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Abstract

Graphical time series models encode the conditional independence among the variables of a multivariate

time series. An iterative method is proposed to estimate a graphical time series model based on a sparse

vector autoregressive process. The method estimates both the autoregressive coefficients and the inverse

of noise covariance matrix under sparsity constraints on both the coefficients and the inverse covariance

matrix. This iterative method estimates a sparse vector autoregressive model by considering maximum

likelihood estimation with the sparsity constraints as a biconcave problem, where the optimization problem

becomes concave when either the autoregressive coefficients or the inverse noise covariance matrix is fixed.

The method also imposes fewer restrictions in the estimation comparing to the use of a structural vector

autoregressive model to study the dynamic interdependencies between time series variables.
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1. Introduction

Graphical models represent the conditional independencies among random variables in multivariate data.

These independence relationships can be visualized by an undirected graph where vertices represent the

variables and edges between vertices illustrate that the corresponding variables of the connected vertices

are conditionally dependent. Since the introduction of log-linear models on discrete data, researchers have5

attempted to link up graphical models with log-linear models (Darroch et al., 1980). By analogy with the

log-linear models for contingency tables, models based on the multivariate normal distribution have been

introduced. Edwards (1995) and Lauritzen (1996) give good introduction to graphical modelling.

Consider a K-dimensional random variable X ∼ N(0,Σ); a Gaussian graphical model can be established

by calculating the precision matrix, Θ = Σ−1. With the precision matrix, the conditional independence be-10
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tween variables is determined. For example, two components of X are independent conditioning on the

remaining components if and only if the corresponding entry in the precision matrix is zero, i.e., Xi and X j

are conditionally independent if and only if Θi j = 0. With prior information on the conditional indepen-

dence between variables, the estimation of a Gaussian graphical model can be formulated as the covariance

selection problem (Dempster, 1972), as formulated in (1).15

Maximize logdet(Θ)− tr(SΘ)

subject to Θi j = 0, (i, j) ∈ Ω,
(1)

where S is the sample covariance matrix, Ω is a set consisting of pairs of known conditionally independent

nodes.

The increasing interest in data science has heightened the need for the development of Gaussian graphical

models with sparse coefficients on high dimension data (see Banerjee et al. (2008); Dahl et al. (2008);

Friedman et al. (2008)). To achieve sparsity, researchers have considered the penalized likelihood methods

shown below.
Maximize logdet(Θ)− tr(SΘ)

subject to ρ (Θ)≤ k,
(2)

where S is the sample covariance matrix, ρ (·) is a regularization term, and k is a tuning parameter.

Brillinger (1996) and Dahlhaus (2000) extended the use of graphical models to multivariate time series

to explore the interrelationship between variables of a multivariate time series process. A recent summary20

of graphical time series models can be found in Tunnicliffe Wilson et al. (2015). The partial correlation

structure of the components of the process given the remaining components can be identified by the partial

spectral coherence or the inverse of the spectral density matrix. These frequency domain statistics measure

the linear association of two components of a process given the linear effects of the remaining components.

Similar to Gaussian graphical models, two components of a multiple time series is conditionally uncor-25

related given the other components if and only if the corresponding partial spectral coherence is zero at

all frequencies (Brillinger, 1981; Dahlhaus, 2000). The interrelationships are visualized by an undirected

partial correlation graph, where each vertex represents a component of the process, and the edges are charac-

terized by the partial spectral coherences. In particular, the partial correlation graph exploits the conditional

dependence structure of the components if the time series is Gaussian.30

With the partial correlation graph, the complexity of fitting a time series model with large dimension

can be reduced by imposing sparsity constraints on the VAR model based on the partial correlation graph.
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Songsiri et al. (2009) discussed the VAR model estimation problem, subject to conditional independence

constraints based on the inverse of the spectral density matrix, using convex optimization methods. Davis

et al. (2016) proposed a two-stage approach for fitting sparse VAR models in which non-zero autoregressive35

coefficients are selected according to the partial spectral coherence together with the Bayesian information

criterion (BIC) (Schwarz, 1978). The model is then refined in the second stage to reduce the number of

parameters further by using the t-ratios of the estimated autoregressive coefficients. These two articles

(Davis et al., 2016; Songsiri et al., 2009) also investigated the penalized likelihood methods in the maximum

likelihood estimation by imposing regularization term, like L1 regularization, to achieve sparsity. Other40

related research (Hsu et al. (2008); Ren et al. (2013); Songsiri (2013); Jung et al. (2015)) also discussed

penalized regression methods for VAR modelling. The penalized regression approaches for VAR modelling

ignore the contemporaneous dependence in the time series (Song & Bickel, 2011) since the noise covariance

matrix is not taken into account when a loss function of the sum of squared residuals is used.

To our knowledge, very few research have been done on fitting a VAR model with sparsity constraints45

on both the autoregressive coefficients and the inverse of the noise covariance matrix. These constraints

become important when a graphical VAR model is constructed. Similar to the partial correlation graph, each

vertex of a graphical VAR model represents a component of the multivariate time series. The autoregressive

coefficients characterize the directed edges and the undirected edges are determined by the non-diagonal

entries of the inverse of the noise covariance matrix, see Eichler (2012). An alternative to study the dynamic50

interdependencies among the components of a multivariate time series is to consider a structural vector

autoregressive (SVAR) model and represent them by a directed acyclic graph (DAG) (Oxley et al., 2004).

The estimation of an SVAR model, however, requires restrictions, so that it is identifiable and a DAG can be

built to represent the model.

To avoid such restrictions, and impose sparsity on both the autoregressive coefficients and the inverse of55

innovation covariance matrix, we propose an iterative algorithm to estimate a sparse VAR model. The algo-

rithm considers the maximum likelihood estimation with the sparsity constraints as a “biconcave” problem

in the sense that the optimization problem becomes concave when either the autoregressive coefficients or

the inverse of noise covariance matrix is fixed (Gorski et al., 2007). We solve the alternating maximization

problem, assuming the sparsity structure is known, using the alternating convex search (ACS) method and60

compare with the interior point method (fmincon in Matlab) and the direct search method (patternsearch in

Matlab). To identify the structure, we present two methods, namely the time domain and frequency domain

methods, and compare these two methods by simulation experiments.
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Section 2 presents the sparse vector autoregressive model. Section 3 provides the proposed algorithm

and visualization method on the fitted VAR model. Section 4 gives simulation studies. Section 5 exemplifies65

the proposed method by real data applications. Section 6 concludes.

2. Sparse vector autoregressive model

2.1. Vector autoregressive model

Consider a K-dimensional VAR(p) process:

yt = ν +A1yt−1 + · · ·+Apyt−p +ut , (3)

where yt = (y1,t , · · · ,yK,t)
′ is a (K ×1) vector, Al , l = 1, · · · , p, are (K ×K) autoregressive coefficient ma-

trices, ν is a (K ×1) vector of intercepts, ut = (u1,t , · · · ,uK,t)
′ is a K-dimensional Gaussian noise vector,

with mean 0 and a (K ×K) nonsingular covariance matrix, Σu, and t = 1, · · · ,T . We further assume that the

process is stable, i.e., det
(
IK −∑

p
l=1 Alzl

)
̸= 0, for z ∈ C, |z| ≤ 1, and p pre-sample values, y−p+1, · · · ,y0,

are available. The compact form of (3) is

Y = BZ+U, (4)

where Y = (y1, · · · ,yT ), B = (ν ,A1, · · · ,Ap) is a (K ×K p+1) coefficient matrix including the intercept

terms, Z = (Z0, · · · ,ZT−1) is a (K p+1×T ) matrix, Zt = (1,yt
′, · · · ,yt−p+1

′)′ is a (K p+1×1) vector, and

U = (u1, · · · ,uT ). The log-likelihood function for the conditional maximum likelihood estimation, assuming

the VAR(p) process is Gaussian, is

l(B,Σu) =−KT
2

log2π − T
2

logdet(Σu)−
1
2

tr
(
(Y−BZ)′Σ−1

u (Y−BZ)
)
. (5)

From (5), we can obtain the conditional maximum likelihood estimator (MLE) of B and Σu, which are

B̂ = YZ′ (ZZ′)−1 and Σ̂u =
1
T

(
Y− B̂Z

)(
Y− B̂Z

)′
, (6)

respectively, see Chapter 3.4 of Lütkepohl (2005). The log-likelihood function in (5) can also be rewritten

as:

l(β ,Σu) =− KT
2

log2π − T
2

logdet(Σu)

− 1
2
[
y−
(
Z′⊗ IK

)
β
]′ (IT ⊗Σ

−1
u
)[

y−
(
Z′⊗ IK

)
β
]
,

(7)
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where β = vec(B) is a (K(K p+1)×1) vector by stacking the coefficient matrix B, y= vec(Y) is a (KT ×1)

vector, IK is a (K ×K) identity matrix, and ⊗ denotes the Kronecker product. Suppose there are linear

constraints on β which are in the form

Cβ = c, (8)

where C is an
(
N ×K2 p+K

)
matrix of known constants with rank N, and c is an (N ×1) vector of known

constants. Then, the constrained maximum likelihood estimation for β and Σu are

β̂ = β̃ +
(
(ZZ′)−1 ⊗ Σ̂u

)
C′ [C((ZZ′)−1 ⊗ Σ̂u

)
C′]−1

(
c−Cβ̃

)
and

Σ̂u =
1
T

(
Y− B̂Z

)(
Y− B̂Z

)′
,

(9)

respectively, where β̃ =
(
(ZZ′)−1Z⊗ IK

)
y.

