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Abstract

Screening procedures for infectious diseases, such as HIV, often involve pooling individual 

specimens together and testing the pools. For diseases with low prevalence, group testing (or 

pooled testing) can be used to classify individuals as diseased or not while providing considerable 

cost savings when compared to testing specimens individually. The pooling literature is replete 

with group testing case identification algorithms including Dorfman testing, higher-stage 

hierarchical procedures, and array testing. Although these algorithms are usually evaluated on the 

basis of the expected number of tests and classification accuracy, most evaluations in the literature 

do not account for the continuous nature of the testing responses and thus invoke potentially 

restrictive assumptions to characterize an algorithm’s performance. Commonly used case 

identification algorithms in group testing are considered and are evaluated by taking a different 

approach. Instead of treating testing responses as binary random variables (i.e., diseased/not), 

evaluations are made by exploiting an assay’s underlying continuous biomarker distributions for 

positive and negative individuals. In doing so, a general framework to describe the operating 

characteristics of group testing case identification algorithms is provided when these distributions 

are known. The methodology is illustrated using two HIV testing examples taken from the pooling 

literature.
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1. Introduction

Testing individual specimens in pools, which is known as group testing (or pooled testing), 

is widespread in disease screening applications. Individuals in pools that test negatively are 

*Correspondence to: Department of Statistics, University of South Carolina, Columbia, SC 29208, USA. Tel: +1 803 576 8765. Fax: 
+1 803 777 4048. tebbs@stat.sc.edu (Joshua M. Tebbs). 

Supplementary Material
Supplementary material related to this article can be found online at [insert address here].

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Comput Stat Data Anal. Author manuscript; available in PMC 2019 June 01.

Published in final edited form as:
Comput Stat Data Anal. 2018 June ; 122: 156–166. doi:10.1016/j.csda.2018.01.005.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



declared to be negative, and positive pools are resolved (or “decoded”) to determine which 

individuals are positive. The origins of group testing are usually traced back to Dorfman 

(1943), who proposed that it be used to screen World War II soldiers for syphilis. Since this 

seminal work, group testing has been applied to numerous infectious disease applications. A 

literature review reveals recent public health and surveillance applications for HIV (Krajden 

et al., 2014), HBV and HCV (Page-Shafer et al., 2008; Candotti and Allain, 2009), 

chlamydia and gonorrhea (Lewis et al., 2012), West Nile virus (Busch et al., 2005), and 

influenza (Edouard et al., 2015). Group testing is also routinely used by national 

organizations around the world to screen blood and plasma donations for HIV/HBV/HCV 

and other diseases (see, e.g., Schmidt et al., 2010; O’Brien et al., 2012; Stramer et al., 2013).

The original procedure proposed by Dorfman (1943) is a two-stage hierarchical algorithm; 

i.e., non-overlapping pools are tested in the first stage and individuals from positive pools 

are tested in the second. Hierarchical algorithms using a larger number of stages can reduce 

the number of tests needed when the disease prevalence is small. For example, Mehta et al. 

(2011) describe a three-stage algorithm for HIV testing in San Diego that uses master pools 

of size 10 in the first stage, subpools of size 5 in the second stage, and individual testing in 

the third. The most common non-hierarchical algorithm is two-dimensional array testing 

(Phatarfod and Sudbury, 1994; Hudgens and Kim, 2011; McMahan et al., 2012b), where 

individuals are tested in the rows and columns of an array. A recent HIV application in New 

Jersey (Martin et al., 2013) illustrates how array testing can even be used in higher 

dimensions (Kim and Hudgens, 2009). Comprehensive summaries of group testing 

algorithms and their operating characteristics are found in Kim et al. (2007) and Westreich et 

al. (2008).

When faced with the task of choosing an appropriate case identification algorithm for 

screening purposes, public health officials and lab technicians are interested in cost and 

accuracy. Laboratories with large budgets may opt to test specimens individually as pooling 

can reduce an assay’s sensitivity. In the group testing literature, this reduction is known as 

“the dilution effect” and can result in an increased number of false negative diagnoses. 

Group testing algorithms can be selected on the basis of minimizing the expected number of 

tests per individual to minimize costs (Kim et al., 2007; Westreich et al., 2008) or perhaps in 

a way that incorporates both the expected number of tests and classification accuracy (see, 

e.g., Malinovsky et al., 2016). Of course, additional practical considerations such as testing 

platform constraints, the time needed for testing, and the availability of individuals to pool 

should also be carefully considered.

When an individual or pooled specimen is tested, an assay typically elicits a binary 

diagnosis (positive/negative) that is derived from measuring a continuous biomarker; large 

values of this continuous measurement are usually evidence that the disease is present. 

Although it is widely known that dichotomizing a continuous outcome can lead to a loss in 

information, previous evaluations in group testing have largely ignored this underlying 

aspect and instead have relied explicitly on binary results. Doing so helps to facilitate the 

derivation of closed-form expressions for the expected number of tests and classification 

accuracy probabilities; however, this also usually requires one to make assumptions such as 

(a) the sensitivity and specificity are unaffected by pool size; i.e., there is no dilution effect, 
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and (b) testing outcomes on pools containing common individuals are independent 

conditional on the true pool statuses. An important contribution of this article is to provide a 

general framework for case identification evaluation where these assumptions are not 

needed.

