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Abstract

Recent advances on overfitting Bayesian mixture models provide a solid and
straightforward approach for inferring the underlying number of clusters and
model parameters in heterogeneous datasets. The applicability of such a frame-
work in clustering correlated high dimensional data is demonstrated. For this
purpose an overfitting mixture of factor analyzers is introduced, assuming that
the number of factors is fixed. A Markov chain Monte Carlo (MCMC) sam-
pler combined with a prior parallel tempering scheme is used to estimate the
posterior distribution of model parameters. The optimal number of factors is
estimated using information criteria. Identifiability issues related to the label
switching problem are dealt by post-processing the simulated MCMC sample
by relabelling algorithms. The method is benchmarked against state-of-the-art
software for maximum likelihood estimation of mixtures of factor analyzers us-
ing an extensive simulation study. Finally, the applicability of the method is
illustrated in publicly available data.
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1. Introduction

Factor Analysis (FA) is a popular statistical model that aims to explain cor-
relations in a high-dimensional space by dimension reduction. This is typically
achieved by expressing the observed multivariate data as a linear combination
of a smaller set of hypothetical and uncorrelated variables known as factors.
The factors are not observed, so they are treated as missing data. The reader is
referred to [1, 2] for an overview of factor analysis models, estimation techniques
and applications.

However, when the observed data is not homogeneous, the typical FA model
will not adequately fit the data. In such a case, a Mixture of Factor Analyzers
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(MFA) can be used in order to take into account the underlying heterogeneity.
Thus, MFA models jointly treat two inferential tasks: model-based density esti-
mation for high dimensional data as well as dimensionality reduction. Estima-
tion of MFA models is straightforward by using the Expectation-Maximization
(EM) algorithm [3, 4, 5, 6, 7]. The family of parsimonious Gaussian mixture
models (PGMM) is introduced in [8, 9, 10], which is based on Gaussian mixture
models with parsimonious factor analysis like covariance structures. Under a
Bayesian setup, [11] estimate the number of mixture components and factors
by simulating a continuous-time stochastic birth-death point process using a
Birth-Death MCMC algorithm [12]. Their algorithm is shown to perform well
in small to moderately scaled multivariate data.

Fully Bayesian approaches to estimate the number of components in a mix-
ture model include the Reversible jump MCMC (RJMCMC) [13, 14, 15, 16],
Birth-death MCMC (BDMCMC) [12] and allocation sampling [17] algorithms.
In recent years there is a growing progress on the usage of overfitted mixture
models in Bayesian analysis [18, 19]. An overfitting mixture model consists of a
number of components which is much larger than its true (and unknown) value.
Under a frequentist approach, overfitting mixture models is not a recommended
practice. In this case, the true parameter lies on the boundary of the parameter
space and identifiability of the model is violated due to the fact that some of the
component weights can be equal to zero or some components may have equal
parameters. Consequently, standard asymptotic Maximum Likelihood theory
does not apply in this case [20]. Choosing informative prior distributions that
bound the posterior away from unidentifiability sets can increase the stability
of the MCMC sampler, however these informative priors tend to force too many
distinct components and the possibility of reducing the overfitting mixture to
the true model is lost (see Section 4.2.2 in [21]). Under suitable prior assump-
tions introduced by [18], it has been shown that asymptotically the redundant
components will have zero posterior weight and force the posterior distribution
to put all its mass in the sparsest way to approximate the true density. There-
fore, the inference on the number of mixture components can be based on the
posterior distribution of the “alive” components of the overfitted model, that
is, the components which contain at least one allocated observation.

The simplicity of this approach is in stark contrast with the fully Bayesian
approach of treating the number of clusters as a random variable. For example,
in the RJMCMC algorithm the researcher has to design sophisticated move
types that bridge models with different number of clusters. On the other hand,
the allocation sampler is only applicable to cases where the model parameters
can be analytically integrated out. Even in such cases though, the design of
proper Metropolis-Hastings moves on the space of latent allocation variables of
the mixture model is required to obtain a reasonable mixing of the simulated
MCMC chain (see [17, 22]).

The contribution of this study is to utilise recent advances on overfitting
mixture models [19] to the context of Bayesian MFA [11]. We use a Gibbs
sampler [23, 24] which is embedded in a prior parallel tempering scheme in
order to improve the mixing of the algorithm. In addition, we explore the usage
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of information criteria for estimating the number of factors. After estimating
the number of clusters and factors, we perform inference on the chosen model
by dealing with identifiability issues related to the label switching problem [25].
Our results indicate that overfitting Bayesian MFA models provide a simple
and efficient approach to estimate the number of clusters in correlated high-
dimensional data.

The rest of the paper is organized as follows. Section 2.1 reviews the basics of
FA models. Finite mixtures of FA models are presented in Section 2.2 and a brief
review of previous frequentist approaches is given in Section 2.3. The Bayesian
formulation is presented in Section 2.4. The overfitting MFA model is introduced
in Section 2.5. Section 2.6 deals with estimating the number of factors using
information criteria. Section 2.7 presents the prior parallel tempering scheme
which is incorporated into the MCMC sampler. Identifiability issues related to
the label switching phenomenon are discussed in Section 2.8 and further details
of the overall implementation are given in Section 2.9. Our method is illustrated
and compared against the EM algorithm in Section 3 using a simulation study
(Section 3.1) as well as three publicly available datasets (Sections 3.2, 3.3 and
3.4). The paper concludes in Section 4. Further technical details and simulation
results are provided in the Appendix.

2. Methodology

At first we introduce some conventional guidelines that will be followed in our
notation throughout this paper, unless explicitly stated otherwise. We will use
bold face for vectors and matrices. The notation αk will correspond to the k-th
member of a vector a. In addition, Ak will denote the k-th member of a vector
A whose elements are matrices. The (i, j) element of a matrix Σ will be denoted
by the corresponding lower case letter, that is, σij . The transpose matrix of Σ

will be denoted as ΣT . We will not differentiate the notation between random
variables and their specific realizations. We use f(x|y) to denote the probability
mass or density function of x given y. For a discrete random variable z, the
notation P(z = k) will be also used to denote the probability of the event
{z = k}. The p× p identity matrix is denoted as Ip, p ∈ N.

2.1. Factor Analysis Model

Let x = (x1, . . . ,xn) denote a random sample of p dimensional observa-
tions with xi ∈ Rp; i = 1, . . . , n. We assume that xi is expressed as a linear
combination of a latent vector (factors) xi ∈ Rq

xi = µ+ Λyi + εi. (1)

The unobserved random vector yi lies on a lower dimensional space, that is,
q < p and it consists of uncorrelated features yi1, . . . , yiq. In particular, we
assume that

yi ∼ Nq(0, Iq), (2)
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independent for i = 1, . . . , n and 0 denotes a vector of zeros. The p× q dimen-
sional matrix Λ = (λrj) contains the factor loadings, while the p-dimensional
vector µ = (µ1, . . . , µp) contains the marginal mean of xi. For the error term
εi assume that

εi ∼ Np(0,Σ) (3)

independent for i = 1, . . . , n, where Σ = diag(σ2
1 , . . . , σ

2
p). Furthermore, yi is

assumed independent of εi; i = 1, . . . , n. It follows that

xi|yi ∼ Np(µ+ Λyi,Σ). (4)

It can be easily derived that the marginal distribution of xi is

xi ∼ Np(µ,ΛΛT + Σ), (5)

independent for i = 1, . . . , n.
According to the last expression, the covariance matrix of xi is equal to

ΛΛT + Σ. As shown in Equation (4), the knowledge of the missing data (yi)
implies that the conditional distribution of xi has a diagonal covariance ma-
trix. This is the crucial characteristic of factor analysis models, where they
aim to explain high-dimensional dependencies using a set of lower-dimensional
uncorrelated factors.