A fully parametrized K-dimensional VAR(p) model contains K(K p+1) parameters or K2 p parameters70

when the intercept terms are excluded, which means it is an over-parametrization problem to fit a VAR model

when the dimension K is large relative to the sample size. To overcome this limitation, researchers have

explored various methods to identify the zero autoregressive coefficients. The penalized regression methods

for VAR modelling are some of the possible ways to determine the non-zero autoregressive coefficients.

These methods consider a penalized regression problem when the VAR model is reformulated as a linear75

regression and use the popular Lasso penalty proposed by Tibshirani (1996) and its variants to shrink the

values of the autoregressive coefficients (Haufe et al., 2009; Song & Bickel, 2011). In particular, Song

& Bickel (2011) considered the use of group Lasso (Yuan & Lin, 2006) to identify sparsity and structural

pattern in the model. Nicholson et al. (2017) also considered the utilization of group Lasso penalty to achieve

lag sparsity. In the penalized regression methods, the contemporaneous dependence in the time series is80

ignored, since the loss function used is the sum of squared residuals which does not take the innovation

covariance into account in the estimation. Song & Bickel (2011) discussed the possible impact when the

contemporaneous dependence is not considered in fitting a VAR model.

Davis et al. (2016) proposed a two-stage approach for fitting a sparse VAR model. The partial spec-

tral coherences are first calculated to identify the possible non-zero autoregressive coefficients. With the85

sparsity constraints on the autoregressive coefficients, the parameters are estimated by using the constrained

maximum likelihood estimation. The number of pairs of non-zero autoregressive parameters M and the lag

order p are chosen by minimizing the BIC of fitted VAR models over pre-specified ranges of M and p. The

selected model is then refined to shrink the non-zero autoregressive coefficients further by comparing the

t-statistics of the autoregressive coefficients.90
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2.2. Partial correlation graph

We provide a brief introduction to the partial spectral coherence and partial correlation graph below,

based on Hu et al. (2016). See Dahlhaus (2000) for details. Suppose XV (t) = (X1(t),X2(t), ...,Xn(t))′, t ∈Z,

is a multivariate weakly stationary time series and Yab(·) = (X j(·), j ̸= a,b). Let G = (V,E) denote a graph,

where V = {1,2, ...,n} is the set of vertices and E = {(a,b) ∈ V ×V} is the set of edges. Thus, each node95

corresponds to one of the time series in XV (t). The edge between node a and node b is characterized as

follows.

In theory, we remove the linear effect of Yab(t) from Xa(t) by determining the optimal filters g j(u)

which minimize E

[
Xa(t)− ∑

j∈V\{a,b}

∞

∑
u=−∞

ga, j(u)X j(t −u)

]2

. Denote the optimal filters by ĝa, j(u) for j ∈

V\{a,b} and u ∈ Z, the remainders after removing the linear effect of XV\{a,b}(t) from Xa(t) and Xb(t) are

εa|V\{a,b}(t) = Xa(t)− ∑
j∈V\{a,b}

∞

∑
u=−∞

ĝa, j(u)X j(t −u) and

εb|V\{a,b}(t) = Xb(t)− ∑
j∈V\{a,b}

∞

∑
u=−∞

ĝb, j(u)X j(t −u),

respectively. Then, the two series are conditionally uncorrelated if and only if cov
(
εa|V\{a,b}(t), εb|V\{a,b}(t +u)

)
=

0 for all t,u ∈ Z and hence Xa ⊥⊥ Xb|Yab. Equivalently (a,b) /∈ E ⇐⇒ Xa ⊥⊥ Xb|Yab, G = (V,E) is the

partial correlation graph for the time series of interest. The edges of the graph can be determined by two100

approaches, namely the time domain approach and the frequency domain approach.

Time domain approach

The partial correlation graph represents the linear association between two component series after re-

moving the linear effect of all other components by two-sided filters. Similarly, we consider a bivariate VAR

model to estimate the cross-correlation of the residuals, εa|V\{a,b}(t) and εb|V\{a,b}(t), following Hu et al.

(2016). To illustrate the method, suppose XV (t) = (X1(t),X2(t),X3(t),X4(t))′, the VAR model to determine

the partial cross-correlations of X1 and X2 is given byX1(t)

X2(t)

=

µ1(t)

µ2(t)

+
q

∑
u=0

Fu

X3(t −u)

X4(t −u)

+
q

∑
u=1

Φu

X1(t −u)

X2(t −u)

+

e1|{3,4}(t)

e2|{3,4}(t)

 .

Then, the partial cross-correlations of X1 and X2 given the remaining processes, denoted by ρX1X2|Y12(u), are

the cross-correlations of e1|{3,4}(t) and e2|{3,4}(t), and other partial cross-correlations are computed similarly.

The lag order q is determined by choosing a model that possesses the minimum BIC value among the105
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bivariate models with various lag order over a pre-specified range of q, and the approximate 5% error bound

of ±2/
√

T is adopted for testing the partial cross-correlations. We note that the time domain approach in

identifying a partial correlation graph of time series filters out the linear effect of the remaining components

by one-sided filters, which only consider the past and present observations in the filtering. An alternative to

determine a partial correlation graph of time series is the frequency domain method, which adopts two-sided110

filtering in the identification, and is introduced in the next part.

Frequency domain approach

The partial correlation graph of a time series can be determined from the partial spectral coherences,

which is computed by first determining the cross-spectral density of the series. The cross-spectral density is

defined by

fXaXb(λ ) =
1

2π

∞

∑
u=−∞

Cab(u)e−iλu, (10)

where Cab(u) is the cross-covariance function of Xa(t) and Xb(t) at lag u. Then, the partial spectral density

is given by

fXaXb|Yab
(λ ) = fXaXb(λ )− fXaY (λ )fYY (λ )

−1fY Xb(λ )
∗, (11)

where A∗ is the conjugate transpose of matrix A; fXaY (λ ) , fYY (λ ) and fY Xb(λ ) are some partitions of the

spectral density matrix, see Hu et al. (2016) for details. The cross-spectral density fXaXb measures the degree

of linear association between the two components, and the partial cross-spectral density fXaXb|Yab
measures115

the degree of linear association of Xa(t) and Xb(t), after removing the influence of the remaining components.

The spectral coherence RXaXb(λ ) and the partial spectral coherence RXaXb|Yab
(λ ), are defined by

RXaXb(λ ) =
fXaXb(λ )[

fXaXa(λ ) fXbXb(λ )
]1/2 and RXaXb|Yab

(λ ) =
fXaXb|Yab

(λ )[
fXaXa|Yab

(λ ) fXbXb|Yab
(λ )
]1/2 ,

respectively. Since the coherence is the normalization of the cross-spectral density, the links of the partial

correlation graph can hence be characterized by the partial spectral coherences. Under the hypothesis of

RXaXb|Yab
(λ ) = 0, the following test statistic,

(n−q)R̂2
XaXb|Yab

(λ )

1− R̂2
XaXb|Yab

(λ )
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follows the F distribution with 2 and 2(n− q) degrees of freedom at each frequency λ . Here, n is the

equivalent degrees of freedom and q is the number of components other than component a and b. Similarly,

(n−1)R̂2
XaXb

(λ )

1− R̂2
XaXb

(λ )

is a test statistic for testing zero coherence, which follows the F distribution with 2 and 2(n−1) degrees of

freedom at each frequency λ . Thus, the edges in the partial correlation graph can be determined using the

test statistics. The estimation of spectral density matrix is required to compute the statistics, we refer the

reader to Brillinger (1981) and Koopmans (1974) for details. We next provides an example of the partial120

correlation graph.

Consider the following 3-dimensional VAR(1) process:
x1,t

x2,t

x3,t

=


a11 0 0

a21 a22 0

a31 0 a33




x1,t−1

x2,t−1

x3,t−1

+


ε1,t

ε2,t

ε3,t

 , (12)

where ε = (ε1,t ,ε2,t ,ε3,t)
′ ∼ N (0,Σ) with Σ−1 =

(
θ11 θ12 θ13
θ12 θ22 0
θ13 0 θ33

)
. Figure 1 illustrates the partial correlation

graph of this series, where components X2 and X3 are conditionally uncorrelated.

Figure 1: The partial correlation graph of the 3-dimensional VAR(1) process in (12), where components X2 and X3 are conditionally

uncorrelated.

X1

X2 X3

From the partial correlation graph, it is defined that the two components are partially uncorrelated at all

lags, including lag zero. Therefore, the corresponding entries of the inverse of innovation covariance matrix125

Σ−1
u should be insignificant. To impose the sparsity constraints on Σ−1

u , we introduce an iterative algorithm

to estimate a sparse VAR model, which will be discussed in the next section.
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3. Model estimation and visualization

Most studies have been confined to impose sparsity on the autoregressive coefficients, rather than on the

inverse of noise covariance matrix Σ−1
u . We propose an iterative method to impose the sparsity constraints130

on both the autoregressive coefficients and the inverse of innovation covariance matrix in the estimation of a

sparse VAR model.

