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Sensible Functional Linear Discriminant

Analysis

Lu-Hung Chen∗and Ci-Ren Jiang†

Summary

The focus of this paper is to extend Fisher’s linear discriminant analysis (LDA)
to both densely re-corded functional data and sparsely observed longitudinal data for
general c-category classification problems. We propose an efficient approach to iden-
tify the optimal LDA projections in addition to managing the noninvertibility issue
of the covariance operator emerging from this extension. A conditional expectation
technique is employed to tackle the challenge of projecting sparse data to the LDA
directions. We study the asymptotic properties of the proposed estimators and show
that asymptotically perfect classification can be achieved in certain circumstances.
The performance of this new approach is further demonstrated with numerical ex-
amples.

Keywords: classification, functional data, linear discriminant analysis, longitudinal
data, smoothing.

1 Introduction

Classification identifies the class, from a set of classes, to which a new observation belongs,
based on the training data containing observations whose class labels are known. Due
to its importance in many applications, statistical approaches have been extensively devel-
oped. To name but a few, principal component analysis (PCA, Turk and Pentland (1991)),
Fisher’s linear discriminant analysis (LDA, Fisher (1936), Rao (1948)), partial least square
approaches (PLS, Barker and Rayens (2003)), etc. have all been explored for classification.
The common essence of these approaches is to find optimal projections based on a partic-
ular criterion for subsequent classification. While the data dimension is moderate, these
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approaches or their variants often work nicely. With the advent of modern technology and
devices for collecting data, the dimension of data can become very high and may be intrin-
sically infinite, such as functional data; this requires the aforementioned approaches to be
adapted. Motivated by the Fisher’s LDA, we propose “sensible” functional LDA (sFLDA)
to search the optimal projections for subsequent classification.

LDA aims at finding ideal linear projections and performs classification on the projected
subspace. Ideal projections are those maximizing the projected distances between classes
while keeping the projected distances among subjects in the same class minimized. Take a
p-dimensional case for example; mathematically the ideal projections are the eigenvector b
in

Σ−1
W ΣBb = λb, (1.1)

where Σ−1
W denotes the inverse of the within-subject covariance matrix ΣW , and ΣB is the

between covariance matrix that characterizes the variation of class means. Under classical
multivariate settings, ΣW is invertible. Please refer to Mardia et al. (1980) for the details
of LDA. Due to its simplicity, LDA has been widely employed in many applications.

Extending (1.1) directly to functional data is tricky due to the noninvertible covariance
operator. Specifically, the inverse of the covariance operator is unbounded if the functional
data is in L2, which is commonly assumed in the functional data analysis literature (e.g.,
Hall et al. (2006), Li and Hsing (2010), Delaigle and Hall (2012), etc.). To elucidate our
idea, let us introduce notations first. Suppose the data consists of c classes. Let Xk be an
L2 stochastic process, defined on a finite compact interval T , in class k with mean function
µk and a common covariance function ΓW . Mercer’s theorem implies that the covariance
function can be further decomposed as ΓW (s, t) =

∑∞
j=1 λjφj(s)φj(t), where the eigenvalue

λj > 0 is in descending order with corresponding eigenfunction φj and
∑∞

j=1 λj < ∞.
Functional principal component analysis (FPCA) corresponds to a spectral decomposition
of the covariance and leads to the well-known Karhunen-Loève decomposition of the random
function,

Xk(t) = µk(t) +

∞
∑

j=1

Ak,jφj(t), (1.2)

where Ak,j is the jth principal component score (PCS) with mean zero, variance λj and
t ∈ T . Let SB (resp. SW ) be the space spanned by {µk}ck=1 (resp. {φj}∞j=1). Since we do not
assume completeness on {φj}∞j=1, SB ⊂ SW is not always true (Hsing and Eubank, 2015).
We also do not impose any parametric assumptions onXk other than smoothness conditions
on µk and ΓW , which are quite common in functional data analysis (e.g., Rice and Silverman
(1991), Chiou et al. (2003), Hall et al. (2006), etc.)