Given that there are q factors, the number of free parameters in the covari-
ance matrix ΛΛT + Σ is equal to p + pq − 1

2q(q − 1) [26]. The number of free
parameters in the uncostrained covariance matrix of xi is equal to 1

2p(p + 1).
Hence, under the factor analysis model, the number of parameters in the co-
variance matrix is reduced by

1

2
p(p+ 1)−

[
p+ pq − 1

2
q(q − 1)

]
=

1

2

[
(p− q)2 − (p+ q)

]
.

The last expression is positive if q < φ(p) where φ(p) := 2p+1−
√

8p+1
2 , a quantity

which is known as the Ledermann bound [27]. We assume that the number of
latent factors does not exceed φ(p). When q < φ(p) it can be shown that Σ is
almost surely unique [28]. Note however that this does not necessarily imply
that the model is not identified if q > φ(p) [29].

Given identifiability of Σ, a second source of identifiability problems is re-
lated to orthogonal transformations of the matrix of factor loadings. Indeed,
consider a p×q matrix Γ with ΓTΓ = Iq and ΓΓT = Ip (orthogonal matrix) and

define ỹi = Γyi. It follows that the representation xi = µ+ ΛΓT ỹi + εi leads
to the same marginal distribution of xi as the one in Equation (5). Following
[11], we preassign values to some entries of Λ, in particular we set the entries of
the upper diagonal of the first (q− 1)× (q− 1) block matrix of Λ equal to zero.

Another identifiability problem is related to the so-called “sign switching”
phenomenon, see e.g. [30]. Observe that Equation (1) remains invariant when
simultaneously switching the signs of a given row r of Λ; r = 1, . . . , p and yi.
Thus, when using MCMC samplers to explore the posterior distribution of model
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parameters, both Λ and yi; i = 1, . . . , n are not marginally identifiable due to
sign-switching across the MCMC trace. However, one could use the approximate
maximum a posteriori estimate arising from the MCMC output in order to
infer the mode of the posterior distribution of the specific parameters. These
estimates correspond to the parameter values obtained at the iteration that
maximizes the posterior distribution across the MCMC run. Another possibility
is to restrict our attention to sign-invariant parameter functions. For example,
notice that the covariance matrix ΛΛT +Σ is invariant when switching the sign
of each element in Λ. Following [31], we also define the “regularised score” of
variable r to factor j as

ζrj := λrj

∑n
i=1 yij
n

, (6)

for r = 1, . . . , p; j = 1, . . . , q. Notice that Equation (6) is invariant to simultane-
ously switching the signs of λrj and yij ’s, therefore, the estimation of E(ζrj |x)
is meaningful.

2.2. Finite Mixtures of Factor Analyzers

In this section the typical factor analysis model is generalized in order to
take into account unobserved heterogeneity. Assume that there are K under-
lying groups in the population, where the number of clusters K > 1 denotes
a known integer. Each cluster is characterized by different structure, which is
reflected in our model by assuming a distinct set of parameters (µk,Λk,Σk);
k = 1, . . . ,K. Consider the latent allocation parameters zi ∈ {1 . . . ,K} which
assign observation xi to a cluster k = 1, . . . ,K for i = 1, . . . , n. Then, given the
cluster allocations, each observation is expressed as

(xi|zi = k) = µk + Λkyi + εi.

Let 0 6 wk 6 1; k = 1, . . . ,K and
∑K
k=1 wk = 1. A-priori each observation is

generated from cluster k with probability equal to wk, that is,

P(zi = k) = wk, k = 1, . . . ,K, (7)

independent for i = 1, . . . , n. We will refer to w := (w1, . . . , wK) as the
vector of mixing proportions of the model. Note that the allocation vector
z := (z1, . . . , zn) is not observed, so it should be treated as missing data.

In general, the latent factor space can be different for each cluster, e.g. yi|zi =
k ∼ Nqk(0, Iqk), where qk represents the latent dimensionality of cluster k;
k = 1, . . . ,K. Following [11] we assume that (yi, zi) are independent and that
the intrinsic latent dimension is the same for each cluster, so the marginal dis-
tribution of yi is still described by Equation (2).

Now, we express Equations (3), (4) conditionally on the cluster membership

εi|zi = k ∼ Np(0,Σk) (8)

xi|zi = k,yi ∼ Np(µk + Λkyi,Σk), (9)
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independent for i = 1, . . . , n. Thus, Equation (5) becomes

xi ∼
K∑
k=1

wkNp(µk,ΛkΛ
T
k + Σk), (10)

independent for i = 1, . . . , n. As shown in Equation (10), the marginal distribu-
tion of xi is a finite mixture of distributions with K components. Notice that
when q = 0, the parameters Λk, k = 1, . . . ,K and latent data yi are no longer

present in the model. Thus, Equation (10) becomes xi ∼
∑K
k=1 wkNp(µk,Σk),

that is, a mixture model with diagonal variance structure per component.
A further assumption, also imposed by [11], is the restriction of the error

variance, that is,
Σk = Σ, k = 1, . . . ,K. (11)

In this case (zi, εi) are independent and the marginal distribution of εi is given
in Equation (3). Although we consider both cases, in the following sections
we present the general model where the variance of errors is allowed to vary
between clusters.

Finally, the generalization of Equation (6) to the case that there are K
clusters is straightforward. For cluster k, the regularized score of variable r to
factor j is defined as

ζkrj := λkrj

∑n
i=1 I(zi = k)yij∑n
i=1 I(zi = k)

, (12)

for k = 1, . . . ,K; r = 1, . . . , p and j = 1, . . . , q, where I(·) denotes the indicator
function. Note that Equation (12) is not defined in case where

∑n
i=1 I(zi = k) =

0, however this is not a problem in our implementation due to the fact that we
only make inference on the “alive” clusters, that is, the subset of {1, . . . ,K}
defined as K0 = {k = 1, . . . ,K :

∑n
i=1 I(zi = k) > 0}.