Consider the following problem:

maximize
B,Σu

− KT
2

log2π − T
2

logdet(Σu)−
1
2

tr
(
(Y−BZ)′Σ−1

u (Y−BZ)
)

subject to


(Al)i j = (Al) ji = 0, for l = 1, · · · , p and (i, j) ∈ Ω,(
Σ
−1
u
)

i j = 0, (i, j) ∈ Ω,

Σ
−1
u ≻ 0,

(13)

where p is a pre-determined lag order and Ω contains the indices of the pairs of components that are condi-

tionally uncorrelated, assuming that (i, j)∈ Ω for i < j. This set is determined based on the identified partial

correlation graph mentioned in Section 2.2 and will be discussed in Section 3.1. We rewrite the problem

in (13), by using the relation: − logdet(Σu) = logdet
(
Σ−1

u
)

and incorporating the zero constraints of the

autoregressive coefficients through Cβ = 0, as:

maximize
B,Σ−1

u

− KT
2

log2π +
T
2

logdet
(
Σ
−1
u
)
− 1

2
tr
(
(Y−BZ)′Σ−1

u (Y−BZ)
)

subject to


Cβ = 0,(

Σ
−1
u
)

i j = 0, (i, j) ∈ Ω,

Σ
−1
u ≻ 0,

(14)

where β = vec(B), C is a matrix of known constants with full row rank, and 0 is a vector of zeros.

Theorem 1. The optimization problem in (14) with respect to B and Σ−1
u is biconcave.

PROOF. See Appendix.135

Theorem 1 shows that the optimization problem is “biconcave” in the sense that it is concave for either

fixed B or Σ−1
u (Gorski et al., 2007). Thus, we can adopt an iterative algorithm, called Alternate Convex

Search (Gorski et al., 2007; Hastie et al., 2015), by first estimating B followed by estimating Σ−1
u , until a

stopping criterion is satisfied. The objective function of the problem for fixed Σ−1
u is strictly concave and is
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strictly concave on the set of positive definite matrices for fixed B. Therefore, a unique maximizer in each140

subproblem is obtained. Gorski et al. (2007) stated that each accumulation point generated by the Alternate

Convex Search (ACS) algorithm is a stationary point of the objective function under the assumptions of the

set of all accumulation points generated by the ACS algorithm form a connected, compact set. Note that the

solution obtained using the ACS method is not guaranteed to be the global optimum of the problem.

The solution of Σ−1
u for fixed B at each iteration guarantees the positive definiteness of the inverse145

of innovation covariance matrix. This positive definiteness is not ensured when the problem is solved by

traditional iterative numerical procedures like Newton-Raphson method. The suggested iterative method

does not require the computation of the Hessian or information matrix comparing to the Newton-Raphson

method.

We note that the zero constraints are chosen based on the identified partial correlation graph mentioned150

in Section 2.2. Before introducing the proposed alternating maximization method for the estimation, we

discuss the possible methods in identifying the constraint structure in the next section.

3.1. Estimation of the structure

To identify the constraint structure, we first determine the partial correlation graph of a series by the

frequency or time domain methods, introduced in Section 2.2. Suppose a partial correlation graph of Figure 1

is identified, the constraint structure for model estimation is

(
Σ
−1
u
)

23 =
(
Σ
−1
u
)

32 = 0 and (Al)23 = (Al)32 = 0, for l = 1, · · · , p.

The lag order p is determined by standard information criteria, such as BIC or HQC (Hannan & Quinn,

1979), before applying the alternating maximization method. In the calculation of the information criteria,155

we count all the unconstrained autoregressive coefficients and the unconstrained inverse noise covariances at

the upper triangular part of the matrix as the number of parameters m, i.e. m = K2 p+ K(K+1)
2 − (2p+1)|Ω|.

In practice, some of the partial cross-correlations (partial spectral coherences) are marginally significant

at few lags (frequencies) leading to some weak links in the estimated partial correlation graph. We can

therefore further reduce the number of parameters. For the marginal partial cross-correlations, we rank them160

by their absolute values, max
u

|ρ̂XaXb|Yab
(u)|, (or the supremum of the test statistics of the partial spectral

coherences, sup
λ

(n−q)R̂2
XaXb |Yab

(λ )

1−R̂2
XaXb |Yab

(λ )
), in descending order. Then we can exclude some of the originally marginal

partial cross-correlations in a forward stepwise regression manner. We finally select the model that possesses

the minimum BIC value among the fitted models. We next present the iterative estimation algorithm.
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3.2. Proposed iterative method165

(i) Initialization: Set the initial estimates using the unconstrained maximum likelihood estimators in (6),

B̂(0) = YZ′ (ZZ′)−1 and Σ̂
−1
u(0)

=

[
1
T

(
Y− B̂(0)Z

)(
Y− B̂(0)Z

)′]−1

.

Remark 1. Although the starting point is not in the feasible region, the initialization can be consid-

ered as a warm start, since the solution of next iteration is feasible.

(ii) B step: Given the estimate of Σ−1
u at the (k−1)-th iteration, denoted by Σ̂−1

u(k−1)
, the estimate of B at

the k-th iteration is

β̂(k) = vec
(
B̂(k)

)
= β̃ −

(
(ZZ′)−1 ⊗ Σ̂u(k−1)

)
C′
[
C
(
(ZZ′)−1 ⊗ Σ̂u(k−1)

)
C′
]−1

Cβ̃ , (15)

where β̃ = vec
(
B̂(0)

)
=
(
(ZZ′)−1Z⊗ IK

)
y, which is computed in the initialization stage. That means

a substantial part of (15) need not be recalculated at every step.170

(iii) Σ−1
u step: Given B̂(k), solve for Σ−1

u using

Σ̂
−1
u(k)

= argmax
Σ
−1
u ≻0

logdet
(
Σ
−1
u
)
− tr
(
S(k)Σ

−1
u
)

subject to
(
Σ
−1
u
)

i j = 0, (i, j) ∈ Ω,

(16)

where S(k) =
1
T

(
Y− B̂(k)Z

)(
Y− B̂(k)Z

)′
.

(iv) Repeat step (ii) and (iii) until a stopping criterion is met, say ∥B̂(k+1)− B̂(k)∥F < ε and ∥Σ̂−1
u(k+1)

− Σ̂−1
u(k)

∥F <

ε , where ∥·∥F denotes the Frobenius norm, and ε is a small positive number, for example, ε = 10−6.

The Lagrange dual function of the covariance selection problem in step (iii) is

g(ν) = inf
Σ
−1
u ≻0

(
logdetΣ

−1
u − tr

(
Σ
−1
u S
)
−2 ∑

(i, j)/∈Ω

νi j
(
Σ
−1
u
)

i j

)

=− logdet

(
S+ ∑

(i, j)/∈Ω

νi j
(
eie j

′+ e jei
′))−K,

where ei is a (K ×1) i-th unit vector, and νi j are the Lagrange multipliers for the equality constraints. The

dual problem is

minimize
G≻0

− logdetG

subject to Gi j = Si j, (i, j) ∈ Ω,

11



where G = S + ∑(i, j)/∈Ω
νi j (eie j

′+ e jei
′), which is a determinant maximization problem (Vandenberghe

et al., 1998). Therefore, it can be solved by semidefinite programming (SDP) solvers, such as SDPT3175

(Tütüncü et al., 2003) or SeDuMi (Sturm, 1999).

3.3. Model visualization

The estimated model is visualized using a mixed graph (Eichler, 2012), which is defined as follows:

Suppose XV is a K-dimensional stationary Gaussian process with

XV (t) =
p

∑
l=1

AlXV (t − l)+uV (t), uV ∼ N(0,Σ),

where Al are (K ×K) matrices and Σu is non-singular. Then, a mixed graph G = (V, E) is used to visualize

the VAR model, in which

(a) a −→ b /∈ E whenever (Al)ba = 0 ∀l = 1, · · · , p,180

(b) a —– b /∈ E whenever Σ
−1
ab = Σ

−1
ba = 0.

We compute the partial correlation coefficients using the formula ρi j = − Σ
−1
i j√

Σ
−1
ii Σ

−1
j j

, where Σ
−1
i j is the (i, j)

entry of the inverse of the innovation covariance matrix, for better interpretation.

This mixed graph reflects the dynamic interdependencies among the components of the multiple time

series process. In contrast, Oxley et al. (2004) suggested the use of a directed acyclic graph (DAG) to185

describe a structural vector autoregressive (SVAR) model, which represents each component at each time

point by a vertex and encodes both the intra and interdependencies among the variables of the process.

Both graphs show the conditional contemporaneous dependencies. The mixed graph characterizes the

undirected edges by the inverse of innovation covariance matrix which exhibits the contemporaneous de-

pendence structure, whereas the DAG identifies the existence of directed edges between current variables

based on the corresponding autoregressive coefficients of the current variables in the SVAR model. In-

deed, the determination of the conditional contemporaneous dependencies in both methods are similar. To

explain this point, we consider an SVAR model and its reduced form. For more detailed exposition, see

Tunnicliffe Wilson et al. (2015). Consider an SVAR model of the form

Θ0xt = Θ1xt−1 +Θ2xt−2 + · · ·+Θpxt−p + et ,

where Θ0 is non-singular, and the covariance matrix D of et is assumed to be diagonal. This model can be

12



transformed to a VAR model, i.e.,

xt = Θ
−1
0 Θ1xt−1 +Θ

−1
0 Θ2xt−2 + · · ·+Θ

−1
0 Θpxt−p +Θ

−1
0 et

= Φ1xt−1 +Φ2xt−2 + · · ·+Φpxt−p +ut ,

where Φi = Θ
−1
0 Θi, ut = Θ

−1
0 et , and the covariance matrix of ut is Σu. Therefore, the relation between the

residuals et of the SVAR and the innovation ut of the transformed model is

Σ
−1
u = Θ0

′D−1
Θ0.

