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A family of the information criteria using the phi-divergence for categorical data

The risk of the phi-divergence of a statistical model for categorical data is defined
using two independent sets of data. The asymptotic bias of the phi-divergence based on
current data as an estimator of the risk is shown to be equal to the negative penalty term of
the Akaike information criterion (AIC). Though the higher-order asymptotic bias is derived,
the higher-order bias depends on the form of the phi-divergence and the estimation method
of parameters using a possible different form of the phi-divergence. An approximation to
the higher-order bias is obtained based on the simple result of the saturated model. The
information criteria using this approximation yield improved results in simulations for
model selection. Some cases of the power divergences forming a subfamily of the

phi-divergence show advantages over the AIC in simulations.

Keywords: power divergence; risk; model selection; asymptotic bias; Akaike information

criterion.



1. Introduction

Various information criteria have been proposed. Many of them are based on the
likelihood of parameters in a statistical model, whose typical cases are the Akaike
information criterion (AIC, Akaike, 1973), the Takeuchi information criterion (TIC,
Takeuchi, 1973; for the TIC see e.g., Burnham & Anderson, 2010, pp. 65-66) and the Bayes
information criterion (BIC, Schwarz, 1978), The Mallows (1973) C, for model selection in
linear regression takes a least squares (LS) form, which is also seen as the Gauss
discrepancy (Linhart & Zucchini, 1986, p.18) based on a likelihood. It is known that the C,
is asymptotically equivalent to the AIC.

In covariance structure analysis, the normal-theory (NT) or
asymptotically-distribution-free (ADF) generalized LS (GLS) criteria for model selection
have also been proposed (Browne & Cudeck, 1989; Yanagihara, Himeno & Yuan, 2010;
Ogasawara, 2017), which are asymptotically equal to the AIC and TIC under some
conditions. The criteria based on cross validation (cross validation criteria, CVCs; see Allen,
1971; Stone, 1974; Yanagihara, Yuan, Fujisawa & Hayashi, 2013) are similarly used for
model selection, and can be shown to be asymptotically equal to the AIC or TIC (Stone,
1977).

In this paper, models for categorical or multinomial data are dealt with. For these
models, among the criteria shown above, the AIC, TIC, BIC and CVC can be used, where

the likelihood based on multinomial or categorical distributions are used for the criteria
except the CVC. The ¢ -divergence statistic (see e.g., Cressie & Pardo, 2002a; Pardo,

2006) is a generalization of the log-likelihood ratio statistic for evaluating the
goodness-of-fit of a model. While the original definition of the AIC is based on the
likelihood rather than the likelihood ratio, the latter can also be used for model selection in
essentially the same way, since an added term in the log-likelihood ratio common to

candidate models is irrelevant to model selection.

The ¢ -divergences are also used for estimation of parameters as well as criteria for
the badness of a model, whose estimators are the minimizing ¢ -divergence estimators
(M @ Es; Morales, Pardo & Vajda, 1995, p.350; Pardo, 2006, Chapter 5). The
¢ -divergences and M @ Es are used in log-linear models (Cressie & Pardo, 2000, 2002b;
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Cressie, Pardo & Pardo, 2003), logistic regression for grouped data (Pardo, Pardo & Pardo,
2005) and latent class models (Felipe, Miranda & Pardo, 2015).

Since the main term of the AIC can be replaced by the —2 times the log-likelihood
ratio, it is natural to consider the information criterion using the ¢ -divergence, whose
special case is the AIC using the ratio. The so-called penalty term in the AIC i.e., 2 times
the number of independent parameters in a model is given by the negative asymptotic bias
of —2 times the log-likelihood ratio using the maximum likelihood estimator (MLE) as an

estimator of the corresponding risk. Note that the risk is defined by the two-fold expectation

of —2 times the log-likelihood ratio i.e., one for the expectation of data independent of
current data, and the other for the expectation of the current data yielding the MLE. Note

that the CVC is a numerical evaluation of the risk.
It will be shown that the asymptotic bias of order O(1) for the ¢ -divergence as an

estimator of the risk is equal to —2 times the number of independent parameters, which is

the negative penalty term in the AIC. Note that the asymptotic bias is common to different

¢ -divergences using different M ¢ Es. The corresponding higher-order asymptotic bias of a
¢ -divergence based on M ¢ Es using different @ -divergences will be shown, where the
results depend on types of ¢ -divergences and M @ Es.

The ¢ information criterion denoted by @ IC or PIC will be defined similarly to the
AIC. It will be shown that the AIC does not necessarily give best results in model selection

among typical ¢ ICs. The higher-order bias term can be used for correction of the
remaining bias yielding the modified ¢ IC (M@ IC or MPIC). Since the higher order term
is complicated, a simple approximation (M* ¢ IC or M*PIC) will be developed. It will be

shown that the M* @ IC performs better than the ¢ IC in simulations for model selection.

