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Abstract

This paper considers parametric model adequacy tests for nonlinear multivariate dynamic

models. It is shown that commonly used Kolmogorov-type tests do not take into account

cross-sectional nor time-dependence structure, and a test, based on multi-parameter empirical

processes, is proposed that overcomes these problems. The tests are applied to a nonlinear

LSTAR-type model of joint movements of UK output growth and interest rate spreads. A

simulation experiment illustrates the properties of the tests in finite samples. Asymptotic

properties of the test statistics under the null of correct specification and under the local

alternative, and justification of a parametric bootstrap to obtain critical values, are provided.

Keywords: Diagnostic test, joint distribution, multivariate modeling, Rosenblatt trans-

form, LSTAR model.

JEL classification: C12, C22, C52.

1 Introduction

Robust nonparametric methods are hard to implement in a multidimensional case, and

parametric modeling is often called for. For example, linear and nonlinear VAR models with

Gaussian innovations are often used in macroeconometrics, while multivariate volatilities,
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which can be described by different types of multivariate GARCH (MGARCH) or copula-

based models, are popular in financial econometrics. The use of a misspecified parametric

model may result in misleading conclusions, in particular, biased estimates of monetary

policy effects and underestimation of the risk in financial models. Thus it is crucial to

develop specification testing procedures for these models. In a multidimensional context, it is

important to know not only the time structure of the random vectors but also the dependence

between contemporaneous variables, and this dependence should be used, for example, for

portfolio diversification. Hence, we should be able to test for the correct specification of the

joint multivariate distribution conditional on past information.

There is a huge literature on testing multivariate normality, see Mecklin and Mundform

(2004). For testing a general type of distribution in a dynamic setup, a dynamic version

of the Rosenblatt Transform (cf. Rosenblatt 1952), which is also a type of a Probability

Integral Transform, PIT, allows us to approach all kinds of distributions in a unified man-

ner. The idea is that, given the true conditional distribution, one can transform the data

to independent and identically distributed (i.i.d.) uniform random variables and possibly

further to normal i.i.d. Then, instead of testing the shape of the initial distribution, the

uniformness and independence of the transformed data can be evaluated with histograms

and correlograms, as suggested by Diebold et al. (1999) and Clements and Smith (2002) for

multivariate density forecast evaluation. In practice, however, the distribution is known only

up to parameters; therefore the method of Diebold et al. (1999) can not be applied. The

reason is that, when estimates are plugged in, the (dynamic) Rosenblatt Transform delivers

only approximately i.i.d. uniforms; moreover, the asymptotic distribution may change, and

even become model and case dependent, see Durbin (1973). Ignoring parameter uncertainty

introduces severe size distortions in such tests, as documented in simulations by Kalliovirta

and Saikkonen (2010). The problem usually is solved by either transforming the statistics

of interest to make them convergent to a known distribution (Khmaladze 1981, Wooldridge

1990, Delgado and Stute 2008, and many others) or by approximating critical values by the

parametric bootstrap (Andrews 1997). For nonparametric testing of multivariate GARCH

models, Bai and Chen (2008) developed a Kolmogorov-type testing procedure based on the

dynamic Rosenblatt Transform. They applied a Khmaladze (1991) martingale transforma-

tion (K-transformation) to the empirical process to obtain a limiting distribution of statistics.

However, in a univariate setup, Corradi and Swanson (2006) noted that Kolmogorov-type

tests, based on a one-parameter empirical process, may not distinguish some important al-

ternatives to the conditional distribution. In an i.i.d. setup with conditioning on covariates,
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Delgado and Stute (2008) proposed a consistent test using a two-parameter empirical pro-

cess coupled with a Khmaladze martingale transformation. In a time series setup, where

a Kolmogorov-type test does not capture misspecification in the dynamics, Kheifets (2015)

proposed a test based on a multi-parameter empirical process and used a bootstrap to obtain

critical values.

In this paper, we consider nonparametric testing of a multivariate distribution specifi-

cation. We study the consequences of using a Kolmogorov-type test in this setup. We find

that Kolmogorov-type tests result in missing both dynamic and cross-section dependence. To

overcome this problem, we consider tests based on a multivariate empirical process, adapting

the weak convergence results of Kheifets (2015) to a multivariate case. As well as a Kol-

mogorov test, our PIT-based procedure can test nonlinear models and capture deviations

in marginal distribution. Besides that, our test includes two ingredients: a dynamic check

(similar to Kheifets 2015) and a cross-section check. Thus our technique may be used not

only for testing but also for investigating sources of misspecification. Our test complements

the parametric tests of Kalliovirta and Saikkonen (2010) and Gonzalez-Rivera and Yoldas

(2012). We avoid bandwidth selection, and our test statistics have a parametric rate of con-

vergence, unlike the smoothing techniques of Hong and Li (2005), Li and Tkacz (2011), and

Chen and Hong (2014), who use kernels to estimate the conditional distribution function

and spectrum.

The contribution of the paper is the following: We develop the test and apply it to a model

of UK growth and interest spreads and perform a set of Monte Carlo experiments to study

the performance of the test in finite samples, where we observe results similar to Kolmogorov

tests’ in some cases and improvement in others. We derive asymptotic properties of the test

under the null and the local alternative, taking into account the parameter estimation effect,

and justify the use of bootstrapped critical values.

The rest of the paper is organized as follows. Section 2 introduces specification test

statistics, based on the dynamic Rosenblatt Transform. The empirical application is in

Section 3. Monte Carlo experiments are shown in Section 4. Section 5 concludes. Asymptotic

properties of the test are listed in the Appendix.
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2 The Test Statistics

2.1 Our proposal

We now explain our methodology in detail. Suppose that a sequence of d × 1 vectors

Y1, Y2, . . . , YT , where Yt = (Yt1, Yt2, . . . , Ytd)
′, t = 1, ..., T, is given. Let Ωt be the information

set at time t (not including Yt), i.e., the σ-field of {Yt−1, Yt−2, . . .}.
We consider a family of joint distributions Ft(y|Ωt, θ), conditional on the past information,

parameterized by θ ∈ Θ, where Θ ⊆ RL is a finite dimensional parameter space. Apart from

allowing the conditional (information) set Ωt to change with time, we permit change in the

functional form of the distribution using subscript t in Ft. Our null hypothesis of correct

specification is:

H0 : The multivariate distribution of Yt conditional on Ωt is in the parametric family

Ft(y|Ωt, θ) for some θ0 ∈ Θ.

Note that by specifying the multivariate conditional distribution, we specify many prop-

erties of the data simultaneously, such as multivariate and univariate marginal distributions,

univariate conditional distributions, time and cross-section dependence, symmetry, all exist-

ing moments, kurtosis, etc. Many dynamic models can be written in the form of a conditional

distribution. Examples include (non)linear vector autoregressive (VAR) and MGARCH mod-

els with i.i.d. parametric innovations, copula-based models with parametric marginals and

possibly time-varying copula functions, and discretely sampled continuous-time models rep-

resented by a stochastic differential equation.

We now describe how to use PIT. In a simple univariate unconditional testing, we have

that if Y ∼ F (·), then U = F (Y ) is uniform, which is the base of the Kolmogorov test.