Thus, the inverse of innovation covariance matrix in the VAR reflects the conditional dependence between

current variables given all the past variables. The inclusion of Θ0 in SVAR, however, provides an alternative

way to capture the conditional contemporaneous dependences. See Figure 2.190

Figure 2: The graphical representation of VAR and SVAR model by mixed graph 2 a) and DAG 2 b).

X1 X2

X3

(a)) An example of a mixed graph describing a VAR model.

X1,t X2,t X3,t

X1,t−1 X2,t−1 X3,t−1

(b)) An example of a DAG describing a SVAR model.

For the SVAR model, the covariance matrix D of et is assumed to be diagonal so that the model is

identifiable. The dependence between current variables is also assumed being recursive and not cyclical so

that the matrix Θ0 is triangular with unit diagonal after reordering the variables. Note that these restrictions

are not required when building a VAR model to study the dynamic interdependencies between variables of

a multivariate time series process. To us, the VAR model is simpler and more natural.195

4. Simulation

In the simulation study, we consider five different stable VAR models, in which the autoregressive coef-

ficient matrix Al and the inverse noise covariance matrix Σ−1
u have the same structure (i.e. (Al)i j = (Al) ji =(

Σ−1
u
)

i j =
(
Σ−1

u
)

ji = 0, 1 ≤ i < j ≤ K, l = 1, · · · , p), to measure the performance of the estimation method.

The inverses of noise covariance matrices of each model are positive definite. We perform the experiments200

using the following models,
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Model 1. y(1)t = A(1)
1 y(1)t−1 +u(1)

t , u(1)
t ∼ N (0,Σ1),

Model 2. y(2)t = A(2)
1 y(2)t−1 +u(2)

t , u(2)
t ∼ N (0,Σ2),

Model 3. y(3)t = A(3)
1 y(3)t−1 +u(3)

t , u(3)
t ∼ N (0,Σ3),

Model 4. y(4)t = A(4)
1 y(4)t−1 +u(4)

t , u(4)
t ∼ N (0,Σ4),205

Model 5. y(5)t = A(5)
1 y(5)t−1 +A(5)

2 y(5)t−2 +u(5)
t , u(5)

t ∼ N (0,Σ5),

where

A(1)
1 =

(−0.7458 0.3938 −0.9575
−0.1824 −0.6798 0
−0.1779 0 0.4294

)
, Σ

−1
1 =

( 1.3030 −1.0613 0.8662
−1.0613 1.4196 0
0.8662 0 2.6625

)
,

A(2)
1 =

(
0.9508 0 0.4352 0

0 −0.8232 0.5138 0.0274
−0.8592 −0.8289 0.6247 0.5984

0 −0.4878 −0.1426 −0.6542

)
, Σ

−1
2 =

(1.7975 0 0.1025 0
0 3.1785 0.8908 0.5532

0.1025 0.8908 0.4838 0.0586
0 0.5532 0.0586 4.1300

)
,

A(3)
1 =


0.4352 −0.6552 0.4154 0.3930 −0.5200 0.2256
0.1478 −0.4932 0 0 0 0
−0.7940 0 −0.8933 0 0 0
0.5894 0 0 −0.1478 0 0
−0.8009 0 0 0 −0.4169 0
0.4197 0 0 0 0 −0.2439

, Σ
−1
3 =

 1 0.4 0.4 0.4 0.4 0.4
0.4 1 0 0 0 0
0.4 0 1 0 0 0
0.4 0 0 1 0 0
0.4 0 0 0 1 0
0.4 0 0 0 0 1

,

A(4)
1 =


0.2177 0.3066 0 0 0 0.3775
−0.6324 −0.6650 0.0214 0 0 0

0 −0.2749 −0.7509 0.4482 0 0
0 0 −0.3046 −0.8066 0.9940 0
0 0 0 −0.7313 0.5054 0.7959

−0.0587 0 0 0 −0.5140 −0.9470

, Σ
−1
4 =

 1 0.4 0 0 0 0.4
0.4 1 0.4 0 0 0
0 0.4 1 0.4 0 0
0 0 0.4 1 0.4 0
0 0 0 0.4 1 0.4

0.4 0 0 0 0.4 1

,

A(5)
1 =


−0.6 0.4 0 0 0 0.4
0.4 −0.6 0.4 0 0 0
0 0.4 −0.6 0.4 0 0
0 0 0.4 −0.6 0.4 0
0 0 0 0.4 −0.6 0.4

0.4 0 0 0 0.4 −0.6

, A(5)
2 =


−0.3 0.2 0 0 0 0.2
0.2 −0.3 0.2 0 0 0
0 0.2 −0.3 0.2 0 0
0 0 0.2 −0.3 0.2 0
0 0 0 0.2 −0.3 0.2

0.2 0 0 0 0.2 −0.3

and

Σ
−1
5 =


1 −0.3 0 0 0 −0.3

−0.3 1 −0.3 0 0 0
0 −0.3 1 −0.3 0 0
0 0 −0.3 1 −0.3 0
0 0 0 −0.3 1 −0.3

−0.3 0 0 0 −0.3 1

.

Model 1 is a stable VAR(1) model of dimension three, in which the second and the third components of

the series are Granger non-causal and contemporaneously independent (i.e. A23 = A32 = 0 and
(
Σ
−1
1

)
23 =(

Σ
−1
1

)
32 = 0). Model 2 is a 4-dimensional VAR(1) model, where the first and second; and the first and fourth

components of the multivariate time series are Granger non-causal and contemporaneously independent. We210

further extend the investigation of the proposed method to some higher dimension stable VAR model. Model

3 is a 6-dimensional stable VAR(1) model with every node connected to the first node in the mixed graph.

Model 4 is a stable VAR(1) model in which both the autoregressive coefficient matrix and the inverse noise

covariance matrix have a Toeplitz structure. To explore the performance of the estimation method on VAR
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model with higher lag order p, we consider a 6-dimensional VAR(2) model with Toeplitz autoregressive215

coefficient matrices and Toeplitz inverse noise covariance matrix.

The experiments are carried out with sample size T of 100, 200, 500, 1000 over 500 replications using

MATLAB R2016b on a Linux based workstation with two 2.1 GHz CPUs and 503 GB main memory. We

use SDPT3 (Tütüncü et al., 2003) to estimate the inverse noise covariance matrix in the experiments. SDPT3

is a MATLAB based convex optimization tool for solving semidefinite programming. As a comparison to

the alternating maximization method, we also solve the optimization problem, assuming the true sparsity

structure is known, by two widely used algorithms in nonlinear optimization. They are the interior point

algorithm and the direct search method by the MATLAB command ‘fmincon’ and ‘patternsearch’, respec-

tively. We impose the positive definiteness constraint, in the two comparison methods, based on the fact

that the leading principal minors of the inverse covariance matrix are positive. The following metrics are

computed for the comparisons: the bias of the AR coefficient estimates,

Bias =
p

∑
l=1

K

∑
i, j=1

∣∣∣E ((Âl
)

i, j

)
− (Al)i, j

∣∣∣ ; (17)

the variance of the AR coefficient estimates,

Variance =
p

∑
l=1

K

∑
i, j=1

Var
[(

Âl
)

i, j

]
; (18)

and the mean squared error (MSE) of the AR coefficient estimates,

MSE =
p

∑
l=1

K

∑
i, j=1

{[
E
((

Âl
)

i, j

)
− (Al)i, j

]2
+Var

[(
Âl
)

i, j

]}
. (19)

For the inverse noise covariance estimates, the upper triangular part of the estimates is considered in the

computation of these three metrics since the estimates are symmetric.

We also perform the simulation experiments with unknown structure (including the lag order) and es-

timate the structure using the frequency domain and time domain methods described in Section 3.1. The220

metrics are modified to account for the error incurred in selecting a wrong lag order (i.e. the p in the above

formulas are changed to be the maximum between the determined lag order and the true lag order, and (Al)i, j

is defined to be zero whenever l > p).

4.1. Simulation with known structure

Tables 1 and 2 document the bias, variance and mean squared error (MSE) of the estimates using the three225

mentioned algorithms (the alternating maximization method, the interior-point method and the direct search
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method) for the studied models. These three metrics are compiled using the simulation results whenever

the corresponding algorithm converges. The columns ‘T ’, ‘Method’, ‘NC’, ‘Cputime’ and ‘Iterations’ are,

respectively, the sample size, the optimization method used, the number of incomplete experiments, due

to non-convergence, out of 500 replications, the average CPU time consumed in seconds and the average230

number of iterations involved in solving the problem. The value in parenthesis is the standard deviation

of the corresponding measurement. We consider a completion of the B step followed by the Σ−1
u step, as

mentioned in Section 3.2, as one iteration of the alternating maximization method.