2.3. EM-based approaches and available software

A compehensive perspective on the history and development of MFA models
is given in Chapter 3 of the monograph by [32]. [4] applied the EM algorithm for
estimating the MFA model (10), under the constraint (11). The general model
where Σk is allowed to differ between components was estimated by [5]. [33]
considered the case of isotropic error variance, that is, the covariance matrix of
component k is written as ΛkΛ

T
k + σkIp for σk > 0 (a model which is referred

to as a mixture of probabilistic principal component analyzers).
[8] extended the covariance structure by considering the constraints: Λk =

Λ, Σk = Σ and Σk = σkIp. Furthermore, [10] introduced the parameterization

ΛkΛ
T
k + σk∆k, where σk > 0 and ∆k = diag(δ1, . . . , δp) such that |∆k| = 1,

with the optional constraints ∆k = ∆ or ∆k = Ip for k = 1, . . . ,K. Depend-
ing on whether a particular constraint is present or not, a set of 12 possible
models arises which is referred to as the expanded parsimonious Gaussian mix-
ture models (EPGMM) family. A detailed description is provided in Table 2
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of [10]. These models are estimated by the alternating expectation-conditional
maximization (AECM) algorithm [34].

EMMIXmfa [35] is a freely available software in the form of an R [36] pack-
age, implementing the approach used by [5] and allows both constrained and
uncostrained error variance per component. The pgmm package [37] is available
from the Comprehensive R Archive Network and estimates MFA models using
the EPGMM family [8, 10]. Since pgmm offers substantially greater flexibility
than EMMIXmfa, we only report results based on the former package.

2.4. Bayesian formulation
This section introduces the Bayesian framework for the MFA model, given

K, q and a random sample size of n observations x = (x1, . . . ,xn) from
Equation (10). Our aim is to estimate the model parameters: (w,θ), where
θ = {(µk,Λk,Σk); k = 1, . . . ,K}. The cluster assignments as well as the la-
tent factors (z,y) are treated as missing data. Let D(· · · ) denote the Dirichlet
distribution and G(α, β) denote the Gamma distribution with mean α/β. Let
also Λkr· denote the r-th row of the matrix of factor loadings Λk; k = 1, . . . ,K;
r = 1, . . . , p. The following prior assumptions are imposed on the model param-
eters:

w ∼ D(γ1, . . . , γK) (13)

µk ∼ Np(ξ,Ψ), independent for k = 1, . . . ,K (14)

Λkr· ∼ Nνr (0,Ω), independent for r = 1, . . . , p (15)

σ−2
kr ∼ G(α, β), independent for k = 1, . . . ,K; r = 1, . . . , p (16)

ω−2
` ∼ G(g, h), independent for ` = 1, . . . , q (17)

where all variables are assumed mutually independent and νr = min{r, q}; r =
1, . . . , p; ` = 1, . . . , q; j = 1, . . . ,K. In Equation (15) Ω = diag(ω2

1 , . . . , ω
2
q )

denotes a q × q diagonal matrix, where the diagonal entries are distributed
independently according to Equation (17). The prior assumptions are the same
as the ones introduced in [11] for fixed K and q.

Given the fixed set of hyperparameters (K, q, α, β, ξ,Ψ, γ, g, h), the joint
probability density function of the model is written as:

f(x,y, z,w,µ,Σ,Λ,Ω) = f(x|y, z,µ,Λ,Σ)f(z|w)f(µ)f(Σ)

×f(Λ|Ω)f(Ω)f(w)f(y) (18)

and its graphical representation is shown in Figure 1. In order to estimate
the model parameters we use the Gibss sampler to approximately sample from
the posterior distribution f(y, z,w,µ,Σ,Λ,Ω|x). The reader is referred to
Appendix A.1 for details.

2.5. Overfitted mixture model
Assume that the observed data has been generated from a mixture model

with K0 components

fK0(x) =

K0∑
k=1

wkfk(x|θk),
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Figure 1: Directed Acyclic Graph representation of the hierarchical model used in Equation
(18). Squares denote fixed/observed quantities while circles denote unknown variables.

where fk ∈ FΘ = {f(·|θ) : θ ∈ Θ}; k = 1, . . . ,K0 denotes a member of a
parametric family of distributions. Consider that an overfitted mixture model
fK(x) with K > K0 components is fitted to the data. It has been shown
[18] that the asymptotic behaviour of the posterior distribution of the K −K0

redudant components depends on the prior distribution of mixing proportions
(w). Let d denote the dimension of free parameters of the emission distribution
fk. For the case of a Dirichlet prior distribution in Equation (13), if max{γk; k =
1, . . . ,K} < d/2 then the posterior weight of the extra components converges
to zero (Theorem 1 of [18]).

Let fK(θ, z|x) denote the joint posterior distribution of model parameters
and latent allocation variables for a model with K components. When using
an overfitted mixture model, the inference on the number of clusters reduces to
(a): choosing a sufficiently large value of mixture components (K), (b): running
a typical MCMC sampler for drawing samples from the posterior distribution
fK(θ, z|x) and (c) inferring the number of “alive” mixture components. Note
that at MCMC iteration t = 1, 2, . . . (c) reduces to keeping track of the number

of elements in the set K0
(t) = {k = 1, . . . ,K :

∑n
i=1 I(z

(t)
i = k) > 0}, where z

(t)
i

denotes the simulated allocation of observation i at iteration t. At this point, we
underline the fact that the MCMC sampler always operates on a space with K
components. The empty components at a given iteration may contain allocated
observations in subsequent iterations.

In our case the dimension of free parameters in the emission distribution is

equal to d = 2p+ pq− q(q−1)
2 . We set γ1 = . . . = γK = γ

K , thus the distribution
of mixing proportions in Equation (13) becomes

w ∼ D
( γ
K
, . . . ,

γ

K

)
(19)

where 0 < γ < d/2 denotes a pre-specified positive number. Such a value is
chosen for two reasons. At first, it is smaller than d/2 so the asymptotic results
of [18] ensure that extra components will be emptied as n → ∞. Second, this
choice can be related to standard practice when using Bayesian non-parametric
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clustering methods where the parameters of a mixture are drawn from a Dirich-
let process [38], that is, a Dirichlet process mixture model [39]. This approach
is used in a variety of applications that involve clustering of subjects into an
unknown number of groups, see for example [40] where they cluster gene ex-
pression profiles using infinite mixture models. Under this point of view, the
prior distribution in Equation (19) represents a finite-sum random probability
measure that approximates the Dirichlet process with concentration parameter
γ [41].

2.6. Selecting the Number of Factors

Recall that the MFA model has been defined assuming that the number of
factors q is fixed. However, the dimensionality of the latent factor space is not
known and should be estimated. In [11] the number of factors is treated as a
random variable and a Birth-Death MCMC sampler [12] is used to draw samples
from the joint posterior distribution of model parameters and q. Treating q as a
random variable is preferable from a Bayesian point of view, however it is noted
that the sampler may exhibit poor mixing, especially in high dimensions. In
our setup, we consider a simpler approach where we produce MCMC samples
conditionally on each value of q in a pre-specified range and choose the best one
according to model selection criteria.