To handle the unbounded Γ−1
W , basis-based approaches can be used to express the func-

tional data with certain basis functions and turn the functional problem into a multivari-
ate one. For example, Hall et al. (2001), Glendinning and Herbert (2003), Müller (2005),
Leng and Müller (2006), and Song et al. (2008) performed classification based on FPCA;
Preda et al. (2007) classified functional data by means of PLS; Berlinet et al. (2008), Rincón and Ruiz-Medina
(2012), and Chang et al. (2014) developed approaches based on wavelets. However, doing
so might lose crucial information for subsequent classification if the differences among
classes are not well preserved due to inappropriate basis functions. For example, when
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SB * SW (e.g., a binary case where µ1(t) = sin(2πt), µ2(t) = −µ1(t), φk(t) =
√
2 cos(2kπt)

for k = 1, . . . ,∞ and t ∈ [0, 1]), at least some µk’s can not be well described by {φj}∞j=1 and
thus FPCA based approaches might not be a good choice. This argument is substantiated
with simulated data in section 6.

There exist other functional classification approaches under different considerations.
To name a few, Ferraty and Vieu (2003) and Galeanoa et al. (2014) investigated distance-
based approaches, Hastie et al. (1995) and Araki et al. (2009) developed regularized ap-
proaches, Epifanio (2008) proposed an approach to classify functional shapes, and Delaigle and Hall
(2013) developed a functional classification framework when the observations were frag-
ments of curves.

In a general c-category classification problem, at most (c−1) projections in SB are useful
for functional LDA. Merely considering the information in SB is insufficient, as reducing
the within-class variation is equivalently important. With this in mind and to properly
handle the noninvertibility issue of ΓW , we propose a sensible classification approach to
find projections in P⊥

W (SB) and in PW (SB) sequentially, where PW (SB) (resp. P⊥
W (SB)) is

the projection of SB on SW (resp. S⊥
W , the orthogonal complement of SW ). Most existing

approaches do not appear to appreciate that the optimal linear projections could be a set
of the projections obtained in P⊥

W (SB) and in PW (SB); this may be because it suffices
to consider projections in either P⊥

W (SB) or PW (SB) for binary classification problems.
Accordingly, our procedure is more general.

Despite the difference in sampling schemes, functional data and longitudinal data come
from similar sources. Therefore, it is practical to develop unified approaches for them (e.g.,
Müller (2005), Hall et al. (2006), Jiang and Wang (2010), etc.). James and Hastie (2001)
employed natural cubic splines to tackle the problem of sparsity. Wu and Liu (2013) applied
the FPCA approach proposed in Yao et al. (2005) to reconstruct sparsely observed longi-
tudinal data and performed robust support vector machine (SVM) on the reconstructed
curves. This strategy leads to the same predicament as other FPCA based approaches
mentioned earlier. The major challenge in extending Fisher’s LDA to longitudinal data is
to perform classification on a new subject with longitudinal observations. The sparsity and
irregularity of the observations make the projections difficult. We propose an imputation
approach based on a conditional expectation technique (in section 5) to resolve the sparsity
issue without losing the subtle information about the mean functions.

The rest of this paper proceeds as follows. In the next section, the motivation and the
framework of sFLDA are introduced. The proposed estimators and their asymptotic prop-
erties are provided in sections 3 and 4, respectively. We propose an imputation approach
for longitudinal data while performing projections in section 5. In section 6, simulation
studies under three data configurations are conducted. In section 7, our approach, along
with some competitors, is applied to two real data examples. Conclusions are given in
the last section. Appendices include the assumptions made for the asymptotics, the leave-
one-curve-out cross-validation (CV) formulae of bandwidth selections, and some details for
Section 2.1. All the proofs are contained in the supplementary material.
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2 Method

Let us elucidate our idea through the following example, where we aim to find the opti-
mal projections, β’s, for subsequent classification. For convenience, we denote 〈β,X〉 =
∫

T
β(t)X(t)dt.

Example 2.1 Suppose the data in class k is generated from

Xk,i(t) = µk(t) +

∞
∑

j=1

Ak,i,jφj(t),

where φj(t) =
√
2 sin(2πjt), t ∈ [0, 1], Ak,i,j ∼ N(0, 1/j2), and i = 1, . . . , nk.

Case (a): µ1(t) =
√
2 sin(2πt), µ2(t) = 0;

Case (b): µ1(t) =
√
2 cos(2πt), µ2(t) = 0;

Case (c): µ1(t) =
√
2 sin(2πt), µ2(t) =

√
2 cos(2πt), µ3(t) = 0.