In offering this framework, our approach exploits the underlying continuous biomarker 

distributions associated with positive and negative individuals. In other words, we do not 

dichotomize testing outcomes into “positive” or “negative” categories, but instead we make 

our evaluations in terms of the biomarker distributions themselves. Our work is related to the 

methodology in Wein and Zenios (1996), who proposed using biomarker concentrations to 

determine an optimized Dorfman algorithm for HIV testing. However, our article takes a 

somewhat different perspective. We are not focused on determining optimal designs for 

specific group testing procedures per se; instead, our goal is to enhance previous case 

identification algorithm evaluations, such as those in Kim et al. (2007) and Westreich et al. 

(2008), in group testing applications where biomarker distributions are known. Our 

evaluations can be performed for any group testing procedure, including Dorfman testing, 

higher-stage hierarchical algorithms, and array testing. We obtain closed-form expressions 

for operating characteristics for normally distributed biomarkers in specific algorithms; 

however, even these expressions may be of limited utility for practitioners. We therefore use 

simulation to overcome the computational challenges when incorporating biomarker 

information.

2. Notation and Preliminaries

We modify the notation from Wang et al. (2015), who used biomarker distributions to 

acknowledge the dilution effect in group testing regression. Let Ti = 1 if the ith individual is 

truly positive; Ti = 0 otherwise. We assume the Ti’s are independent and identically 

distributed statuses with pr(Ti = 1) = p, the prevalence of the population. Generalizing our 

evaluation framework to allow for unequal individual disease probabilities (McMahan et al., 

2012a; 2012b) or correlated individuals (Lendle et al., 2012) is straightforward; see Section 

6. Let 𝒞̃
i denote the true biomarker level of the ith individual (e.g., viral load, optical density 

reading, antibody concentration, etc.). We assume the 𝒞̃
i’s are mutually independent random 

variables and that the conditional probability density function of 𝒞̃
i given the true status Ti = 

t is

f
𝒞∼i ∣ Ti = t

(u) = t f
𝒞∼+(u) + (1 − t) f

𝒞∼−(u),

where f𝒞̃+ and f𝒞̃− denote the true biomarker density functions for positive and negative 

individuals, respectively. In other words, positive individuals in the population have true 

biomarker levels described by the common density f𝒞̃+; similarly, negative individuals’ true 

biomarker levels are described by f𝒞̃−.

We are interested in calculating quantities like the expected number of tests per individual 

and classification accuracy probabilities commonly seen in the group testing case 
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identification literature (i.e., pooling sensitivity, pooling specificity, predictive values). To set 

our ideas, we assume a hierarchical group testing algorithm is used in S ≥ 2 stages, although 

we later modify our notation to account for array testing in two dimensions (Phatarfod and 

Sudbury, 1994; Hudgens and Kim, 2011; McMahan et al., 2012b); see Section 3.3. An S-

stage hierarchical algorithm begins by testing a master pool of individual specimens. If the 

master pool tests negatively, all individuals are declared to be disease-free and no further 

testing is performed. Otherwise, non-overlapping subpools are formed and are tested in the 

second stage. Any second-stage subpool that tests positively is split again while subpools 

that test negatively in the second stage are declared to be disease-free. This process 

continues until all subpools in a particular stage test negatively or until individual testing (in 

stage S) is performed.

For an S-stage hierarchical algorithm, let ℘sl denote the index set of individuals in the lth 

pool formed at the sth stage of testing, for l = 1, 2, …, n1/ns and s = 1, 2, …, S, where ns = |

℘sl| is the number of individuals in ℘sl. To illustrate this notation, Figure 1 displays the S = 3 

stage hierarchical algorithm described in Mehta et al. (2011) from Section 1. In this 

example, the master pool is ℘11 = {1, 2, …, 10}, the two second-stage pools are ℘21 = {1, 2, 

…, 5} and ℘22 = {6, 7, …, 10}, and the singleton pools ℘31 = {1},℘32 = {2}, …,℘3,10 = 

{10} are for individual testing in the third stage. These pools are of size n1 = 10, n2 = 5, and 

n3 = 1. Additional examples of hierarchical algorithms used in HIV testing are found in 

Sherlock et al. (2007). Henceforth, a general S-stage hierarchical algorithm is denoted by 

H(n1: n2: ⋯: nS), where nS = 1. Note that Dorfman’s seminal strategy uses S = 2 stages.

Let T℘sl = 1 if the lth pool in the sth stage is truly positive; i.e., ℘sl contains at least one truly 

positive individual, T℘sl = 0 otherwise. Similarly, let Z℘sl = 1 if ℘sl tests positively, Z℘sl = 0 

otherwise. To acknowledge the continuous nature of the diagnostic assay, we assume that 

Z℘sl = I( ℘sl > τ℘sl); i.e., the pool ℘sl tests positively if ℘sl, the measured biomarker level 

of the pool, exceeds a threshold τ℘sl which potentially depends on the pool size ns at stage s. 