More precisely, the null hypothesis of the Kolmogorov test is that F (Y ) is uniform. If we are

interested in conditional distribution testing, which is the case when we have covariates or

dynamics, we use the fact that if Yt|Ωt ∼ Ft(·|Ωt), then Ut = F (Yt|Ωt) is uniform and i.i.d.

The distribution needs to be absolutely continuous. For a discrete distribution, one may use

a different transform, see Kheifets and Velasco (2013, 2017).

In multivariate setup, F (Y ), which seems to be an obvious generalization of the PIT,

is not generally uniform for a vector Y ∼ F (·). F (Y ) is related to copula functions, which

describe multivariate dependence without specifying marginals. The properties of F (Y ) were
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studied in Genest and Rivest (2001). In this paper we want to check the specification of

the multivariate distribution; therefore, testing the specification of the copula function is

not sufficient. For a multivariate PIT, we need to define the conditioning sets properly.

Following Rosenblatt (1952) and Diebold et al. (1999), construct a long univariate series by

stacking sequentially Yt to get a n = Td long univariate series, which we denote

{Zk}nk=1 := {..., Yt1, Yt2, ..., Ytd, ...}Tt=1. (1)

In other words, Zk = Ytℓ for t = ⌈k/d⌉ and ℓ = k − td, where k = 1, ..., n, t = 1, ..., T ,

ℓ = 1, ..., d, and ⌈x⌉ denotes the smallest integer not less than x. There are many ways

to order and stack Ytℓ; for example, {..., Yt2, Yt1, ..., Ytd, ...} is another possibility. Although

the ordering determines the test statistics, in practice we are not able to test all possible

orderings. In our Monte Carlo experiments, we study how the choice of a particular order

affects the performance of the test. From the null multivariate conditional distributions

Ft(y|Ωt, θ0), we can obtain univariate conditional distributions FZk
(z|ΩZ

k , θ0), where ΩZ
k is a

σ-field of {Z1, Z2, ..., Zk−1}. To do this, for each t, apply to the joint distribution d times

the factorization F (y1, y2) = F (y1)F (y2|y1). Now apply n times PIT

Uk = FZk
(Zk|ΩZ

k , θ0),

which are uniform and i.i.d. This is a dynamic analog of a multivariate Rosenblatt (1952)

transform. Explicit formulas of such transforms for VAR models with possible MGARCH

innovations can be found in Bai and Chen (2008) and Kalliovirta and Saikkonen (2010); for

copula-based models see Patton (2013), see also A.2 for an example.

Under the null, {Uk}nk=1 are uniform and i.i.d. Diebold et al. (1999) use this fact for

density forecast evaluation by looking at histograms and correlograms of Ut. In this paper,

we use the ideas of Delgado and Stute (2008) and Kheifets (2015) to make a formal testing

procedure for H0 that requires us to check simultaneously uniformness and independence.

For k = 2, ..., n, using pairwise independence and uniformness, we have

Pr(Uk ≤ r1, Uk−1 ≤ r2) = r1r2,
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for r ∈ [0, 1]2, which motivates us to consider the following empirical processes

V2T (r) =
1√
n− 1

n
∑

k=2

[I(Uk ≤ r1)I(Uk−1 ≤ r2)− r1r2] . (2)

If we do not know θ0, we approximate Uk with

Ûk = FZk
(Zk|ΩZ

k , θ̂),

where θ̂ is an estimator of θ0, so that

V̂2T (r) =
1√
n− 1

n
∑

k=2

[

I(Ûk ≤ r1)I(Ûk−1 ≤ r2)− r1r2

]

. (3)

To obtain a test statistic, define

D2T = Γ(V̂2T (r)),

for any continuous functional Γ(·) from ℓ∞([0, 1]2), the set of uniformly bounded real func-

tions on [0, 1]2, to R. In particular, we consider Cramer-von Mises (CvM) and Kolmogorov-

Smirnov (KS) statistics

DCvM
2T =

∫

[0,1]2
V̂2T (r)

2dr and DKS
2T = sup

[0,1]2

∣

∣

∣
V̂2T (r)

∣

∣

∣
. (4)

The choice of the measure is an interesting question in itself; it may make the test more

powerful for some particular alternatives. Here we stick just to these two.

To check p-wise independence in a similar way to Delgado (1996), we can base test

statistics on the p-parameter process

VpT (r) =
1√
n− p

n
∑

k=p

[

p
∏

j=1

I(Uk−j+1 ≤ rj)− r1r2 . . . rp

]

,

using norms on [0, 1]p, say,

DCvM
pT =

∫

[0,1]p
V̂pT (r)

2dr and DKS
pT = sup

[0,1]p

∣

∣

∣
V̂pT (r)

∣

∣

∣
. (5)

The test based on the process with p = 1 does not have power against many important

alternatives, e.g., omitted autoregressive terms in mean or variance. Such alternatives are
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captured by tests with p = 2. In the rest of the paper we consider such tests.

To test other than one-lag pairwise dependence, for j = 1, 2, ... define the process

V̂2T,j(r) =
1√
n− j

n
∑

k=j+1

[

I(Ûk ≤ r1)I(Ûk-j ≤ r2)− r1r2

]

,

with test statistics,

DCvM
2T,j =

∫

[0,1]2
V̂2T,j(r)

2dr and DKS
2T,j = sup

[0,1]2

∣

∣

∣
V̂2T,j(r)

∣

∣

∣
. (6)

In order to provide some guidance for a practitioner, we propose the following interpretation

of the test statistics above. For example, for linear bivariate model D2T,1 controls cross-

sectional dependence, while D2T,2 controls dynamic specification. In DGP-A1, DGP-C5

and DGP-C6 in the Monte Carlo section below, cross-sectional dependence is misspecified.

Such alternatives are captured by D2T,1. In DGP-A3, the dynamics in the first variable is

misspecified, hence D2T,2 catches it. Marginal checks are included in both statistics, i.e., mis-

specification of the marginal distribution will result in high values for all test statistics. To

test the null hypothesis against an unknown alternative, aggregate information from these

statistics. Following the notation of Kheifets (2015), define for k = 1, ..., n − 1 the test

statistics

ADJkT =
k

∑

j=1

DCvM
2T,j and MDJkT = max

j=1,...,k
DKS

2T,j,

and

ADJ0
kT = DCvM

1T + ADJkT and MDJ0
kT = max

(

DKS
1T ,MDJkT

)

.

Test statistics ADJkT and MDJkT summarize the information from different lags, in the

spirit of a Ljung-Box (1978) test, for which choosing small k may miss higher order depen-

dence, while choosing large k reduces overall power. Test statistics ADJ0
kT and MDJ0

kT

additionally take into account the marginal distribution of the data explicitly.

Since, under H0, we know (up to the parameter value) the parametric conditional dis-

tribution, we apply a parametric bootstrap to mimic the H0 distribution based on Ft(·|·, θ̂).
This will require additional computational time; however, note that even in the case of

asymptotic distribution free tests, bootstrap critical values may be preferred to asymptotic

ones in terms of finite sample performance, see Kilian and Demiroglu (2000). We introduce

the algorithm now.
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1. Estimate the model with the original data Yt, t = 1, 2, ..., T to get parameter estimator

θ̂ and test statistic Γ(V̂ ).

