, respectively; see Sklar (1959) and, for instance, Rüschendorf (2009). To obtain
a parametric estimate of F with (1.1) in mind, a practitioner needs to model F1, . . . , Fd

by appropriate univariate parametric families, and C by an adequate parametric copula
family. This work is concerned with the latter step only.

There exists a large number of parametric copula families that belong to broader
classes such as extreme-value copulas (see, e.g, Gudendorf and Segers, 2010), Archimedean
copulas (see, e.g, Nelsen, 2006) or elliptical copulas (see, e.g., McNeil et al., 2015, Chap. 7).
To help guide the choice of the most appropriate parametric copula family for the data
at hand, many inference procedures, mostly taking the form of statistical tests, were pro-
posed in the literature. For instance, tests of extreme-value dependence were proposed by
Ghoudi et al. (1998), Ben Ghorbal et al. (2009), Bücher et al. (2011), Kojadinovic et al.
(2011a) and Cormier et al. (2014), among others, bivariate tests of exchangeability were
proposed by Genest et al. (2012) and Kojadinovic and Yan (2012), bivariate tests of ra-
dial symmetry were investigated in Genest and Nešlehová (2014) while goodness-of-fit
tests were studied for instance in Genest et al. (2009), Berg (2009) and Kojadinovic and Yan
(2011) (see, e.g., Fermanian, 2013, for a recent review).

The vast majority of existing tests on the unknown copula C were theoretically inves-
tigated and practically implemented under the assumption of no ties in the coordinate
samples of the available i.i.d. data X1, . . . ,Xn. Indeed, if the d univariate margins of F
are continuous, ties cannot occur in the component series. Yet, because of rounding or
measurement precision issues, it is not uncommon to have ties in real-world data sets,
even if the underlying random phenomenon to be modeled is truly continuous.

Several practical studies such as those in Kojadinovic and Yan (2010a), Genest et al.
(2011b) or Pappadà et al. (2016) highlight the fact that the presence of ties in the coor-
dinate samples can strongly bias the results of the aforementioned inference procedures
on C. Additional empirical evidence will be provided in the forthcoming sections.

The aim of this work is to propose versions of some of the aforementioned tests
that are adapted to the presence of ties in the component series of X1, . . . ,Xn. In
particular, modifications of the bivariate tests of exchangeability of Genest et al. (2012)
and Kojadinovic and Yan (2012), of the test of radial symmetry of Genest and Nešlehová
(2014), of the bivariate tests of extreme-value dependence of Ghoudi et al. (1998) and
Ben Ghorbal et al. (2009), and of the parametric bootstrap-based goodness-of-fit tests
of Genest et al. (2009) are suggested and empirically investigated in a large number of
Monte Carlo experiments. Unfortunately, given the difficulty of the underlying theoretical
setting (see, e.g., Genest and Nešlehová, 2007; Genest et al., 2014), no theoretical results
on the asymptotic validity of the modified tests are provided.
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The second section details the data generating mechanism used in the simulations.
The tie-adapted tests are described and empirically studied in Sections 3–6. An illus-
tration on a real-world insurance data set is provided in Section 7 while the last section
concludes. Notice that all the tests studied in this work are implemented in the pack-
age copula (Hofert et al., 2017) for the R statistical environment (R Core Team, 2016),
making all the numerical experiments presented in the paper fully reproducible.

2 Data generating mechanism

To empirically investigate the finite-sample behaviors of the tie-adapted tests to be pre-
sented in the forthcoming sections, we carried out numerous Monte Carlo experiments.
Given a d-dimensional copula C, a sample size n and two discretization parameters k ∈ N,
k ≥ 1, and t ∈ {0.5, 1, 2}, samples were generated using the following procedure:

Procedure 2.1 (Data generating mechanism).

(i) Generate a random sample U1, . . . ,Un from C.

(ii) Form the k bins (ai, ai+1], i ∈ {0, . . . , k − 1}, where ai = it/kt, i ∈ {0, . . . , k}.

(iii) For all j ∈ {1, . . . , d}, replace each observation in the coordinate sample U1j , . . . , Unj

by the center of the bin to which it belongs.

In the sequel, we adopt the convention that the setting k = ∞ corresponds to no
discretization. Notice that taking t ∈ {0.5, 2} results in bins of different lengths.

3 Tests of exchangeability

A d-dimensional copula C is said to be exchangeable if, for any u ∈ [0, 1]d and any permu-
tation π on {1, . . . , d}, C(u) = C(uπ(1), . . . , uπ(d)). Many of the parametric copula families
used in practice are exchangeable. Various mechanisms can however be used to construct
non-exchangeable families from exchangeable ones (see, e.g., Genest and Nešlehová, 2013,
for a review). One construction principle of particular interest is known as Khoudraji’s de-
vice. It was initially proposed by Khoudraji (1995) and is further discussed in Genest et al.
(1998) and Genest and Nešlehová (2013). It turns out to be a particular case of the more
general construction principal proposed by Liebscher (2008).

Given two d-dimensional copulas C1 and C2, and a shape vector s ∈ [0, 1]d, Khoudraji’s
device creates a new copula D as

D(u) = C1(u
1−s)C2(u

s), u ∈ [0, 1]d, (3.1)

with the convention that uv = (uv1
1 , . . . , uvd

d ) for all u, v ∈ [0, 1]d.

To decrease the number of candidate parametric families when carrying out inference
on the unknown copula C, it is of interest to assess from X1, . . . ,Xn whether C is
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exchangeable. A formal test of exchangeability was studied in the bivariate case by
Genest et al. (2012) as a particular case of the one proposed by Rémillard and Scaillet
(2009). It is based on the statistic

Rn,C = n

∫

[0,1]2
{Cn(u1, u2)− Cn(u2, u1)}2dCn(u)

=

n
∑

i=1

{Cn(Ûi1, Ûi2)− Cn(Ûi2, Ûi1)}2, (3.2)

where Cn is a consistent nonparametric estimator of the unknown copula C based on
X1, . . . ,Xn that we shall refer to as the empirical copula. For arbitrary d ≥ 2, it is
defined as

Cn(u) =
1

n

n
∑

i=1

1(Ûi ≤ u), u ∈ [0, 1]d, (3.3)

where inequalities between vectors are to be understood componentwise,

Ûi =
1

n+ 1
(Ri1, . . . , Rid), i ∈ {1, . . . , n}, (3.4)

and, for any j ∈ {1, . . . , d}, R1j , . . . , Rnj are the ranks computed from X1j , . . . , Xnj.

Before proceeding further and under the assumption of no ties in the components
samples of X1, . . . ,Xn, let us make a few remarks:

• Recall that Rij = nFn,j(Xij), i ∈ {1, . . . , n}, j ∈ {1, . . . , d}, where Fn,j is the
empirical c.d.f. computed from X1j , . . . , Xnj.

• Starting from (1.2) and applying the plug-in principle, a seemingly more natural
nonparametric estimator of C, considered for instance in Deheuvels (1979, 1981), is

C̃n(u) = Fn{F−1
n,1(u1), . . . , F

−1
n,d(ud)}, u ∈ [0, 1]d, (3.5)

where Fn is the multivariate empirical c.d.f. computed fromX1, . . . ,Xn and, for any
j ∈ {1, . . . , d}, F−1

n,j is the generalized inverse of the univariate empirical c.d.f. Fn,j .

• The difference between Cn and C̃n is of the order 1/n but the former is substantially
simpler to compute.

• If the division by n + 1 in (3.4) were replaced by division by n, Cn and C̃n would
coincide on the set {(i1/n, . . . , id/n) : i1, . . . , id ∈ {1, . . . , n}} and thus Cn in the
expression of Rn,C in (3.2) could be replaced by C̃n.

• The division by n + 1 in (3.4) is carried out in this work with maximum pseudo-
likelihood estimation (see Genest et al., 1995) and nonparametric estimation of the
Pickands dependence function in mind (see Genest and Segers, 2009); see also later
in this section and Section 6.
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To attempt to extend the test of exchangeability based on Rn,C to the presence of
ties in the component samples of X1, . . . ,Xn, we first need to decide how to compute the
ranks involved in (3.4) in that case. A first sensible approach would consist of considering
maximal ranks. It is only if this definition is used that one recovers in the presence of
ties the well-known fact in the absence of ties that Rij = nFn,j(Xij), i ∈ {1, . . . , n},
j ∈ {1, . . . , d}. An alternative approach, common in nonparametric statistics, would
be to use average ranks, also called midranks ; see, for instance, Agresti (2002, 2010),
or the R function rank which computes average ranks by default. Roughly speaking, if
average (resp. maximal) ranks are use, tied observations are assigned the average (resp.
the maximum) of the ranks they would obtain if there were no ties. In the absence of
ties, as desired, all definitions lead to the same result. In the rest of this work, we shall
use either maximal ranks or average ranks for reasons that we will always be explicitly
stated.

Going back to the test of exchangeability of Genest et al. (2012), our numerical ex-
periments indicate that, in the presence of ties, the type of ranks (maximal or average)
used in (3.4) when computing Rn,C in (3.2) does not seem to have much influence on the
results. We have thus arbitrarily decided to compute Rn,C from scaled average ranks.