The first two cases are simple binary problems. Case (a) corresponds to the situation where
SB ⊆ SW , and β(t) =

√
2 sin(2πt) is the optimal projection for functional LDA. Case (b)

is a typical instance where SW ⊥ SB. The optimal projection is β∗(t) =
√
2 cos(2πt) ∈ SB

as perfect classification can be achieved. Specifically, 〈β∗, X1,i〉 = 1 and 〈β∗, X2,i〉 = 0 for
all i = 1, . . . , nk, where nk is the number of functions in class k. Case (c) combines the
situations considered in cases (a) and (b). β ∈ PW (SB) (resp. β∗ ∈ P⊥

W (SB)) can be used
to separate the curves in class 2 (resp. 1) from those in the other two classes. Between
these two projections, β∗ is more informative for classification as β∗ can completely separate
the curves in class 2 from those of the other two classes. Specifically, 〈β∗, X2,i〉 = 1 and
〈β∗, X1,i〉 = 〈β∗, X3,i〉 = 0 for all i = 1, . . . , nk. This example shows that both SW and S⊥

W

are helpful for classification and β in P⊥
W (SB) is more informative.

Since the information in both SB and SW is essential to identify β’s and generally SB *
SW , we consider finding β’s in P⊥

W (SB) and in PW (SB) sequentially. We first consider β’s
in P⊥

W (SB) because they can lead to asymptotically perfect classification (see Theorem 4.4
for details). Without loss of generality, we let the global mean µ =

∑c
k=1 πkµk = 0, where

πk is the probability that a randomly selected function X is from class k and
∑c

k=1 πk = 1.
So, the between covariance

ΓB(s, t) =

c
∑

k=1

πk{µk(s)− µ(s)}{µk(t)− µ(t)}

=

c
∑

k=1

πkµk(s)µk(t),

for s, t ∈ T . In practice, πk is unknown and we estimate it with nk/
∑c

i=1 ni. For conve-
nience, we denote Γβ =

∫

T
Γ(s, t)β(t)dt.
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2.1 sFLDA

Specifically, sFLDA is defined as finding the optimal projections,

β1 = argmax
β∈P⊥

W
(SB),

〈β,ΓBβ〉, and

βj = argmax
β∈P⊥

W
(SB),〈β,βi〉=0 for i<j

〈β,ΓBβ〉

for j = 2, . . . , c′; (2.1)

βc′+1 = argmax
β∈PW (SB)

〈β,ΓBβ〉
〈β,ΓWβ〉

, and

βc′+j = argmax
β∈PW (SB),〈β,βc′+i〉=0 for i<j

〈β,ΓBβ〉
〈β,ΓWβ〉

for j = 2, . . . , c′′, (2.2)

where ‖β‖ = 1, c′ (resp. c′′) is the dimension of P⊥
W (SB) (resp. PW (SB)), and both c′ and

c′′ are unknown in practice. These β’s are optimal in the sense that (i) when SB ⊥ SW ,
asymptotically perfect classification can be achieved, and (ii) when SB ⊂ SW , they are
the optimal projections of functional LDA. To identify {βi}c

′

i=1, we introduce a symmetric
non-negative definite kernel

ΓB\W (s, t) =
c

∑

k=1

πkrk(s)rk(t), (2.3)

where rk(t) = µk(t)−
∑∞

j=1〈µk, φj〉φj(t). rk is the projection of µk on S⊥
W and rk ∈ P⊥

W (SB).
By Mercer’s Theorem,

ΓB\W (s, t) =

c′
∑

j=1

ηjψj(s)ψj(t), (2.4)

where ψj is the jth eigenfunction of ΓB\W with corresponding eigenvalue ηj > 0 in descend-
ing order. Simple calculations (see Appendix C for detail) lead to βj = ψj for j = 1, . . . , c′,
where c′ ≤ c− 1.

Next, we look for {βi}c
′+c′′

i=c′+1 in PW (SB). Similar to (2.3)–(2.4), we define another
symmetric non-negative definite kernel

ΓBW (s, t) =
c

∑

k=1

πkr
∗
k(s)r

∗
k(t), (2.5)

where r∗k(t) = µk(t)− rk(t). r
∗
k is the projection of µk on SW , and r∗k ∈ PW (SB). Again, by

Mercer’s Theorem,

ΓBW (s, t) =

c′′
∑

j=1

η∗jψ
∗
j (s)ψ

∗
j (t), (2.6)
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where η∗j > 0 is the jth eigenvalue in descending order with corresponding eigenfunction

ψ∗
j (t) and c′′ ≤ c − 1. Since β(t) =

∑c′′

i=1 aiψ
∗
i (t) for some constant a = (a1, . . . , ac′′)

T ,

obtaining {βj}c
′+c′′

j=c′+1 in (2.2) becomes equivalent to solving the eigenequation

Ω−1
W ΩBa = ζa, (2.7)

where ‖a‖ = 1, ΩB = diag(η∗1, . . . , η
∗
c′′), and the element in ith row and jth column of ΩW is

〈ψ∗
j ,ΓWψ

∗
j 〉. The equivalence is detailed in Appendix C. Consequently, the noninvertibility

issue of ΓW is avoided and finding {βi}c
′+c′′

i=c′+1 is streamlined to a multivariate problem (2.7).