2. Simulate Y ∗
t with Ft(·|Ω∗

t , θ̂) recursively for t = 1, 2, ..., T , where Ω∗
t = (Y ∗

t−1, Y
∗
t−2, ...).

3. Estimate the model with simulated data Y ∗
t to get θ∗ and bootstrapped statistics

Γ(V̂ ∗).

4. Repeat 2-3 B times, and compute the percentiles of the empirical distribution of the

B bootstrapped statistics.

5. Reject H0 if Γ(V̂ ) is greater than the (1−α) th percentile of the empirical distribution.

We recommend setting B to at least 1000, the number used in this paper. Bootstrapping

critical values takes 15 minutes for the bivariate LSTAR model considered in Section 3,

see A.4 for further computational details. For some bootstrap samples the estimation routine

may fail. For example, when an explicit solution to a model exists, numerical methods may

not be able to invert an ill-conditioned matrix. In case of highly nonlinear models, extremum

estimation procedures may take a long time to converge or even to return an error. In these

cases, B should be larger so that the bias in the bootstrapped quantiles, which may appear

after omitting those samples, is acceptable to a researcher.

Theoretical properties of the procedure developed in this paper rely on 1) the dynamic

extension of the Rosenblatt transform and 2) the weak convergence result in Kheifets (2015).

The latter proposes a specification test for univariate models based on multi-parameter

empirical processes and studies the convergence of such processes, which allows us to justify

the use of the bootstrapped critical values. These theoretical results can be employed for our

needs because the Rosenblatt transforms are univariate (and uniformly and independently

distributed under the null hypothesis). In order to do so, we need to verify high-level

assumptions of Kheifets (2015) under the dynamic extension of the Rosenblatt transform,

please see A.3 for details.

2.2 Comparison with Bai and Chen (2008) and related tests

Most of the tests for H0 use some particular properties of the null distribution, such as skew-

ness, kurtosis or correlation, whether of the initial data or of that of transformed variables

(i.e., residuals, PITs or composition of PITs, and transforms to normal random variables).
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One exception is the test of Bai and Chen (2008), which is a nonsmooth omnibus-type test

for multivariate GARCH models. In fact, they can test our H0. Their test statistic is based

on a combination of empirical processes

JT,ℓ(r) =
1√
T

T
∑

t=1

[

I(U(t−1)d+ℓ ≤ r)− r
]

,

for r ∈ [0, 1], ℓ = 1, . . . , d. In particular, they propose three combinations: taking the maxi-

mum, maxℓ=1,...,d supr∈[0,1] |JT,ℓ(r)|, taking the sum,
∑

ℓ=1,...,d suprℓ∈[0,1] |JT,ℓ(rℓ)|, and pooling

supr∈[0,1] | 1√
d

∑

ℓ=1,...,d JT,ℓ(r)|, corresponding to DKS
1T in our notation. They further apply

a K-transformation to obtain the convergence to the supremum of a standard Brownian

motion, even in the presence of parameter estimation. However, these types of processes

miss the dynamic check in Uk, i.e., the critique raised by Corradi and Swanson (2006) for

univariate tests applies in a multivariate case as well. The key element of our procedure is to

use the test statistics based on the multivariate processes DpT , p > 1. In the next section, we

compare the performance of the test statistics D1T and D2T using Monte Carlo simulations.

Another common strategy is to bootstrap CvM or KS statistics based on the follow-

ing “row-wise” empirical process (e.g., Patton 2013, Section 4.1, but note a typo in the

standardization, should be 1√
T
instead of 1

T
)

SpT (r) =
1√
T

T
∑

t=1

[

d
∏

ℓ=1

I(U(t−1)d+ℓ ≤ rj)− r1r2 . . . rd

]

,

for r ∈ [0, 1]d. Unlike the tests based on JT,ℓ, tests based on this empirical process do take

some dynamics in Uk into account, but not all. In particular, independence is controlled

within, but not between, the rows U t = (U(t−1)d+1, U(t−1)d+2, . . . , U(t−1)d+d). For instance,

in a bivariate case, (cross-sectional) independence between U2t−1 and U2t, t = 1, . . . , T is

controlled, while (dynamic-cross) independence between U2t and U2t+1 and (pure dynamic)

independence between U2t−1 and U2t+1 and between U2t and U2t+2 are not. The empirical

process VpT , suggested in our paper, overcomes these problems.

We calculate critical values using a parametric bootstrap. In a similar (although uni-

variate) situation, Corradi and Swanson (2006) suggest the use of a block bootstrap, which

delivers correct critical values under dynamic misspecification. Our approach is different in

two respects. First, we do not require strict stationarity, while their block bootstrap approx-

imation relies on it. Second, in our case dynamic misspecification is not allowed under the
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null and must be detected if present. For example, predictions of output growth and spreads

considered in our empirical application are based on all available information. That is why

the conditional set in our null hypothesis is Ωt and not Yt−1.

Bai and Chen (2008) apply K-transformation to obtain a distribution-free test. Extend-

ing these kinds of transformations to our case is non-trivial because the empirical processes

are multivariate and the same variables enter different dimensions, introducing dependence

among dimensions. A parametric bootstrap is an attractive alternative to such techniques

because it requires repeated simulation and estimation of the null model, while implement-

ing a K-transform requires one to derive analytically the transform for each model under

consideration, which is not straightforward (see examples in Bai and Chen, 2008).

3 Empirical Application

We test a model for joint movement of output growth and the interest rate spread in the UK,

plotted on Figure 1 and suggested by Anderson, Athanasopoulos, and Vahid (2007, AAV

hereafter). Output growth (Yt1) is calculated as 100 × the difference of logarithms of season-

ally adjusted real DGP, and the spread (Yt2) is the difference between the interest rates on

10 Year Government Bonds and 3 Month Treasury Bills. The sample consists of 159 quar-

terly time series observations, dating from 1960:3 to 1999:4 and available, together with the

GAUSS programs, at the AAV accompanying webpage (http://qed.econ.queensu.ca/jae/2007-v22.1/anderson-athanasopoulos-vahid/).

AAV suggested the following model for the conditional mean of Yt, µt = (µt1, µt2)
′ as a

function of unknown parameters b = (b1, . . . , b11)
′

µt1 = b1 + b2Yt−2,1 + b3Yt−3,2 + b4Yt−1,2 + wt (−b5Yt−1,2) ,

µt2 = b8 + b9Yt−3,1 + b10Yt−1,2 + b11Yt−2,2,

where wt = (1 + exp (−b6(Yt−2,1 − b7)))
−1 .

The logistic smooth transition autoregressive specification for output growth incorporates

different regimes and smooth transitions between them.

AAV estimated the model by ML and obtained predicted values by simulation, using

(conditional) normality of errors. This motivates us to test the following null hypothesis

H0 : Yt|Ωt ∼ N(µt,Σ), where Σ is independent of Ωt. (7)

10
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Figure 1: UK output growth and interest spread, quarterly data from 1960:3 to 1999:4

Table 1: 100 × p-values of tests for the null hypothesis defined in Section 3 applied to the UK data. Both
Cramer-von Mises and Kolmogorov-Smirnov norms are used. Tests based on the one-parameter process, the
two-parameter process with 1st lag for cross sectional dependence, and the two-parameter process with 2d
lag for time dependence, as well as Ljung-Box (Box et al., 1994) test statistics with 1, 2, 3, 20, and 25 lags,
are considered. Sample size is T = 156.