2. The bias of the ¢ -divergence

The ¢ -divergence statistic for K-category multinomial data is defined by
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C¢ = ¢"ZI-) D¢ = ¢"Z]-) D¢(p,7t) with D¢ = ;”k¢(pk /ﬂ-k), (2.1)

where p=(p,,...ps)" isa Kx1 vector of sample proportions for K categories based on

n observations; w=mn(0)=(7,...,7,)" with 7, =7,(0) (k=1..,K) isa Kx1 vector
of model-based probabilities, which are functions of a gx1 vector 0=(4,,..., 6’q)' of

parameters (¢ < K —1,0 € ©, ©® < R?); the convex function #(x) is assumed to have

the following properties:
x>0, ¢(1) =0, ¢'(1) (the first derivative at x = 1),
¢"(1) (the second derivative at x = 1) > 0, (2.2)
04(0/0) =0, 04(v/0) = lim{¢(u)/ u}

(see e.g., Cressie & Pardo, 2002a; Pardo, 2006, Section 1.2), where D¢ was introduced by
Csiszar (1963) and Ali and Silvey (1966).
When 7t=m(0), where © isthe ¢x1 vector of M@Eswith #() being possibly
different from &(-) in D¢ () of (2.1), we have the ¢ -divergence statistic
(A?¢ _ 2n 2n
¢"(1) ¢"(1)

Probably, the most important sub-family of the ¢ -divergence is that of the power

D, =-7=D,(p, ). (2.3)

divergences (Cressie & Read, 1984; Read & Cressie, 1988), where

A+1
xT—-x x-1

A2+ A+1

@(x) = (o< A<+0,4#0,-1) (2.4)

The cases of 2=0,-1 are defined as the limiting values of #(x) when 1—0 and

A — =1, respectively. Equations (2.1) and (2.4) give an alternative expression of the power

divergence
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Typical cases of the power divergences are as follows.

k:

When 4=0, C¢ Is the log-likelihood ratio statistic or the Kullback-Leibler (1951)

divergence

K
G’ = ZnPkZIn(pk /7%/(), (2.6)

k=1

when A=-1, Cq, is the modified log-likelihood ratio statistic (Kullback, 1985)

K
GM* =2nz, ) In(z,/ p,). (2.7)

k=1

when 1=-2, C¢ is the Neyman (1949) modified chi-square statistic

K
M? = ”Z (P _7%1{)2 /pk, (2.8)
k=1

~

when 1=-0.5, C¢ is the Freeman-Tukey (1950) chi-square statistic

=4n> (Jp, 7). (2.9)

and when A=1, C¢ is Pearson’s (1900) chi-square statistic

K
X = n;(pk _7%/()2 Iz, (2.10)

~

For generality, restore the definition of C¢ in (2.4) using a general @() . Then, the

risk of the model with 7 =m(0) is defined by

A 2n & £ A
R, =EE {¢"?1)Zﬂk¢(pk /ﬁk)}, (2.11)

k=1




where p = (pf,...,p;)' Is a vector of sample proportions based on »n observations
independent of p. E() and E(-) are the expectations using the distribution of pand p ,

respectively. Recall that 7 is obtained by a #(-),say @ (), which is possibly different
from another @() ,say &,(), in (2.11). The bias of é¢ for estimation of R, is given
by E(é¢) —R,.

Theorem 1. Assume that the MPE of O, is given by minimizing C, when

¢() = ¢1 () and that the @ -divergence statistic is constructed by C¢ when ¢() = ¢2 ()

using the M @ E with ¢1 () , Where ¢2 () is possibly different from ¢1 () . Suppose that T

can be expanded about T, in the Taylor series up to the third powers of the elements of

P —m, with the residual of order Op (n—z) . Then, under correct model specification, the

bias of C¢ is given by

. 2 &[4, ox, 00

E(C)-R =— -2 %k — 0 nE{(p—m= -

( ¢) @ ¢2 n kl|: 7Z'Ok 800' an0| {(p 0)(pk Ok)}
(A)

S e <2>+87z0k 020,
7o | 2]@0,)% \om,) 08, (om,) 7 (2.12)
(B) (C)

xn’ E{(p- no)<2> (P — 7o)}

<3>
+£ 637z0,<€3 00, 3 82720k2> 00, _® 00, N or,, 0°0, _
6|(00,) \ on,' (00,) | (Om,")" on,' ) 00,' (om,")"

x n’ E{(p- 7‘0)<3> (P = 7o )}»0(%2) }
(©)



or, 00
G Lap Ok 0 ,2E —x _ 2
2 ék (¢ + ¢, )|: 20, @ﬂo'n {(p 0)(pk ﬂ-Ok)}
(D)
+l 827Z-Ok aeO - +a7z-0k 829 ZE{( n )<2>( —r ) }
21(00,)% | on,') o0, (om, )% P=To) P = o) J0r)

(D)

(¢(3’ +24, "){ [%‘:’i%] n"B{(p—m,)™ (1, —70)}

(E)
L[ omy 00, | Fmy [ 00 <2>+87z0k %0,
"2\ 0, on,' ) | (00,)% \om,' ) 00, (0m,) T

X l’l2 E{(p - no )<3> (pk - 7Z-Ok )}—>0(n_2)
(E)

or,, 00,
(4) (3 0k
6 gk (¢ 2¢2 ) ae a n E{(p 7lCO)(pk 7Z-Ok) }—>O(I’l 2)
<2>
1 (4) (3) " 872'0k 890 2 <2> 2
+7§,k(¢z +4¢," +2¢,") ma n"B{(p—m)™ (P = 7001) }ﬁo(nfz)