When {βi}c
′+c′′

i=1 are available, one could apply any classifiers on the projections to per-
form classification. For illustration purposes and simplicity, we employ the nearest centroid
classifier in our analysis.

2.2 Special Cases

When SB ⊥ SW , only βi’s in (2.1) are considered and asymptotically perfect discrimination
can be achieved (shown in Theorem 4.4), and case (b) in Example 2.1 is an artificial example
with c = 2.

When SB ⊆ SW , only βi’s in (2.2) are considered and most existing functional LDA ap-
proaches were developed under this specific situation. For example, (2.3) in Delaigle and Hall
(2012) implies that SB ⊆ SW is considered, and the authors showed that these βi’s can
lead to asymptotically perfect classification for binary classification problems under some
conditions. However, (2.7) is computationally not only easier but more efficient as the eigen-
functions of ΓW irrelevant to SB are filtered out in (2.7). A typical example of SB ⊆ SW is
the multiplicative random effect model, where the mean function is proportional to one of
the eigenfunctions, e.g., Jiang et al. (2009). Further, Case (a) in Example 2.1 is an artificial
example with c = 2.

Note that when SB 6⊆ SW and c = 2, only one β in P⊥
W (SB) is considered. Specifi-

cally, sFLDA identifies β via (2.1) with c′ = 1 and asymptotically perfect classification is
expected.

3 Estimation

Let yk,ij be the j-th observation of subject i in class k made at tk,ij, for j = 1, . . . , mk,i,
i = 1, . . . , nk, and k = 1, . . . , c. Specifically,

yk,ij = Xk,i(tk,ij) + ǫk,ij,

where Xk,i is defined as in (1.2), and ǫk,ij is the measurement error with mean zero and
variance σ2 and is independent from all other random variables. The mean function for
class k can be estimated by applying any one dimensional smoother to {(yk,ij, tk,ij)|1 ≤ j ≤
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mk,i, 1 ≤ i ≤ nk}. Take the local linear smoother for example,

µ̂k(t) =b̂0, where for b̂ = (b̂0, b̂1), (3.1)

b̂ =argmin
b

nk
∑

i=1

1

mk,ihk

mk,i
∑

j=1

K(
t− tk,ij
hk

)× {Yk,ij − b0 − b1(tk,ij − t)}2,

hk is the bandwidth and K(·) is the kernel function. The within covariance function
ΓW can be estimated by applying a two dimensional smoother to {(Rk,i,j,ℓ, tk,ij, tk,iℓ)|k =
1, . . . , c; i = 1, . . . , nk; 1 ≤ j 6= ℓ ≤ mk,i}, where Rk,i,j,ℓ = yCk,ijy

C
k,iℓ and y

C
k,ij = yk,ij−µ̂k(tk,ij).

Take the two dimensional local linear smoother for example,

Γ̂W (s, t) = b̂0, where for b̂ = (b̂0, b̂1, b̂2), (3.2)

b̂ = argmin
b

c
∑

k=1

nk
∑

i=1

1

mk,i(mk,i − 1)h2W

×
∑

1≤j 6=ℓ≤mk,i

K(
s− tk,ij
hW

)K(
t− tk,iℓ
hW

)

× {Rk,i,j,ℓ − b0 − b1(tk,ij − s)− b2(tk,iℓ − t)}2.

The bandwidths of µ̂k’s and that of Γ̂W in our numerical analyses are selected via leave-one-
curve-out CV, and the formulae are provided in Appendix B. To estimate σ2, we employ
the approach in Yao et al. (2005) and denote it as σ̂2. Details are omitted to save space.
We obtain λ̂i’s and φ̂i’s by applying an eigendecomposition to Γ̂W .