DCvM
1

DCvM
2,1 DCvM

2,2 DKS
1

DKS
2,1 DKS

2,2 LBQ1 LBQ2 LBQ3 LBQ20 LBQ25

0.2 0.5 0.0 0.0 0.0 0.0 31.3 54.9 68.1 31.4 48.3

Assuming (7), we obtain b̂ = (0.35, 0.21, 0.15, 0.32,−0.52, 2.56, 0.68, 0.20,−0.14, 1.14,−0.26)′

and Σ = (0.95,−0.02;−0.02, 0.45). AAV report only the estimate of b, not Σ. Our estimate

of b is close to theirs. Tests’ p-values are reported in Table 1. As in AAV, we detect

no remaining serial correlation. However, the nonlinear procedure proposed in our paper

suggests that the null hypothesis (7) can be rejected at the 1% confidence level.

Monte Carlo experiments conducted in the next section show that the empirical size of

our tests is close to nominal. Simulations C2, C3, and C4 in the next section also suggest

that alternative models with Student-t distribution and the same dynamics as in (7) can

hardly be captured by serial correlation checks, while our tests have power for sample size

T = 100.
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4 Monte Carlo Experiments

We study the performance of our procedure under the null and alternative hypotheses using

Monte Carlo experiments discussed in Giacomini, Politis and White (2013). We also show

the rejection rates for parametric tests Ljung and Box (1978) and Jarque and Bera (1980)

(for Part C). For comparison purposes, their distributions are obtained using bootstrap. We

start with a simple linear null hypothesis and linear DGP, where model estimation is simple

and estimators converge fast, allowing us to see the finite sample behavior of the proposed

statistics; then we proceed to a nonlinear model motivated by our empirical example and

calibrated to real data. All DGPs are listed in Table ??. The number of Monte Carlo

repetitions is set to 1000.

4.1 Part A

In this subsection, we study the finite sample performance of the test statistics to test the

null hypothesis that the series is identically multivariate normally distributed and is time

and cross-section independent,

H0 : Yt|Ωt ∼ N(µ,Σ), where µ,Σ are independent of Ωt, and Σ is diagonal. (8)

We study this null hypothesis under three types of alternatives:

1. DGP-A1: series are cross-section dependent, normally distributed,

2. DGP-A2: series are cross-section dependent, t5 distributed, and

3. DGP-A3: series are time dependent, normally distributed,

where in all cases the parameter α takes values 0, 0.1, ..., 0.9. The value α = 0 generates

data under the null in DGP-A1 and DGP-A3, so empirical power should be around nominal.

Increasing α makes deviation from the null stronger, so the power should increase.

We study empirical power of the tests D1, D2,1 and D2,2, defined in (5) and (6). In Figure

2(a), 5% rejection rates of Cramer von Misses tests for DGP-A1 are plotted. We see that

both D1 and D2,2 have near nominal 5% power for all α. Test D2,1, on the contrary, is able

to detect alternatives starting from small power at α = 0.2 and increasing up to almost 80%

for α = 0.9. In Figure 2(c), Cramer von Misses tests for DGP-A2 are plotted. All tests have

12



Table 2: The list of DGP used in Monte Carlo simulations

1. DGP-A1: Yt|Ωt ∼ N
(

(0, 0)′ , (2, α;α, 1)
)

2. DGP-A2: Yt|Ωt ∼ t5
(

(0, 0)′ , (2, α;α, 1)
)

3. DGP-A3: time series with lag-1 dependence are normally distributed Yt|Ωt ∼
N (A1Yt−1, (1, 0; 0, 1)), where A1 = (α, 0; 0, 0).

4. DGP-B1: Yt|Ωt ∼ N
(

(0, 0)′ , (1, 0.5; 0.5, 1)
)

,

5. DGP-B2: Yt|Ωt ∼ N
(

(0, 0)′ , (1, 0.5; 0.5, 2)
)

,

6. DGP-B3: Yt|Ωt ∼ N
(

(0, 0)′ , (2, 0.5; 0.5, 1)
)

,

7. DGP-B4: Yt|Ωt ∼ t5
(

(0, 0)′ , (1, 0.5; 0.5, 1)
)

,

8. DGP-B5: Yt|Ωt ∼ t5
(

(0, 0)′ , (1, 0.5; 0.5, 2)
)

,

9. DGP-B6: Yt|Ωt ∼ t5
(

(0, 0)′ , (2, 0.5; 0.5, 1)
)

,

10. DGP-C1: Yt is generated by the model considered in Section 3, with b and Σ equal to
the estimate obtained therein.

11. DGP-C2: Yt as in DGP-C1, but with conditional distribution Student t7 instead of
normal.

12. DGP-C3: Yt as in DGP-C1, but with conditional distribution Student t5 instead of
normal.

13. DGP-C4: Yt as in DGP-C1, but with conditional distribution Student t3 instead of
normal.

14. DGP-C5: Yt as in DGP-C1, but with conditional mean for the output µ̃t1 = µt1 +
0.5Yt−2,2.

15. DGP-C6: Yt as in DGP-C1, but with conditional mean for the output µ̃t1 = µt1 +
0.9Yt−2,2.
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(c) CvM against DGP-A2
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(e) CvM against DGP-A3
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(f) KS against DGP-A3

Figure 2: Rejection proportions of tests for Normal time and cross-section independent null hypoth-
esis (8). Panel (a) shows the performance of the Cramer-von Mises tests for cross-section dependent
normal DGP-A1. Panel (b) shows the performance of the Kolmogorov-Smirnov test for the same
GDP. Panels (c) and (d) show the performance of the corresponding tests for Student-t with 5
degrees of freedom t5 DGP-A2. Panels (e) and (f) show the performance of the corresponding tests
for cross-section independent normal VAR(1) DGP-A3. Tests based on one-parameter process (cir-
cle markers), two-parameter process with the first lag for cross sectional dependence (triangular
markers) and two-parameter process with the second lag for time dependence (cross markers) are
considered. Rejections at 5% are plotted with a dotted line. Sample sizes are T = 100.

at least 50% rejection rates for all α. In Figure 2(e), Cramer von Misses tests for DGP-A3

are plotted. We see that both D1 and D2,1 have near 5% power for all α. Test D2,2, on the

contrary, is able to detect alternatives starting from small power at α = 0.2 and increasing

up to more than 90% for α = 0.9. The picture does not change if we use a KS-norm.