<3>
1 w| O, 00 <3
—7(¢2‘4)+6¢(3)+6¢2 )[—0"—0] n"E{(p — 7)™ (2 = 7)Y 02y } }
0k

(B) (A)

+O(n™?)
=b+n"'b, +O0(n?)
=-2g+n"b, +O(n?),

where A™ = A®---®@ A (k times of A) is the k-fold Kronecker product of A (a

o'r 0’7, (0) ,
vector or matrix); (00 )0<kj> = (89§< > |e:eo (/=1 2, 3);
0

0’0, 0’0 _ )
((37170 |)<j> = (Op |)<j> |6:90 (j=1273) are the j-th order partial derivatives of 0, a

P=mg
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possibly implicit function with respect top at P =Ty and 0=0,; E(‘)_)O(n-z) is the
expectation up to order 0(1”1_2) K ¢2 "= ¢2 "(1), z(j) = Z(j) (1) (] = 3, 4) ;ande.g.,

(L)' (1) is for ease of finding correspondence.

The proof with the expression of 0’0, / (0m,")~” (j =1, 2, 3) will be shown in the
appendix. In Theorem 1. it is found that the asymptotic bias of order O(1) i.e., —2q does
notdependon @ (-) or @,(-). The partial derivatives 0’7y, /(00,)~”

=07, (0)/(00)*" lo—o, (J =12, 3) are determined only by the model = =m(). Itis

known that
e, . ,om’' .
=1 2_diag " (n
omy 0 e, g (m) (2.13)
om,' .. _ on
(Morales et al., 1995, Theorem 3), where Io =—0diag ™ (m,) % is the Fisher
00, 00,

information matrix per observation and diag ™ (m,) ={diag(m,)} . Equation (2.13) does

not depend on ¢1(-) used for estimation of 0,. However, Lemma 2 in the appendix shows

that 0’0,/ (0m,")”"(j=2,3) generally depend on ¢;(). Since thereare ¢ and

“ in b, wefindthat b, dependon &,() aswellas ¢(°).

In the case of the power divergence, using (2.4), ¢", ¢ and ¢ in b, become
¢"=1 ¢¥=21-1 and ¥ =(A-D(1-2), (2.14)
respectively. From (2.14), it is found that for Pearson’s X°(A=1), ¢(j=2,3,...)
vanish.

The ¢ information criterion (¢ IC or PIC) and the modified ¢I1C (M @ IC or MPIC)

are defined as

~

#IC=C,+2q and M@IC=C, +2q—n"'h,, (2.15)

~ A~

respectively, where b, is the sample counterpart of b,.In b,, 0, and m, are replaced
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by © and p, respectively. Since E(ZSA) =b, +O(n*) under correct model specification,

Theorem 1 with the known asymptotic distribution of é¢ (Morales et al., 1995, ) gives
Corollary 1. Under the same conditions as in Theorem 1,
E($IC)-R,=0(n™") and E(M@IC)-R,=0(n""), (2.16)
when q <K —1. The statistics PIC—2q and M@PIC—-2q are asymptotically

chi-square distributed with K —q =1 degrees of freedom when q<K -2,

~

Corollary 1 shows that the bias of C, is removed up to orders O(1) and O(n™)

inthe @1C and M@ IC, respectively and that the ¢ IC and M ¢ IC are asymptotically
equivalent to the AIC using the log-likelihood ratio in that they have a common asymptotic

distribution. The quantity 2¢ in the added term in the ¢ IC and M@ IC is seen as a

upward correction of C, which tends to be reduced as an estimator of R, . The term is

also interpreted as a penalty for a model with ¢ independent parameters as is done in the
AlC.

3. An approximation to the higher-order asymptotic bias using the saturated model

~

While the added computation of the ¢ IC over C,; is trivial, that of the M @ IC tends

to be excessive. However, in the case of the saturated model, we obtain a simplified result.

Theorem 2. In the case of the saturated mode with 0= (pl, ---,pK_l)' =P -1

without loss of generality and n=p, b, becomes
l (4) K 1
b, = —( L2+ 29, [
2 k=1 7o

+ @Y (K—%j + ¢V (4K - 2) + ¢, "(3K—1)}.

(3.1)

The proof will be given in the appendix. In the case of the saturated model, 7t =p

A~

with C, =0 does not depends on ¢ (") . Equation (3.1) dependson ¢,(-) as well as



Z;l/ 7Ty, . In the case of the power divergence, recalling that ¢, " =1, ¢2(3) =A-1 and

Y =(1-1)(1-2), b, becomes

b, = —%{(1 Y-+ A+ YL
k=1 TCoy
1 (3.2)

+ (=12 -2)(2K -1 +(A-D(4K ~2) +3K -1

1, K1
:_EM +A+2)| Y —-2K+1|-K+1

k=1 7oy

< —(K—l){%(/l2 +1+2)(K -1) +1}
s-%(K—l)(?KJrl).