The following penalized likelihood criteria were used: Akaike’s information
Criterion (AIC) [42], Bayesian Information Criterion (BIC) [43], and Deviance
Information Criterion (DIC) [44]. Let D(θ) = −2 log f(x; θ) denote the de-
viance. Then,

AIC(K0, q) = D(θ̂) + 2dK0,q

BIC(K0, q) = D(θ̂) + dK0,q log n

DIC(K0, q) = D(θ̂) + 2pD

= −4Eθ [log{fK0(x;θ)}] + 2 log{fK0(x; θ̂)},

where dK0,q is the number of free parameters of a model with K0 clusters and

q factors, whereas pD = D(θ) − D(θ̂) denotes the effective dimension of the
model. It is well-known that DIC tends to overfit [45], so we also consider an

alternative version which increases the penalty term, namely DIC2 = D(θ̂)+3pD
[46, 47]. For AIC and BIC, θ̂ corresponds to the Maximum Likelihood estimate
of θ. Note that under certain conditions [48], the quantity −BIC/2 achieves
asymptotic consistency by roughly approximating the logarithm of the Bayes
factor [49] between two models. The definition of θ̂ is not unique for DIC (see

the discussion in [50]). We have chosen θ̂ as the simulated parameter values
that maximizes the observed log-likelihood across the MCMC run.

It should be noted that in order to compute the observed likelihood as well as
the number of free parameters dK0,q in AIC and BIC we used only the parameter
values of “alive” components, corresponding to the most probable number of
clusters (after rescaling the weights in order to sum to 1). It does not make
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sense to include the redundant parameters in the computation of the number
of parameters simply because the results will be inconsistent when considering
various values for the total number of clusters in the overfitted mixture (K).
Also recall here that asymptotically the redundant components are assigned zero
posterior weight. This means that the contribution of the extra components to
the observed log-likelihood is zero.

2.7. Prior Parallel Tempering

It is well known that the posterior surface of mixture models can exhibit
many local modes [51, 52]. In such cases simple MCMC algorithms may be-
come trapped in minor modes and demand a very large number of iterations to
sufficiently explore the posterior distribution. In order to produce a well-mixing
MCMC sample and improve the convergence of our algorithm we utilize ideas
from parallel tempering schemes [53, 54, 55], where different chains are running
in parallel and they are allowed to switch states. Each chain corresponds to a
different posterior distribution, and usually each one represents a “heated” ver-
sion of the target posterior distribution. This is achieved by raising the original
target to a power T with 0 6 T 6 1, which flattens the posterior surface, thus,
easier to explore when using an MCMC sampler.

In the context of overfitting mixture models, [19] introduced a prior parallel
tempering scheme. Under this approach, each heated chain corresponds to a
model with identical likelihood as the original, but with a different prior distri-
bution. Although the prior tempering can be imposed on any subset of parame-
ters, it is only applied to the Dirichlet prior distribution of mixing proportions.
Let us denote by fi(ϕ|x) and fi(ϕ); i = 1, . . . , J , the posterior and prior distri-
bution of the i-th chain, respectively. Obviously, fi(ϕ|x) ∝ f(x|ϕ)fi(ϕ). Let

ϕ
(t)
i denote the state of chain i at iteration t and assume that a swap between

chains i and j is proposed. The proposed move is accepted with probability
min{1, A} where

A =
fi(ϕ

(t)
j |x)fj(ϕ

(t)
i |x)

fi(ϕ
(t)
i |x)fj(ϕ

(t)
j |x)

=
fi(ϕ

(t)
j )fj(ϕ

(t)
i )

fi(ϕ
(t)
i )fj(ϕ

(t)
j )

=
f̃i(w

(t)
j )f̃j(w

(t)
i )

f̃i(w
(t)
i )f̃j(w

(t)
j )

, (20)

and f̃i(·) corresponds to the probability density function of the Dirichlet prior
distribution related to chain i = 1, . . . , J . According to Equation (19), this is

w ∼ D
(γ(j)

K
, . . . ,

γ(j)

K

)
, (21)

for a pre-specified set of parameters γ(j) > 0 for j = 1, . . . , J .

2.8. Label Switching Problem

The likelihood of a mixture model with K components is invariant with re-
spect to permutations of the parameters (w1, θ1), . . . , (wK , θK). Typically, the
same invariance property holds for the prior distribution of (w,θ). Therefore,
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Figure 2: Simulated factor loadings {λkr`; k = 1, 2, 3}, for variable r = 1 and latent factor
` = 1, using one of the synthetic datasets described in Appendix A.2 considering that the
total number of mixture components is fixed at its true value K = 3. The generated values
correspond to a thinned MCMC sample of 500 iterations after burn-in period. (a): MCMC
trace with label switching and sign switching. (b) Reordered MCMC trace with sign-switching
after eliminating the label switching via the ECR algorithm.

the posterior distribution f(w,θ|x) will be invariant to permutations of the la-
bels and it will exhibit (a multiple of) K! symmetric modes. The label switching
problem [56, 57, 58] refers to the fact that an MCMC sample that has sufficiently
explored the posterior surface will be switching among those symmetric areas.

Note that the symmetry of the likelihood is not of great practical importance
under a frequentist point of view, because the EM algorithm will converge to a
mode of the likelihood surface. However, under a Bayesian approach it burdens
the estimation procedure since the marginal posterior distribution of (wk, θk)
will be the same for all k = 1, . . . ,K. In order to derive meaningful estimates of
the marginal posterior distributions as well as estimates of the posterior means
the inference should take into account the label switching problem [59, 52, 60,
61, 62]. A variety of relabelling algorithms is available in the label.switching

package [25], more specifically we have used the ECR reordering algorithm [60].
Finally we underline that reordering the MCMC sample will only deal with

the label switching problem but not the sign switching problem related to the
rows of Λk; k = 1, . . . ,K, as shown in Figure 2. Figure 2.(a) illustrates both
label and sign switching. After successfully dealing with label switching, the
MCMC trace of factor loadings shown in Figure 2.(b) is identifiable up to a sign
indeterminacy. But as mentioned earlier, for this particular set of parameters
we restrict our attention to sign-invariant parametric functions.

2.9. Details of the implementation

Number of overfitted mixture components In our applications we have
considered overfitted mixtures with K = 20 components. In all cases the sam-
pled values of the number of “alive” components was strictly smaller than this
upper bound, at least for models where the number of factors was equal to or
larger than the “true” one. If this is not the case for any of the fitted models,
the user should consider increasing this upper bound.
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Data normalization and prior parameters Before running the sampler,
the raw data is standardized by applying the z-transformation

xir − x̄r√
s2
r

, i = 1, . . . , n; r = 1, . . . , p

where x̄r =
∑n

i=1 xir

n and s2
r = 1

n−1

∑n
i=1 (xir − x̄r)2

. The main reason for
using standardized data is that the sampler mixes better. Furthermore, it is
easier to choose prior parameters that are not depending on the observed data,
that is, using the data twice. In any other case, one could use empirical prior
distributions as reported in [11], see also [15]. For example, a sensible choice
for selecting the prior parameter ξ in case of non-standardized data is to set
it equal to the vector containing the mean of each variable. The parameters α
and β could be selected in a way so that the mode of the prior distribution of
σ2
kr is equal to the variance of each variable, with a large standard deviation.

However, in cases where the data contains variables which are measured in very
different scales, the algorithm may be quite sensitive to the selection of these
prior parameters. Therefore, we advise to use standardized data at the cost of
losing interpretability of the parameter estimates.

For the case of standardized data, the prior parameters are specified in Table
1.

α β γ g h ξ = (ξ1, . . . , ξp)
T Ψ

value 0.5 0.5 1 0.5 0.5 (0, . . . , 0)T Ip

Table 1: Prior parameter specification for the case of standardized data.