In sum, we have observed that D2,1 captures cross-sectional misspecification and D2,2

is able to capture misspecification in dynamics, while D1 detects neither. All three tests

perform equally well when the marginal distribution is misspecified.
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4.2 Part B

We study the finite sample performance of the test statistics to test the null hypothesis that

the series is multivariate normal,

H0 : Yt|Ωt ∼ N(µ,Σ), where µ and Σ are independent of Ωt. (9)

Note that now Σ need not be diagonal, so we allow cross-sectional dependence but not

temporal. DGP-B1 to DGP-B3 generate data under the parametric family null hypothesis

(9) and deliver the empirical size of the test. DGP-B4 to DGP-B6 simulate data under the

t5 distribution, a popular alternative to normality that accounts for fat tails, and deliver

the empirical power of the test. DGP-B1 and DGP-B4 were considered also in Bai and

Chen (2008). DGP-B2, DGP-B3, DGP-B5, and DGP-B6 are taken to assess the influence

of the order choice in (1). We consider the cases both when the distribution is symmetric

with respect to the coordinates and when it is not. When the distribution is not symmetric,

exchanging the coordinates is equivalent to changing the order in (1), and we want to know

if, and how, it affects the performance of the test. In the normal case, this symmetry is

reflected by the restriction on the covariance matrix Σt11 = Σt22, case DGP-B1,4.

We study the performance of tests D1, D2,1, and D2,2, as defined in (5) and (6) and

Ljung-Box (Box et al., 1994) test statistics with 1, 2, 3, 20, and 25 lags. In Table 3, sample

sizes are T = 100. DGP-B1 to DGP-B3 are contained in the null hypothesis and deliver

empirical size, which is slightly under nominal size almost for all process-based tests. If we

increase sample size up to T = 300, see Table 4, the situation improves, and we even get

a light oversize for DGP-B3. In general, empirical size looks satisfactory. In DGP-B4 and

DGP-B5, the data is generated under t5, and this is captured very well for both T = 100 and

T = 300. DGP-B3 is symmetric to DGP-B2, and DGP-B6 is symmetric to DGP-B5, and

here we can not see a difference in the performance by alternating the order in (1). There is

not much difference in using KS or CvM norms.

4.3 Part C

We study the finite sample performance of the test statistics to test the null hypothesis that

the series is a bivariate nonlinear in mean model, as considered in our empirical application

in Section 3. The results are presented for sample sizes T = 100 in Table 5 and T = 300 in

Table 6.
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Table 3: Rejection rates of tests for the Normal independent in time composite null hypothesis
defined in (9) and DGP-B1 - DGP-B6. Both Cramer-von Mises and Kolmogorov-Smirnov norms
are used. Tests based on the one-parameter process, the two-parameter process with 1 and 2 lags,
as well as Ljung-Box (Box et al., 1994) test statistics with 1, 2, 3, 20, and 25 lags, are considered.
Sample sizes are T = 100.

DCvM
1

DCvM
2,1 DCvM

2,2 DKS
1

DKS
2,1 DKS

2,2 LBQ1 LBQ2 LBQ3 LBQ20 LBQ25

B1 10% 5.6 8.2 8.6 7.6 8.6 8.6 7.2 10.0 7.0 7.8 9.6
5% 1.2 2.0 3.8 2.0 4.2 4.0 2.8 4.0 2.8 4.0 4.2
1% 0.4 0.0 1.2 0.2 0.2 0.2 0.8 1.2 1.0 0.6 0.4

B2 10% 8.2 7.8 7.4 8.0 9.4 6.4 6.6 7.8 10.8 12.0 12.6
5% 3.4 3.2 3.2 3.4 4.0 3.6 3.4 4.6 6.2 8.2 5.8
1% 0.2 0.4 0.2 0.4 0.4 1.4 1.2 1.4 0.8 1.0 1.8

B3 10% 8.2 8.0 9.0 8.4 6.8 9.0 6.6 11.2 11.6 9.8 9.2
5% 3.4 2.2 3.8 3.0 2.4 3.6 3.6 6.0 6.0 6.0 5.0
1% 0.8 0.8 0.2 0.4 0.4 0.0 1.0 0.6 1.0 1.8 2.0

B4 10% 73.2 70.4 59.0 62.8 63.8 55.8 18.0 13.2 12.6 9.4 9.0
5% 63.0 61.0 49.2 52.4 49.6 43.4 8.4 6.6 6.4 6.4 5.4
1% 43.8 37.4 30.0 33.0 26.2 23.8 2.4 0.4 2.0 1.0 1.6

B5 10% 72.0 69.8 63.6 61.8 64.4 61.6 18.6 14.2 12.2 10.6 10.4
5% 63.8 61.0 53.8 45.2 55.2 44.8 9.4 6.0 8.0 5.8 4.6
1% 38.6 38.0 25.2 32.0 29.8 27.6 3.0 3.4 1.2 0.8 0.8

B6 10% 70.2 68.6 65.8 59.4 64.4 55.4 15.4 15.4 15.2 12.2 11.2
5% 60.4 53.4 52.2 46.8 50.4 50.4 11.4 8.8 8.8 5.2 7.6
1% 45.6 36.2 24.4 25.0 29.6 39.8 5.8 2.6 1.2 2.2 1.0

In DGP-C1, Yt is generated by the model considered in Section 3, with b and Σ equal to

the estimate obtained therein. Rejection rates deliver the empirical size of the tests, which

is close to nominal for both sample sizes.

The power of the tests is studied against Student-t models with the same dynamics. The

closest to normal, t7 model is rejected between 19.3% for KS-test with lag 2 and 27.7% for

CvM-test with no lags for sample size T = 100. The rejected rates are doubled for t5 and 4

times larger for t3. For T = 300, rejection rates are between 61.7% and 77.4% for t7, around

90% for t5, and 100% for t3. Note that linear correlation tests are unlikely to reject any

of these alternatives. If one knew that the misspecification comes solely from the skewed

marginals, then a moment-based test would be enough. Indeed, the Jarque-Bera test rejects

97% even for t7 with T = 300.

We also consider power in case of the dynamic misspecification. Let Yt be generated by

the model considered in Section 3, with b and Σ equal to the estimates obtained therein,

except that the conditional mean for the output has an additional lag µ̃t1 = µt1 + αYt−2,2,

where α = 0.5 for DGP-C5 and α = 0.9 for DGP-C6. For T = 100, the linear correlation tests

behave very well, while the empirical process-based tests require more data: the rejection

rate is only 44% for the CvM-test based on the 1-lag two-parameter process. The rejection

rates become 98.6% for T = 300 for CVM and 71.3% for the KS-test. Note, that the one-

16



Table 4: Rejection rates of tests for the Normal independent in time composite null hypothesis
defined in (9) and DGP-B1 - DGP-B6. Both Cramer-von Mises and Kolmogorov-Smirnov norms
are used. Tests based on the one-parameter process, the two-parameter process with the 1 and
2 lags, as well as Ljung-Box (Box et al., 1994) test statistics with 1, 2, 3, 20, and 25 lags, are
considered. Sample sizes are T = 300.