To acknowledge the potential of error when measuring the true biomarker level 𝒞̃℘sl, we 

assume that ℘sl | 𝒞̃℘sl ~ fε, where fε = fε(·| 𝒞̃℘sl) is a known probability density function. 

Therefore, our framework utilizes three distributions: the true biomarker distributions for 

positive and negative individuals, f𝒞̃+ and f𝒞̃−, respectively, and fε, which incorporates the 

effect of assay measurement error. Threshold selection for τ℘sl is discussed in Section 4.

As noted in Section 1, previous evaluations of case identification algorithms have largely 

assumed the sensitivity and specificity are constant and hence are unaffected by pool size. 

Although this assumption may be reasonable when testing negative pools (i.e., constant 

specificity), it is potentially more dubious when testing positive pools. Using the Law of 

Total Probability, note that the sensitivity associated with testing ℘sl can be written as

pr(Z𝒫sl
= 1 ∣ T𝒫sl

= 1) =
∑m = 1

ns pr(Z𝒫sl
= 1 ∣ ∑i ∈ 𝒫sl

Ti = m) pr(∑i ∈ 𝒫sl
Ti = m)

pr(T𝒫sl
= 1) ,
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where the random variable Σi∈℘sl Ti counts the number of positive individuals in ℘sl. 

Therefore, for the sensitivity to remain constant throughout the testing process, one would 

have to require that pr(Z℘sl = 1| Σi∈℘sl Ti = m) are equal for each m = 1, 2, …, ns, l = 1, 2, 

…, n1/ns and s = 1, 2, …, S. Clearly, this requirement may be unsuitable−especially when 

testing results are heavily influenced by dilution.

On the other hand, when written in terms of the true biomarker distributions, f𝒞̃+ and f𝒞̃−, 

and the measurement error density fε, the sensitivity of ℘sl is given by

Se(ns) = pr(Z𝒫sl
= 1 ∣ T𝒫sl

= 1) = pr 𝒞𝒫sl
> τ𝒫sl

∑
i ∈ 𝒫sl

Ti > 0

=
∑m = 1

ns ns
m

pmq
ns − m

Se(ns:m)

1 − q
ns

,

where q = 1 − p and

Se(ns:m) = ∫
τ𝒫sl

∞ ∫
−∞

∞
f ε(u ∣ v)ns f ∑i ∈ 𝒫sl

𝒞∼i

m(ns − m)
(nsv)dvdu, (1)

where

f ∑i ∈ 𝒫sl
𝒞∼i

m(ns − m)
(v) = ∫

∑i = 1
ns vi = v

∏
i = 1

m
f

𝒞∼+(vi) ∏
i = m + 1

ns
f

𝒞∼−(vi)dv1dv2…dvns
. (2)

The expression in Equation (2) is the density of Σi∈℘sl 𝒞̃
i, the sum of the mutually 

independent biomarker levels in ℘sl when ℘sl contains exactly m ≥ 1 positive and ns − m 
negative individuals; we obtain this density by convolving the true individual biomarker 

densities f𝒞̃+ and f𝒞̃− m and ns − m times, respectively.

In writing Equation (1), we assume the true biomarker level 𝒞̃℘sl is the arithmetic average of 

the individual biomarker levels in ℘sl; i.e., 𝒞∼𝒫sl
= ns

−1∑i ∈ 𝒫sl
𝒞∼i. This assumption is often 

viewed as sacrosanct in the biomarker pooling literature (see, e.g., Zhang and Albert, 2011; 

Malinovsky et al., 2012; Mitchell et al., 2014; Delaigle and Hall, 2015) and is likely 

reasonable when pools are formed from aliquots of equal volume. Under this assumption, 

the specificity of ℘sl is given by
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Sp(ns) = pr(Z𝒫sl
= 0 ∣ T𝒫sl

= 0) = pr 𝒞𝒫sl
< τ𝒫sl

∑
i ∈ 𝒫sl

T i = 0

= ∫
−∞

τ𝒫sl∫
−∞

∞
f ε(u ∣ v)ns f ∑i ∈ 𝒫sl

𝒞∼i

0(ns − 0)
(nsv)dvdu,

(3)

where f
∑i ∈ 𝒫sl

𝒞∼i

0(ns − 0)
( · ) is the density that convolves f𝒞̃− ns times−once for each of the 

negative individuals in ℘sl. Note that Equations (1) and (3) are similar in form to the 

analogous expressions found in McMahan et al. (2013) and Delaigle and Hall (2015), both 

of whom incorporate biomarker and measurement error distributions in group testing 

regression.

As an example, suppose the true individual biomarker distributions for negative and positive 

individuals are 𝒞̃− ~ (3, 0.25) and 𝒞̃+ ~ (6, 1), respectively, and that the measurement 

error density is (𝒞̃, 0.0025). For these distribution choices, the threshold that maximizes 

Youden’s index (Youden, 1950) for individual testing is τ* = 4.11, which provides values of 

sensitivity and specificity (for individual testing) equal to 0.970 and 0.987, respectively. To 

illustrate the effect of pooling, Figure 2 displays the densities of the measured biomarker 

level on ℘sl; i.e., f 𝒞𝒫sl
(u) = ∫ −∞

∞ f ε(u ∣ v)ns f
∑i ∈ 𝒫sl

𝒞∼i

m(ns − m)
(nsv)dv, for different values of m 

when the pool size is ns = 5 and ns = 10. This figure illustrates how relevant operating 

characteristics in group testing could ultimately depend on the individual biomarker 

distributions, the pool size, the threshold used for pools (see Section 4), and the number of 

positive individuals in each pool. In other words, once one moves beyond treating pool and 

individual diagnoses as binary, case identification evaluation becomes far more complicated. 