An alternative test of exchangeability was proposed by Kojadinovic and Yan (2012),
initially, under the additional assumption that the unknown bivariate copula C is an
extreme-value copula (see, e.g., Gudendorf and Segers, 2010, for an overview of the main
characterizations and properties of such copulas). The test statistic is defined as

Rn,A = n

∫

[0,1]

{An(t)−An(1− t)}2dt, (3.6)

where An is the rank-based version of the Capéraà–Fougères–Genest estimator (Capéraà et al.,
1997) of the Pickands dependence function (Pickands, 1981) associated with C. The es-
timator An is defined in Eq. (2.3) of Genest and Segers (2009), where its most important
theoretical properties are established. For our purpose, it is sufficient to keep in mind
that An solely depends on the bivariate scaled ranks Û1, . . . , Ûn defined in (3.4), making
the statisticRn,A rank-based. Our Monte-Carlo experiments suggest that, in the presence
of ties, An should be computed from scaled average ranks.

The latter test remains actually meaningful when C belongs to the larger class of
bivariate copulas that are left-tail decreasing (LTD) in both variables (see, e.g., Nelsen,
2006, Section 5.2.2). Note that, from Nelsen (2006, Exercise 5.35), a bivariate copula C
is LTD in both arguments if and only if, for any 0 < u ≤ u′ ≤ 1 and 0 < v ≤ v′ ≤ 1,

C(u, v)

uv
≥ C(u′, v′)

u′v′
.

As shown by Garralda-Guillem (2000), bivariate extreme-value copulas are LTD in both
variables but so are the most popular bivariate copulas with positive dependence such as
the Clayton, Frank, normal and Plackett.

For the computation of approximate p-values, both the test based onRn,C and the one
based on Rn,A rely on (an adaptation of) the multiplier resampling scheme proposed by
Rémillard and Scaillet (2009). While, in the absence of ties, the two tests do not appear
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to be too liberal (that is, they do not seem to reject the null hypothesis too often when
it is true), it is not the case anymore when the amount of ties in the coordinate samples
of X1, . . . ,Xn becomes non negligible. This will be illustrated later in this section when
reporting the results of certain Monte Carlo experiments.

Let Rn stand for Rn,C in (3.2) or Rn,A in (3.6). In order to obtain a version of the
test based on Rn adapted to ties, we propose the following bootstrap procedure:

Procedure 3.1 (Approximate p-value for Rn in the presence of ties).

1. For j ∈ {1, 2}, compute the average ranks R1j , . . . , Rnj of X1j , . . . , Xnj and set
Sij = Rσj(i),j , i ∈ {1, . . . , n}, where σj is a permutation on {1, . . . , n} such that
S1j = Rσj(1),j ≤ · · · ≤ Snj = Rσj(n),j .

2. Compute Û1, . . . , Ûn from the average ranks computed in Step 1 using (3.4) and,
then, compute Rn from Û1, . . . , Ûn.

3. For some large integer N , repeat the following steps for every k ∈ {1, . . . , N}:

(a) Generate n random permutations π
(k)
1 , . . . , π

(k)
n on {1, 2} and form the sample

V̂
(k)
i = (Û

i,π
(k)
i (1)

, Û
i,π

(k)
i (2)

), i ∈ {1, . . . , n}.

(b) Set Ŵ
(k)
i = V̂

(k)
i , i ∈ {1, . . . , n}, and then, for j ∈ {1, 2}:

- find a permutation ρ
(k)
j on {1, . . . , n} such that Ŵ

(k)

ρ
(k)
j (1),j

≤ · · · ≤ Ŵ
(k)

ρ
(k)
j (n),j

,

- set Ŵ
(k)

ρ
(k)
j (i),j

= V̂
(k)
⌊Sij⌋,j

, i ∈ {1, . . . , n},

where ⌊·⌋ is the floor function.

(c) Form the kth bootstrap sample as

Û
(k)
i =

1

n + 1
(R

(k)
i1 , R

(k)
i2 ), i ∈ {1, . . . , n},

where, for any j ∈ {1, 2}, R(k)
1j , . . . , R

(k)
nj are the average ranks computed from

Ŵ
(k)
1j , . . . , Ŵ

(k)
nj .

(d) Let R(k)
n stand for the version of Rn computed from Û

(k)
1 , . . . , Û

(k)
n .

4. An approximate p-value for the test is given by

1

N + 1

N
∑

k=1

{1(R(k)
n ≥ Rn) + 0.5}. (3.7)

Let us comment on the above procedure:

• The aim of Step 3 (a) is to “break the non-echangeability”, if any, in Û1, . . . , Ûn.
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• The aim of Steps 3 (b) and 3 (c) is that each bootstrap sample Û
(k)
1 , . . . , Û

(k)
n

has similar marginal empirical c.d.f.s as Û1, . . . , Ûn in (3.4). The key ingredient
is Step 3 (b) which exploits an idea from Bücher and Kojadinovic (2015, Section
5.2) that should be credited to the first author of the latter reference. Roughly

speaking, Step 3 (b) imposes on the sample V̂
(k)
1 , . . . , V̂

(k)
n resulting from Step 3 (a)

the “tie structure” found in the coordinate samples of X1, . . . ,Xn. Although this
is not true in general, it helps to think of the latter as consisting of applying on
the coordinate samples of V̂

(k)
1 , . . . , V̂

(k)
n a certain empirical version of the quantile

transformation. As a consequence of Steps 3 (b) and 3 (c), Rn,R(1)
n , . . . ,R(N)

n are
computed from samples with similar marginal empirical c.d.f.s.

• The slight modification in (3.7) of the classical formula N−1
∑N

k=1 1(R
(k)
n ≥ Rn) is

used to ensure that the p-value is in the open interval (0, 1) so that transformations
by quantile functions of continuous distributions are always well-defined.

• Some thought reveals that the procedure remains meaningful even if there are no
ties in the coordinate samples of X1, . . . ,Xn.

As we continue, to refer to the original tests based on (3.2) and (3.6), we shall use
the expressions the test based on Rn,C and the test based on Rn,A, respectively, while to
refer to the tests adapted to ties, we shall write the test based on R′

n,C and the test based
on R′

n,A, respectively.

To investigate the levels of the tests based on Rn,C , R′
n,C , Rn,A and R′

n,A empirically,
we generated 1000 samples using Procedure 2.1 for n ∈ {50, 100, 200}, k ∈ {10, 20, 50,∞},
t ∈ {0.5, 1, 2} and C either the bivariate Clayton, Gumbel–Hougaard, Frank, normal or
Plackett copula with a Kendall’s tau of τ ∈ {0, 0.25, 0.5, 0.75}. For each combination
of C, τ , n, k and t, the tests were then carried out at the 5% significance level and
approximate p-values were computed from N = 1000 multiplier or bootstrap replicates.
A subset of the obtained rejection percentages for k ∈ {10,∞} and t = 1 is reported in
Table 1.

As one can see, the tests do not seem too liberal when there is no discretization
(k = ∞). For k = 10, however, the test based on Rn,C appears to reject the null
hypothesis of exchangeability almost always. The test based on Rn,A seems much more
robust against ties and it is only when the dependence is strong (τ = 0.75) that its levels
sometimes appear to be substantially larger than the 5% nominal level. The results for the
other copula families (not reported), and the other values of k and t, are not qualitatively
different. Unlike the tests based on Rn,C and Rn,A, the tests adapted to ties were never
observed to be too liberal. The test based on R′

n,C appears however too conservative, in
particular when the dependence is strong (τ = 0.75), although the agreement with the
5% nominal level seems to improve as n increases.

An additional issue of practical interest is related to the observation that the adapted
bootstrap given in Procedure 3.1 remains meaningful even if there are no ties in the
coordinate samples of X1, . . . ,Xn. To investigate if the use of the bootstrap procedure
leads to a loss of power when there is no discretization, we carried out the tests on
samples generated from non-exchangeable copulas constructed using Khoudraji’s device.
The copula C1 in (3.1) was taken to be the independence copula, the copula C2 was
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Table 1: Percentages of rejection of the null hypothesis of exchangeability computed from
1000 samples of size n ∈ {50, 100, 200} generated using Procedure 2.1 with C the Clayton
or Gumbel–Hougaard copula with a Kendall’s tau of τ ∈ {0, 0.25, 0.5, 0.75}, k ∈ {10,∞}
and t = 1.

Cl GH

τ n k Rn,C R′
n,C Rn,A R′

n,A Rn,C R′
n,C Rn,A R′

n,A

0.00 50 ∞ 4.9 3.7 6.5 6.2 5.2 3.4 7.0 6.3
10 100.0 1.1 6.8 5.9 100.0 0.7 6.1 5.5

100 ∞ 3.5 3.2 5.3 5.5 3.1 2.7 4.3 4.1
10 100.0 2.6 5.5 4.7 100.0 2.2 6.3 5.2

200 ∞ 3.5 3.7 5.0 5.6 4.4 4.2 5.5 5.7
10 100.0 3.9 5.1 4.4 100.0 3.7 4.3 3.9

0.25 50 ∞ 3.0 0.8 5.3 5.5 4.0 1.8 4.8 6.0
10 100.0 0.4 6.0 5.6 100.0 0.6 4.9 5.7

100 ∞ 2.2 2.1 5.4 6.1 3.1 2.1 3.9 4.1
10 100.0 1.4 6.3 6.1 100.0 0.9 5.4 5.3

200 ∞ 3.8 3.9 4.7 5.0 2.3 2.5 5.2 5.6
10 100.0 3.4 5.6 4.9 100.0 2.2 4.5 3.7

0.50 50 ∞ 2.0 0.8 3.3 5.6 3.2 0.9 3.0 6.3
10 100.0 0.4 4.9 5.7 100.0 0.4 5.5 5.4

100 ∞ 1.7 1.5 4.3 5.7 2.2 1.7 2.4 5.4
10 100.0 2.1 4.3 4.3 100.0 1.2 6.7 5.4

200 ∞ 2.5 2.6 4.7 5.3 2.2 2.5 3.6 4.9
10 100.0 2.7 4.3 4.0 100.0 2.4 6.6 5.2

0.75 50 ∞ 2.8 0.1 1.9 6.6 2.4 0.3 0.3 7.7
10 100.0 0.3 3.0 4.2 100.0 0.3 5.8 3.6

100 ∞ 2.3 0.7 2.1 6.6 1.7 0.2 1.0 6.5
10 100.0 0.8 4.5 3.2 100.0 1.1 14.2 5.4

200 ∞ 2.2 0.7 3.5 5.7 1.5 1.0 1.2 4.6
10 100.0 2.3 6.2 3.8 100.0 1.9 18.3 3.2

taken to be either the Clayton, Gumbel–Hougaard, Franck, normal or Plackett copula
with a Kendall’s tau of 0.75, the second shape parameter s2 was set to 0.95, while the
first shape parameter s1 was taken in {0.2, 0.4, 0.6, 0.8} so that the resulting copula D
displays various degrees of asymmetry with respect to the first diagonal. The rejection
percentages of the null hypothesis of exchangeability when C2 is the normal copula are
reported in Table 2. As one can notice, the test based on Rn,C (resp. R′

n,A) might be
slightly more powerful than the one based on R′

n,C (resp. Rn,A).