. i K 2 . .
The second last inequality stems from Z k:ll/ T 2 K. The last upper bound is attained

when 7, =1/K (k=1..,K) and 1=-05.

Note that the saturated model can be one of competing models especially when K is

relatively small. In the case of K = 2, the saturated model with ¢ =K —1=1 is the only
parametric model for the binomial data. An approximationto b, is defined as

by ={q/ (K -1)}b,, (3.3)
where b, is given by (3.1) for the saturated model with K categories, which will be
numerically illustrated in the next section. This approximation is based on heuristic findings

that in numerical results, b, is, in a crude sense, proportional to g.

It is known that the AIC tends to choose relatively complicated models in e.g.,
regression (Hurvich & Tsai, 1989; Fujikoshi & Satoh, 1997) and factor analysis (Akaike,
1987; Ichikawa, 1989; Ogasawara, 2016a). This corresponds to the fact that the correction
term 2¢q in the AIC is not sufficiently large, which can be corrected by the higher-order
correction term for the bias. For instance, Sugiura (1978) derived the exact bias of the AIC

in linear regression under normality, which gives improved results of selecting correct

10



models by the modified AIC. It is to be noted that Sugiura’s (1978) result is useful in
models other than regression (Burnham & Anderson, 2010, p.66). These findings with the

asymptotic equivalence of the @ IC to the AIC give some justification for the

approximation of (3.3).

Define
M gIC =C, +2g-n""h,
=C, +2q-n"{q! (K -1)}b, |
=gIC—n"{q/ (K -1)}b,,

(3.4)

~

where b, is the sample counterpart of b, in (3.1) for the saturated model. The improved

behavior of the M @IC overthe @IC will be numerically illustrated in the next section.

4. Numerical illustrations with simulations

In this section, we give numerical illustrations using simulations for model selection

and biases of C¢. The power divergences with 4 =0 (G?, the log-likelihood ratio

statistic), 4 =—1 (GM?, the modified log-likelihood ratio statistic), 4 =—2 (the
Neyman modified statistic), 4 =—0.5 (the Freeman-Tukey statistic), 4 =0.5, and

A =213 (the Cressie-Read statistic), 4 =1 (X Pearson’s statistic)and 4 =2 are
used. The statistic with 4 =2 /3 was proposed by Cressie and Read (1984) showing a
good behavior as a goodness-of-fit statistic, which seems to give advantages in other

respects (see e.g., Cressie et al., 2003; Pardo et al., 2005). The above statistics are employed

as typical ones used in practice among the ¢ -divergence statistics. The #IC and

M @IC are used, rather than M@IC | using some or all of the above statistics.

Three sets of models are used. The first one with 4 categories was used by Fisher (1970,

p.305) for the genetics of plants:

(24—6’ 1-60 1-60 0

11 4 ,Zj (0<o<1) (4.1)
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where 6, =0.4 is employed in this section. Note that the MLE is algebraically given by

A 1
O = E[pl —2p,—2p;—p, +{(p,—2p, - 2p, - 194)2 +8p4}1/2] : (4.2)

For competing models,
n=(6,6, 6,1-6-26,) (0<6,<1, 0<6,<1, 0<1-6,-26,<1) (43)

and the saturated model are used. The model of (4.3) can also be seen as a saturated model
when the second and third categories are combined. Note that all of the three candidate
models are not incorrect ones though the first model is best in that it is most parsimonious
among the candidates. Consequently, the best model is called a correct model in this paper.
The second and third models are similar to overspecified models with extra covariates in
regression analysis.

The second set of models with three categories was used by Bishop, Fienberg and

Holland (1975, Example 14.7.1) for truncated Poisson variates:
n={e’, 0, 1-(1+0)e’} (0<O<+x), (4.4)

where 6, =1 is used in this section. Note that the model more redundant than (4.4) is the

saturated one. We use these two models.

The third set of models with four categories is an extended version of (4.4):
n={e’, B, 6°c’12,1-(1+6+050°)e’} (0< O <+wx), (4.5)
A redundant model with
n={e", O, 6,1-(1+6)e " -6,}

(0< @, <+, 0<6, <1, 0<1-(1+6)e % -0,<1) (4.6)

is employed as a candidate model with the saturated one, where &, =1.5 and

0, = 02, exp(—6,,) 1 2 are used for population values of &, and 6, respectively. That
is, in this set of models, we have three models.
For the M@E | we use three estimation methods. The first is to match #,(-) to &,(:).

Thatis, e.g., when A =0.5 isusedtohavethe M@E K A1 =0.5 isalso used to forma

power divergence statistic. The second method is that the MLEs are always used

12



irrespective of the types of ¢&,(-) to have power divergences. This is employed due to the
popularity of the MLE. The third method is similar to the second though the M@E s using

A =1 (Pearson’s statistic) are always used in place of the MLEs. The third method is
employed considering the good behavior in simulations for model selection using the first
method.

In the first half of this section, simulations of model selection are performed while in

the second half, simulations for biases of C¢ are carried out. In the three sets of models,

the three models in each of the second and third sets with four categories are labelled as
Models 1 to 3, where the number indicates the number of independent parameters with
Model 3 being the saturated model. In the second set of models with three categories, the
two models are similarly labelled by Models 1 and 2, where Model 2 is the saturated one.