Note that we have created Figure 2 assuming normality for 𝒞̃−, 𝒞̃+, and the measurement 

error so that f ℘sl</sub></sub> (u) can be calculated exactly. However, biomarkers in real 

applications are rarely normally distributed and calculating f ℘sl</sub></sub> (u) for non-

normal biomarkers, if it is even possible to do so, potentially involves high-dimensional 

integration (i.e., of dimension equal to the pool size).

3. Operating Characteristics

3.1. Efficiency

The most important characteristic of a group testing case identification algorithm is its 

expected number of tests per individual, or efficiency. Because the cost of screening is 

usually highly correlated with the number of tests expended, algorithms with lower values of 

this expectation are generally preferred. For example, an algorithm whose efficiency is 0.5 is 

twice as efficient as individual testing. An algorithm whose efficiency is larger than 1 uses 

more tests than individual testing on average. In the group testing literature, optimal 

algorithms are usually identified as those that are the most efficient.
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Unfortunately, within the general framework we have outlined in this article, calculating the 

efficiency quickly becomes unmanageable−even for simple algorithms. For example, 

consider the S = 3 stage algorithm H(10: 5: 1) depicted in Figure 1. It is easy to see that the 

efficiency of this algorithm is 1
10 + 1

5pr(Z𝒫11
= 1) + pr(Z𝒫11

= 1, Z𝒫21
= 1), where recall 

Z℘11 and Z℘21 denote the (binary) testing responses of ℘11 and ℘21, respectively. When 

written in terms of the biomarker distributions, the first-stage probability is

pr(Z𝒫11
= 1) = pr(𝒞𝒫11

> τ𝒫11
∣ T𝒫11

= 1)pr(T𝒫11
= 1) + pr(𝒞𝒫11

> τ𝒫11
∣ T𝒫11

= 0)pr(T𝒫11
= 0)

= ∑
m = 1

10 10
m

pmq10 − mSe(10:m) + {1 − Sp(10)}q10,

where Se(10: m) is calculated using Equations (1) and (2) and Sp(10) is calculated using 

Equation (3) with ns = n1 = 10, τ℘sl = τ℘11, and ℘sl = ℘11. Even more daunting, a second-

stage pool tests positively with probability pr(Z℘11 = 1, Z℘21 = 1), which equals

∑
m1 = 0

5
∑

m2 = 0

5 5

m2 p
m2p

5 − m2 5
m1

p
m1q

5 − m1∫τ𝒫11

∞ ∫τ𝒫21

∞ ∫ℝ10 ∏
s = 1

2
f ε us ∣ 1

ns
∑

i = 1

ns
vi

× ∏
i = 1

m2
f
𝒞∼+(vi) ∏

i = m2 + 1

5
f
𝒞∼−(vi) ∏

i = 6

m1 + 5
f
𝒞∼+(vi) ∏

i = m1 + 6

10
f
𝒞∼−(vi)dv1dv2⋯dv10 du2du1,

where n1 = 10 and n2 = 5. In this expression, it is understood that products of the form 

∏i = a
b f

𝒞∼+(vi) and ∏i = a
b f

𝒞∼−(vi), a > b, are vacuous.

As this simple example illustrates, offering a biomarker-based framework for group testing 

case identification presents nearly overwhelming computational challenges. Unfortunately, 

this is the price one must pay when relaxing assumptions used in previous evaluations. For 

example, under classical assumptions in Kim et al. (2007) and Westreich et al. (2008), the 

probabilities we have just presented reduce to pr(Z℘11 = 1) = Se(1 − q10) + (1 − Sp)q10 and

pr(Z𝒫11
= 1, Z𝒫21

= 1) = Se
2(1 − q5) + Se(1 − Sp)(q5 − q10) + (1 − Sp)2q10,

respectively, where Se and Sp are the assumed common sensitivity and specificity for pools 

of size n1 = 10 and n2 = 5. The simplified formula for pr(Z℘11 = 1, Z℘21 = 1) above arises 

only when the testing responses Z℘11 and Z℘21 are conditionally independent given the true 

pool statuses T℘11 and T℘21. This assumption is required under classical evaluations 

because ℘11 and ℘21 contain common individuals.
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In Appendix A in the Supplementary Material, we have derived a general expression for the 

efficiency of an S-stage hierarchical algorithm. This derivation has been described 

previously in the group testing literature; see, e.g., Kim et al. (2007) and the references 