DCvM
1

DCvM
2,1 DCvM

2,2 DKS
1

DKS
2,1 DKS

2,2 LBQ1 LBQ2 LBQ3 LBQ20 LBQ25

B1 10% 10.2 9.6 8.0 7.8 10.0 11.0 12.4 10.6 13.8 16.2 13.6
5% 4.4 4.0 4.2 3.2 5.6 4.0 7.8 5.2 6.4 7.0 5.0
1% 0.6 0.8 0.4 0.0 0.8 0.2 1.6 0.2 0.4 0.4 1.0

B2 10% 9.0 10.2 10.0 7.6 9.2 8.4 9.6 6.4 8.4 8.4 10.0
5% 4.0 4.2 4.6 2.8 4.0 4.0 3.4 3.6 4.8 5.2 3.8
1% 0.2 1.0 0.6 0.4 1.6 0.6 0.8 0.8 1.0 1.6 1.2

B3 10% 9.4 9.2 11.0 11.2 10.6 11.2 7.4 10.2 11.0 10.2 9.8
5% 6.0 8.0 7.0 5.0 6.4 7.0 3.6 4.8 4.8 5.4 7.6
1% 1.8 2.0 0.6 0.8 1.0 1.0 1.0 1.6 0.6 0.4 1.6

B4 10% 98.4 97.6 97.2 96.2 98.6 95.8 24.2 16.2 16.2 12.0 11.6
5% 97.8 97.0 95.0 94.8 95.4 91.4 17.4 8.0 9.2 4.2 4.8
1% 95.2 90.6 90.2 83.6 87.8 80.8 5.4 1.8 1.0 1.2 0.2

B5 10% 99.6 99.2 97.6 97.2 97.4 95.4 18.2 13.8 12.0 11.8 10.2
5% 99.0 98.0 95.6 95.0 93.6 91.6 12.0 5.8 6.8 5.8 4.6
1% 94.4 89.0 86.4 72.4 79.8 78.0 7.2 1.8 0.6 0.4 0.4

B6 10% 99.0 99.0 96.8 98.2 97.6 95.6 19.4 15.8 14.2 12.6 10.4
5% 98.0 97.6 95.0 94.4 95.4 90.6 13.0 8.2 9.0 5.4 4.4
1% 91.4 92.2 86.0 79.2 86.4 84.6 5.2 2.8 1.2 1.8 0.8

parameter empirical process-based tests do not have power against dynamic misspecification.

Based on the simulation results in this section, we suggest to practitioners that they first

perform standard tests (e.g., correlation and moment-based). If the model is rejected, then

the source of the misspecification is identified as usual. If the model is not rejected, it could

be that the standard tests do not have power. Then they should complement the analysis

with the tests proposed in this paper.

5 Conclusion

In this paper we discuss how to test a multivariate conditional distribution against a wide

set of alternatives. Our method is a formalization of the approach for density forecast

evaluation proposed by Diebold et al. (1999), and is based on certain empirical processes

of random variables obtained by applying the dynamic Rosenblatt transform. We discuss

the importance of cross-sectional and dynamic checks and compare our strategy to other

commonly used nonparametric tests. We state the asymptotic properties of the tests under

the null and local alternatives and present a bootstrap justification. We study the size

and power properties of the test in finite samples for basic bilinear dynamic models. For
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Table 5: Rejection rates of tests for the null hypothesis defined in (7) and DGP-C1 - DGP-C6. Both
Cramer-von Mises and Kolmogorov-Smirnov norms are used. Tests based on the one-parameter
process, the two-parameter process with 1 and 2 lags, as well as Ljung-Box test statistics with 1,
2, 3, 20, and 25 lags and Jarque-Bera test statistics, are considered. Sample sizes are T = 100.

DCvM
1

DCvM
2,1 DCvM

2,2 DKS
1

DKS
2,1 DKS

2,2 LBQ1 LBQ2 LBQ3 LBQ20 LBQ25 JB

C1 10% 8.9 10.7 10.1 9.3 11.4 9.7 9.2 9.6 8.3 9.3 8.5 10.9
5% 4.8 4.2 5.3 5.9 4.6 5.5 4.2 4.2 3.5 4.5 4.0 6.4
1% 1.2 0.7 1.0 1.5 1.2 0.5 0.7 0.4 0.3 0.9 0.6 1.3

C2 10% 37.3 36.2 32.5 29.2 32.2 28.5 9.9 11.0 11.6 9.6 8.1 64.7
5% 27.7 24.8 22.7 20.3 21.9 19.3 4.6 5.6 5.1 4.9 4.5 56.6
1% 15.2 9.9 10.2 6.7 9.0 10.0 1.6 1.5 0.6 0.4 0.7 32.2

C3 10% 62.1 57.0 48.7 51.0 53.0 46.5 18.5 19.1 16.3 13.8 12.3 83.6
5% 49.1 44.1 41.5 37.9 41.3 35.9 11.4 11.7 8.8 6.9 5.5 80.2
1% 29.8 28.8 23.9 13.1 23.8 16.7 4.7 2.1 2.9 2.8 2.3 62.9

C4 10% 93.9 91.3 90.8 86.6 87.1 85.8 29.2 26.5 21.9 16.1 13.9 97.5
5% 89.4 87.3 85.4 79.6 81.6 79.4 22.0 19.2 14.6 8.0 7.6 97.1
1% 79.0 79.3 73.6 60.1 66.3 59.7 13.0 9.9 6.5 2.7 1.3 92.3

C5 10% 11.2 30.2 10.1 10.0 23.2 8.3 81.6 68.5 47.7 26.1 24.7 11.6
5% 4.4 19.3 5.8 4.6 13.2 4.1 71.0 52.9 34.0 17.7 15.0 4.6
1% 1.1 7.6 1.0 1.2 4.3 0.9 52.3 23.6 9.5 5.8 3.8 1.0

C6 10% 10.4 60.4 8.6 10.4 38.7 9.2 99.9 97.2 93.2 61.8 54.1 10.8
5% 6.3 44.0 4.5 5.3 26.3 5.3 99.2 94.9 84.8 48.8 41.8 5.0
1% 0.7 22.7 0.7 1.2 6.5 0.7 96.0 82.1 56.4 21.7 13.1 1.2

T = 100 the tests are slightly undersized, but for T = 300 the situation improves. From

power experiments, we can confirm the importance of using tests based in multi-parameter

empirical processes if we want to cover different alternatives. Finally, the tests are applied

to the real UK macroeconomic data.
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Table 6: Rejection rates of tests for the null hypothesis defined in (7) and DGP-C1 - DGP-C6. Both
Cramer-von Mises and Kolmogorov-Smirnov norms are used. Tests based on the one-parameter
process, the two-parameter process with 1 and 2 lags, as well as Ljung-Box test statistics with 1,
2, 3, 20, and 25 lags and Jarque-Bera test statistics, are considered. Sample sizes are T = 300.