Prior parallel tempering We used a total of J = 8 parallel chains where
the prior distribution of mixing proportions for chain j in Equation (21) is
selected as

γ(j) = γ + δ(j − 1), j = 1, . . . , J,

where δ > 0. Since γ = 1 (as shown in Table 1) and K = 20, it follows
from Equation (19) that the parameter vector of the Dirichlet prior of mixture
weights which corresponds to the target posterior distribution (j = 1) is equal to
(0.05, . . . , 0.05). Also in our examples we have used 0.25 6 δ 6 5, but in general
we strongly suggest to tune this parameter until a reasonable acceptance rate
is achieved. Each chain runs in parallel and every 10 iterations we randomly
select two adjacent chains (j, j+1), j ∈ {1, . . . , J−1} and propose to swap their
current states. A proposed swap is accepted with probability A in Equation (20).

Initialization strategy The sampler may require a large number of it-
erations to discover the high posterior probability areas when initialized from
totally random starting values. Of course this behaviour is alleviated as the
number of parallel chains (J) increases, for example [19] obtained good mix-
ing when J = 30 for mixtures of univariate normal distributions. In our case,
the number of parameters is dramatically larger and an even larger number of
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parallel chains would be required to obtain similar levels of mixing. However
we would rather to test our method in cases where the number of available
cores takes smaller values, e.g. J = 8 or even J = 4, which are typical num-
bers of threads in modern-day laptops. Under this point of view, the following
two-stage initialization scheme is adopted.

We used an initial period of 100 MCMC iterations where each chain is initial-
ized from totally random starting values, but under a Dirichlet prior distribution
with large prior parameter values. These values were chosen in a way that the
asymptotic results of [18] guarantee that the redundant mixture components
will have non-negligible posterior weights. More specifically for chain j we as-
sume w ∼ D(γ′j , . . . , γ

′
j) with γ′(j) = d

2 + (j − 1) d
2(J−1) , for j = 1, . . . , J . We

observed that such an initialization quickly reaches to a state where the true
clusters are split into many subgroups. Then, we initialize the actual model by
this state. In this case, the sampler will spend some time combining the split
clusters to homogeneous groups. As soon as all similar subgroups are merged
into homogeneous clusters, the sampler will start exploring the stationary dis-
tribution of the chain. A comparison with a simpler random starting scheme is
presented in Appendix A.4 (see also Appendix A.3).

Number of parallel chains, MCMC iterations and post-processing
Our MCMC sampler ran for 20000 iterations using 8 heated chains that run on
parallel using the same number of threads. The first 5000 iterations were dis-

carded as burn-in period and then each chain was thinned by keeping every 10th

iteration. The MCMC sample corresponding to the retained iterations was re-
ordered according to the ECR algorithm [60] available in the label.switching

package [25].

3. Results

At first, we use an extended simulation study in order to evaluate the ability
of our method to estimate the correct clustering structure. Our results are
benchmarked in terms of clustering estimation accuracy against state-of-the-
art software for fitting MFA models with the EM algorithm as implemented in
the R package pgmm (version 1.2) [37]. Finally, we illustrate the applicability
of our method to three publicly available datasets with known ground-truth
classifications. In what follows, we use the acronym fabMix to refer to the
proposed method.

3.1. Simulation study

Figure 3.(a) visualizes a simulated dataset with 10 clusters using the proce-
dure in Appendix A.2 for p = 40 variables. The sample size is set to n = 500
(only a randomly sampled subset of 200 observations is actually displayed in
Figure 3). On panels (b) and (c), we juxtapose two similar datasets with iden-
tical cluster labels and marginal means, but different covariance structure. It is
evident that the clusters exhibit varying levels of overlapping between different
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Figure 3: (a): A simulated dataset with K = 10 clusters, using the generation procedure
described in Appendix A.2 for p = 40 variables. Each color corresponds to a distint cluster.
(b) and (c): Simulated datasets with the same marginal means and cluster assignments as
in (a), but different covariance structures. The ellipses at the lower panel display the 95%
confidence region of the marginal bivariate normal distribution of (x1, x2) per cluster centered
on (µk1, µk2), k = 1, . . . , 10.

scenarios. The underlying latent factor space consists of q = 4 dimensions for
the first two scenarios and q = 1 for scenario 3.

Both methods estimated MFA models with a number of factors between
q = 1, . . . , 8. The EM-based method fitted a series of mixture models with
K ∈ {1, . . . , 20} and selected the optimal number of clusters and factors using
the BIC. We also used BIC in order to choose the number of factors in our
Bayesian MFA model. The reader is referred to Appendix A.5 for a detailed
comparison between BIC, AIC and DIC for selecting the number of factors in
our model.

It is well known that likelihood methods may be highly sensitive to starting
values and that it is quite challenging to adopt optimal schemes for the ini-
tialization of the EM algorithm in mixture models (see for example [63]). As
with all EM-type algorithms, pgmm may converge to local maxima. We used six
starting values: five runs were initialized from random starting values and one
run was initialized using the k-means clustering algorithm. Regarding the pa-
rameterization we have considered all 12 models available in pgmm and the best
one is selected according to BIC. The wallclock run-time for fitting all 12 pgmm
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fabMix pgmm

K q ARI K̂ q̂ ARI K̂ q̂

scenario 1 10 4 1 10 4 0.968 11 4
scenario 2 10 4 1 10 4 0.903 9 4
scenario 3 10 1 1 10 1 1 10 1

Table 2: Adjusted Rand Index (ARI) between the estimated and true cluster assignments,

estimate of the number of clusters (K̂) and factors (q̂) for the simulated datasets generated
according to three scenarios with different levels of overlapping and covariance structure.

models with six different starts for 1 6 K 6 20 and 1 6 q 6 8 for Scenario 1 is
62 hours, using 12 parallel threads (one thread per model). The corresponding
computing time for fitting the two parameterizations of the overfitted MFA with
K = 20 components for the same range of factors and 20000 MCMC iterations
was equal to 71 hours, based on 8 cores (one core per heated chain).

The results are summarized in Table 2, in terms of the estimation of the
number of clusters, factors and clustering accuracy based on the Adjusted Rand
Index (ARI) [64]. Note that fabMix exhibits excellent performance in all cases.
The best models selected from pgmm correspond to the parameterizations: "UCU",
(scenarios 1 and 2) and "CCU" (scenario 3). In all cases, the model with the
same variance of errors is selected from fabMix.

Next, we repeat scenario 1 for a total of 300 synthetic datasets, considering
that the true number of clusters ranges in the set K0 ∈ {1, . . . , 10}. For each
value of K0 we generated 10 datasets consisting of n = 500 observations, 10
datasets with n = 1000 and 10 datasets with n = 2000. As shown in Figure
4 the proposed method is able to infer the true number of clusters as well
as the correct clustering structure in terms of the ARI. Under six different
starts, the EM algorithm implementation in pgmm gives quite accurate results
but note that sometimes the number of clusters may be overestimated when
K > 9 and n = 500, 1000 (as shown in the first row of Table 2). Both methods
always select the parameterization that corresponds to the one used to generate
the data. More specifically, fabMix selects the model with the same variance
of errors per cluster and pgmm selects the model corresponding to the "UCU"

parameterization (excluding a single case where the "UUU" model was selected).