therein. In our notation, the efficiency can be expressed as

EFF{H(n1:n2:⋯:nS)} = 1
n1

+ ∑
s = 1

S − 1 1
ns + 1

pr ∏
s′ = 1

s
Z𝒫s′1

= 1 ,

where the random variable ∏s′ = 1
s Z𝒫s′1

 equals 1 if and only if the first pool in each of the 

first s stages tests positively. Calculating pr(∏s′ = 1
s Z𝒫s′1

= 1) within our framework involves 

accounting for the joint uncertainty that arises in the correlated, error-laden biomarker 

measurements ℘11, ℘21, …, ℘s1, an extremely difficult problem analytically. Although 

this probability can be calculated exactly under normal biomarker assumptions, in general 

we recommend using Monte Carlo simulation and estimating EFF{H(n1: n2: ⋯: nS)} 

instead. Such a strategy is flexible and will accommodate any biomarker and measurement 

error distributions. In addition, one can quickly estimate the variance of the number of tests 

per individual (Kim et al., 2007), which would otherwise be an intractable calculation. A 

description of our simulation procedure is now given.

SIMULATION PROCEDURE

1. Generate T1, T2, …, Tn1~ iid Bernoulli(p). Generate 𝒞̃
i ~ f𝒞̃i|Ti=t (u) = tf𝒞̃+(u) 

+ (1 − t)f𝒞̃−(u), i = 1, 2, …, n1.

2. (Stage 1). Calculate 𝒞∼𝒫11
= n1

−1∑i ∈ 𝒫11
𝒞∼i and generate ℘11 from fε(·| 𝒞℘̃11).

a. If Z℘11 = I( ℘11 > τ℘11) = 0, stop and classify the n1 individuals in ℘11 

as negative.

b. If Z℘11 = I( ℘11 > τ℘11) = 1, divide 𝒞̃
i ∈ ℘11 into subgroups of size n2.

3. (Stage 2). Calculate 𝒞∼𝒫2l
= n2

−1∑i ∈ 𝒫2l
𝒞∼i for each subgroup in Step 2(b) and 

generate ℘2lfrom fε(·| 𝒞̃℘2l). Calculate Z℘2l= I( ℘2l> τ℘2l). For each l,

a. if Z℘2l= I( ℘2l> τ℘2l) = 0, classify the n2 individuals in ℘2l as negative 

(stop if all second-stage subgroups are negative).

b. if Z℘2l= I( ℘2l> τ℘2l) = 1, divide 𝒞̃
i ∈ ℘2l into subgroups of size n3.

4. (Stage 3). For each subgroup in Step 3(b), calculate 𝒞∼𝒫3l
= n3

−1∑i ∈ 𝒫3l
𝒞∼i, 

generate ℘3lfrom fε(·| 𝒞̃℘3l), and calculate Z℘3l= I( ℘3l> τ℘3l). Continue this 

overall process until all subgroups in a particular stage test negatively or until 

individual testing (in stage S) is performed.

We implement this procedure B times and estimate the efficiency of H(n1: n2: ⋯: nS) using
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EFF{H(n1:n2:⋯:nS)} = 1
n1B ∑

b = 1

B
Mb,

where Mb is the number of tests observed in the bth replication. The variance of the number 

of tests per individual, denoted by var{H(n1: n2: ⋯: nS)}, can be estimated using the sample 

variance of M1/n1,M2/n1, …,MB/n1. Our simulation procedure is extremely fast and thus can 

be performed using very large values of B. Under normal biomarker assumptions, we show 

in Appendix B in the Supplementary Material that the difference between calculating 

EFF{H(n1: n2: ⋯: nS)} exactly and estimating it using a large number of replications is 

negligible.

3.2. Classification Accuracy

Although the efficiency of a group testing case identification algorithm is its most important 

characteristic, being able to quantify an algorithm’s classification accuracy is also critical. 

Two commonly used measures of accuracy in the case identification literature are pooling 
sensitivity and pooling specificity. For an S-stage hierarchical algorithm, the pooling 

sensitivity

PSE{H(n1:n2:⋯:nS)} = pr ∏
s = 1

S
Z𝒫s1

= 1 T1 = 1

is the probability a truly positive individual is classified positively. Analogously, the pooling 

specificity

PSP{H(n1:n2:⋯:nS)} = 1 − pr ∏
s = 1

S
Z𝒫s1

= 1 T1 = 0

is the probability a truly negative individual is classified negatively. Values of PSE and PSP 

close to unity are preferred as this translates to a small percentage of false negative and false 

positive diagnoses. Simple formulae for PSE and PSP are available under classical 

assumptions (see, e.g., Kim et al., 2007). For example, PSE{H(n1:n2:⋯:nS)} = Se
S implies 

that a larger number of stages decreases pooling sensitivity. Of course, this formula no 

longer applies in our more general framework.

We derive expressions for PSE{H(n1: n2: ⋯: nS)} and PSP{H(n1: n2: ⋯: nS)} in terms of 

f𝒞̃+, f𝒞̃−, and fε in Appendix B in the Supplementary Material. However, as with the 

efficiency, these expressions may ultimately be too complicated for practical use. Therefore, 

simulation details to estimate PSE and PSP for an S-stage hierarchical algorithm are also 

provided. With these estimates in hand, one can also estimate the pooling positive predictive 
value
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PPV = pPSE
pPSE + (1 − p)(1 − PSP)

and the pooling negative predictive value

NPV = (1 − p)PSP
(1 − p)PSP + p(1 − PSE) .