3.1 Estimating β1, . . . , βc′

To estimate {βi}c
′

i=1, we suggest performing an eigendecomposition on

Γ̂B\W (s, t) =
c

∑

k=1

nk
n
r̂k(s)r̂k(t), (3.3)

where r̂k(t) = µ̂k(t)−
∑L

j=1〈µ̂k, φ̂j〉φ̂j(t), for {ψ̂i}c
′

i=1 as well as {β̂i}c′i=1. Both L and c′ are
selected by fraction of variation explained (FVE). Specifically,

L = argmin
1≤ℓ<∞

∑ℓ
i=1 λ̂i

∑

i λ̂i
≥ P1, and

c′ = argmin
1≤ℓ≤c−1

∑ℓ
i=1 η̂i

∑

i η̂i
≥ P2,

where λ̂i (resp. η̂i) is the i-th eigenvalue of Γ̂W (resp. Γ̂B\W ), and 0 < P1,P2 ≤ 1.
In general, the threshold P is chosen to be 80% or 85% in FPCA; however, we choose

95% to select both L and c′ in our analyses to prevent accidentally excluding the information
about SB in P⊥

W (SB) or including the information about SW in P⊥
W (SB). Consider a general
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case where SB 6⊆ SW . Empirically, the estimated SW , denoted as ŜW , is spanned by {φ̂i}Li=1.
When the selected L is too large, some unreliable φ̂i’s are used to estimate SW . Let
{φ̂i}Li=L−d+1 be these unreliable estimates, where d is some positive integer. If {φ̂i}Li=L−d+1

is orthogonal to SB, the subsequent classification remains unchanged as r̂k’s are not affected
due to 〈µ̂k, φ̂j〉 = O(h2k + δnk,1(hk)) for L − d < j ≤ L by (4.1). However, if {φ̂i}Li=L−d+1

is not orthogonal to SB, which certainly is possible, the subsequent classification tends to
be corrupted as some of the information about β’s in the r̂k’s might be removed due to
〈µ̂k, φ̂j〉 = 〈µk, φ̂j〉 + O(h2k + δnk,1(hk)) and 〈µk, φ̂j〉 6→ 0 for L − d < j ≤ L. When the
selected L is too small, r̂k’s tend not to be orthogonal to SW . However, since the number of
β’s can be smaller than the dimension of ΓB\W , it is possible that β̂’s are orthogonal to SW .
When this happens, asymptotically perfect classification can still be achieved. However,
if those β’s are not orthogonal to SW , asymptotically perfect classification might not be
achieved as the projections of different classes might not be well separated from each other.
So, we need a criterion to select L properly and our empirical experience indicates that
FVE is a good choice. Furthermore, FVE is computationally simple and fast and free of
model assumptions.

3.2 Estimating βc′+1, . . . , βc′+c′′

Similarly to estimating {βi}c′i=1, we first estimate ΓBW by

Γ̂BW (s, t) =
c

∑

k=1

nk
n
r̂∗k(s)r̂

∗
k(t), (3.4)

where r̂∗k(t) = µ̂k(t)− r̂k(t). The estimated eigenfunctions ψ̂∗
i (t)’s and estimated eigenvalues

η̂∗i ’s are obtained by applying an eigendecomposition to Γ̂BW . Again, c′′ is selected by FVE
with threshold 95%.
Ω̂B = diag(η̂∗1, . . . , η̂

∗
c′′) and the element in ith row and jth column of Ω̂W is 〈ψ̂∗

i , Γ̂W ψ̂
∗
j 〉.

Therefore, β̂(t) =
∑c′′

i=1 âiψ̂
∗
i (t), where (â1, . . . , âc′′)

T is obtained by solving (2.7), where ΩW
and ΩB are replaced with Ω̂W and Ω̂B, respectively. Given c′′ ≤ (c− 1), letting c′′ = c− 1
may not be particularly detrimental to results; however, it is not necessary to include those
ψ̂∗
j ’s corresponding to very small η̂∗j ’s as they are not reliable when performing classification.

That is the main reason that only a truncated number of estimated eigenfunctions are used.