In a final experiment, we investigated the influence of k and t on the power of the tie-
adapted tests. To do so, samples of size n ∈ {100, 200} were generated from the copula
in (3.1) with C1 the independence copula, C2 either the Clayton, Gumbel–Hougaard,
Franck, normal or Plackett copula with a Kendall’s tau of 0.75, s2 = 0.95 and s1 ∈
{0.2, 0.4, 0.6, 0.8}, and were further discretized as explained in Procedure 2.1 with k ∈
{10, 20, 50} and t ∈ {0.5, 1, 2}. Table 3 reports the rejection percentages when C2 is
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Table 2: Percentages of rejection of the null hypothesis of exchangeability computed
from 1000 samples of size n ∈ {100, 200} generated from the copula in (3.1) with
C1 the independence copula, C2 the normal copula with a Kendall’s tau of 0.75,
s1 ∈ {0.2, 0.4, 0.6, 0.8}, s2 = 0.95, and without additional discretization.

s1 n Rn,C R′
n,C Rn,A R′

n,A

0.2 100 43.6 40.7 73.1 73.9
200 80.9 80.8 97.9 98.1

0.4 100 77.1 72.6 92.1 94.5
200 99.1 99.2 100.0 100.0

0.6 100 71.6 62.4 80.4 81.5
200 97.6 96.7 98.0 97.9

0.8 100 21.4 14.3 33.4 39.3
200 51.1 44.9 57.6 58.3

Table 3: Percentages of rejection of the null hypothesis of exchangeability computed
from 1000 samples of size n ∈ {100, 200} generated from the copula in (3.1) with C1 the
independence copula, C2 the normal copula with a Kendall’s tau of 0.75, s = (0.2, 0.95),
and further discretized as explained in Procedure 2.1 with k ∈ {10, 20, 50} and t ∈
{0.5, 1, 2}.

n = 100 n = 200

k t R′
n,C R′

n,A R′
n,C R′

n,A

10 1.0 19.8 60.6 46.5 89.9
2.0 15.6 45.5 33.0 76.2
0.5 7.5 62.1 25.6 91.9

20 1.0 28.4 71.7 65.1 95.4
2.0 21.6 61.6 50.0 89.8
0.5 11.1 67.5 39.8 94.9

50 1.0 37.7 75.5 76.0 96.4
2.0 34.1 71.9 75.8 96.8
0.5 22.7 74.2 48.8 97.4

the normal copula and s1 = 0.2. Overall, for fixed n and t, the power increases with k.
In other words, as could have been expected, the smaller the amount of ties, the more
powerful the adapted tests.

4 Tests of radial symmetry

Let C be a d-dimensional copula and let U be a random vector with c.d.f. C. The c.d.f.
of the random vector 1−U is called the survival copula of C and is classically denoted
by C̄. A copula C is said to be radially symmetric if it is equal to its survival copula,
that is, if C = C̄.

Some copula families, such as the normal or the Frank, are radially symmetric, some

9



others, such as the Clayton or the Gumbel–Hougaard, are not. As for exchangeability, it
is thus of strong practical interest to test for radial symmetry when carrying out copula
inference. Starting from the above definition of radial symmetry, a natural test statistic
is

Qn = n

∫

[0,1]d
{Cn(u)− C̄n(u)}2dCn(u) =

n
∑

i=1

{Cn(Ûi)− C̄n(Ûi)}2, (4.1)

where Cn is the empirical copula of X1, . . . ,Xn defined in (3.3) and C̄n is the em-
pirical copula of −X1, . . . ,−Xn. The test based on Qn was studied in the bivariate
case by Genest and Nešlehová (2014) and relies on a multiplier resampling scheme à la
Rémillard and Scaillet (2009).

In the presence of ties, it seems sensible to compute Qn from (3.4) based on average
ranks, in which case, as in the absence of ties, C̄n is simply the empirical c.d.f. of the
sample 1 − Û1, . . . , 1 − Ûn. By analogy with Procedure 3.1, a tie-adapted multivariate
version of the test can then be carried out as follows:

Procedure 4.1 (Approximate p-value for Qn in the presence of ties).

1. For j ∈ {1, . . . , d}, compute the average ranks R1j , . . . , Rnj of X1j , . . . , Xnj and set
Sij = Rσj(i),j , i ∈ {1, . . . , n}, where σj is a permutation on {1, . . . , n} such that
S1j = Rσj(1),j ≤ · · · ≤ Snj = Rσj(n),j .

2. Compute Û1, . . . , Ûn from the average ranks computed in Step 1 using (3.4) and,
then, compute Qn from Û1, . . . , Ûn.

3. For some large integer N , repeat the following steps for every k ∈ {1, . . . , N}:

(a) Generate n independent copies Z
(k)
1 , . . . , Z

(k)
n of a Bernoulli random variable

with parameter 0.5 and form the sample

V̂
(k)
i = (1− Z

(k)
i )Ûi + Z

(k)
i (1− Ûi), i ∈ {1, . . . , n}.

(b) Set Ŵ
(k)
i = V̂

(k)
i , i ∈ {1, . . . , n}, and then, for j ∈ {1, . . . , d}:

- find a permutation ρ
(k)
j on {1, . . . , n} such that Ŵ

(k)

ρ
(k)
j (1),j

≤ · · · ≤ Ŵ
(k)

ρ
(k)
j (n),j

,

- set Ŵ
(k)

ρ
(k)
j (i),j

= V̂
(k)
⌊Sij⌋,j

, i ∈ {1, . . . , n}.

(c) Form the kth bootstrap sample as

Û
(k)
i =

1

n+ 1
(R

(k)
i1 , . . . , R

(k)
id ), i ∈ {1, . . . , n},

where, for any j ∈ {1, . . . , d}, R(k)
1j , . . . , R

(k)
nj are the average ranks computed

from Ŵ
(k)
1j , . . . , Ŵ

(k)
nj .

(d) Let Q(k)
n stand for the version of Qn computed from Û

(k)
1 , . . . , Û

(k)
n .

4. An approximate p-value for the test is given by (N+1)−1
∑N

k=1{1(Q
(k)
n ≥ Qn)+0.5}.
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Unsurprisingly, the above procedure is very similar to Procedure 3.1 providing tie-
adapted versions of the tests of exchangeability considered in Section 3. The main differ-
ence lies in Step 3 (a), which, instead of “breaking the non-echangeability”, “breaks the
radial asymmetry” in Û1, . . . , Ûn, if any. Notice that if there are no ties in the coordi-
nate samples of X1, . . . ,Xn, the aforementioned procedure can be simplified by removing
Steps 1 and 3 (b) provided the average ranks in Step 3 (c) are computed from the coor-

dinate samples of V̂
(k)
1 , . . . , V̂

(k)
n obtained in Step 3 (a). In the sequel, we shall use the

expression the test based on Qn to designate the test based on the latter simplification,
while we shall talk about the test based on Q′

n to refer to the tie-adapted test based on
the full procedure as given above.

To empirically assess whether the tests based on Qn and Q′
n hold their levels, we

generated 1000 samples using Procedure 2.1 for n ∈ {50, 100, 200}, k ∈ {10, 50,∞},
t = 1 and C either the 2-, 3- or 4-dimensional exchangeable normal or Student t4 copula
such that its bivariate margins have a Kendall’s tau of τ ∈ {0, 0.25, 0.5, 0.75}. The
rejection percentages are given in Table 4. By considering the lines corresponding to
no discretization (k = ∞), one can see that the empirical levels of the two tests are
reasonably close to the 5% nominal level, except maybe in the case of strong dependence
(τ = 0.75), the agreement however improving as n increases. For k ∈ {10, 50}, the
test based on Qn becomes way too liberal, thereby empirically confirming that Steps 1
and 3 (b) in Procedure 4.1 are crucial. On the contrary, the test based on Q′

n becomes
too conservative in the presence of ties, although the situation seems overall to improve
as n increases. A similar experiment was carried out by considering bivariate Frank and
Plackett copulas instead and confirmed the appropriate behavior of the test based on
Q′

n in that case. The only setting in which inflated empirical levels were observed for
the test based on Q′

n (as well as for the test based on Qn) is when 3- or 4-dimensional
Frank copulas with moderate dependence were used in the data generating procedure
and no discretization was performed (k = ∞). We could not find an explanation for this
surprising observation.