These probabilities measure how likely an individual is truly positive (negative) given that 

the individual has been classified positively (negatively).

3.3. Array Testing

Our simulation methodology can be extended to estimate the operating characteristics of 

array testing algorithms. In two-dimensional array testing, individuals are first assigned to 

the cells of an array with R rows and C columns (Phatarfod and Sudbury, 1994; McMahan et 

al., 2012b). In the first stage, the rows and the columns of the array are tested. The second 

stage uses individual testing for individuals not classified as negative after the first stage. 

When the prevalence p is small, two-dimensional array testing can be more efficient than 

hierarchical algorithms (Kim et al., 2007; Westreich et al., 2008).

We modify our notation from Section 2 to accommodate array testing in two dimensions. 

Let Tr,c denote the true binary status of the individual in the (r, c)th position, and let 𝒞̃
r,c 

denote this individual’s true biomarker level so that f𝒞̃r,c|Tr,c=t(u) = tf𝒞̃+(u) + (1 − t)f𝒞̃−(u), 

for r = 1, 2, …,R and c = 1, 2, …,C. The rth row and cth column pools are denoted by ℘r+ = 

{(r, 1), (r, 2), …, (r,C)} and ℘+c = {(1, c), (2, c), …, (R, c)}, respectively. Let 

𝒞∼𝒫r +
= C−1∑c = 1

C 𝒞∼r, c and ℘r+ denote the true and measured biomarker level of ℘r+, 

respectively. Let 𝒞∼𝒫+c
= R−1∑r = 1

R 𝒞∼r, c and ℘+cbe defined analogously for ℘+c. In the 

first stage, row and column testing provide Z℘r+ = I( ℘r+ > τ℘r+) and Z℘+c= I( ℘+c > τ℘+c), 

where τ℘r+ and τ℘+care first-stage thresholds (see Section 4) and where ℘r+| 𝒞̃℘r+ ~ fε(·| 

�̃�℘r+) and ℘+c| 𝒞̃℘+c~ fε(·| 𝒞̃℘+c). We follow the convention in Kim et al. (2007) when 

identifying which individuals to test in the second stage; i.e., those individuals in

ℳ = (r, c):Z𝒫r + 1
= Z𝒫+c

= 1 or Z𝒫r + 1
= 1, ∑

c′ = 1

C
Z𝒫+c′

= 0 or ∑
r′ = 1

R
Z𝒫r′ +

= 0,

Z𝒫+c
= 1 .

The event {Z℘r+ = Z℘+c= 1} occurs at the intersection of the rth row and cth column. The 

other two events in ℳ represent ambiguous first-stage outcomes that could arise from testing 

error. Second-stage testing observes Zr,c = I( r,c > τ) for each individual in ℳ, where r,c| 

𝒞̃
r,c ~ fε(·| 𝒞̃

r,c) and τ is a threshold for individual testing. Figure 3 illustrates this notation 

when R = C = 5 (i.e., for a square array). Complete simulation details to estimate the 
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efficiency and accuracy probabilities are provided in Appendix C in the Supplementary 

Material.

4. Threshold Selection

There are different types of assays used for infectious disease detection, including antibody 

tests (e.g., ELISA, Western Blot, combination tests which also detect antigens, etc.) and 

more modern tests which utilize amplification methods. Before an assay is approved for 

commercial use, it is usually applied to known positive and known negative specimens to 

determine suitable thresholds for individual testing. Ideally, these thresholds provide high 

levels of sensitivity and specificity when testing individual specimens. A complete list of 

screening assays for HIV/HBV/HCV and other infectious agents in the United States is 

available at www.fda.com. An approved assay’s product insert typically recommends which 

threshold should be used to identify positive individuals.

When an assay is applied to pooled specimens, choosing the appropriate threshold can be 

more subjective. Early work in group testing estimation (see, e.g., Chen and Swallow, 1990; 

Tu et al., 1994) suggested that individual testing assay thresholds might also be used for 

pools; see Stephens et al. (2000) and Currie et al. (2004) for specific applications. In the 

infectious disease pooling literature, a common strategy is to take the individual testing 

threshold, say τ, and divide it by the number of individuals in the pool; e.g., τ℘11 = τ/n1 for 

a master pool in an S-stage hierarchical algorithm H(n1: n2: ⋯: nS), τ℘2l= τ/n2 for a second-

stage pool, and so on. Note that selecting a pooled threshold inappropriately large will 

decrease the pooling sensitivity, thereby increasing the number of false negative diagnoses. 

On the other hand, a pooled threshold that is too small will provide far too many false 

positive pools, thereby weakening the efficiency of group testing.