3.2. Wave dataset

We selected a randomly sampled subset of 1500 observations from the wave
dataset [65], available from the UCI machine learning repository [66]. According
to the available “ground-truth” classification of the dataset, there are 3 equally
weighted underlying classes of 21-dimensional continuous data, where each one
is generated from a combination of 2 of 3 “base” waves, shown in Figure 5.
The lower panel displays the sample correlation matrix per cluster, using the
corrplot package [67].

We applied the proposed method considering that the number of factors
ranges in the set q ∈ {1, . . . , 4}. According to BIC, the selected number of factors
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Figure 4: Left: Benchmarking MFA algorithms in terms of estimation of the number of
clusters on synthetic data. We considered that the number of clusters (K) varies in the set
K ∈ {1, . . . , 10} and for each case ten different datasets were simulated. The cross denotes
the real value of K. Right: Corresponding Adjusted Rand Index between the estimated single
best clustering and the true cluster labels.
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Figure 5: Upper panel: Standardized wave dataset grouped according to the true cluster
labels (showing only a randomly sampled subset of 50 observations per class). The raw data
has been transformed prior to grouping so that the overall sample means and variances of
the p = 21 variables are equal to zero and one, respectively. Lower panel: Sample correlation
matrix per cluster.

is equal to q = 1. Conditionally on q = 1, our method selects the true value
of clusters as the most probable number of “alive components”. In particular
the corresponding estimated posterior probability is P̂(K0 = 3|x) = 0.64. The
same model is also chosen by pgmm. The estimated clusters with respect to the
true allocation of each observation is shown in Table 3. It is evident that the
resulting estimates are very similar to each other (notice that pgmm and fabMix

achieve the same ARI) and exhibit strong agreement with the true clustering of
the data. fabMix selects the parameterization with the same variance of errors
per component and pgmm selects the "UCU" parameterization.

As far as factor interpretation is concerned, we estimated the “regularized
score” of each variable to the (single) factor per cluster. For this purpose, we
only considered the simulated values that correspond to three alive components
and reorder the MCMC values to undo the label switching. Then, we take
ergodic averages in order to estimate ζkrj = ζkr (single factor j = 1) in (12) for
k = 1, 2, 3 and r = 1, . . . , 21, as shown in Figure 6. For the first cluster (k = 1)

we note that ζ̂1r takes positive values for 2 6 r 6 10 and negative values for
12 6 r 6 20, while ζ̂1r ≈ 0 for r = 1, 11, 21. Note the strong agreement when
comparing these values with the patterns in the correlation matrix in Figure
5 for true cluster 1. It is evident that the block of variables {2, . . . , 10} has
different correlation behaviour than {12, . . . , 20}. Moreover, observe that the

17



fabMix pgmm

1 2 3 1 2 3

cluster 1 397 53 56 401 49 56
cluster 2 30 411 40 31 409 41
cluster 3 15 22 476 17 22 474

# factors (BIC) 1 1

ARI 0.616 0.615

RI 0.829 0.829

Table 3: Confusion matrix between the estimated and true cluster assignments of the wave
dataset. All methods select 1 factor and 3 clusters. The last two lines contain the adjusted
and raw Rand index of each method with respect to the true cluster labels.
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Figure 6: Interpretation of factor effects per cluster for the wave dataset. The selected model
corresponds to q = 1 factor and K = 3 clusters. The lines represent the estimated “regularised
score” ζ̂kr (see Equation (12)) of each variable r = 1, . . . , p to the (single) factor for cluster
k = 1, 2, 3.

block of variables {1, 11, 21} is not correlated to any of the other variables.
Similar conclusions can be drawn when comparing the regularized scores for
clusters 2 and 3 with their correlation structure.

3.3. Italian wines

The wine dataset [68], available at the pgmm package [37], contains p = 27
variables measuring chemical and physical properties of n = 178 wines. There
are three types of wine (Barolo, Grignolino, Barbera) from the Piedmont region
of Italy which were collected over the ten year period 1970–1979. We applied
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fabMix pgmm

1 2 3 4 1 2 3

cluster 1 (Barolo) 0 48 11 0 0 59 0
cluster 2 (Grignolino) 1 18 3 49 1 1 69
cluster 3 (Barbera) 48 0 0 0 48 0 0

# factors (BIC) 2 4

ARI 0.614 0.965

RI 0.830 0.984

Table 4: Confusion matrix between the estimated and true cluster assignments of the wine
dataset. The last two lines contain the adjusted and raw Rand index of each method with
respect to the true cluster labels.

our method considering K = 20 and 1 6 q 6 5. For the same number of factors
we also applied pgmm, considering that the number of components ranges in the
set 1 6 K 6 5. The number of initializations and heated chains are the same
as in Section 3.2. As shown in Table 4, fabMix selects a model with 4 clusters
and 2 factors and pgmm selects a model with 3 clusters and 4 factors. The best
clustering performance corresponds to pgmm, which achieves an almost perfect
classification. Furthermore, we report that fabMix selects the parameterization
with different variance of errors per component, while pgmm selects the "CUU"

parameterization.

3.4. Coffee dataset

The coffee dataset [69] consists of n = 43 coffee samples collected from beans
corresponding to the Arabica and Robusta species. For each sample thirteen
variables are observed: water, pH value, fat, chlorogenic acid, bean weight, free
acid, caffeine, neochlorogenic acid, extract yield, mineral content, trigonelline,
isochlorogenic acid and total chlorogenic acid. The dataset has been previously
analyzed using mixtures of factor analyzers by [8] and is available at the pgmm

package [37]. Following [8], the total chlorogenic acid is excluded from the
analysis since it is the sum of the chlorogenic, neochlorogenic and isochlorogenic
acid values.

We applied our method considering K = 20 and 1 6 q 6 5. For the same
number of factors we also applied pgmm, considering that the number of com-
ponents ranges in the set 1 6 K 6 5. As shown in Table 5, fabMix selects
a model with 2 clusters and 1 factor and pgmm selects a model with 5 clusters
and 3 factors. The best clustering performance in terms of the adjusted and
raw Rand indexes corresponds to fabMix which achieves a perfect classification.
Furthermore, we report that fabMix selects the parameterization with different
variance of errors per component and pgmm selects the "CCUU" parameterization.