3.3 Cases where c′ = c− 1

When SB 6⊥ SW and SB 6⊥ S⊥
W , our procedure estimates the optimal set {βj}c

′+c′′

j=1 by
both (2.1) and (2.2). However, ΓB\W is theoretically zero when SB ⊆ SW , but in practice

Γ̂B\W is a random matrix and has (c − 1) non-zero eigenvalues due to random noise.
Consequently, when c′ = (c− 1), the true case (SB ⊆ SW or SB ⊥ SW ) needs to be further
clarified. Our empirical experience indicates that q-fold CV works well. Specifically, we
first randomly divide the training sample into q groups. Each time one group is used as
the testing sample while the remaining (q−1) groups are applied to perform sFLDA under
both cases. The procedure is repeated q times and the decision is made by comparing the
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overall misclassification rates. The choice of q depends on the sample size, the number
of observations per subject and available time for computation. Our experience indicates
that q = 5 is acceptable in our analysis. However, a larger q definitely can help reduce the
model misspecification rate and thus the misclassification rate as more samples are used.
Please see the supplement for details.

3.4 Alogrithm

The sFLDA procedures can be summarized as Algorithm 1 and the MATLAB code of
sFLDA is available at https://github.com/chenlu-hung/SFLDA.

Algorithm 1 Steps to perform sFLDA.

Input: {(yk,ij, tk,ij) : 1 ≤ i ≤ nk, 1 ≤ j ≤ mk,i} for k = 1, . . . , c.

Output: β̂1, . . . , β̂c′+c′′.
1: Perform an eigendecomposition to Γ̂B\W (3.3) to obtain β̂1, . . . , β̂c′, where c

′ is decided
by FVE. (Section 3.1 )

2: if c′ < c− 1 (i.e. SB 6⊥ SW and SB 6⊥ S⊥
W ) then

3: Perform an eigendecomposition to Γ̂BW (3.4) to obtain β̂c′+1, . . . , β̂c′+c′′, where c
′′ is

decided by FVE. (Section 3.2 )
4: else
5: Use q-fold CV to determine whether SB ⊥ SW or SB ⊆ SW . (Section 3.3 )
6: if SB ⊥ SW then
7: Set c′′ = 0.
8: else
9: Set c′ = 0 and Perform an eigendecomposition to Γ̂BW (3.4) to obtain β̂1, . . . , β̂c′′ ,

where c′′ is decided by FVE. (Section 3.2 )
10: end if
11: end if

4 Asymptotics

Before deriving the theoretical results of {β̂i}c
′+c′′

i=1 , we list some useful results from Li and Hsing

(2010). First, we define the jth harmonic mean of mk,i as γnk,j =
(

n−1
k

∑nk

i=1 1/m
j
k,i

)−1
,

δn,1(h) = max
1≤k≤c

[{1 + 1/(hkγnk,1)} lognk/nk]
1/2 , and

δn,2(h) = max
1≤k≤c

[

{1 + 1/(hkγnk,1) + 1/(h2kγnk,2)}

lognk/nk
]1/2

.

Li and Hsing (2010) showed that under Assumptions A.1–A.4,

sup
t∈T

|µ̂k(t)− µk(t)| = O(h2k + δnk,1(hk)) a.s. (4.1)

9
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for k = 1, . . . , c and that under Assumptions A.1–A.6,

sup
s,t∈T

|Γ̂W (s, t)− ΓW (s, t)| = O(h2 + δn,1(h) + h2W + δn2(hW )) a.s..

We assume that nk’s are of the same order, and thus it is reasonable to have hk’s of the
same order, h. If the order of h1 is smaller or equal to that of h2, we denote it as h1 / h2.

Note that L could be a slowly divergent sequence Ln and similar arguments have been
made in Hall and Hosseini-Nasab (2006) and Hall et al. (2006). Specifically, if we assume

λj > λj+1 > 0, E(A4
k,j) ≤ Cλ2j , and

λj − λj+1 ≥ C−1j−(a1+1) for a1 ≥ 1,
(4.2)

we can provide a sufficient condition of L:

as n→ ∞, La1+2(δn2(hW ) + h2W ) → 0, (4.3)

where (δn2(hW ) + h2W ) is the L2 convergence rate of Γ̂W (if h / hW ). A similar argument
about L based on similar assumptions can be found in Yao et al. (2015).

4.1 Asymptotic Properties of β̂1, . . . , β̂c′+c′′

To show the convergence rate of β̂1, . . . , β̂c′+c′′, we need those of Γ̂B\W , Γ̂BW , Ω̂B and Ω̂W .

First, we show the convergence rate of Γ̂B\W . Due to (3.3), we could instead show the
convergence rate of r̂k, which depends on the decay order of 〈µk, φi〉 to ensure convergence.
So, we assume 〈µk, φi〉 ≤ Di−α for some D > 0 and α > 1, and similar arguments can be
found in Hall and Horowitz (2007). For notation convenience, let

∆n = L2a1+3{h4 + δ2n,1(h) + h4W + δ2n,2(hW )}+ L−(2α−1).