Table 1 shows the proportions of the models selected by the @IC in 10,000
replications with three samples sizes » = 50, 200 and 800 when the matching method of
estimation of the parameters and evaluation by power divergences is used. The results using
the M @IC will be shown later. When sampling zero(es) or empty cell(s) occurred , the

observation was discarded due to the associated difficulty in numerical computation. The
values of Z (zeroes) show the numbers of these observations until 10,000 regular
observations were obtained. When at least one non-convergent case for estimation of
parameters occurred, the observation was deleted. The values of NC (no-convergence)
indicate the numbers of these observations.

In Table 1, we find that the proportions of the correct (simplest) models selected by the

PIC are approximately 80 to 85%. While the differences of these proportions over

different A ’s are relatively small, the proportions using A = 0.5 to 2 are larger than those
using A=-2 to —0.5. Itis of interest to find that the proportion of the correct models

when n = 800 are not necessarily the largest among those when » = 50, 200 and 800. This
corresponds to the known property that the proportions of correct models selected by the

AIC are not consistent.

Table 2 gives similar results for correct models when the MLEs (A = 0) and estimators

13



using A =1 (Pearson’s statistic) are always used. The results seem comparable to those in

Table 1. Table 3 shows results when the M @IC are used. Note thatina M @IC
K K
Zk:lll o in b,y in(3.2) is replaced by its sample counterpart i.e., Zkzll/Pk . The

values in the table show added percentages of the correct models selected by the M @IC s

over those by the @1C s. For instance, the first entry 1.96 in the first column for these

percentages corresponds to the proportion 0.8372 (not shown in the tables) using the

M @IC minus the proportion 0.8176 in Table 1. That is, 0.8372 — 0.8176 = 0.0196. All of

the values in the table are non-negative with only one zero (MLE, 3-category truncated

Poisson, n =800, A =—1). The effectof b, inthe M @IC decreases as n increases

since the associated term added to O, (1) is —n"'b, .

From Tables 1 to 3, the ¢2(-) swith 4 =0.51t0 2 seem to give relatively good results
in model selection as long as the models and data are similar to those in the tables.

Considering these results, in the second half of this section, @,(-) swith 4=0(G%), A=

2/3 (the Cressie-Read statistic), 4 =1 (X* Pearson’s statistic) and A =2 are used to show
simulated biases. Tables 4 to 8 give the results (Tables 5 to 8 are shown in the supplement
to this paper (Ogasawara, 2018)). The regular observations used in Tables 4 to 8 are the

same as those in Tables 1 to 3.

In Tables 4 to 8, S.B. (simulated bias) is the mean of the simulated é¢s minus the
simulated mean of R¢ s over 10,000 replications; A.B. (asymptotic bias) =—2¢ ; H.A.B
(higher-order asymptotic bias) = —2¢ + n_le ©S.b, (simulated b,) = n x(the simulated
bias +2 ¢); and b, is given by Theorem 1. In Tables 4 to 8, the bz s are shown in
parentheses, which are given by (3.3). Note that in the case of the saturated model b: =b, .

For instance, in Model 3 of Table 4, b, =b, are —21, —31, -39 and —75 when A

=0, 2/3, 1 and 2, respectively, which are actually computed by Theorem 1 but are found to

14



be equal to those by Theorem 2. For example, when the MLE is used for ¢,(-) , (3.1) gives

*

bl =b, =_Z;1/7z0k +K=-1/0.6-2/0.15-1/0.1+4 =-21 ysing

=2, ¢ =—1 and #,"=1.In Table 4, the S.B.s are more similar to the H.A.B.s

than the fixed A.B. i.e., —2q over As.The S.b, sare in a crude sense similar to the b, s.

It is also found that the b, s are similar to the b; s. In Tables 5 to 8, similar tendencies are

found.

5. Discussion

It is natural to ask an appropriate value of A to be used inthe #lCsand M '@ICs
when the power divergence is used. In the numerical illustrations, it was found that

relatively large Asfor ¢,(-) are appropriate. The familiar MLE giving the AIC does not
show the best results. Considering good behaviors in other respects, the #IC and

|\/|*¢|C with A = 2/3 may be reasonable. The criteria with A = 1 may also be reasonable
considering good results in the numerical illustrations though they are limited ones. The

#,(-) s yielding the M@E s do not necessarily have to match the ¢,(-) sinthe #IC and

M @IC . Tables 2 using the MLEs, when relatively large Asfor ¢,(-) are employed,

show reasonable results. The MLEs of parameters are of practical use in that “since software
for computing MLEs is readily available” (Cressie & Read, 2002a, p.1554). Recall also that
the MLE of the single parameter in the model for the genetics of plants (Fisher, 1970) was
algebraically available with no NCs (no-convergences).

While the main results of Theorems 1 and 2 in this paper are for the general
¢ -divergence, the numerical results are given by the power divergences since the latter
subfamily includes important statistics used in practice. However, there are many

¢ -divergences other than the power divergences (see e.g., Pardo, 2006, p.6). The behavior

ofthe @IC and M @IC based on these ¢ -divergences is to be investigated as a

remaining issue.