For individual testing with threshold τ, it is easy to see that the sensitivity is a decreasing 

function of τ while the specificity is an increasing function of τ. Therefore, one way to 

choose an individual testing threshold is to maximize Youden’s index (Youden, 1950); i.e., 

τ* = arg maxτ∈ℝ{Se(τ) + Sp(τ) − 1}, as this offers a balance between maximizing both 

sensitivity and specificity. For a pool generically denoted by ℘ consisting of individuals 

whose true disease statuses are denoted by Ti, we propose a pooled threshold that is similar 

in spirit to Youden’s index for individual testing; i.e.,

τ𝒫
∗ = arg max

τ ∈ ℝ ∫τ

∞
f 𝒞𝒫 ∣ ∑iTi = 1(u)du + ∫−∞

τ
f 𝒞𝒫 ∣ ∑iTi = 0(u)du − 1 .

The conditional density f ℘| ΣiTi=1(·) describes the distribution of the measured biomarker 

level of pool ℘ when there is exactly one positive individual in it. We have selected this 

density for two reasons. First, in low disease prevalence applications, it is almost always true 

that a truly positive pool is positive because there is only one positive individual in the pool. 

Therefore, τ𝒫
∗  will be the appropriate threshold for a large majority of the positive pools. 

Second, as positive pools could conceivably contain more than one positive individual, τ𝒫
∗
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favors the adoption of a smaller-than-necessary threshold. Although this may inflate the 

efficiency slightly, it also promotes the detection of positive individuals.

5. Applications

We illustrate our simulation methodology using two examples taken from the HIV pooling 

literature. The first example is from Wein and Zenios (1996) and Zenios and Wein (1998), 

who consider HIV testing with an antibody assay. The second example from May et al. 

(2010) is not an classical HIV screening application, but instead describes a virological 

assay to detect treatment failure among HIV patients. The salient feature of each application 

is that biomarker distributions for + and − are presented as well as posited distributions 

for the assay measurement error. We illustrate our biomarker-based evaluations in each 

application using Dorfman testing, an S = 3 stage hierarchical algorithm using halving 

(Black et al., 2012), and two-dimensional array testing.

For Application 1 (Wein and Zenios, 1996; Zenios and Wein, 1998), the biomarker 

distributions provided by the authors are ln + ~ (0.958, 0.8652), − ~ I( − = 0.086), and 

the measurement error distribution is ℘|𝒞̃℘ ~ { 𝒞̃℘/(1+ 𝒞̃℘), 0.0088× 𝒞̃℘/(1+ 𝒞̃℘)2}. 

The use of a degenerate distribution for negative individuals is described in Zenios and Wein 

(1998). For this collection of distributions, the threshold that maximizes Youden’s index for 

individual testing is τ* = 0.0485, which provides values of Se > 0.999 and Sp > 0.999; i.e., 

individual testing is nearly perfect. For Application 2 (May et al., 2010), log10 + is 

specified to have a two-component mixture 0.93G1 +0.07G2, where G1(G2) is a three-

parameter gamma random variable with shape parameter 1.6 (3.2), scale parameter 0.5 (0.5), 

and location parameter 2.7 (2.7). For negative individuals, − ~ 0.85U1 +0.05U2 +0.10U3, 

where U1 ~ (0, 50), U2 ~ (50, 100), and U3 ~ (100, 500), where (a, b) denotes a 

uniform distribution from a to b. The measurement error distribution is specified as log10 

℘| 𝒞̃℘ ~ (log10 𝒞̃℘, 0.122). The threshold that maximizes Youden’s index for individual 

testing in Application 2 is τ* = 436.11, which provides values of Se = 0.989 and Sp = 0.980.

For both applications, we illustrate the differences between our biomarker-based calculations 

of efficiency, variability, and classification accuracy and the same calculations which rely on 

classical assumptions (Kim et al., 2007; Westreich et al., 2008); i.e., constant Se(Sp) and 

conditional independence of testing responses given the true statuses. In doing so, we 

consider values of p ∈ {0.01, 0.05, 0.10} while utilizing the three threshold options 

described in Section 4: τ* (same for individual testing and pools), τ* divided by pool size, 

and our proposed Youden index threshold for pools τ𝒫
∗ . For each combination of p and the 

threshold used, we calculate the efficiency, the standard deviation of the number of tests per 

individual, and the four accuracy probabilities in Section 3.2. All of our biomarker-based 

characteristics are estimated using B = 1,000,000 Monte Carlo data sets. Operating 

characteristics under classical assumptions are calculated exactly using the expressions in 

Kim et al. (2007).

Our results when p = 0.05 are provided in Table 1; the same tables for p = 0.01 and p = 0.10 

are given in Appendix D in the Supplementary Material. In each table, we first determine the 

most efficient Dorfman algorithm H(n1: 1), three-stage halving algorithm H(n1: n1/2: 1), and 
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square array algorithm A(n1 × n1) under the classical assumptions in Kim et al. (2007) and 

then compare our biomarker-based evaluations to this optimal setting. Our goal is not to try 

to outperform the operating characteristics under classical assumptions per se, but instead to 

illustrate the differences between these calculations and those which exploit underlying 

biomarker distributions and measurement error, and, more pointedly, how these differences 

depend on the threshold used. This comparison simultaneously allows one to assess how 

robust group testing characteristics are under classical assumptions. To the best of 

knowledge, this is the first assessment of this type in the case identification literature.