To investigate the power of the test based on Q′
n, a similar experiment was carried

out, the main difference being that non-radially symmetric copulas (the Clayton and
the Gumbel–Hougaard) were considered instead. The rejection percentages, reported in
Table 5, seem to indicate that the power of the test increases with the dimension d when
the amount of ties is small (k ≥ 50) and, unsurprisingly, that, all other factors being kept
fixed, the power decreases as k decreases, that is, as the amount of ties increases.

5 Tests of extreme-value dependence

Extreme-value copulas are the copulas of random vectors distributed according to the
multivariate extreme-value distribution (see, e.g, Beirlant et al., 2004). The latter dis-
tribution may be a natural model when X1, . . . ,Xn are obtained by means of the mul-
tivariate extension of the block maxima method popularized in the univariate case in
the seminal monograph of Gumbel (1958). As already mentioned in Section 3, a nice
overview of characterizations and properties of extreme-value copulas can be found in
Gudendorf and Segers (2010), and related inference procedures are discussed for instance
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Table 4: Percentages of rejection of the null hypothesis of radial symmetry computed
from 1000 samples of size n ∈ {50, 100, 200} generated using Procedure 2.1 with k ∈
{10, 50,∞}, t = 1 and C the 2-, 3- or 4-dimensional exchangeable normal or t4 copula
whose bivariate margins have a Kendall’s tau of τ ∈ {0, 0.25, 0.5, 0.75}.

normal t4

d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

τ n k Qn Q′
n Qn Q′

n Qn Q′
n Qn Q′

n Qn Q′
n Qn Q′

n

0.00 50 ∞ 5.3 4.9 3.5 3.6 3.0 3.2 4.2 4.2 3.8 4.1 3.4 3.8
50 9.5 4.3 9.8 3.4 8.6 3.2 8.5 2.8 10.2 3.2 8.3 3.8
10 74.7 1.3 66.8 0.9 56.8 0.9 76.3 0.4 63.7 1.5 54.5 1.5

100 ∞ 4.3 4.2 3.7 3.4 3.8 3.8 4.5 4.1 3.7 3.6 3.3 3.3
50 12.4 3.6 13.5 2.5 11.2 2.5 11.9 3.0 11.4 3.3 10.5 3.3
10 90.4 1.5 89.3 2.2 85.7 1.3 89.5 2.1 84.3 2.2 80.0 1.7

200 ∞ 4.9 5.1 3.8 3.7 3.9 3.8 4.2 4.6 4.0 4.1 4.1 4.1
50 21.8 3.3 20.2 2.9 17.5 3.5 17.6 3.6 16.8 3.3 16.6 4.3
10 94.1 3.7 94.9 2.4 94.3 1.9 93.0 3.6 93.3 3.3 92.7 2.3

0.25 50 ∞ 4.4 4.3 3.7 3.6 3.8 3.6 4.5 4.7 4.6 4.9 3.7 4.0
50 8.5 2.5 9.8 2.9 10.3 3.3 9.3 2.9 8.9 3.1 8.6 2.8
10 76.8 0.9 73.7 1.0 69.2 1.5 74.1 0.7 70.2 1.0 62.8 1.3

100 ∞ 4.5 4.3 3.9 3.7 4.8 4.6 4.3 4.5 3.8 3.9 3.9 3.8
50 11.0 2.7 11.0 2.3 10.7 3.0 12.9 2.7 10.9 3.1 12.2 2.7
10 91.5 1.9 90.1 1.7 90.9 1.5 88.8 2.0 87.7 1.5 86.2 2.2

200 ∞ 5.0 4.8 4.0 3.8 3.9 3.8 3.7 3.8 4.6 4.6 4.0 4.3
50 20.8 3.4 17.7 2.6 15.4 2.7 16.1 2.6 19.3 4.0 14.1 3.0
10 93.1 3.9 95.1 3.2 95.1 2.5 93.0 3.7 94.3 4.0 93.0 3.3

0.50 50 ∞ 4.3 4.4 3.7 3.6 5.1 5.0 4.9 4.8 4.1 4.3 3.8 3.8
50 9.5 2.4 9.0 2.8 8.1 4.1 10.5 2.8 8.5 3.0 9.3 2.7
10 77.4 0.6 77.3 0.5 74.8 1.0 77.0 0.8 73.7 0.9 70.9 1.0

100 ∞ 4.3 4.4 4.0 4.2 5.0 4.4 4.1 4.2 4.9 4.8 3.2 3.6
50 11.3 2.3 9.3 3.2 8.5 3.2 11.8 2.8 11.8 3.3 9.1 2.4
10 92.4 0.7 90.8 1.5 91.9 1.9 90.8 1.3 92.0 1.4 91.9 1.7

200 ∞ 6.1 5.6 4.1 4.5 3.6 3.7 3.8 3.8 5.0 5.3 3.2 3.2
50 21.3 3.1 14.7 3.0 10.5 2.7 21.7 2.7 15.5 3.9 12.8 2.5
10 92.6 2.8 95.3 2.7 95.6 2.5 92.7 2.6 95.5 3.8 93.8 2.8

0.75 50 ∞ 2.9 3.0 2.4 2.4 4.4 4.5 2.7 2.8 1.8 1.7 2.3 2.5
50 13.6 1.2 8.7 0.9 9.0 3.4 14.4 1.3 9.7 1.1 7.7 1.9
10 79.0 0.1 80.8 0.4 78.7 0.7 78.9 0.1 80.8 0.2 80.3 0.2

100 ∞ 2.9 2.8 3.4 3.4 3.8 3.9 3.4 3.5 4.1 3.5 3.2 3.4
50 22.7 1.2 12.2 1.6 10.5 2.3 21.6 1.6 13.6 2.2 9.9 1.8
10 91.4 0.9 94.3 0.9 94.4 1.1 90.6 1.2 93.4 1.1 94.8 1.2

200 ∞ 3.8 3.5 3.4 3.5 3.7 3.9 4.1 3.9 3.6 3.7 2.9 3.4
50 54.6 1.7 25.2 1.7 17.2 2.9 54.8 1.6 22.6 2.4 18.3 1.7
10 91.2 3.1 93.6 2.0 93.7 2.5 91.4 2.0 92.4 3.5 93.5 2.8
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Table 5: Percentages of rejection of the null hypothesis of radial symmetry for the test
based on Q′

n computed from 1000 samples of size n ∈ {100, 200} generated using Pro-
cedure 2.1 with k ∈ {10, 50,∞}, t = 1 and C the d-dimensional Clayton or Gumbel–
Hougaard copula with d ∈ {2, 3, 4} whose bivariate margins have a Kendall’s tau of
τ ∈ {0, 0.25, 0.5, 0.75}.

Clayton Gumbel–Hougaard

τ n k d = 2 d = 3 d = 4 d = 2 d = 3 d = 4
0.00 100 ∞ 4.8 4.7 3.3 4.8 4.7 3.3

50 3.4 3.1 2.9 3.4 3.1 2.9
10 1.3 1.9 2.2 1.3 1.9 2.2

200 ∞ 3.0 3.3 4.4 3.0 3.3 4.4
50 2.7 2.5 2.5 2.7 2.5 2.5
10 3.4 2.5 1.6 3.4 2.5 1.6

0.25 100 ∞ 34.8 65.6 75.5 10.8 12.4 30.5
50 21.1 39.2 44.9 13.4 11.5 22.4
10 1.3 1.5 1.9 9.2 5.2 8.8

200 ∞ 65.4 91.9 96.7 17.6 42.5 73.4
50 39.5 66.7 79.1 23.3 34.5 49.5
10 4.3 3.0 3.5 22.3 16.4 19.9

0.50 100 ∞ 78.2 93.9 97.6 17.0 26.4 44.7
50 66.6 85.8 92.2 19.6 22.6 34.7
10 14.5 17.0 21.4 12.4 9.0 14.3

200 ∞ 98.7 100.0 100.0 37.1 65.9 85.2
50 96.7 99.6 100.0 41.2 58.6 69.7
10 38.4 40.8 39.6 39.6 29.0 27.3

0.75 100 ∞ 90.1 98.1 98.9 13.6 17.8 29.8
50 84.1 94.8 96.4 14.2 13.7 21.5
10 28.1 32.6 35.2 7.2 4.6 5.8

200 ∞ 100.0 100.0 100.0 36.5 53.0 66.6
50 99.7 99.9 100.0 36.1 40.9 45.7
10 65.0 65.5 62.4 28.5 17.6 15.0

in Bücher and Kojadinovic (2015).

When carrying out inference on the unknown copula C, extreme-value copulas may
also appear outside of the multivariate block maxima framework; see, for instance, Sec-
tion 7. It is thus of strong interest to be able to assess from X1, . . . ,Xn whether C is an
extreme-value copula.

Bivariate tests were proposed by Ghoudi et al. (1998), Ben Ghorbal et al. (2009),
Kojadinovic and Yan (2010b) and Cormier et al. (2014), while multivariate tests were
considered for instance in Bücher et al. (2011), Kojadinovic et al. (2011a), Gudendorf
(2012) and Berghaus et al. (2013). As far as adaptation to ties is concerned, a noticeable
exception is the test of Cormier et al. (2014) which can be adapted to discontinuous mar-
gins (see Section 6 in that reference). Apart from the latter test and those of Ghoudi et al.
(1998) and Ben Ghorbal et al. (2009), all the other tests rely on multiplier-based resam-
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pling schemes à la Rémillard and Scaillet (2009) and it is unclear at this point how they
could be adapted to accommodate ties in the coordinate samples of X1, . . . ,Xn.