15



Al. Proof of Theorem 1

We give two lemmas.
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Proof. Using ¢, ' =0, the direct derivation gives the results. Q.E.D.

Lemma 2. The partial derivatives of 0 using @) with respecttop at p =",

with the assumption of their existence are given as follows.
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where D¢ in place of C¢ is used since minimizing D¢ is equivalent to that of C¢ 1
2
is the Fisher information matrix per observation, Z i) () is the sum of two terms

3
exchanging i and j with Z k) () defined similarly, and 5,~j is the Kronecker delta with

0., =0.0

ijk i gk -
Proof. The formulas of the partial derivatives in implicit functions (see e.g., Ogasawara,
2009, Subsection A.1) are used. Note, however, that while in Ogasawara (2009), the

log-likelihood is used, which is linear in terms of p (temporally n=n(p) isnotseenasa

function of p), D, in Lemma 2 is generally non-linear in terms of p. Q.E.D.

For the proof of Theorem 1, using the assumption in the theorem, we have
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Noting the common term in the expansions of E{ﬁk% (Pk /7%;( )} and

EE'{7.4,(p, | 7,)}, we obtain
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where E{} 1.5z isthe expectation up to order O(n ™) with the main term being
of order O(n_l) for clarity..
Using Lemma 1 and (A.3) in (A.4) gives Theorem 1, where the expressions of
00, /om," and 0’0,/ (0m,")~”(j=2,3) are given by (2.13) and Lemma 2,

respectively. The result of b =—-2¢g is given as follows. From (2.13), it follows that

¢..[Z LB )(p, - no,f)}}

- —22 L 87r0k I_1 87:)0 diag™ (n,){diag(n,) — m,m, '},

o1 Mo O 00,

) ' ) (A.5)
} _Ztr{l(’l a: ! ag O'}
0 0

om,' _
where To = aez diag 1(n0) - with diag™(m,) ={diag(m,)} *; T, is the

0

K x K identity matrix; and (-)., is the k-th column of a matrix.

For b, in(2.12), we require the following
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K3(a,b,c) = nz{(pa _”oa)(pb _770b)(pc _”oc)}

abcﬂ-Oa Z bﬂ-Oaﬂ-OC + 27[0[17[0177[0 (A6)
(a,b,c)
(Stuart & Ort, 1994, Equation (7.18)) and
my(a,b,c,d) =n*{(p, — 70, )(Py = 70y )P, = 76, )(Py = 70y )}—>O(n_2)
= (0, 70y = T0a 0y )0, o, = o 004)
+ (0,700 = 70070 N(Opa oy = 70,704 ) (A7)

+ (0, 70y = oa oy NOCTy, — 7,70,
(a,b,c,d =1,...,K).

A.2 Proof of Theorem 2

In the special case of the saturated model, we employ the reparametrization 0 =7
and 0=p with g = K dependent parameters rather than 0= Px-1y with K -1
independent parameters. The restriction of 14, 'T=1is automatically satisfied, where
14 isthe K x1 vectorof 1’s,since T=p with 1 'p=1

Note that under the parametrization with 0= Px-1y for the saturated model, the

om, 00,
K x K matrix Wﬁ becomes singular, whose rank is K —1 and

~

0’0, 1 (om,")*”(j=2,3) do not vanish. For the results under 8 =P_y,, see

Ogasawara (2018).
Let

Ky (k) = nz{(Pk - ”Ok)s} = 7o (L= 7, )= 27,) and (A.8)
my (k) =n*{(p, — 7y )4}_>0(n—2) =375, (1-74,)° (k=1,...,K) |

Then, bA in Theorem 1 becomes
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which gives (3.1).
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Table 1. 10,000 times the proportions of models selected by the ¢IC s (the number of replications =
10,000)

n =50 n =200 n =800
The ¢, ina ¢IC matchesthe ¢ for estimation of parameters.

The genetics of plants (Fisher, 1970; 4 categories)

(Z=135, NC =1,383) (Z=0,NC = 144) (Z=0,NC=0)
Model: 1 2 3 1 2 3 1 2 3
2=0(G? 8176 1061 763 8022 1180 798 7853 1342 805
A=-1(GM?) 8139 1066 795 8009 1178 813 7853 1344 803
A =-2 (Neyman) 8078 1147 775 7968 1212 820 7837 1358 805
A=-0.5(7?) 8166 1062 772 8022 1168 810 7860 1340 800
A=05 8194 1069 737 8014 1189 797 7860 1343 797
A1=2/3 (C-R) 8203 1112 685 8023 1193 784 7859 1348 793
A=1X% 8205 1122 673 8046 1189 765 7863 1344 793
A=2 8241 1150 609 8069 1183 748 7872 1335 793
3-category truncated Poisson variate (Bishop et al., 1975, p.503)
(Z=0,NC=2) (Zz=0,NC=0) (Zz=0,NC=0)
Model: 1 2 1 2 1 2