From Table 1 and the additional tables in Appendix D, it is clear that the efficiency (EFF), 

the standard deviation of the number of tests per individual (SD), and the pooling sensitivity 

(PSE) of group testing are the most heavily influenced by the choice of threshold. One 

should not be deceived by the osten-sibly efficient results that arise when the threshold for 

individual testing τ* is also used with pools, as this is also accompanied by a decrease in 

PSE−sharply so in Application 2 where Se and Sp are lower. On the other hand, dividing τ* 

by the pool size leads to a threshold that is too small. This results in too many negative pools 

testing positively which inflates the efficiency. Our proposed threshold for pools τ𝒫
∗  offers a 

nice compromise between these two extremes by providing approximately the same 

efficiency as under classical assumptions. Both applications show that accuracy probabilities 

under classical assumptions may be slightly optimistic, an important finding for practitioners 

who are concerned about classification accuracy. This is seen more noticeably in Application 

2 where the error rates for individual testing are comparatively larger and also for lower 

values of p in both applications (e.g., p = 0.01, shown in Appendix D).

6. Discussion

We have proposed a simulation-based methodology to evaluate the operating characteristics 

of group testing case identification algorithms when individual biomarker distributions are 

known. Our approach allows the investigator to incorporate the effect of assay measurement 

error and proposes a new strategy for selecting thresholds when testing pools. Our research 

web site www.chrisbilder.com/grouptesting contains R programs that implement our 

simulation methods for hierarchical algorithms and two-dimensional array testing with 

normally distributed biomarkers. These programs can be changed to include other biomarker 

distributions; e.g., gamma, lognormal, or nonstandard choices like those found in Section 5. 

In addition, these programs can be modified to include other group testing strategies, such as 

array testing designs that include master pools (Kim et al., 2007), higher dimensional arrays 

(Kim and Hudgens, 2009), and other algorithms outside the H(n1: n2: ⋯: nS) family 

described in Section 2.

Our evaluations of case identification algorithms do not require one to assume anything 

about the sensitivity and specificity of testing pools, because operating characteristics are 

estimated directly from the biomarker distributions themselves. Our approach also does not 

force one to assume that testing results are conditionally independent given the true statuses 

of the individuals being tested. This assumption is required under classical evaluations 

because pools formed throughout the testing process can contain common individuals. 
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Litvak et al. (1994) have described scenarios where the conditional independence 

assumption is reasonable empirically; however, there is a large body of evidence in the 

diagnostic testing literature suggesting that this assumption may be too restrictive. Finally, 

because the framework described in this article incorporates Monte Carlo simulation, it 

would be straightforward to generalize our evaluations to allow for unequal disease 

probabilities pi, say, which may arise when covariate information is available on individuals 

(McMahan et al., 2012a; 2012b). For this same reason, our approach could also be extended 

to accommodate individual disease statuses that are correlated (Lendle et al., 2012) or to 

applications where biomarkers are measured for multiple diseases (Tebbs et al., 2013).

Throughout this article, we have assumed that the biomarker distributions for positive and 

negative individuals, f𝒞̃+ and f𝒞̃−, respectively, and the measurement error density fε are 

known exactly. This assumption may be prohibitive in applications where biomarker and 

measurement error information is not available (e.g., in surveillance studies, etc.). It should 

be possible to estimate these distributions with continuous group testing responses on pools 

and individuals, although this would require the development of new deconvolution methods 

and hence we leave this to future work. In lieu of perfect knowledge about these 

distributions, an anonymous referee has suggested that one could perform a sensitivity 

analysis to assess the impact of misspecifying f𝒞̃+, f𝒞̃−, or fε. This is straightforward to 

accomplish within the framework outlined in this article because our methods make use of 

Monte Carlo simulation. In Appendix E in the Supplementary Material, we provide an 

example showing how such an analysis could be implemented.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
S = 3 stage hierarchical group testing algorithm H(n1 = 10: n2 = 5: n3 = 1).
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Figure 2. 
Top panel: Individual biomarker densities for 𝒞̃− ~ (3, 0.25) and 𝒞̃+ ~ (6, 1). Under our 

measurement error density assumption, |𝒞̃ ~ (𝒞̃, 0.0025), the threshold τ* = 4.11 

maximizes Youden’s index for individual testing. Middle and bottom panels: Densities of 

the pooled biomarker measurements, f 𝒞𝒫sl
(u) = ∫ −∞

∞ f ε(u ∣ v)ns f
∑i ∈ 𝒫sl

𝒞∼i

m(ns − m)
(nsv)dv, for 

different m (the number of positive individuals in ℘sl) when the pool size is ns = 5 and ns = 

10.

Wang et al. Page 18

Comput Stat Data Anal. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Two-dimensional array testing with R = C = 5. First-stage testing results on row pools are 

Z℘1+,Z℘2+, …,Z℘5+, where Z℘r+ = I( ℘r+ > τ℘r+), for r = 1, 2, …, 5. Testing results on 

column pools are Z℘+1,Z℘+2, …,Z℘+5, where Z℘+c= I( ℘+c> τ℘+c), for c = 1, 2, …, 5. 

Second-stage testing is performed on individuals as described in Section 3.3.
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