The aim of this section is to propose a version of the bivariate tests of Ghoudi et al.
(1998) and Ben Ghorbal et al. (2009) adapted to ties.

Let X = (X1, X2) be a random vector with copula C and continuous marginal c.d.f.s
F1 and F2. Ghoudi et al. (1998), and then Ben Ghorbal et al. (2009), studied powerful
tests based on the moments of the random variableW = H(X1, X2) = C{F1(X1), F2(X2)},
the c.d.f. of which, denoted by K, is called Kendall distribution function. Under the as-
sumption that C is an extreme-value copula, Ghoudi et al. (1998) showed that

K(t) = P(W ≤ t) = t− (1− τ)t log t, t ∈ (0, 1],

where τ is Kendall’s tau of C, and that, for k ∈ N, µk = E(W k) = (kτ + 1)/(k + 1)2,
which for instance implies that

−1 + 8µ1 − 9µ2 = 0. (5.1)

In order to test for extreme-value dependence, Ghoudi et al. (1998) suggested to assess
whether a sample version of the left-hand side of (5.1) is significantly different from zero,
leading to the statistic

Tn = −1 +
8

n(n− 1)

∑

i 6=j

Iij −
9

n(n− 1)(n− 2)

∑

i 6=j 6=k

IijIkj, (5.2)

where Iij = 1(Xi1 ≤ Xj1, Xi2 ≤ Xj2). The latter authors showed that, under extreme-
value dependence,

√
nTn converges in distribution to a centered normal random variable

with variance σ2. To compute approximate p-values for Tn, Ghoudi et al. (1998) proposed
a jackknife estimator of σ2. Two alternative estimators were derived more recently by
Ben Ghorbal et al. (2009): a finite-sample estimator and an asymptotic one.

In a discussion paper, Genest et al. (2011b) reported the results of a Monte Carlo
experiment showing that the test based on Tn does not hold its level when there are ties
in the coordinate samples of the available data (similar empirical results will be reported
later in this section). In addition, in a preliminary theoretical analysis (see Section 5 in
the latter reference), the authors showed that, in the presence of ties, the null asymptotic
distribution of Tn is not necessarily centered any more.

To adapt the test based on Tn to the presence of ties, we conjecture that, under
extreme-value dependence, Tn follows approximately a normal distribution with mean b
(depending on the marginal empirical c.d.f.s of X1, . . . ,Xn) and variance n−1σ2, where
σ2 is the variance appearing in the asymptotic null distribution of

√
nTn when there

are no ties. To carry out the test based on Tn, we thus propose the following empirical
procedure:

Procedure 5.1 (Approximate p-value for Tn in the presence of ties).

1. Compute Tn using (5.2).

2. Let σ̂2 be an estimate of σ2 based either on the jackknife estimator of Ghoudi et al.
(1998) or on one of the two estimators proposed by Ben Ghorbal et al. (2009).
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3. For j ∈ {1, 2}, compute the average ranks R1j , . . . , Rnj of X1j , . . . , Xnj and set
Sij = Rσj(i),j , i ∈ {1, . . . , n}, where σj is a permutation on {1, . . . , n} such that
S1j = Rσj(1),j ≤ · · · ≤ Snj = Rσj(n),j .

4. Compute τ̂b, Kendall’s tau b (the sample version of Kendall’s tau corrected for ties),
from X1, . . . ,Xn.

5. For some moderately large integer N , repeat the following steps for every k ∈
{1, . . . , N}:

(a) Generate a random sample V
(k)
1 , . . . ,V

(k)
n from the Gumbel–Hougaard copula

with parameter 1/{1−max(τ̂b, 0)}.
(b) Set Ŵ

(k)
i = V̂

(k)
i , i ∈ {1, . . . , n}, and then, for j ∈ {1, 2}:

- find a permutation ρ
(k)
j on {1, . . . , n} such that Ŵ

(k)

ρ
(k)
j (1),j

≤ · · · ≤ Ŵ
(k)

ρ
(k)
j (n),j

,

- set Ŵ
(k)

ρ
(k)
j (i),j

= V̂
(k)
⌊Sij⌋,j

, i ∈ {1, . . . , n}.

(c) Let T (k)
n stand for the version of Tn computed from Ŵ

(k)
1 , . . . , Ŵ

(k)
n .

6. Let b̂N = 1
N

∑N
k=1 T

(k)
n . An approximate p-value for the test is then computed as

2Φ

(

−
√
n|Tn − b̂N |

σ̂

)

,

where Φ is the c.d.f. of the standard normal.

Let us comment on the previous procedure. The aim of Step 5 is to estimate the
unknown bias term b. Step 5 (a) generates a random sample from an extreme-value
copula whose Kendall’s tau is equal to the sample Kendall’s tau of X1, . . . ,Xn. Because
of the presence of ties in the coordinate samples, the latter is naturally taken to be
Kendall’s tau b, the sample version of Kendall’s tau corrected for ties; see Kendall (1945)
and, for instance, Agresti (2010). Step 5 (b) then transforms the generated random
sample so that it has the same “tie structure” as X1, . . . ,Xn. The debatable choice of
the Gumbel–Hougaard copula in Step 5 (a) is motivated by the following reasoning:

1. The numerical experiments carried out in Genest et al. (2011a) indicate that there
is hardly any practical difference between the existing bivariate exchangeable one-
parameter extreme-value copula families such as the Galambos, Gumbel–Hougaard,
Hüsler–Reiss, Tawn or t-extreme-value: For a fixed Kendall’s tau, these copulas are
hard to distinguish numerically.

2. Following the previous point, we conjecture that most bivariate extreme-value
copulas can be well approximated by a sufficiently flexible asymmetric extreme-
value copula family. Such a family can be constructed using Khoudraji’s de-
vice. Indeed, if C1 and C2 in (3.1) are extreme-value copulas, so is D (see, e.g.,
Genest and Nešlehová, 2013).
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3. Unfortunately, the fitting of copulas constructed using Khoudraji’s device is numer-
ically challenging, which is why we opted for the above imperfect solution that will
result in a biased estimate of b under the null in particular when X1, . . . ,Xn are
from a distribution with a non-exchangeable copula. As the estimation of copulas
constructed from Khoudraji’s device becomes more stable numerically, Steps 4 and
5 (a) could be changed accordingly.

In our numerical experiments, we used N = 50 and considered the three possible
aforementioned estimators of σ2. The best finite-sample behavior was obtained, overall,
using the finite-sample estimator of Ben Ghorbal et al. (2009). For the sake of brevity,
we only report the corresponding results. Furthermore, as we continue, to refer to the
original test of Ben Ghorbal et al. (2009) based on the finite-sample variance estimator,
we shall write the test based on Tn while the expression the test based on T ′

n will refer to
the tie-adapted test based on Procedure 5.1.

To empirically investigate the levels of the tests, we first generated samples of size
n ∈ {50, 100, 200} from the Gumbel–Hougaard copula with a Kendall’s tau of τ ∈
{0, 0.25, 0.5, 0.75}, further discretized as explained in Procedure 2.1 with k ∈ {10,∞}
and t = 1. The rejection percentages are reported in Table 6. As a second experiment, we
considered samples generated from non-exchangeable extreme-value copulas constructed
using Khoudraji’s device. The copula C1 in (3.1) was taken to be the independence cop-
ula, the copula C2 was taken to be the Gumbel–Hougaard with a Kendall’s tau of 0.75, the
second shape parameter s2 was set to 0.95, while the first shape parameter s1 was taken
in {0.2, 0.4, 0.6, 0.8}. The rejection percentages are reported in Table 7. As one can see
from Tables 6 and 7, unlike the test based on Tn, the one based on T ′

n does not seem too
liberal. Additional results for the test based on T ′

n for k ∈ {10, 20, 50} and t ∈ {0.5, 1, 2}
are reported in Tables 13 and 14 in Appendix A. Both tables highlight the fact that it is
for the uneven discretization t = 0.5 that the empirical levels of the test based on T ′

n are
the worst, the test becoming particularly conservative when the discretized samples are
generated from asymmetric extreme-value copulas. We conjecture that this is at least
partly due to the inadequate estimation, in this case, of the bias term b in Procedure 5.1.

As for the tests of exchangeability studied in Section 3, it is of interest to assess
whether the proposed adaptation to ties leads to a loss of power when there are no ties.
To do so, we generated 1000 samples of size n ∈ {100, 200} from a Clayton or Plackett
copula with a Kendall’s tau of τ ∈ {0.25, 0.5, 0.75} and estimated the powers of the tests
based on Tn and T ′

n. The rejection percentages are reported in Table 8. As one see,
the two tests seem equivalent in terms of power. Additional results for the test based
on T ′

n for k ∈ {10, 20, 50} and t ∈ {0.5, 1, 2} are reported in Table 9. As expected, the
larger k, the more powerful the test, overall. A comparison of Tables 8 and 9 reveals that,
interestingly enough, the loss of power when switching from k = ∞ to k ∈ {10, 20, 50} is
not dramatic.