2=0(G? 8399 1601 8537 1463 8394 1606
A=-1(GM) 8389 1611 8484 1516 8374 1626

A =-2 (Neyman) 8389 1611 8452 1548 8367 1633
A=-0.5(7?) 8398 1602 8501 1499 8379 1621
A=05 8402 1598 8572 1428 8411 1589
A1=2/3 (C-R) 8402 1598 8573 1427 8417 1583
A=1X% 8356 1644 8573 1427 8434 1566

A=2 8306 1694 8549 1451 8452 1548

Note. n = the number of observations, Z = the number of deleted cases with zero frequenc(ies), NC =
the number of deleted cases due to non-convergence, G = the log-likelihood ratio statistic, GM? =
the modified log-likelihood ratio statistic, Neyman = Neyman’s statistic, 7° = the Freeman-Tukey
statistic, C-R = the Cressie-Read statistic, .X* = Pearson’s statistic. The number for model
identification is the number of independent parameters. The boldfaced value indicates the largest
proportion in the correct (simplest) model among 8 power divergences.



Table 1. (continued)

n =50 n =200 n =800
The ¢, ina gICmatchesthe ¢ for estimation of parameters.
4-category truncated Poisson variate
(Z=0, NC=334) (Zz=0,NC=0) (Zz=0,NC=0)

Model: 1 2 3 1 2 3 1 2 3
2=0(G? 7900 1287 813 7877 1318 805 7851 1367 782
A=-1(GM?) 7786 1310 904 7843 1338 819 7836 1383 781
A =-2 (Neyman) 7696 1365 939 7817 1353 830 7840 1377 783
A=-0.5(T%) 7813 1324 863 7859 1329 812 7846 1373 781
A=05 7912 1293 795 7880 1319 801 7854 1364 782
A=2/3 (C-R) 7934 1276 790 7884 1316 800 7855 1363 782
A=1X% 7955 1265 780 7891 1311 798 7858 1361 781
A=2 7962 1278 760 7905 1309 786 7853 1371 776




Table 2. 10,000 times the proportions of the correct (simplest) models selected by the #ICs (the
number of replications = 10,000)

The genetics of plants 3-category 4-category
(Fisher, 1970; 4 categories)  truncated Poisson truncated Poisson
(Bishop et al., 1975)
n: 50 200 800 50 200 800 50 200 800
The MLEs (A = 0) are used for all power divergences.

A1=0(GH 7753 7806 7867 8481 8488 8416 7875 7909 7886
A=-1(GM?) 7491 7769 7851 8475 8449 8399 7772 7882 7884
A =-2 (Neyman) 7333 7698 7846 8475 8413 8383 7675 7834 7875
A=-0.5(7?) 7589 7787 7864 8475 8451 8406 7810 7888 7882
A=05 7798 7808 7874 8487 8548 8429 7899 7914 7894
A1=2/3 (C-R) 7794 7814 7872 8487 8548 8437 7907 7914 7895
A=1 (X% 7833 7829 7867 8454 8552 8448 7932 7916 7899
A=2 7874 7816 7860 8409 8531 8464 7948 7919 7892
The parameter estimators by A =1 (X?) are used for all power divergences.

A1=0(GH 8077 7912 7861 8423 8450 8386 7863 7868 7803
A=-1(GM?) 7948 7865 7858 8415 8406 8369 7729 7840 7804
A =-2 (Neyman) 7751 7797 7852 8411 8370 8355 7589 7813 7784
A=-0.5(7?) 8037 7904 7854 8415 8412 8374 7785 7850 7804
A=05 8159 7932 7865 8436 8493 8398 7913 7881 7810
A1=2/3 (C-R) 8168 7937 7869 8436 8495 8402 7932 7885 7808
A=1 (X% 8180 7948 7863 8390 8495 8416 7947 7891 7811
A=2 8248 7984 7858 8341 8473 8433 7975 7897 7813

Note. n = the number of observations, G = the log-likelihood ratio statistic, GM? = the modified
log-likelihood ratio statistic, Neyman = Neyman’s statistic, 72 = the Freeman-Tukey statistic, C-R =
the Cressie-Read statistic, X* = Pearson’s statistic. The boldfaced value indicates the largest
proportion in the correct (simplest) model among 8 power divergences.



Table 3. Added percentages of the correct (simplest) models selected by the M gIC s over those by
the ¢ICs (the number of replications = 10,000)

The genetics of plants 3-category 4-category
(Fisher, 1970; 4 categories)  truncated Poisson truncated Poisson
(Bishop et al., 1975)

n: 50 200 800 50 200 800 50 200 800
The ¢, ina ¢ICmatchesthe ¢ for estimation of parameters.

A1=0(GH 1.96 57 .21 35 59 .10 1.23 27 .10
A=-1(GM? 1.90 A7 16 42 12 02 1.63 41 .09
A= -2 (Neyman) 418 99 .26 65 23 .02 226 50 .12
A=-0.5(7?) 181 .45 .08 33 3 .08 1.70 39 .08
1=05 296 105 .10 33 23 07 205 44 10
A=2/3 (C-R) 297 110 .14 33 22 19 209 A7 .10
A=1X% 409 108 .23 91 22 23 220 56 .15
A=2 611 179 .44 199 26 03 466 110 .26
The MLEs (4 = 0) are used for all power divergences.