Table 1: Simulation results for Model 1 over 500 replications (The metrics are compiled using the results whenever

the corresponding algorithm converges. NC indicates the number of incomplete experiments, Cputime is the average

CPU time consumed in seconds, and Iteration is the average number of iterations involved. Standard deviation is in the

parenthesis).

Â Σ̂−1
u

T Method NC Cputime Iterations Bias Variance MSE Bias Variance MSE

100
ACS 0 2.3934

(0.8676)
4.1700

(0.6147) 0.0387 0.0280 0.0284 0.4284 0.3047 0.3498

fmincon 3 10.5573
(0.9191)

30.4064
(1.5358) 0.0392 0.0279 0.0283 0.4297 0.3046 0.3501

patternsearch 22 1598.7132
(686.5228)

9.0732
(0.2687) 0.0382 0.0280 0.0284 0.4055 0.2937 0.3346

200
ACS 0 2.1998

(0.7500)
3.7740

(0.5133) 0.0229 0.0141 0.0142 0.2831 0.1323 0.1520

fmincon 3 10.9860
(1.0686)

30.8008
(1.6346) 0.0223 0.0141 0.0142 0.2814 0.1325 0.1520

patternsearch 4 1555.4650
(518.1913)

9.0444
(0.2061) 0.0227 0.0141 0.0142 0.2812 0.1320 0.1516

500
ACS 0 2.3436

(1.0875)
3.3520

(0.4781) 0.0152 0.0055 0.0056 0.0944 0.0471 0.0494

fmincon 2 12.4463
(1.4386)

31.8514
(1.7028) 0.0151 0.0055 0.0055 0.0938 0.0472 0.0494

patternsearch 0 1681.1368
(456.9749)

9.0320
(0.1762) 0.0154 0.0055 0.0056 0.0948 0.0471 0.0494

1000
ACS 0 1.8870

(0.5567)
3.1000

(0.3003) 0.0060 0.0026 0.0026 0.0455 0.0258 0.0262

fmincon 6 12.9251
(1.5171)

32.6377
(1.9756) 0.0061 0.0026 0.0026 0.0443 0.0256 0.0260

patternsearch 0 1493.6605
(280.7624)

9.0240
(0.1532) 0.0060 0.0026 0.0026 0.0456 0.0258 0.0262

Table 1 is the simulation results for Model 1 using the three studied methods, namely the alternating

maximization method (denoted by ‘ACS’), the interior-point algorithm (denoted by ‘fmincon’) and the direct235

search method (denoted by ‘patternsearch’). Few simulation experiments using the interior-point method do

not converge successfully. The direct search method terminates before obtaining a solution in some of the

experiments, especially when the sample size is low. The alternating maximization method consumes less

CPU time comparing to the two other methods, while the direct search method spends the most. The average

number of iterations for the ACS and the direct search methods decrease as the sample size increases. The240

three metrics (bias, variance and MSE) for both the AR coefficient and the inverse covariance estimates drop

steadily as the sample size increases for the three studied methods. We also generate boxplots of deviations
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of the estimates (i.e. θ̂ −θ ) to gain a better insight into the dispersion of the estimates for each method.

Figure 3: Boxplot of deviations of the estimates for Model 1 when T = 100.
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(e)) patternsearch, Â(1)
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(f)) patternsearch, Σ̂
−1
1

Figure 3 depicts boxplots of deviations of the AR coefficient (on the left panel), and the inverse covari-

ance (on the right panel) estimates for Model 1 when T = 100. The deviations are computed whenever245

the corresponding algorithm converges. We can observe from the boxplots that all algorithms restrict the

corresponding AR coefficient and inverse covariance estimates to zero. We note that the ‘patternsearch’

solver returns a small value even the corresponding parameter is constrained to zero, which leads to a small
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deviation for the zero constrained estimates. For the unconstrained estimates, both three algorithms ob-

tain estimates that possess similar dispersion. We next consider the log-likelihood values to investigate the250

convergence properties of the three studied algorithms.

Figure 4: Boxplot of the loglikelihood values for Model 1.
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Figure 4 shows boxplots of the log-likelihood values, computed using the obtained AR coefficient and

inverse noise covariance estimates, for the three investigated methods with different sample sizes. It is ob-

served that the three algorithms obtain similar log-likelihood values, and the average log-likelihood values

are less dispersed as the sample size increases. The results indicate that the log-likelihood values obtained255

from these three methods converge to some values that are close to each other, whenever the methods con-

verge.
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Table 2: Simulation results for Model 5 over 500 replications (The metrics are compiled using the results whenever

the corresponding algorithm converges. NC indicates the number of incomplete experiments, Cputime is the average

CPU time consumed in seconds, and Iteration is the average number of iterations involved. Standard deviation is in the

parenthesis).

Â Σ̂−1
u

T Method NC Cputime Iterations Bias Variance MSE Bias Variance MSE

100

ACS 0 2.8934
(0.2696)

6.2340
(0.6066) 0.2682 0.3019 0.3047 0.8525 0.2329 0.3094

fmincon 120 97.0799
(9.4558)

94.6684
(8.3720) 0.3044 0.3033 0.3068 0.8943 0.2338 0.3179

patternsearch 0 4851.2951
(268.9346)

8.0000
(0.0000) 0.2722 0.3019 0.3048 0.8653 0.2338 0.3126

200

ACS 0 2.6351
(0.2383)

5.1580
(0.4067) 0.1455 0.1461 0.1469 0.3766 0.0967 0.1122

fmincon 123 104.6940
(7.4198)

99.8806
(5.9679) 0.1694 0.1470 0.1481 0.3925 0.0982 0.1151

patternsearch 0 4616.1554
(340.5639)

8.0000
(0.0000) 0.1478 0.1462 0.1470 0.3850 0.0970 0.1131

500

ACS 0 2.3304
(0.2798)

4.2760
(0.4475) 0.0640 0.0585 0.0587 0.1597 0.0362 0.0389

fmincon 127 118.6068
(25.2486)

101.4236
(6.9447) 0.0732 0.0587 0.0590 0.1730 0.0359 0.0392

patternsearch 0 4859.9765
(1098.6708)

8.0000
(0.0000) 0.0662 0.0585 0.0587 0.1648 0.0362 0.0392

1000

ACS 0 2.2658
(0.1815)

4.0000
(0.0000) 0.0390 0.0291 0.0291 0.0699 0.0174 0.0179

fmincon 145 147.1842
(12.9014)

99.3380
(7.9624) 0.0355 0.0286 0.0286 0.0683 0.0173 0.0178

patternsearch 0 5945.0423
(250.1966)

8.0000
(0.0000) 0.0409 0.0291 0.0292 0.0737 0.0174 0.0180

Table 2 documents the simulation results for Model 5 using the three studied algorithms, namely the

alternating maximization method (denoted by ‘ACS’), the interior-point algorithm (denoted by ‘fmincon’)

and the direct search method (denoted by ‘patternsearch’). Some simulation experiments using the interior-260

point method do not converge successfully. The direct search method obtains a solution in all simulation

experiments. The alternating maximization method consumes less CPU time comparing to the two other

methods, while the direct search method spends the most. The average computation time and the average

number of iterations for the ACS method decrease as the sample size increases. The three metrics (bias,

variance and MSE) for both the AR coefficient and the inverse covariance estimates decline gradually as265

the sample size raises for the three studied methods. We plot boxplots of deviations of the estimates to

investigate the dispersion of the estimates for each method.

19



Figure 5: Boxplot of deviations of the estimates for Model 5 when T = 100.
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Figure 5 displays boxplots of deviations of the AR coefficient of lag 1 (on the left panel), and the lag 2
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Figure 6: Boxplot of deviations of the inverse covariance estimates for Model 5 when T = 100.
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AR coefficient (on the right panel) estimates for Model 5 when T = 100. Figure 6 is boxplots of deviations

of the inverse covariance estimates when T = 100. We can observe from the two figures that all algorithms270

restrict the corresponding AR coefficient and inverse covariance estimates to zero. For the unconstrained

estimates, both three methods obtain estimates that carry similar dispersion. Furthermore, the estimates with

larger true parameter values are more dispersed. We next explore the convergence properties of the three

studied algorithms by considering the log-likelihood values.
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Figure 7: Boxplot of the log-likelihood values for Model 5.
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(d)) T = 1000

Figure 7 displays boxplots of the log-likelihood values, computed using the obtained AR coefficient and275

inverse noise covariance estimates, for the three investigated methods with various sample sizes. It is ob-

served that the ACS and the direct search methods obtain similar log-likelihood values, while the interior

point method is slightly different. This is because the interior point method does not obtain solution in many

simulation experiments. We can also see from the figure that the variability of the average log-likelihood val-

ues decreases when the sample size raises. The results suggest that the log-likelihood values obtained from280

these three methods converge to some values that are close to each other, whenever the methods converge.