More results for alternatives involving non-exchangeable copulas are reported in Ta-
bles 15 and 16 in Appendix A. A comparison between the two tables reveals that, again,
the loss of power when switching from k = ∞ to k ∈ {10, 20, 50} is not dramatic. From
Table 16, we see that it is for the uneven discretizations that the rejection rates are the
smallest.
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Table 6: Percentages of rejection of the null hypothesis of extreme-value dependence
computed from 1000 samples of size n ∈ {50, 100, 200} generated from the Gumbel–
Hougaard copula with a Kendall’s tau of τ ∈ {0, 0.25, 0.5, 0.75} and further discretized
as explained in Procedure 2.1 with k ∈ {10,∞} and t = 1.

n = 50 n = 100 n = 200

τ k Tn T ′
n Tn T ′

n Tn T ′
n

0.00 ∞ 5.9 6.6 4.3 4.4 4.4 4.5
10 24.3 5.8 46.3 5.2 75.8 6.5

0.25 ∞ 5.6 6.3 5.5 6.2 5.3 5.7
10 12.3 4.6 20.2 3.7 29.7 3.8

0.50 ∞ 5.8 5.2 5.1 5.1 5.2 5.2
10 7.4 4.7 8.9 3.3 12.7 3.4

0.75 ∞ 6.9 6.5 6.4 6.4 5.6 5.4
10 4.8 3.2 5.1 3.4 6.6 3.6

Table 7: Percentages of rejection of the null hypothesis of extreme-value dependence
computed from 1000 samples of size n ∈ {50, 100, 200} generated from (3.1) with C1 the
independence copula, C2 the Gumbel–Hougaard with a Kendall’s tau of 0.75, s2 = 0.95
and s1 ∈ {0.2, 0.4, 0.6, 0.8}, further discretized as explained in Procedure 2.1 with k ∈
{10,∞} and t = 1.

n = 50 n = 100 n = 200

s1 k Tn T ′
n Tn T ′

n Tn T ′
n

0.2 ∞ 5.1 5.2 4.4 4.3 5.6 5.1
10 4.2 1.4 9.4 1.3 18.8 1.5

0.4 ∞ 5.0 5.6 4.7 5.1 5.0 5.3
10 4.5 1.1 10.1 1.0 15.6 1.6

0.6 ∞ 5.8 6.2 5.7 5.7 5.8 6.4
10 3.5 1.2 5.8 1.7 15.7 1.1

0.8 ∞ 5.4 5.7 6.4 6.2 5.0 5.5
10 2.8 0.4 10.3 1.5 15.4 1.4

Table 8: Percentages of rejection of the null hypothesis of extreme-value dependence
computed from 1000 samples of size n ∈ {100, 200} generated from a Clayton or Plackett
copula with a Kendall’s tau of τ ∈ {0.25, 0.5, 0.75}.

Clayton Plackett

n τ Tn T ′
n Tn T ′

n

100 0.25 37.9 38.3 16.1 15.9
0.50 69.6 69.0 20.1 20.3
0.75 61.3 60.0 11.5 12.0

200 0.25 64.2 63.9 25.7 26.0
0.50 94.5 93.7 35.9 35.3
0.75 86.7 86.6 21.2 21.7
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Table 9: Percentages of rejection of the null hypothesis of extreme-value dependence for
the test based on T ′

n computed from 1000 samples of size n ∈ {100, 200} generated from
a Clayton or Plackett copula with a Kendall’s tau of 0.5, further discretized as explained
in Procedure 2.1 with k ∈ {10, 20, 50} and t ∈ {0.5, 1, 2}.

Clayton Plackett

k t n = 100 n = 200 n = 100 n = 200
10 1.0 60.8 90.1 15.4 26.4

2.0 51.7 79.8 9.2 16.6
0.5 31.0 66.9 5.9 13.2

20 1.0 70.2 92.9 19.4 32.4
2.0 64.4 92.8 15.8 28.8
0.5 45.0 80.5 9.7 18.9

50 1.0 70.6 94.4 23.7 34.9
2.0 68.5 93.1 18.7 34.6
0.5 60.3 91.3 14.7 30.6

6 Parametric bootstrap-based goodness-of-fit tests

Several parametric bootstrap-based goodness-of-fit tests for copulas were studied in Genest et al.
(2009). Their asymptotic null validity can be established using the theoretical results of
Genest and Rémillard (2008). Additional Monte Carlo experiments can be found in Berg
(2009). Computationally more efficient versions of these tests that can be shown to be
asymptotically equivalent under the null can be obtained by using a resampling scheme
based on multipliers (see, e.g., Kojadinovic et al., 2011b; Kojadinovic and Yan, 2011;
Genest et al., 2013; Berghaus and Bücher, 2016) instead of a parametric bootstrap.

While it is not clear at the moment how goodness-of-fit tests based on multipliers
could be adapted to the presence of ties in the coordinate samples of X1, . . . ,Xn, it
seems possible to do so for all the parametric bootstrap-based goodness-of-fit tests studied
in Genest et al. (2009). To illustrate the necessary additional steps in the resampling
procedure, we shall focus on one of the most powerful tests. Let C = {Cθ} be a parametric
copula family whose goodness of fit is to be assessed. The tests under consideration are
based on the empirical process

Cn(u) =
√
n{Cn(u)− Cθn(u)}, u ∈ [0, 1]d, (6.1)

where Cn is the empirical copula defined in (3.3) and Cθn is a parametric estimator of
C under the assumption that the unknown copula C belongs to the family C. The esti-
mator θn of the unknown parameter vector θ appearing in (6.1) is assumed to be solely
based on (3.4). It is the case for instance of the method-of-moments estimator based on
the inversion of Kendall’s tau (see, e.g., Oakes, 1982; Genest, 1987; Genest and Rivest,
1993, and the references therein) or of the maximum pseudo-likelihood estimator of
Genest et al. (1995).

In the large scale Monte Carlo experiments carried out by Berg (2009) and Genest et al.
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(2009), the statistic

Sn =

∫

[0,1]d
Cn(u)

2dCn(u) =

n
∑

i=1

{Cn(Ûi)− Cθn(Ûi)}2 (6.2)

gave the best results overall. The detailed procedure for computing an approximate
p-value for Sn when there are no ties is given in Appendix A of Genest et al. (2009).

Before suggesting a tie-adapted version of the testing procedure, let us make a few
remarks:

• In the presence of ties in the coordinate samples, it is natural to based the method-
of-moments estimator involving the inversion of Kendall’s tau on its sample version
corrected for ties known as Kendall’s tau b and already mentioned in Section 5.
The latter is not affected by whether maximal or average ranks are used in (3.4).

• In our simulations involving ties, the maximum pseudo-likelihood estimator of
Genest et al. (1995) was overall found to behave substantially better if average
ranks instead of maximal ranks were used in (3.4).

• Our Monte Carlo experiments also suggest that, with the exception of θn, the
statistic Sn in (6.2) should be computed from (3.4) based on maximal ranks.

In order to obtain a version of the test based on Sn adapted to the presence of ties in
the coordinate samples of X1, . . . ,Xn, we propose the following procedure:

Procedure 6.1 (Approximate p-value for Sn in the presence of ties).

1. For j ∈ {1, . . . , d}, compute the average ranks R1j , . . . , Rnj of X1j , . . . , Xnj and set
Sij = Rσj(i),j , i ∈ {1, . . . , n}, where σj is a permutation on {1, . . . , n} such that
S1j = Rσj(1),j ≤ · · · ≤ Snj = Rσj(n),j .

2. Let θn be the value of one of the two aforementioned rank-based estimators of θ
computed from (3.4) using average ranks.

3. With θn from Step 2, compute the test statistic Sn defined in (6.2) from (3.4) using
maximal ranks.

4. For some large integer N , repeat the following steps for every k ∈ {1, . . . , N}:

(a) Generate a random sample V
(k)
1 , . . . ,V

(k)
n from copula Cθn .

(b) Set Ŵ
(k)
i = V

(k)
i , i ∈ {1, . . . , n}, and then, for j ∈ {1, . . . , d}:

- find a permutation ρ
(k)
j on {1, . . . , n} such that Ŵ

(k)

ρ
(k)
j (1),j

≤ · · · ≤ Ŵ
(k)

ρ
(k)
j (n),j

,

- set Ŵ
(k)

ρ
(k)
j (i),j

= V
(k)
⌊Sij⌋,j

, i ∈ {1, . . . , n}.
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(c) Let

Û
(k)
i =

1

n+ 1
(R

(k)
i1 , . . . , R

(k)
id ), i ∈ {1, . . . , n}, (6.3)

where, for any j ∈ {1, . . . , d}, R(k)
1j , . . . , R

(k)
nj are the average or maximal ranks

computed from Ŵ
(k)
1j , . . . , Ŵ

(k)
nj .

(d) Let θ
(k)
n be the value of the same estimator of θ as in Step 2 computed from (6.3)

using average ranks.

(e) Let

C(k)
n (u) =

1

n

n
∑

i=1

1(Û
(k)
i ≤ u), u ∈ [0, 1]d,

and compute

S(k)
n =

n
∑

i=1

{C(k)
n (Û

(k)
i )− C

θ
(k)
n
(Û

(k)
i )}2,

where Û
(k)
1 , . . . , Û

(k)
n are computed as in (6.3) using maximal ranks.

5. An approximate p-value for the test is given by (N+1)−1
∑N

k=1{1(S
(k)
n ≥ Sn)+0.5}.

The main differences with the procedure given in Appendix A of Genest et al. (2009)
lie in Step 1 and Step 4 (b). The latter step in particular ensures that all the bootstrap

samples Û
(k)
1 , . . . , Û

(k)
n in Step 4 (e) have the same marginal univariate empirical c.d.f.s

as Û1, . . . , Ûn used in Step 3 for computing Sn. Some thought reveals that, when there
are no ties in X1, . . . ,Xn, the above tie-adapted procedure leads exactly to the same
computations as those in the original procedure of Genest et al. (2009).