First, we can obtain the following theorem about r̂k and Γ̂B\W .

Theorem 4.1 Under Assumptions A.1–A.7,

‖r̂k − rk‖2 = O(∆n) a.s. for k = 1, . . . , c;

‖Γ̂B\W − ΓB\W‖2 = O(∆n) a.s..

Similarly, we can have the following theorem about r̂∗k and Γ̂BW .

Theorem 4.2 Under Assumptions A.1–A.7,

‖r̂∗k − r∗k‖2 = O(∆n) a.s. for k = 1, . . . , c;

‖Γ̂BW − ΓBW‖2 = O(∆n) a.s..

Simple calculations and Theorem 4.2 lead to
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Theorem 4.3 Under Assumptions A.1–A.7,

‖Ω̂B − ΩB‖2 = O (∆n) a.s., and

‖Ω̂W − ΩW‖2 = O (∆n) a.s..

The asymptotic properties of {β̂j}c′j=1 and {β̂j}c
′+c′′

j=c′+1 can be obtained by applying per-
turbation theory to Theorems 4.1 and 4.3, respectively. Thus, the corollary follows.

Corollary 4.1 Under Assumptions A.1–A.7 and that nonzero ηj’s are distinct, for 1 ≤
j ≤ (c′ + c′′),

sup
t∈T

|β̂j(t)− βj(t)| = O(
√

∆n) a.s.. (4.4)

Under different sampling schemes, for 1 ≤ j ≤ (c′ + c′′),

• longitudinal data (i.e.,mk,i <∞),

supt∈T |β̂j(t)− βj(t)| = O(La1+3/2{h2 + ( logn
nh

)1/2 + h2W + ( logn
nhW

)1/2}+ L−(α−1/2)) a.s.

• functional data (i.e.,mk,i '
1
h
→ ∞),

supt∈T |β̂j(t)− βj(t)| = O(La1+3/2{h2 + h2W + ( logn
n

)1/2}+ L−(α−1/2)) a.s..

4.2 Asymptotically Perfect Discrimination

To show the asymptotically perfect classification property, we consider the case where
c′′ = 0, i.e., all βi’s are in P⊥

W (SB), for illustration purposes as Delaigle and Hall (2012) has
shown that when SB ⊂ SW , asymptotically perfect classification can be achieved for binary
problems under certain conditions. Suppose the function Y to be classified is observed at
(t1, . . . , tm) with unknown class label κ and Y is further contaminated with measurement
error. Specifically, Y (ti) = Xκ(ti) + ǫ for i = 1, . . . , m, and ǫ is i.i.d. measurement error
with mean zero and finite variance σ2. Denote νk = (〈β1, µk〉, . . . , 〈βc′, µk〉)T for 1 ≤ k ≤ c
and ν̂ = (〈β̂1, Y 〉, . . . , 〈β̂c′, Y 〉)T .

Theorem 4.4 Under conditions listed in Theorem 4.1, we have

‖ν̂ − νκ‖2 = O

(

∆n +
logm

m

)

a.s.,

and if further min1≤i≤c;i 6=κ ‖νκ − νi‖2 > C
(

∆n +
logm
m

)

for some C > 0,

κ = argmin
1≤i≤c

‖ν̂ − νi‖ a.s.. (4.5)

Theorem 4.4 indicates that when all βi’s are in P⊥
W (SB), the projection of Y , ν̂, will

converge to νκ when n and m are large enough. Moreover, if νκ and the other νi’s are not
very close, the class label of Y can be correctly classified by employing any nearest centroid
based classifier.
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5 Imputation Approach for Longitudinal Data

The above mentioned estimators are applicable to both functional and longitudinal data.
With {β̂j}c

′+c′′

j=1 , having LDA projections for a subject with dense observations for subse-
quent classification is not difficult. However, the projection is nontrivial for a new subject
with sparse observations. One might consider employing the FPCA approach in Yao et al.
(2005) to first reconstruct the curve and perform projections later. However, doing so causes
some potential risks. When the magnitude of mean functions is relatively small compared
to the first few eigenvalues of ΓW and SB ⊥ SW , the true mean function will never be well
preserved through the FPCA reconstruction. Take a binary classification problem for ex-
ample: for t ∈ [0, 1], µ1(t) = sin(2πt)/10, µ2(t) = − sin(2πt)/10, and φk(t) =

√
2 cos(2πkt)

and λk = 2/k for k = 1, . . . , 10. In the pooled covariance function, sin(2πt) corresponds to
the smallest eigenvalue, which is too small to be picked up in practice. Thus, the informa-
tion about the mean function is lost in the FPCA reconstruction. Therefore, we propose
an imputation approach to predict the projections.