In summary, the simulation results reflect that the alternating maximization method is more robust and

is rare to obtain a solution that has a significant deviation from the actual parameter, whereas the other two

methods fail to converge in some cases, especially when the number of estimation parameters is large. It

seems that the alternating method has an advantage that it always converges while the other two methods285

may not, and the alternating method consumes less CPU time to obtain a solution comparing to the other

two algorithms. The results obtained using the alternating method are similar to that acquired by the other

two methods whenever these methods converge.
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4.2. Simulation with unknown structure

Tables 3 and 4 document the bias, variance and mean squared error (MSE) of the estimates using the290

frequency domain and the time domain methods introduced in Section 3.1, assuming the lag order and

structure are unknown. These three metrics are compiled using all simulation results. The columns ‘T ’,

‘Method’, ‘Cputime’ and ‘ p̂’ are, respectively, the sample size, the algorithm applied, the average CPU time

consumed in seconds and the average lag order determined. For the inverse noise covariance estimate, the

upper triangular part of the estimate is considered in computing the three metrics (bias, variance and MSE).295

The value in parenthesis is the standard deviation of the corresponding measurement.

Table 3: Simulation results for Model 1 over 500 replications ( p̂ is the average lag order determined, and Cputime is the

average CPU time consumed in seconds. Standard deviations are in parenthesis).

Â Σ̂−1
u

T Method Cputime p̂ Bias Variance MSE Bias Variance MSE

100
Time 1.2625

(0.3147)
1.1140

(0.4398) 0.0799 0.0771 0.0776 0.4904 0.3221 0.3809

Frequency 2.5579
(0.1399)

1.1140
(0.4398) 0.0806 0.0775 0.0780 0.4903 0.3214 0.3804

200
Time 1.2214

(0.2728)
1.0200

(0.1538) 0.0260 0.0188 0.0189 0.2889 0.1334 0.1540

Frequency 2.6691
(0.1126)

1.0200
(0.1538) 0.0260 0.0188 0.0189 0.2889 0.1334 0.1540

500
Time 1.2549

(0.2333)
1.0140

(0.1176) 0.0166 0.0063 0.0063 0.0960 0.0471 0.0495

Frequency 3.1467
(0.1365)

1.0140
(0.1176) 0.0166 0.0063 0.0063 0.0960 0.0471 0.0495

1000
Time 1.8200

(0.6775)
1.0040

(0.0632) 0.0063 0.0030 0.0030 0.0458 0.0258 0.0263

Frequency 5.1397
(0.1897)

1.0040
(0.0632) 0.0063 0.0030 0.0030 0.0458 0.0258 0.0263

Table 3 is the simulation results for Model 1 using the methods as mentioned earlier, namely the fre-

quency domain method (denoted by ‘Frequency’) and the time domain approach (denoted by ‘Time’). The

frequency domain method consumes more CPU time comparing to the time domain approach. Both methods

select a lag order of 2 or above in few experiments when the sample size is 100, and the over-selection of300

lag order is alleviated as the sample size raises.

It is observed from the column Â of Table 3 that the frequency and time domain methods perform

similarly, concerning the three metrics, in the estimation of AR coefficients. Figure 8 depicts the average

AR estimates using the Frequency method and the Time method when T = 100 and T = 1000, together with

th actual parameter value. From this figure, both methods obtain similar estimates at the same sample size,305

and the AR coefficient estimates at the positions (2,3) and (3,2) are, in particular, close to zero. The AR

coefficient estimates deviate less from the true parameter value and possess less variability when the sample

size increases.
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Figure 8: Average values of the AR coefficient estimates for Model 1, Â(1)
1 . Standard errors are in parenthesis.
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As shown in the column Σ̂−1
u of Table 3 that the inverse covariance estimates obtained by the frequency

and time domain methods possess bias, variance and MSE that are close in value. Figure 9 plots the average310

inverse covariance estimates using the two methods when T = 100 and T = 1000. We can observe from

the figure that both methods perform similarly in the estimation of inverse covariances at the same sample

size, and the inverse covariance estimates at the positions (2,3) and (3,2) are in particular close to zero.

The inverse covariance estimates deviate less from the true parameter value and are less disperse when the

sample size raises.315
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Figure 9: Average values of the inverse covariance estimates for Model 1, Σ̂
−1
1 . Standard errors are in parenthesis.
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Table 4: Simulation results for Model 5 over 500 replications ( p̂ is the average lag order determined, and Cputime is the

average CPU time consumed in seconds. Standard deviation is in the parenthesis).

Â Σ̂−1
u

T Method Cputime p̂ Bias Variance MSE Bias Variance MSE

100
Time 5.6652

(3.5030)
2.0000

(0.0000) 1.8869 0.7734 0.8776 0.3095 0.4717 0.4786

Frequency 10.5889
(13.4758)

2.0000
(0.0000) 0.3906 0.3612 0.3658 0.8073 0.2689 0.3381

200
Time 4.4266

(2.0759)
2.0000

(0.0000) 0.2231 0.1816 0.1832 0.3374 0.1148 0.1276

Frequency 11.6884
(8.3678)

2.0000
(0.0000) 0.1517 0.1471 0.1479 0.3808 0.0971 0.1129

500
Time 4.5902

(1.9192)
2.0000

(0.0000) 0.0640 0.0585 0.0587 0.1597 0.0362 0.0389

Frequency 17.2995
(10.9602)

2.0000
(0.0000) 0.0640 0.0585 0.0587 0.1597 0.0362 0.0389

1000
Time 7.1894

(2.3372)
2.0000

(0.0000) 0.0390 0.0291 0.0291 0.0699 0.0174 0.0179

Frequency 21.9524
(3.7277)

2.0000
(0.0000) 0.0390 0.0291 0.0291 0.0699 0.0174 0.0179

Table 4 reports the simulation results for Model 5 using the frequency domain method (denoted by

‘Frequency’) and the time domain approach (denoted by ‘Time’). The frequency domain method consumes

more CPU time comparing to the time domain approach. Both the methods choose the lag order correctly in

all experiments.

The column Â of Table 4 shows that the frequency domain method performs better, regarding the three320
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metrics, in the estimation of AR coefficients when the sample size is 200 or below. Both methods behave

similarly in the estimation of AR coefficients when the sample size is 500 or above. Figure 10 (11) depicts

the average AR estimates of lag 1 (lag 2) using the two methods when T = 100 and T = 1000. As shown in

the figures, the AR estimates obtained using the Frequency method deviate less from the actual value when

the sample size is 100, especially for the non-zero AR coefficients, comparing to the Time method. Both325

methods obtain similar AR coefficient estimates when the sample size is larger (T = 1000).

Figure 10: Average values of the AR coefficient of lag 1 estimates for Model 5, Â(5)
1 . Standard errors are in parenthesis.
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Figure 11: Average values of the AR coefficient of lag 2 estimates for Model 5, Â(5)
2 . Standard errors are in parenthesis.
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(e)) True

We can observe from the column Σ̂−1
u of Table 4 that the frequency domain method outperforms the time

domain method, concerning the variance and MSE of the estimates, in the estimation of inverse covariances

when the sample size of 200 or below, although the bias of the estimates is higher. The two methods perform

similarly in the estimation when the sample size is 500 or above. Figure 12 shows the average inverse330

covariance estimates using the Frequency and Time methods when T = 100 and T = 1000. From this figure,

the inverse covariance estimates obtained by the Frequency method deviate slightly higher form the actual

values than that obtained by the Time method when T = 100, especially for the non-zero inverse covariances.

Both methods obtain similar inverse covariance estimates as the sample size raises to 1000.
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Figure 12: Average values of the inverse covariance estimates for Model 5, Σ̂
−1
5 . Standard errors are in parenthesis.
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(c)) Time (T = 1000)
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(e)) True

In summary, the time domain and the frequency domain methods perform similarly in the estimation335

of AR coefficients and inverse covariances, especially when the sample size is large. Their estimates have

similar biases and sample variances. The time domain method consumes less CPU time in the estimation

comparing to the frequency domain method. This is natural as the latter approach needs the evaluation of

Fourier transforms.

5. Applications340

5.1. Flour price indices

We employ the introduced method to a monthly flour price indices data in Buffalo, Minneapolis and

Kansas city, over the period from August 1972 to November 1980, with a length of 100 months. This

dataset has been studied by Tunnicliffe Wilson et al. (2015) to investigate the dynamic interdependencies
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among the indices by fitting a parsimonious structural vector autoregressive model. We utilize the time345

domain and frequency domain methods, described in Section 2.2, to identify partial correlation graphs of

the three price series. With the determined partial correlation graph, we fit a sparse VAR model to the series

using the procedure introduced in Section 3.1 to explore the dynamic interdependencies between the flour

price indices. The 2-Stage approach (Davis et al., 2016) is also adopted as a comparison.

Figure 13: Partial cross-correlations and Test statistics of spectral and partial spectral coherences for the flour prices data.

Buffalo

0

1

0

Minneapolis

0

1

−5 0 5

0

−5 0 5

Kansas city

Lag

P
a
rt

ia
l 
c
ro

s
s
 c

o
rr

e
la

ti
o
n

C
ro

s
s
 c

o
rr

e
la

ti
o
n

Flour Price

(a)) Partial cross-correlations for the flour prices data (the blue dotted line

represents an approximate 5% error bound of ±2/
√

T ).
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(b)) Test statistics of spectral coherences (above diagonal) and partial

spectral coherences (below diagonal) for the flour prices data.