2=0(G?) 230 .38 .08 41 77 08  1.36 28 .14
A=-1(GM?) 302 43 .10 41 13 .00 155 21 .08
A= -2 (Neyman) 423 123 24 61 27 06 196 63 .18
A=-05 (79 3.07 57 .06 41 42 06 1.54 33 .08
1=05 330 81 .11 3 20 .08 199 A7 .06
A=2/3 (C-R) 372 79 20 36 20 11 222 58 .10
A=1 (X% 5.30 88 .34 80 .16 .18 239 60 .12
A=2 856 2.16 .49 170, 24 20 411 99 .35

Note. n = the number of observations, G = the log-likelihood ratio statistic, GM? = the modified
log-likelihood ratio statistic, Neyman = Neyman’s statistic, 72 = the Freeman-Tukey statistic, C-R =
the Cressie-Read statistic, X* = Pearson’s statistic.



Table 3. (continued)

The genetics of plants 3-category 4-category
(Fisher, 1970; 4 categories)  truncated Poisson truncated Poisson
(Bishop et al., 1975)
n: 50 200 800 50 200 800 50 200 800

The parameter estimators by A =1 (X?) are used for all power divergences.

A1=0(GH 284 56 .09 53 58 .07 1.27 35 .12
A=-1(GM? 2.36 64 .16 48 08 .01 1.48 27 .10
A= -2 (Neyman) 415 101 .20 73 33 10 230 50 .20
A=-05 (79 2.17 38 11 48 43 06 1.63 40 .10
1=05 319 .74 19 41 17 04 192 31 .05
A=2/3 (C-R) 333 .80 .16 43 15 14 2.00 38 .10
A=1 (X% 443 1.00 .30 111 .15 .18 2.28 45 .09

A=2 6.32  1.69 .54 2.25 26 .01 453 101 .19




Table 4. Simulated and asymptotic biases of the power divergences (the number of replications =

10,000)
The ¢, ina gICmatchesthe ¢ for estimation of parameters.

The genetics of plants (Fisher, 1970; 4 categories)

Model 1 SB. AB. HAB. S.b, b, SB. AB. HAB. S.b, b,
n=50 n =200

2=0(G? 210 -2 -213 -48 66  -2.05 -2 -203 -10.1 -6.6

1=2/3(C-R) 214 -2 -214 -68 -71  -2.06 -2 -204 -127 -71

A=1X% 222 -2 -219 -108 -93  -2.09 -2 -205 -17.2 -9.3

A=2 272 -2 -248 -362 -240 221 -2 -212 -429 -240
n =800 (b,)

2=0(G? 201 -2 -201 -54 -66 (7.0

A=2/3 (C-R) 201 -2 -201 -108 -7.1 (-10.3)

A=1X 202 -2 -201 -167 -93 (-13.0)

A=2 206 -2 -2.03 -471 -240 (-25.0)

Model 2 n="50 n =200

2=0(G? 379 -4 -424 105 -120 -398 -4 -406 4.8 -12.0

A=2/3 (C-R) 382 -4 -434 88 -172  -400 -4 -4.09 -3 -17.2

A=1 392 -4 -446 42 -230 404 -4 -412 -74 -230

A=2 450 -4 -506 -251 -53.0 @ -424 -4 -427 -47.7 -53.0
n =800 (b,)

1=0(G?) -399 -4 -402 45 -12.0 (-14.0)

A=2/3 (C-R) 401 -4 -402 -69 -17.2 (-20.7)

A1=1 (X -4.02 -4 -403 -17.7 -23.0 (-26.0)

A=2 -4.09 -4 -407 -70.2 -53.0 (-50.0)

Note. n = the number of observations, S.B. = simulated bias, A.B. = asymptotic bias =—-2¢, H.A.B. =
b+n"b, =-2g+n"'b,, S.b,=simulated b, =n(S.B.+2q), G* = the log-likelihood ratio statistic,

C-R = the Cressie-Read statistic, X> = Pearson’s statistic. The number for model identification is the
number of independent parameters.



Table 4. (continued)

The ¢, ina gICmatchesthe ¢ for estimation of parameters.

The genetics of plants (Fisher, 1970; 4 categories)

Model 3

A=0(G?
A=2/3 (C-R)
A=1X%
A=2

A1=0(GH
A=2/3(C-R)
A1=1 (%)
A=2

S.B. AB. HAB. S.p,
n=50

-6.00
-6.35
-6.70
-9.01

-5.99
-6.02
-6.04
-6.13

-6.42
-6.62
-6.78
-7.50

n =800
-6.03
-6.04
-6.05
-6.09

A1
-17.5
-35.2

-150.5

6.1
-13.6
-29.6

-103.7

bA

-21.0
-31.0
-39.0
-75.0

-21.0
-31.0
-39.0
-75.0

SB. AB. HAB. S.b, b,

6.03 -6
611 -6
6.18 -6
653 -6
(by=b,)
(-21.0)
(-31.0)
(-39.0)

(-75.0)

n =200

-6.11
-6.16
-6.20
-6.38

-6.1
-21.1
-35.1

-105.7

-21.0
-31.0
-39.0
-75.0
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