We observed that in this case the estimates obtained by the EM algorithm
are quite sensitive to the selection of starting values, a behaviour which typ-
ically indicates a highly multimodal likelihood surface. Indeed, based on 100
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fabMix pgmm

1 2 1 2 3 4 5
cluster 1 (Arabica) 36 0 0 6 4 10 16
cluster 2 (Robusta) 0 7 7 0 0 0 0

# factors (BIC) 1 3

ARI 1 0.206

RI 1 0.508

Table 5: Confusion matrix between the estimated and true cluster assignments of the coffee
dataset. The last two lines contain the adjusted and raw Rand index of each method with
respect to the true cluster labels.

independent calls to pgmm consisting of six initializations under different val-
ues, the algorithm selected a model with K = 2, 3, 4, 5 clusters with frequencies
equal to 41, 1, 30, 28, respectively. For this reason, the results reported in Table
5 are based on a very large number (1000) of random starting values for pgmm

(as well as one run based on K-means starting values). We note that a perfect
classification was achieved when pgmm selected a model with K = 2 clusters, as
reported in Table 15 of [8]. For each of the 41 runs which selected a model with
K = 2, the "CCUU" parameterization was returned with a BIC value equal to
1292.821. But the pgmm results in Table 5 correspond to a smaller BIC value
(840.27) (thus, a better model). Finally, we mention that the same model is
still ranked first when using the ICL criterion [70].

4. Discussion and further remarks

This study presented a solution to the complex problem of clustering multi-
variate data using Bayesian mixtures of factor analyzers. The proposed model
builds upon the prior assumptions of [11] assuming a fixed number of clusters
and factors. Extending the Bayesian framework of [19] we demonstrated that
estimating an overfitting mixture model is a straightforward and efficient ap-
proach to the problem at hand. We also used prior parallel tempering schemes
in order to improve the mixing of the algorithm. The posterior inference condi-
tionally on a specific model (number of alive clusters) is possible after applying
suitable algorithms to deal with label switching.

According to our simulation study, the proposed method can accurately in-
fer the number and composition of the underlying clusters. Our results were
benchmarked against state-of-the-art software for estimating MFA models via
the EM algorithm, that is, the R package pgmm. Based on six starts of pgmm, we
concluded that our method is quite competitive with the EM algorithm in esti-
mation accuracy and can lead to improved inference as the number of clusters
grows large. Starting values and the usage of multiple runs are very important
for maximum likelihood methods. At this point recall that our benchmarking
simulation study generated 100 datasets with dimension 500× 40, 100 datasets

20



with dimension 1000 × 40, and 100 datasets with dimension 2000 × 40. Using
a single EM run for each dataset, the number of compared models for a given
parameterization is equal to Kmax×Qmax, with Kmax = 20 (maximum num-
ber of components) and Qmax denoting the maximum number of factors, hence
this number should be multiplied by the total number of runs in the case of
initializing the EM from multiple starting values (as done in pgmm). On the
contrary, the total number of compared models for each parameterization under
our Bayesian approach is equal to Qmax.

We are currently extending the method to the case where the multivariate
data contains missing values. This is straightforward to implement under our
Bayesian set-up by adding one extra Gibbs sampling step that generates samples
from the full conditional distribution in Equation (9). Thus, our future work
will focus on presenting, benchmarking and applying this extra functionality
to real datasets, as well as improving the practical implementation with the
addition of user-friendly output summaries and plot methods. Another inter-
esting generalization of our model would be to propose Bayesian estimation of
overfitted mixture models using the whole set of parameterizations introduced
in the family of EPGMMs. In this case the dimensionality of the parameter
space is reduced further, thus, it is expected that our method will provide more
flexible results in certain applications (such as the Italian Wine dataset where
pgmm performed better than fabMix).

The source code of the proposed algorithm is hosted online at https://

github.com/mqbssppe/overfittingFABMix in the form of an R package, to-
gether with scripts that reproduce the results of Section 3. Future versions of
the package will be also available on CRAN.

5. Supplementary Material

Appendix A.1 contains some technical details regarding the implementation
of the Gibbs sampler. A detailed description of the generation of synthetic data
can be found in Appendix A.2. Appendix A.3 compares the proposed overfit-
ting Bayesian MFA model against standard Bayesian MFA models. Appendix
A.4 discusses convergence diagnostics and comparison with a simpler initializa-
tion scheme. Detailed results on the estimation of the number of factors is given
in Appendix A.5.
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Appendix A. Supplementary Material

Appendix A.1. Gibbs sampling updates

In the following, (x|y) denotes the distribution of x conditionally on y. Given
K and q the Gibbs sampler updates each parameter according to the following
scheme.

1. Give some initial values (Ω(0),Λ(0),µ(0), z(0),Σ(0),w(0),y(0)).

2. At iteration t = 1, 2, . . .

(a) update Ω(t) ∼
(
Ω|Λ(t−1)

)
(b) update Λ(t) ∼

(
Λ|Ω(t),Σ(t−1),x,y(t−1), z(t−1)

)
(c) update µ(t) ∼

(
µ|Λ(t),Σ(t−1),x,y(t−1), z(t−1)

)
(d) update z(t) ∼

(
z|w(t−1),µ(t),Λ(t),Σ(t−1),x

)
(e) update Σ(t) ∼

(
Σ|x, z(t),µ(t)

)
(f) update w(t) ∼

(
w|z(t)

)
(g) update y(t) ∼

(
y|x, z(t),µ(t),Σ(t),Λ(t)

)
.

All full conditional distributions are detailed in [11]. However, in some cases, it is
easy to analytically integrate some parameters and accelerate convergence. Note
that in steps (2.b) and (2.d) we have integrated out µ and y, respectively. Thus,
in steps (2.b) and (2.d), the parameters are updated from the corresponding
collapsed conditional distributions, rather than the full conditional distributions.

In particular, after integrating out µ = (µ1, . . . ,µK), it follows that

(Λkr·|Ω,Σ,x,y, z) = Nq(Γkr∆T
kr,Γkr), (A.1)

independent for k = 1, . . . ,K; r = 1, . . . , p. The parameters on the right-hand
side of Equation (A.1) are defined as

Γkr =

(
Ω−1
νr +

1

σ2
kr

s̈k(z,y)− φkrr
σ4
kr

s̈k;1:νr (z,y)s̈Tk;1:νr (z,y)

)−1

∆kr =
1

σ2
kr

...
s kr(z,x,y)− φkrr

σ4
kr

s̈kr(z,x)s̈Tk;1:νr (z,y)

where

ṡk(z) =

n∑
i=1

I(zi = k)

s̈k(z,u) =

n∑
i=1

I(zi = k)uiu
T
i

...
s k(z,u,v) =

n∑
i=1

I(zi = k)uiv
T
i

Φk =
(
ṡk(z)Σ−1

k + Ψ−1
)−1

,
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for k = 1, . . . ,K. Finally, from Equations (7) and (10) it immediately follows
that

P(zi = k|xi,µ,Σ,Λ,w) ∝ wkf
(
xi;µk,ΛkΛ

T
k + Σk

)
, k = 1, . . . ,K,

independent for i = 1, . . . , n, where f(·;µ,Σ) denotes the probability density
function of the multivariate normal distribution with mean µ and covariance
matrix Σ. Note that in order to compute the right hand side of the last equation,
inversion of the p × p matrix ΛkΛ

T
k + Σk is required. Since Σk is diagonal,

this matrix can be efficiently inverted using the Sherman–Morrison–Woodbury
formula [71]:(

ΛkΛ
T
k + Σk

)−1

= Σ−1
k −Σ−1

k Λk

(
Iq + ΛT

kΣ−1
k Λk

)−1

ΛT
kΣ−1

k ,

for k = 1, . . . ,K.