As we continue, the expression the test based on Sn will refer to the test based on
the above procedure without the key steps for dealing with ties, that is, without Steps 1
and 4 (b) and such that the ranks in (6.3) are directly computed from the components

samples of V
(k)
1 , . . . ,V

(k)
n from Step 4 (a). To designate the tie-adapted test involving all

steps in Procedure 6.1, we will write the test based on S ′
n.

Parametric bootstrap-based tests are known to be potentially very computationally
expensive as they rely intensively on random number generation and fitting of the hypoth-
esized copula family. For that reason, we restricted our investigation of the finite-sample
behaviors of the tests based on Sn and S ′

n to the case of exchangeable bivariate copula
families. The parameter N was set to 1000 and the tests were carried out at the 5%
significance level.

We started by investigating the empirical levels of the tests based on Sn and S ′
n. As

hypothesized copula family C, we considered the Clayton, Gumbel–Hougaard, Frank and
Plackett families. Samples of size n = 150 were generated using Procedure 2.1 with
k ∈ {10, 20}, t ∈ {1, 2, 0.5} and C ∈ C with a Kendall’s tau of τ ∈ {0.25, 0.5, 0.75}.
The obtained rejection percentages are reported in Table 10. As one can see, the test
based on Sn (non-adapted to ties) is overall way too liberal when relying on maximum
pseudo-likelihood estimation. It seems more robust against ties when based on inversion
of Kendall’s tau, the empirical levels being nonetheless particularly bad for the uneven
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Table 10: Percentages of rejection of the null hypothesis that C ∈ C computed from 1000
samples of size n = 150 generated from C ∈ C, where C is equal to the Clayton (Cl),
Gumbel–Hougaard (GH), Frank (F) or Plackett (P) copula with a Kendall’s tau of τ ,
further discretized as explained in Procedure 2.1 with k ∈ {10, 20} and t ∈ {1, 2, 0.5}.
MPL stands for maximum pseudo-likelihood estimation while, ‘τ̂b’ refers to estimation
based on inversion of Kendall’s tau.

t = 1 t = 2 t = 0.5

MPL τ̂b MPL τ̂b MPL τ̂b

C τ k Sn S ′
n Sn S ′

n Sn S ′
n Sn S ′

n Sn S ′
n Sn S ′

n

Cl 0.25 10 20.1 5.2 5.0 5.0 2.4 5.0 2.3 5.0 100.0 8.4 15.7 5.0
20 4.4 4.6 5.4 5.9 2.4 5.2 4.2 6.1 100.0 6.4 13.0 5.6

0.50 10 3.4 4.5 5.3 4.9 1.7 4.6 6.1 6.5 99.8 5.1 17.4 5.0
20 1.7 4.5 5.0 6.5 1.9 4.3 4.0 6.3 84.9 5.5 15.4 5.6

0.75 10 3.2 3.1 8.4 9.4 5.7 2.8 21.9 14.7 20.1 4.1 16.2 5.7
20 2.5 2.1 3.3 7.1 3.7 2.5 4.8 9.6 4.1 3.6 10.9 5.9

GH 0.25 10 81.7 4.9 3.7 4.3 100.0 5.6 1.9 4.8 28.4 5.3 10.1 3.7
20 38.1 4.4 3.4 4.2 84.4 5.6 2.7 5.5 19.2 5.7 10.5 5.7

0.50 10 83.0 4.7 3.7 4.9 100.0 5.7 2.0 6.1 29.1 6.0 14.9 5.8
20 34.7 4.3 3.2 5.3 91.8 6.2 2.9 5.5 20.7 4.9 11.1 5.4

0.75 10 72.2 3.7 8.1 9.3 99.7 3.4 4.7 8.6 20.8 4.8 22.4 7.2
20 27.7 3.9 3.4 7.2 78.1 3.5 2.8 7.1 14.3 4.1 14.5 5.6

F 0.25 10 5.0 4.9 4.7 4.6 4.6 4.6 1.7 4.7 96.3 5.1 12.4 4.5
20 5.7 5.4 4.9 5.9 5.8 5.6 3.5 5.4 43.6 4.3 8.7 4.3

0.50 10 6.0 5.3 6.5 5.9 12.5 5.9 4.1 5.8 80.6 5.2 19.7 5.4
20 4.9 4.6 4.1 5.1 6.8 5.3 3.3 5.2 37.7 5.6 12.7 5.8

0.75 10 9.2 5.0 13.2 13.9 24.0 4.9 12.1 12.3 22.2 4.9 24.6 9.3
20 5.1 4.5 4.5 8.1 8.0 4.1 4.1 10.2 14.9 4.9 17.3 7.6

P 0.25 10 5.3 6.0 4.5 5.2 3.6 5.1 1.9 4.9 92.5 4.6 10.2 4.4
20 4.8 5.1 5.0 5.8 5.7 5.2 2.7 5.7 46.5 5.3 10.4 4.9

0.50 10 5.3 3.7 4.6 5.7 8.0 5.2 4.9 6.9 70.6 4.7 13.1 4.9
20 6.9 6.8 4.8 7.0 9.3 4.5 2.8 6.4 38.1 5.1 11.4 5.1

0.75 10 9.4 3.6 7.9 10.9 9.2 4.5 6.8 10.0 22.8 8.4 17.0 6.1
20 6.6 4.1 4.5 8.6 11.0 3.5 3.5 8.8 9.7 5.9 10.4 6.7

discretization corresponding to t = 0.5. The (tie-adapted) test based on S ′
n appears

overall well-behaved when involving maximum pseudo-likelihood estimation but seems
too liberal in some scenarios when based on inversion of Kendall’s tau. The previous
observations confirm that Steps 1 and 4 (b) in Procedure 6.1 are crucial in the presence
of ties.

We next decided to focus on the test based on S ′
n involving maximum pseudo-

likelihood estimation and estimated its power in various scenarios under moderate depen-
dence. The results of the numerical experiments are presented in Table 11. Each horizon-
tal block corresponds to a different data generating copula with a Kendall’s tau of 0.5.
Samples of size n = 150 were generated using Procedure 2.1 with k ∈ {10, 20, 50,∞} and
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Table 11: Percentages of rejection of the null hypothesis that C ∈ C for the test based on
S ′
n involving maximum pseudo-likelihood estimation computed from 1000 samples of size

n = 150 generated from the Clayton (Cl), Gumbel–Hougaard (GH), Frank (F) or Plackett
(P) copula with a Kendall’s tau of 0.5, further discretized as explained in Procedure 2.1
with k ∈ {10, 20, 50,∞} and t = 0.5.

Hypothesized copula family C
Data generating copula k Cl GH F P
Cl ∞ 4.5 99.9 89.0 84.0

50 4.6 100.0 90.7 89.7
20 4.6 99.6 76.8 78.4
10 4.7 98.6 57.0 53.6

GH ∞ 100.0 4.3 64.3 47.1
50 100.0 4.6 53.5 43.7
20 99.5 5.7 48.9 40.0
10 98.6 4.1 44.2 41.3

F ∞ 99.8 81.8 4.0 24.4
50 95.3 76.3 4.5 19.0
20 86.1 68.3 4.9 13.1
10 67.9 57.8 6.1 5.8

P ∞ 99.4 62.6 8.2 5.4

50 94.8 59.4 8.7 5.2

20 88.4 51.7 7.6 5.2

10 70.7 41.5 5.0 5.0

t = 0.5. The empirical levels are displayed in bold and confirm the adequate behavior
observed previously. When data arise from a copula that is not from the hypothesized
family, we see that, unsurprisingly, the power decreases, overall, as k decreases. Finally,
one can verify that, as expected, the rejection percentages corresponding to k = ∞
are very close to those reported in Genest et al. (2009, Table 2) and Kojadinovic et al.
(2011b, Table 1).

7 Illustration

To illustrate the use of the studied tie-adapted tests, we considered the LOSS/ALAE
insurance data frequently analyzed in the literature (see, e.g., Frees and Valdez, 1998;
Ben Ghorbal et al., 2009; Kojadinovic and Yan, 2010a; Bücher and Kojadinovic, 2015)
and available for instance in the R package copula. These consist of 1500 claims of an
insurance company on which two variables are observed: LOSS, an indemnity payment,
and ALAE, the corresponding allocated loss adjustment expense. We restricted ourselves
to the 1466 uncensored claims. The first component sample, corresponding to the variable
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Table 12: Approximate p-values of the tests studied in Section 6 assessing the goodness
of fit of the parametric copula families given in column C for the LOSS/ALAE data. ‘τ̂b’
refers to estimation based on inversion of Kendall’s tau, while MPL stands for maximum
pseudo-likelihood estimation.

τ̂b MPL

C Sn S ′
n Sn S ′

n

GH 0.230 0.221 0.192 0.167

Cl 0.000 0.000 0.000 0.000
Cl 0.000 0.000 0.000 0.000
F 0.000 0.000 0.000 0.000
N 0.000 0.000 0.000 0.000
P 0.000 0.000 0.000 0.000

LOSS, is particularly affected by ties, with only 541 distinct values, while the second
component sample has 1401 distinct values.

We started by applying the tests of exchangeability considered in Section 3 with
N = 10 000 multiplier or bootstrap replicates. The test based on Rn,C (non-adapted
to ties) returned an approximate p-value of 0.000, while the one based on R′

n,C gave an
approximate p-value of 0.049. The tests based on Rn,A and R′

n,A returned very similar
approximate p-values: 0.119 and 0.112, respectively. As a consequence, we conclude that
there is no strong evidence against exchangeability.