DCvM
1

DCvM
2,1 DCvM

2,2 DKS
1

DKS
2,1 DKS

2,2 LBQ1 LBQ2 LBQ3 LBQ20 LBQ25 JB

C1 10% 8.3 10.4 8.7 8.3 9.0 7.8 11.5 9.8 8.8 12.3 11.6 8.3
5% 5.2 6.3 4.3 4.8 4.1 4.0 6.7 4.0 4.9 4.8 6.4 3.6
1% 0.6 0.8 0.7 0.9 0.8 0.5 1.0 1.2 1.1 1.3 1.9 0.8

C2 10% 85.1 83.1 76.5 74.2 74.7 70.3 10.5 10.2 10.5 13.2 11.3 96.6
5% 77.4 73.2 66.4 61.7 63.5 63.4 6.3 5.2 5.5 7.3 6.6 94.7
1% 58.5 43.3 43.5 35.8 37.7 32.1 2.6 1.0 1.9 1.7 0.9 88.7

C3 10% 97.3 97.0 96.0 93.0 94.5 93.0 23.0 21.5 15.4 11.8 13.0 99.5
5% 95.6 95.1 93.2 87.4 91.0 85.5 15.6 11.5 9.2 6.9 7.7 99.3
1% 89.6 90.0 83.4 69.1 75.6 64.6 6.0 3.3 2.4 3.2 1.7 98.3

C4 10% 100.0 100.0 100.0 100.0 100.0 100.0 40.7 36.1 31.2 17.9 17.8 100
5% 100.0 100.0 100.0 100.0 100.0 100.0 34.2 28.8 22.4 12.8 10.0 100
1% 100.0 100.0 100.0 99.8 100.0 99.7 22.6 18.1 10.3 3.9 3.4 100

C5 10% 11.1 73.6 11.2 10.0 44.6 10.7 99.8 99.0 97.4 77.9 73.9 9.2
5% 6.4 61.9 6.0 5.7 31.3 4.8 99.4 97.8 94.8 66.3 59.0 4.2
1% 1.6 33.8 0.7 1.7 16.0 0.9 97.6 88.7 81.6 40.9 37.1 0.7

C6 10% 9.1 99.5 9.5 9.0 84.4 8.5 100.0 100.0 100.0 99.8 99.7 8.7
5% 5.1 98.6 4.8 5.3 71.3 4.3 100.0 100.0 100.0 99.5 99.3 3.9
1% 2.0 90.6 0.9 2.1 49.5 0.3 100.0 100.0 100.0 98.7 97.4 0.5

A Appendix

A.1 Asymptotic properties

In this section we formulate the asymptotic properties of the proposed test statistics. We

start with the simple case of when we know parameters, then we study how the asymptotic

distribution changes if we estimate parameters. We provide the analysis under the null

and under the local and fixed alternatives. We will need assumptions on conditional dfs,

the form of the parametric family of dfs, and on the estimator. The theory relies on the

weak convergence result for multivariate empirical processes proved in Kheifets (2015), which

notation we use. Extension from a univariate case to a multivariate case is obtained by noting

that under the null we obtain, in both cases, a series of univariate i.i.d. standard uniform

random variables and results on the parameter estimation effect are due to smoothness of

the conditional distribution with respect to the parameter. Therefore we omit the proofs.

Assumption 1. The conditional distributions Ft(y|Ωt, θ) are absolutely continuous.

The following proposition provides the main result about the PIT. The idea goes back

to Rosenblatt (1952).

Proposition 1. Suppose Assumption 1 holds. Then, underH0, the random variables {Uk}nk=1
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are i.i.d. standard uniform.

We first describe the asymptotic behavior of the process V2T under H0. Denote by

“ =⇒ ”weak convergence of stochastic processes as random elements of the Skorokhod space

D ([0, 1]2). Since dimension d is fixed, all the asymptotic results T → ∞ can be formulated

in terms of n→ ∞.

Proposition 2. Suppose Assumption 1 holds. Then, under H0,

V2T =⇒ V2∞,

where V2∞(r) is bi-parameter zero-mean Gaussian process with covariance

CovV2∞
(r, s) = (r1 ∧ s1)(r2 ∧ s2) + (r1 ∧ s2)r2s1 + (r2 ∧ s1)r1s2 − 3r1r2s1s2. (10)

By applying the Continuous Mapping Theorem, we can obtain the asymptotic distribu-

tion of D2T and other statistics, with critical values that can be simulated by Monte Carlo

and tabulated.

In case of a composite null hypothesis, estimating the parameter may affect the asymp-

totic distribution under the null, see Durbin (1973). We will take this into account, i.e., we

derive the difference between V̂2T (r) and V2T (r). Let ‖ · ‖ denote the Euclidean norm for

matrices, i.e., ‖A‖ =
√

tr(A′A), and for ε > 0, B(a, ε) is an open ball in RL with the center

at point a and radius ε. In particular, for some M > 0, denote BT = B
(

θ0,MT−1/2
)

= {θ :
||θ − θ0|| ≤ MT−1/2}. Let ηk (r, u, v) = FZk

(

F−1
Zk

(r|u) |v
)

. The following assumption from

Kheifets (2015) ensures smoothness of the distribution and is stated in terms of Zk.

Assumption 2.

(2.1)

E sup
t=1,..,n

sup
u∈Bn

sup
r∈[0,1]

|ηt (r, u, θ0)− r| = O
(

n−1/2
)

.

(2.2) ∀M ∈ (0,∞), ∀M2 ∈ (0,∞), and ∀δ > 0,

sup
r∈[0,1]

1√
n

n
∑

t=1

sup
||u−v||≤M2n−1/2−δ

|ηt (r, u, θ0)− ηt (r, v, θ0)| = op (1) .
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(2.3) ∀M ∈ (0,∞), ∀M2 ∈ (0,∞), and ∀δ > 0,

sup
|r−s|≤M2n−1/2−δ

1√
n

n
∑

t=1

sup
u∈Bn

|ηt (r, u, θ0)− ηt (s, u, θ0)| = op (1) .

(2.4) ∀M ∈ (0,∞), there exists a uniformly continuous (vector) function h(r) from [0, 1]2 to

RL such that

sup
u,v∈Bn

sup
r∈[0,1]2

∣

∣

∣

∣

∣

1√
n

n
∑

t=2

ht − h(r)′
√
n (u− v)

∣

∣

∣

∣

∣

= op(1),

where

ht =
(

ηt−1 (r2, u, v)− r2
)

r1 + (ηt (r1, u, v)− r1) I
(

Ut−1 ≤ ηt−1 (r2, u, v)
)

.

If the cdf FZk
(x|θ) is continuously differentiable with respect to θ (uniformly in k and x),

with bounded derivatives, then the mean value theorem will guarantee Assumption 2 under

some additional regularity conditions; see the discussion in Kheifets (2015).

We need to assume the existence of a linear expansion of the estimator.

Assumption 3. When the sample is generated by the null Ft(y|Ωt, θ0), the estimator θ̂

admits a linear expansion

√
T (θ̂ − θ0) =

1√
T

T
∑

t=1

ψ(Ωt)l(Ut) + op(1), (11)

with EFt (l(Ut)|Ωt) = 0 and

1

T

T
∑

t=1

ψ(Ωt)ψ(Ωt)
′l2(Ut)

pFt→ Ψ.

This assumption is satisfied for ML and nonlinear least square (NLS) estimators under mi-

nor additional conditions. It will allow application of the CLT for vector r.v. (V2T (r),
1√
T

∑T
t=1 ψ(Ωt)l(Ut))

′.

Define

CT (r, s, θ) = E

(

V2T (r)
1√
T

∑T
t=1 ψ(Ωt)l(Ut)

)(

V2T (s)
1√
T

∑T
t=1 ψ(Ωt)l(Ut)

)′

and let (V2∞(r), ψ′
∞)′ be a zero-mean Gaussian process with covariance function C(r, s, θ0) =
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limT→∞CT (r, s, θ0). Dependence on θ on the right-hand side (rhs) comes through Ut, since

they are obtained with PIT. Let “
d→” denote convergence in distribution. The following

proposition establishes the limiting distribution of our test statistics.