Figure 13 a) shows the cross-correlations (upper triangular part) and partial cross-correlations (lower350

triangular part) for the flour prices data. The blue dotted line represents an approximate 5% error bound

of ±2/
√

T ). This figure suggests the partial cross-correlation of the Buffalo and the Kansas city series

is insignificant at all lags. Figure 13 b) depicts the test statistics of spectral (upper triangular part) and

partial spectral (lower triangular part) coherences for the flour prices data. The blue dotted line in each

subplot is the corresponding critical value of the F distribution at 5% level of significance. This figure355

shows all coherences are significant, while the partial coherence of the Buffalo and the Kansas city series is

insignificant at all frequencies. Based on this result, both methods identify the same partial correlation graph

for the flour price indices (Figure 14).

With the identified partial correlation graph, we can determine the sparsity constraints on the autoregres-

sive coefficients and the inverse noise covariances, and estimate a VAR model using the procedure described360

in Section 3. A model of lag order 2 is identified, and both time and frequency domain methods do not

select more autoregressive coefficient pairs and inverse covariances to be zero (i.e. only the autoregressive

coefficients and inverse innovation covariance of the case: Buffalo / Kansas city are restricted to zero). The
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Figure 14: Partial correlations graph for the flour prices data.
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estimated autoregressive coefficients and partial correlations of innovations are visualized by the heatmaps

in Figure 15. Figure 16 a) renders the determined VAR model by the mixed graph presented in Section 3.3.365

Figure 16 b) plots the directed acyclic graph representing the structural VAR model for the flour prices series

suggested by Tunnicliffe Wilson et al. (2015), where X1,t , X2,t and X3,t represents the flour price indices at

time t at Buffalo, Minneapolis and Kansas city, respectively.

Figure 15: The autoregressive coefficient estimates and the estimated partial correlations of innovations using the time and frequency

domain methods for the flour prices data (t-values are in parentheses).
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(c)) Partial correlations of innovations

As shown in Figure 15, some of the autoregressive coefficients are insignificant and all partial corre-

lations of innovations are significant. We note that the estimate VAR model possesses similar dynamic370

inter-relation structure comparing to the structural VAR model identified by Tunnicliffe Wilson et al. (2015).

Both models suggest that the Buffalo and the Kansas city flour price indices are contemporaneously condi-

tionally independent. For the dependence between current and lagged variables, we can observe from the

DAG in Figure 16 b) that there are no links in the directions X1,t−1 → X1,t , X3,t−1 → X2,t , X3,t−2 → X2,t , and

X3,t−2 → X3,t . The autoregressive coefficients, determined by the introduced method, of the corresponding375

directions are also insignificant, for example, X3,t−1 → X2,t corresponds to the autoregressive coefficient

estimates with value −0.0021(−0.0413) in the estimated VAR model (see Figure 15 a)).
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Figure 16: Graphs for the flour prices data.
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(a)) A mixed graph visualizing the estimated VAR model for the flour

prices data.
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X1,t−2 X2,t−2 X3,t−2

(b)) A DAG representing the structural VAR model identified by Tunni-

cliffe Wilson et al. (2015) for the flour prices data.

The 2-Stage method (Davis et al., 2016) obtains a sparse VAR model of order 6, which perhaps is because

the method over-selects the autoregressive coefficients to be zero in the first stage of the 2-Stage approach.

The method, in particular, constrains the autoregressive coefficient matrices to be diagonal for all lag order,380

leading to a less interpretable VAR model regarding the dynamic interdependencies structure. Heatmaps of

the estimated autoregressive coefficients and partial correlations of innovations by the 2-Stage method are

shown on page 50 in the online appendix.

5.2. Air pollution data in the Pearl River Delta region

We apply the proposed estimation method to an air pollution time series data in the Pearl River Delta385

region (PRDR)1. The government authorities have published the monthly time series data on the pollutants,

including sulphur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and respirable suspended particles

(RSP), in a number of air quality monitoring stations across the PRDR on a quarterly basis. During the

past decade, some of the monitoring stations in the region were under maintenance for an extended period,

some were closed and replaced by new ones, we thus select seven locations that have full data to study the390

interaction of RSP between the stations. Note that RSP is equivalent to particulate matter with particle size

less than 10 microns (PM10).

The data from January 2006 to December 2015, with a length of 120 months, are analyzed. Box-Cox

transformations on each RSP series are first performed to stabilize the variance. Some of the transformed se-

ries possess decreasing trend, and all series possess seasonal pattern. Therefore, we detrend the transformed395

series that have a decreasing trend, and then deseasonalize all the RSP series after treatments using har-

1http://www.epd.gov.hk/epd/english/resources_pub/publications/m_report.html
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monic regression described in McLeod & Gweon (2012). The time domain and frequency domain methods

are applied to determine a partial correlation graph of the seven RSP series, and hence determine a sparse

VAR model to further investigate the inter-relationship of the RSP between monitoring stations. We also

implement the 2-Stage method (Davis et al., 2016) to the series as a comparison.400

Figure 17: Partial cross-correlations for the PRDR air pollution data (the blue dotted line represents an approximate 5% error bound of

±2/
√

T ).

Chengzhong
RSP 0

0
Donghu
RSP 0

0
Luhu
RSP 0

0
Tianhu
RSP 0

0
Tanjia
RSP

0

0
Tap Mun
RSP 0

−5 0 5

0

−5 0 5 −5 0 5 −5 0 5 −5 0 5 −5 0 5

Xiapu
RSP

Lag

P
a

rt
ia

l 
c
ro

s
s
 c

o
rr

e
la

ti
o

n

C
ro

s
s
 c

o
rr

e
la

ti
o
n

All series

Figure 17 plots the partial cross-correlations for the air pollution data. The upper (lower) triangular part

of the diagram shows the cross-correlations (partial cross-correlations) described in Section 2.2. The blue

dotted line in each subplot is the approximate 5% error bound of ±2/
√

T . Based on the significance of the

partial cross-correlations, the partial correlation graph is identified and is shown in Figure 19 a). The nodes

in the partial correlation graph are connected if the corresponding partial cross-correlation is significant. A405

blue dotted (bold red) line in the graph represents the corresponding partial cross-correlation is significant

at non-zero (zero) lags.

Figure 18 depicts the test statistics of spectral and partial spectral coherences. The upper (lower) triangu-

lar part of the plot shows the test statistics of spectral (partial spectral) coherences described in Section 2.2.

The blue dotted line in each subplot is the corresponding critical value of the F distribution at 5% signifi-410

cance level. We then determine a partial correlation graph based on the significance of the partial spectral
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Figure 18: Test statistics of spectral coherences (above diagonal, the blue dotted line represents a 95% quantile of the F(2,20) distri-

bution) and partial spectral coherences (below diagonal, the blue dotted line represents a 95% quantile of the F(2,12) distribution) for

the PRDR air pollution data.
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coherences and the graph is displayed in Figure 19 b). The nodes in the identified partial correlation graph

are linked when the corresponding partial spectral coherence is significant. A blue dotted (purple dashed,

bold red) line in the graph represents the corresponding partial coherency is significant at low (mid, high)

frequencies.415

As shown in Figure 19, the time domain and frequency domain methods identify similar, though not

identical partial correlation graphs. The two methods agree on 10 out of 14 edges. The nodes between

the cases: Luhu / Tianhu, Chengzhong / Donghu, Donghu / Tanjia and Tanjia / Tap Mun are, in particular,

connected by red edges, indicated the corresponding partial cross-correlation is significant at zero lags or

the corresponding partial spectral coherence is significant at high frequencies. These observations seems420

to echo with the flight distances between the monitoring stations, for example the flight distances between

the stations of the cases Luhu / Tianhu, Donghu / Tianhu and Tanjia / Tap Mun are 67 km, 61 km and 73

km, respectively. Some of the partial cross-correlations and the partial spectral coherences are marginally

significant at few lags or few frequencies, such as the case Donghu / Tianhu. Both the time and frequency

domain methods in the estimation of a sparse VAR model on the RSP series identifies and restricts the425

corresponding autoregressive coefficients and inverse covariances to be zero.
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Figure 19: Partial correlation graph for the PRDR air pollution data. The figure displays the approximate geographical location and is

not drawn to scale.
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(a)) Time domain method (the blue dotted (bold red) line in-

dicates that the corresponding partial cross-correlation is sig-

nificant at non-zero (zero) lags).

Chengzhong

Tianhu

Luhu

Donghu

Tanjia
Tap Mun

Xiapu

(b)) Frequency domain method (the blue dotted (purple

dashed, bold red) line indicates that the corresponding par-

tial coherence is significant at low (mid, high) frequencies).

Both the time and frequency domain methods determine a model of order 1, and the corresponding au-

toregressive coefficient and partial correlation of innovations estimates are visualized by the heatmaps in

Figures 20 a) and 20 b) for the time domain method and Figures 20 c) and 20 d) for the frequency domain

method. Figure 21 depicts the estimated VAR models, using the frequency domain and time domain meth-430

ods, by the mixed graph presented in Section 3.3. Each node represents the RSP series at a specific location

among the seven monitoring stations. The directed and undirected edges are drawn based on the definitions

(a) and (b) in Section 3.3, respectively. The estimated autoregressive coefficients and the partial correlation

coefficients of the noise terms are printed next to the edges. The value in parenthesis is the t-value of the

estimate of autoregressive coefficient or partial correlation. Some of the partial correlation coefficients are435

relatively small in magnitude, for example the partial correlation coefficient of the case Tianhu / Tanjia using

the frequency domain method.

Following Tunnicliffe Wilson et al. (2015), we fit a structural VAR (SVAR) model for the PRDR series.