Appendix A.2. Simulation study details

The synthetic data in Section 3.1 was simulated according to mixtures of
multivariate normal distributions, as shown in Equation (10). Given the number
of mixture components (K) and number of factors (q) for each dataset, the true
values of parameters were generated according to the following scheme.

w ∼ D(10, . . . , 10)

µkr =


20 sin{ r−1

p−1kπ}, with probability 1/3,

20 cos{ r−1
p−1kπ}, with probability 1/3,

−40 cos{ r−1
p−12kπ}, with probability 1/3,

σ2
krr =


r, Scenario 1

100, Scenario 2

0.1, Scenario 3

ΛTk =


F F · · · F � � · · · � · · · � � · · · � � · · · �
� � · · · � F F · · · F · · · � � · · · � � · · · �
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

...
. . .

...
� � · · · � � � · · · � · · · F F · · · F � · · · �

 ,
independent for r = 1, . . . , p; k = 1, . . . ,K. Observe that the diagonal matrix
containing the variance of errors (σ2

krr) is the same for each mixture component.

Under a slight abuse of notation in the q × p matrix ΛT
k , a star (F) denotes

independent realizations from a random variable following a

N (φk, ρ
2
k) (A.2)

distribution. Moreover, a square (�) denotes independent realizations from a
N (0, 1) random variable. Each block matrix containing a star consists of q rows
and bp/qc columns, where b·c denotes the integer part of a positive number. In
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Figure A.7: (a): Benchmarking overfitting against standard Bayesian MFA models in terms
of estimation of the number of clusters on synthetic data. We considered that the number
of clusters (K) varies in the set K ∈ {3, 6, 9} and for each case ten different datasets were
simulated. The cross denotes the real value of K. (b): BIC values obtained by the standard
Bayesian MFA model for two simulated datasets with true number of components equal to
K = 9. The horizontal gray lines indicate the BIC value obtained by the corresponding
overfitting Bayesian MFA model, conditionally on the values of the most probable number of
“alive” components.

case that p/q is not integer, we fill the remaining p−qbp/qc columns with squares
(corresponding to the last block of ΛT

k ). The parameters of the distribution
(A.2) are generated as follows:

φk ∼


DU{−30,−20,−10, 10, 20, 30}, Scenario 1

DU{−30,−20,−10, 10, 20, 30, 1, 40}, Scenario 2

1, Scenario 3

and

ρk =


2, Scenario 1

0.2|φk|+ 1, Scenario 2

0.01, Scenario 3

for k = 1, . . . ,K. In all cases φk and ρk are assumed independent for k =
1, . . . ,K.

Appendix A.3. Benchmarking against standard initialization and Bayesian MFA
models

In this section we compare against standard Bayesian MFA models. We
considered 30 simulated datasets with n = 500 and p = 20 with a fixed number
of factors q = 2, which is assumed known. Then, we estimated the number
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Figure A.8: Convergence of mixing proportions w1, . . . , w10: evolution of Gelman and Rubin’s
shrink factor as the number of iterations increases.

of clusters using the BIC by fitting a series of standard Bayesian MFA models
with a number of components equal to K = 1, . . . , 20. The results are compared
against the proposed method using J = 8 parallel chains. Note that no parallel
chains are considered in the standard Bayesian MFA MCMC sampler. In order
to make the comparison as fair as possible, we considered that the number of
MCMC iterations is equal to Jm and m for standard and overfitting MFA,
respectively, with m = 20000 as in the previous sections.

As shown in Figure A.7(a), the proposed method gives more accurate results
than standard Bayesian MFA models, especially as the number of components
grows large. Figure A.7(b) displays the behaviour of the BIC values of the
standard Bayesian MFA model for two specific datasets where the true number
of components is equal to K = 9. Observe that the standard MCMC sampler
selects K = 10 clusters for dataset 1 and K = 9 clusters for dataset 2. Further-
more, note that the BIC values, as a function of the number of components, are
not smooth for both datasets. Such a behaviour is typical in cases where the
algorithm has converged to minor modes (see [63]).

Appendix A.4. Convergence diagnostics

In order to evaluate the convergence of our algorithm, we have ran the sam-
pler for the same number of iterations (m = 20000) based on different starting
values for a total of 10 runs using a simulated dataset with K = 10 clusters and
q = 4 factors. The number of observations is equal to n = 500 for a total of
p = 40 variables generated according to scenario 1. Using the coda package [72],
the Gelman-Rubin diagnostic criterion [73] varies between (1.00, 1.012) (mixing
proportions), (1.00, 1.04) (means) and (1.00, 1.13) (covariance matrices). Note
that the clusters have been relabelled across all runs so that they agree to each
other. This range of values is quite smaller than 1.2, so according to [74] we can
be fairly confident that convergence has been reached. Figure A.8 illustrates the
evolution of the Gelman-Rubin diagnostic criterion for the mixing proportions
as the number of iterations increases.
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Furthermore, we compare the performance of our MCMC sampler when a
different initialization scheme is applied. Recall that the default initialization
scheme is based on a first stage of 100 iterations where the mixing proportions
are a-priori distributed according to a Dirichlet distribution with parameters
that lead to overfitting, as discussed in Section 2.9. Now we consider a simpler
scheme that does not include this stage and all parameters are randomly gener-
ated from the default prior distributions. Under the same number of iterations
and independent runs, we calculated that the Gelman-Rubin diagnostic crite-
rion [73] varies between (1.00, 1.45) (mixing proportions), (1.00, 1.86) (means)
and (1.15, 2.31) (covariance matrix). This means that the MCMC sampler has
not converged when using this simpler initialization scheme, under the same
number of iterations.

Appendix A.5. Estimating the number of factors

In this section we assess the ability of our algorithm to infer the number of
factors. We generated synthetic data from mixtures of factor analyzers where
the true number of factors varies in the set q ∈ {1, . . . , 5} and for each value 15
datasets were simulated. The true number of clusters is uniformly distributed
on the set {1, . . . , 10}. For each case we considered that n = 1000 and p = 40.

A typical output of the proposed method for a single dataset is shown in
Figure A.9. Note that we have also considered the case q = 0, which is explicitly
taken into account into our method. Observe that when the number of factors
is less than the true one (q = 4) the posterior distribution of the number of alive
components supports larger values than the true number of clusters (K = 4).
As soon as the true number of factors is reached, then the posterior distribution
of the number of alive clusters remains concentrated at the true value.

For each dataset, the number of factors was estimated by running our algo-
rithm considering that q ∈ {0, 1, . . . , 10} and selecting the best model according
to AIC, BIC, DIC and DIC2. As shown in Fig A.9 (down), both AIC and BIC
are able to correctly estimate the number of factors. On the other hand, DIC
and DIC2 tend to overfit, as often concluded in the literature (see e.g. [45]).
However, even in the case that the Deviance Information Criterion is used for
choosing the number of factors, the corresponding estimate of the underlying
clusters (as well as the number of “alive” clusters) is the same as the one re-
turned by BIC or AIC. This behaviour is also illustrated in Figure A.9 (up) for
a single dataset. Consequently, given that the MCMC sampler has converged,
using the DIC or DIC2 does not necessarily means that the inferred clustering
is “wrong”.
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