Proposition 3. Suppose Assumptions 1-3 hold. Then, under H0,

Γ(V̂2T )
d→ Γ(V̂2∞),

where

V̂2∞(r) = V2∞(r)− h(r)′ψ∞.

We now study the asymptotics under the sequence of local alternatives. Suppose the

conditional distribution function Ht(y|Ωt) is not in the parametric family Ft(y|Ωt, θ), i.e.,

for each θ ∈ Θ there exists y ∈ R and one Ωt0 that occurs with positive probability, and

Ht0(y|Ωt0) 6= Ft0(y|Ωt0, θ). For any 0 < δ/
√
T < 1, define the conditional cdf

GTt(y|Ωt, θ) =

(

1− δ√
T

)

Ft(y|Ωt, θ) +
δ√
T
Ht(y|Ωt).

Now we define the local alternatives.

H1T : The conditional df of Yt is equal to GTt(y|Ωt, θ0) .

To derive the asymptotic distribution of our test statistics under the sequence of local

alternatives, we need an assumption on Ht(y|Ωt) similar to Assumption 1.

Assumption 4. The conditional dfs Ht(y|Ωt) are continuous and strictly increasing in y.

Under Assumptions 1 and 2, we also have that the conditional dfs GTt(y|Ωt, θ) are con-

tinuously differentiable with respect to θ, and continuous and strictly increasing in y. Under

the alternative, we will require that the estimator converges in probability.

Assumption 5. θ̂
p→ θ1 for some θ1 ∈ Θ.

Under the null, together with Assumption 3, this would imply θ1 = θ0. Otherwise this is

not necessary true, and θ1 is often referred a “pseudo-true” value. In the next proposition

we provide the asymptotic distribution of our statistics under local and fixed alternatives.

Proposition 4. Suppose Assumptions 1-5 hold. Then, under H1T ,

Γ(V̂2T (r))
d→ Γ(V̂2∞(r) + δk(r)− δh(r)′µ),
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where the drift is

k(r) = plim
1

n

n
∑

k=2

{[

HZk−1
(F−1

Zk−1
(r2|ΩZ

k−1, θ0)|ΩZ
k−1)− r2

]

r1

+
[

HZk
(F−1

Zk
(r1|ΩZ

k , θ0)|ΩZ
k )− r1

]

I
(

Uk−1 ≤ HZk−1
(F−1

Zk−1
(r2|ΩZ

k−1, θ0)|ΩZ
k−1)

)}

,

and

µ = plim
1

n

n
∑

k=1

ψ(Ωk)l(Uk).

The first part of the drift is nonzero only if marginals do not coincide, while the second

part checks dependence structure.

Assumption 6. For all nonrandom sequences {θT : T ≥ 1} for which θT → θ0, we have

√
T (θ̂ − θT ) =

1√
T

T
∑

t=1

ψ (YTt,ΩTt, θT ) + op(1),

under {θT : T ≥ 1}, where

1

T

T
∑

t=1

ψ (YTt,ΩTt, θT )ψ (YTt,ΩTt, θT )
′ p→ Ψ.

The next proposition states that the bootstrap is first-order asymptotically valid, since

the asymptotic distribution of the test statistics under {θT : T ≥ 1} coincides with that of

under the null, see Corollary 1 in Andrews (1997).

Proposition 5. Suppose Assumptions 1-6 hold. Then, under H1T , for any nonrandom

sequence {θT : T ≥ 1} for which θT → θ0, under {θT : T ≥ 1},

Γ(V̂2T (r))
d→ Γ(V̂2∞(r)).

A.2 Rosenblatt transforms

We now show how to obtain the explicit formulas for the Rosenblatt transform. Consider

bivariate independent across-time series that are not necessary identically distributed, i.e.,
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Yt ∈ R2 with mean µt = (µt1, µt2)
′ and covariance matrix

Σt =
(

Σt11 Σt12
Σt12 Σt22

)

.

Project Yt2 on Yt1, Yt2 = βYt1 + Y ⊥
t1 . The least square estimator gives β = Σt12

Σt11
, Yt1 ⊥ Y ⊥

t1 ,

E
(

Y ⊥
t1

)

= µt2 − Σt12

Σt11
µt1, and V ar

(

Y ⊥
t1

)

= Σt22 − Σ2

t22

Σt11
. Under normality, one-dimensional

unconditional and conditional distributions are also normal, orthogonality coincides with

independence, and the distribution of the projection Y ⊥
t1 gives us the desired conditional

distribution Yt2 on Yt1 and all the past Ωt. Then

U2(t−1)+1 = Φ

(

Yt1 − µt1√
Σt11

)

U2(t−1)+2 = Φ





Y ⊥
t1 − E

(

Y ⊥
t1

)

√

V ar
(

Y ⊥
t1

)



 = Φ





(

Yt2 − Σt12

Σt11
Yt1

)

−
(

µt2 − Σt12

Σt11
µt1

)

√

Σt22 − Σ2

t22

Σt11





are uniform i.i.d. under the null, where Φ (·) is normal cdf. These formulas also simplify the

likelihood calculation and can be used for estimation purposes (see Tsay 2010, Section 10.3.2,

and Bai and Chen 2008, Equation (16)). Another multivariate distribution often used to

model macro/finance data is a multivariate t-distribution. Since conditional and subvector

distributions belong to the same class for the multivariate t-distribution, formulas for the

Rosenblatt transform can be derived in similar way, see Bai and Chen (2008, Equation (20))

for details.

A.3 Verifying assumptions

Explicit formulas for the Rosenblatt transform derived in A.2 show that the conditional dis-

tribution of Zk, FZk
(z|ΩZ

k , θ) is normal with its mean and variance being simple transforma-

tions of the conditional variables and parameters. Then, if the model is smooth with respect

to the argument and parameter, so is the conditional distribution of Zk; in particular, for

the multivariate normal models considered in the paper, supθ,z,k ||∇θFZk
(z|ΩZ

k , θ)|| = Op(1)

and supθ,z,k fZk
(z|ΩZ

k , θ) = Op(1). The first bound is sufficient for Assumptions (2.1) and

(2.2), while the second bound is sufficient for Assumptions 1 and (2.3). Assumption (2.4)

follows from the uniform law of large numbers for stationary and ergodic time series since

the models are continuous in the parameter. Assumptions 3, 5, and 6 are standard and

are satisfied for MLE (see Andrews 2002). Finally, for alternatives considered in Section 4,
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either for dynamic or marginal misspecification, Assumption 4 holds.

Establishing conditions under which there exists a stationary and ergodic solution to the

bivariate LSTAR system considered here is beyond the scope of this paper; however, the

results of Saikkonen (2008) may be useful to achieve this goal.

A.4 Computational details

It takes 15 minutes to calculate bootstrapped critical values for the nonsimulated bivariate

series of length T = 159 with B = 1000 bootstrap repetitions for the LSTAR model con-

sidered in Section 3. Test statistics proposed in the paper are calculated in C. All other

calculations are implemented in R version 3.1.1, R Core Team (2017). In particular, func-

tions mclapply() from the parallel package and optim() from the stats package were used.

The calculations are made on a 3.6 GHz Intel Core i7-4790 under Debian 3.16.
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