Figure 22 plots the directed acyclic graph (DAG) representing a SVAR model for the PRDR series, where

X1,t represents the RSP series at time t at Chengzhong and others correspond to the labels at the bottom of440

the graph. We note that the estimated VAR model by the time domain method possesses similar dynamic

inter-relation structure comparing to the SVAR model, especially for the contemporaneous dependence part.

For the nodes that are connected by undirected edges in the mixed graph identified by the time domain

method (Figure 21 a)), there are directed edges connecting the corresponding nodes of the current variables
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Figure 20: The autoregressive coefficient estimates and the estimated partial correlations of innovations for the PRDR air pollution data

(t-values are in parentheses).
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(b)) Partial correlations (Time method).
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(c)) AR coefficients (Frequency method).
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(d)) Partial correlations (Frequency method).

in the DAG (Figure 22), such as the cases Chengzhong (X1,t ) / Donghu (X2,t ), Luhu (X3,t ) / Donghu (X2,t )445

and Tap Mun (X6,t ) / Tanjia (X5,t ).

Figure 23 plots the autoregressive coefficient and the partial correlation of noise estimates obtained by

the 2-Stage method (Davis et al., 2016). Comparing to the autoregressive coefficient estimates obtained by

the introduced ACS method, the 2-Stage approach achieves higher sparsity in the estimation of the autore-

gressive coefficients, especially for the autoregressive coefficient estimates determined by the ACS method450

which are insignificant. For the partial correlations, the 2-Stage method does not impose sparsity constraints

on the inverse covariance matrix. Therefore, the partial correlations estimated by the 2-Stage approach are

all non-zero. We note that there are some partial correlations, obtained by the 2-Stage method, are insignif-

icant using a 5% level of significant; or a critical value of t0.025;ν=107 = −1.9824, namely Tanjia / Luhu,
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Figure 21: A mixed graph visualizing the estimated VAR model for the PRDR air pollution data (the bold blue line represents the

undirected edge determined by the inverse of noise covariance matrix, the black arrow is the directed edge characterized by the AR

coefficient, and t-values in parentheses). The figure displays the approximate geographical location and is not drawn to scale.
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Tanjia / Tianhu, Tap Mun / Luhu, Xiapu / Luhu, and Xiapu / Tanjia. The partial correlations of innovations455

for these cases obtained by the time and frequency domain methods are zero or insignificant.

6. Conclusion

The estimation problem of high-dimensional graphical time series models is considered in this paper.

We study an alternating maximization method to estimate a sparse vector autoregressive model with spar-

sity constraints on both the autoregressive coefficients and the inverse of noise covariance matrix. To our460

knowledge, this is a new research direction as existing research focuses on constraint or regularization of

the parameters in the autoregressive matrices. The algorithm introduced considers the conditional maximum

likelihood estimation with the sparsity constraints as a “biconcave” problem, such that the problem becomes

concave when either the autoregressive coefficients or the inverse of noise covariance matrix is fixed. This

“biconcave” approach is also new in the study of graphical time series models. The sparsity constraints465

imposed can help reduce the number of parameters when modelling a high-dimensional time series. We also

investigate the performance of the proposed method with simulation studies, which is satisfactory under the

three metrics discussed. Further, in comparing with two popular Newton-type methods, the proposed has

much less nonconvergent cases. We apply the method to an air pollution time series dataset in the Pearl River
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Figure 22: The DAG representing a SVAR for the PRDR series.

X1,t X2,t X3,t X4,t X5,t X6,t X7,t

X1,t−1 X2,t−1 X3,t−1 X4,t−1 X5,t−1 X6,t−1 X7,t−1

Chengzhong Donghu Luhu Tianhu Tanjia Tap
Mun

Xiapu

Figure 23: The autoregressive coefficient estimates and the estimated partial correlations of innovations using the 2-Stage method for

the PRDR air pollution data (t-values are in parentheses).
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(a)) AR coefficients.
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(b)) Partial correlations of innovations.

Delta region to explore the inter-relationship of respirable suspended particles between the seven selected470

air quality monitoring stations across the area and a flour price indices dataset to investigate the dynamic

interdependence structure of the flour price series. The results are consistent with another graphical time

series approach based on structural vector autoregressive models.

Appendix

Lemma 1. For any positive semidefinite matrices A and B and 0<α < 1, det(αA+(1−α)B)≥ det(A)α det(B)1−α
475

with equality if and only if A = B or det(αA+(1−α)B) = 0.

PROOF. See Magnus & Neudecker (1999, Chapter 11).
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PROOF OF THEOREM 1. To prove the problem in (14) is biconcave, we first show the feasible set D is

biconvex followed by showing the objective function of the problem is biconcave. Let Ω = Σ−1
u , and S be

the set of lower triangular positions of Ω that are not constrained to be zero having q elements (i.e. S =

{(i1, j1), · · · ,(ik, jk), · · · ,(iq, jq)} with 1 ≤ ik ≤ jk ≤ K for k = 1, · · · ,q). Define two (K ×q) matrices

E1 =
(

ei1 ei2 · · · eiq

)
and E2 =

(
e j1 e j2 · · · e jq

)
,

where eik is a vector of zeros except the ik-th entry being one, for k = 1, · · · ,q. We express the optimization

problem (14) as an unconstrained problem, following Dahl et al. (2005), with objective function f (β ,ω)

given by

f (β ,ω) =
T
2

logdet [Ω(ω)]− 1
2

tr
(
(Y−BZ)′Ω(ω)(Y−BZ)

)
=

T
2

logdet [Ω(ω)]− 1
2
[
y−
(
Z′⊗ IK

)
β
]′
[IT ⊗Ω(ω)]

[
y−
(
Z′⊗ IK

)
β
]
.

Here, the constant term is omitted and the inverse of innovation covariance matrix Ω is parameterized as

Ω(ω) = E1diag(ω)E2
′+E2diag(ω)E1

′,

where ω ∈ Rq contains the non-zero element in the strict lower triangular part of Ω, and the non-zero

elements on the diagonal are divided by 2, i.e.

ωk =


Ωik jk , ik ̸= jk
1
2

Ωik jk , ik = jk
for k = 1, · · · ,q.

We now prove that the feasible set D is biconvex based on the definition in Gorski et al. (2007). Let

B = {β ∈ RK(K p+1) | Cβ = 0} ⊆ RK(K p+1) and W = {ω ∈ Rq | Ω(ω)≻ 0} ⊆ Rq which are non-empty and

convex. Let D = {(β ,ω) ∈RK(K p+1)×Rq | Cβ = 0, Ω(ω)≻ 0} ⊆ B×W . Define Dω = {β ∈ B | (β ,ω) ∈480

D} and Dβ = {ω ∈W | (β ,ω) ∈ D}.

For any β1,β2 ∈ Dω and any λ ∈ [0,1], λCβ1 +(1−λ )Cβ2 ∈ Dω for every ω ∈W , since

C(λβ1 +(1−λ )β2) = λCβ1 +(1−λ )Cβ2 = 0.

Therefore, Dω is convex for every ω ∈W .

For any ω1,ω2 ∈ Dβ and any λ ∈ [0,1], λω1 +(1−λ )ω2 ∈ Dβ for every β ∈ B, since

Ω(λω1 +(1−λ )ω2) = λΩ(ω1)+(1−λ )Ω(ω2)≻ 0.
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Therefore, Dβ is convex for every β ∈ B. Hence, the set D ⊆ B×W is biconvex.

We next show that the objective function is biconcave. Define fω(·) = f (·,ω) : Dω → R and fβ (·) =
f (β , ·) : Dβ → R.485

For every fixed ω ∈W ,

fω(β ) =
T
2

logdet [Ω(ω)]− 1
2
[
y−
(
Z′⊗ IK

)
β
]′
[IT ⊗Ω(ω)]

[
y−
(
Z′⊗ IK

)
β
]

=−1
2

β
′ [ZZ′⊗Ω(ω)

]
β +β

′ [Z⊗Ω(ω)]y− 1
2

y′ [IT ⊗Ω(ω)]y+
T
2

logdet [Ω(ω)]

is a quadratic function of β and is strictly concave since ZZ′⊗Ω(ω) ≻ 0. Therefore, fω(·) is a concave

function on Dω for every fixed ω ∈W .

Denote S= (Y−BZ)(Y−BZ)′. For all ω1,ω2 ∈Dβ with ω1 ̸=ω2, λ ∈ (0,1) and for every fixed β ∈ B,

fβ (λω1 +(1−λ )ω2) =
T
2

logdet [Ω(λω1 +(1−λ )ω2)]−
1
2

tr(SΩ(λω1 +(1−λ )ω2))

=
T
2

logdet [λΩ(ω1)+(1−λ )Ω(ω2)]−
1
2
{λ tr(SΩ(ω1))+(1−λ )tr(SΩ(ω2))}

>
T
2

log
{
[detΩ(ω1)]

λ [detΩ(ω2)]
1−λ
}
− 1

2
{λ tr(SΩ(ω1))+(1−λ )tr(SΩ(ω2))}

= λ fβ (ω1)+(1−λ ) fβ (ω2).

Here, the inequality 2 lines above follows from Lemma 1. Therefore, fβ (·) is a strictly concave function on

Dβ for every fixed β ∈ B. Hence, the optimization problem in (14) is biconcave.
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