Next, we applied the tests of radial symmetry studied in Section 4 with N = 10 000
bootstrap replicates. Both the test based on Qn (non-adapted to ties) and the test based
on Q′

n (adapted to ties) returned an approximate p-value of 0.000, thereby indicating
very strong evidence against radial symmetry.

As far as extreme-value dependence is concerned, the test based on Tn (non-adapted to
ties) returned an approximate p-value of 0.602, while the one based on T ′

n with N = 1000
gave a p-value of 0.87. There is therefore no evidence against extreme-value dependence.

Finally, we applied the tests studied in Section 6 with N = 10 000 to assess the
goodness of fit of several exchangeable parametric copula families: the Gumbel–Hougaard
(GH), the survival Clayton (Cl), the Clayton (Cl), the Frank (F), the normal (N) and
the Plackett (P). The obtained approximate p-values are reported in Table 12. As one
can see, the results of the tests based on Sn (non-adapted to ties) and S ′

n (adapted to
ties) are very similar, thereby confirming the robustness against ties of the non-adapted
test in certain scenarios as observed in the previous section. Among the six candidate
families, only the Gumbel–Hougaard family is not rejected at the 1% significance level.

8 Conclusion

The great bulk of statistical tests for carrying out inference on the copula of a random
vector X from i.i.d. copies of it were derived under the assumption of continuity of X.
Many such tests turn out to be too liberal when some coordinate samples of the available
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data contain ties because of rounding or lack of measurement precision. Ignoring this flaw
can obviously lead to a strongly biased inference. As shown in this work, it is however
sometimes possible to adapt existing statistical procedures to the presence of ties in the
component series of the data: this was carried out for some tests of exchangeability, radial
symmetry, extreme-value dependence and goodness of fit. Given the nice properties of
multiplier resampling schemes à la Rémillard and Scaillet (2009) for computing approxi-
mate p-values for numerous statistics of interest, a future contribution of strong practical
interest would be to find a way to adapt such bootstrap procedures to the presence of
ties.
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C. Genest, I. Kojadinovic, J. Nešlehová, and J. Yan. A goodness-of-fit test for bivariate
extreme-value copulas. Bernoulli, 17(1):253–275, 2011a.
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Table 13: Percentages of rejection of the null hypothesis of extreme-value dependence for
the test based on T ′

n computed from 1000 samples of size n ∈ {50, 100, 200} generated
from the Gumbel–Hougaard copula with a Kendall’s tau of τ ∈ {0, 0.25, 0.5, 0.75} and
further discretized as explained in Procedure 2.1 with k ∈ {10, 20, 50} and t ∈ {0.5, 1, 2}.

τ k t n = 50 n = 100 n = 200
0.00 10 1.0 6.1 5.9 4.2

2.0 5.9 3.7 3.8
0.5 1.4 0.9 0.6

20 1.0 7.2 5.8 5.1
2.0 6.7 6.7 4.6
0.5 3.7 2.5 1.3

50 1.0 7.5 7.8 5.4
2.0 6.6 6.9 6.7
0.5 5.2 3.8 4.1

0.25 10 1.0 5.2 4.4 4.2
2.0 4.6 2.6 3.7
0.5 1.0 0.7 1.0

20 1.0 6.4 6.0 5.5
2.0 5.7 4.6 6.9
0.5 1.7 1.9 2.3

50 1.0 6.4 6.5 5.3
2.0 6.8 6.1 5.1
0.5 4.2 3.3 4.0

0.50 10 1.0 3.2 3.7 3.2
2.0 2.8 2.8 1.8
0.5 1.2 0.3 1.1

20 1.0 5.4 4.8 4.0
2.0 4.5 4.4 3.5
0.5 1.6 2.0 0.6

50 1.0 6.7 5.1 5.6
2.0 7.2 5.9 5.1
0.5 3.8 3.3 3.0

0.75 10 1.0 2.0 2.4 2.6
2.0 1.5 1.6 1.3
0.5 0.9 0.7 0.4

20 1.0 6.9 3.4 5.0
2.0 4.8 4.1 3.5
0.5 2.1 0.6 0.6

50 1.0 6.6 5.9 4.7
2.0 6.7 4.5 5.3
0.5 4.5 3.2 1.8
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Table 14: Percentages of rejection of the null hypothesis of extreme-value dependence for
the test based on T ′

n computed from 1000 samples of size n ∈ {50, 100, 200} generated
from (3.1) with C1 the independence copula, C2 the Gumbel–Hougaard with a Kendall’s
tau of 0.75, s2 = 0.95 and s1 ∈ {0.2, 0.4, 0.6, 0.8}, further discretized as explained in
Procedure 2.1 with k ∈ {10, 20, 50} and t ∈ {0.5, 1, 2}.

s1 k t n = 50 n = 100 n = 200
0.2 10 1.0 1.6 1.7 2.0

2.0 0.5 1.3 1.1
0.5 0.1 0.1 0.1

20 1.0 3.8 4.8 3.1
2.0 2.6 1.8 1.9
0.5 0.3 0.4 0.0

50 1.0 6.1 5.5 6.0
2.0 4.6 3.8 4.4
0.5 1.4 1.1 1.2

0.4 10 1.0 1.1 1.2 1.6
2.0 0.6 0.8 0.6
0.5 0.1 0.2 0.3

20 1.0 3.9 2.8 3.5
2.0 2.0 2.5 2.5
0.5 0.8 0.4 0.3

50 1.0 4.9 4.2 4.5
2.0 4.5 5.3 6.3
0.5 2.2 1.4 1.3

0.6 10 1.0 1.4 0.9 1.3
2.0 1.1 1.0 1.1
0.5 0.4 0.2 0.3

20 1.0 3.6 3.2 3.3
2.0 3.0 2.3 1.9
0.5 1.1 0.3 0.2

50 1.0 4.1 5.4 5.5
2.0 5.9 5.2 5.7
0.5 2.1 1.3 1.2

0.8 10 1.0 0.7 1.1 2.3
2.0 0.7 0.4 0.8
0.5 0.2 0.1 0.2

20 1.0 4.4 3.6 2.9
2.0 2.6 2.5 2.6
0.5 0.8 0.3 0.1

50 1.0 4.7 5.7 5.1
2.0 4.0 3.9 5.9
0.5 2.0 1.5 1.2
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Table 15: Percentages of rejection of the null hypothesis of extreme-value dependence
computed from 1000 samples of size n ∈ {100, 200} generated from (3.1) with C1 the
independence copula, C2 the Clayton or Plackett copula with a Kendall’s tau of 0.75,
s2 = 0.95 and s1 ∈ {0.2, 0.4, 0.6, 0.8}.

Clayton Plackett

n s1 Tn T ′
n Tn T ′

n

100 0.2 99.9 99.9 32.9 33.6
0.4 100.0 100.0 31.2 31.1
0.6 100.0 100.0 33.3 33.2
0.8 100.0 100.0 35.6 35.6

200 0.2 100.0 100.0 61.5 61.6
0.4 100.0 100.0 58.3 58.7
0.6 100.0 100.0 60.6 61.1
0.8 100.0 100.0 62.1 61.4
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Table 16: Percentages of rejection of the null hypothesis of extreme-value dependence
based on T ′

n computed from 1000 samples of size n ∈ {100, 200} generated from (3.1) with
C1 the independence copula, C2 the Clayton (Cl) or Plackett (P) copula with a Kendall’s
tau of 0.75, s2 = 0.95 and s1 ∈ {0.2, 0.4, 0.6, 0.8}, further discretized as explained in
Procedure 2.1 with k ∈ {10, 20, 50} and t ∈ {0.5, 1, 2}.

n = 100 n = 200

s1 k t Cl P Cl P
0.2 10 1.0 99.4 15.4 100.0 35.6

2.0 86.2 4.7 99.6 10.4
0.5 93.4 7.7 100.0 23.4

20 1.0 99.9 25.3 100.0 53.5
2.0 99.6 20.6 100.0 37.9
0.5 97.8 12.2 100.0 29.4

50 1.0 100.0 31.6 100.0 56.9
2.0 100.0 26.2 100.0 54.6
0.5 100.0 19.6 100.0 43.7

0.4 10 1.0 99.2 15.4 100.0 36.7
2.0 86.7 4.8 99.6 11.2
0.5 93.7 7.5 100.0 23.4

20 1.0 99.9 27.3 100.0 52.1
2.0 99.6 19.3 100.0 37.4
0.5 98.0 9.7 100.0 28.8

50 1.0 100.0 33.4 100.0 60.0
2.0 100.0 29.2 100.0 56.1
0.5 99.9 19.7 100.0 44.3

0.6 10 1.0 99.4 15.0 100.0 39.1
2.0 85.7 4.2 99.7 9.9
0.5 93.1 8.0 100.0 22.1

20 1.0 100.0 27.8 100.0 51.3
2.0 99.7 19.3 100.0 39.3
0.5 98.2 9.0 100.0 29.1

50 1.0 100.0 29.8 100.0 58.2
2.0 100.0 29.2 100.0 57.5
0.5 100.0 20.9 100.0 41.5

0.8 10 1.0 98.8 14.5 100.0 37.7
2.0 86.0 5.9 99.8 12.1
0.5 94.8 7.8 100.0 22.7

20 1.0 99.9 28.4 100.0 56.4
2.0 99.6 18.2 100.0 39.7
0.5 97.8 11.8 100.0 31.6

50 1.0 100.0 33.9 100.0 59.4
2.0 100.0 26.5 100.0 54.7
0.5 100.0 18.8 100.0 46.6
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