For the projection of a new subject i from unknown class k, we consider

E(〈β,Xk,i〉|yNk,i) = 〈β, E(Xk,i|yNk,i)〉, (5.1)

where yNk,i = (yNk,i1, . . . , y
N
k,imi

)T and

E(Xk,i|yNk,i) =
c

∑

j=1

E(1(j=k)|yNk,i)
{

µj(t) +

∞
∑

ℓ=1

Aj,iℓφℓ(t)

}

.

The estimators of µj and φℓ have been detailed earlier. Given the class label j, the PCS

Aj,iℓ can be predicted by PACE (Yao et al., 2005) and denoted as Âj,iℓ. We estimate
E(1(j=k)|yNk,i) by a pseudo-likelihood approach, which may seem a little ad hoc; however,
it works well in general because it can preserve the mean functions that may not be repre-
sented through the FPCA reconstruction, as we mentioned earlier. Specifically,

Ê(1(k=j)|yNk,i) =
(nj/n)fj(y

N
k,i)

∑c
j=1(nj/n)fj(y

N
j,i)
, (5.2)

where fk(y
N
j,i) ∝ exp{−(yNj,i−µ̂k,i)

T Γ̂−1
W,k,i(y

N
j,i−µ̂k,i)}, µ̂k,i = µ̂k(Tk,i), Tk,i = (tk,i1, . . . , tk,imi

)T ,

and Γ̂W,k,i =
∑L

ℓ=1 λ̂ℓφ̂ℓ(Tk,i)φ̂ℓ(Tk,i)
T + σ̂2Imi×mi

.
To sum up, the projection is predicted by

〈β̂, Ê(Xk,i|yNk,i)〉 =
c

∑

j=1

Ê(1(j=k)|yNk,i)
{

〈β̂, µ̂j〉+
L
∑

ℓ=1

Âj,iℓ〈β̂, φ̂ℓ〉
}

.

6 Simulation Studies

Here we investigate the empirical performance of sFLDA by conducting simulation studies
with three different cases on the structure of the mean function. The data is generated
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from

yk,i(t) = µk(t) +

10
∑

j=1

Ak,i,jφj(t) + ǫ, for k = 1, 2, 3,

where φj(t) = sin(2πjt), t ∈ [0, 1], Ak,i,j ∼ N(0, 1/j2), and ǫ
i.i.d.∼ N(0, 1/112). We still

consider the same mean structures as follows:

(a) µ1(t) = sin(2πt), µ2(t) = sin(4πt), and µ3(t) = 0;

(b) µ1(t) = sin(2πt), µ2(t) = sin(2πt) + 1
4
cos(2πt), and µ3(t) = 0;

(c) µ1(t) =
1
5
cos(2πt), µ2(t) =

1
5
cos(4πt), and µ3(t) = 0.

For each case, we generate 300 random trajectories (100 per k) as a training set and an
additional 300 random trajectories (100 per k) as the testing sample for both functional
and longitudinal cases. The functional observations are made on a grid of 200 equispaced
points on [0, 1] for each subject. For longitudinal data, we randomly select 2 to 10 dif-
ferent observation times from the 200 equispaced points with equal probabilities for each
subject. The sFLDA is compared with several widely used methods, including spline-based
LDA (FLDA, James and Hastie (2001)), FPCA+LDA (Müller, 2005), and penalized PLS
(PPLS, Krämer et al. (2008)). Note that the PLS proposed in Delaigle and Hall (2012)
is for binary classification and is not directly applicable for a general c-category problem.
Thus, we compare sFLDA with PPLS instead. The R code for FLDA is adapted from
the author’s website; the MATLAB package “PACE” (Yao et al., 2005) and the R package
“ppls” (Krämer et al., 2008) are employed to perform FPCA and PPLS, respectively. Each
experiment consists of 100 runs. All the tuning parameters of the compared approaches (if
any) are selected via leave-one-curve-out CV.

Next, we elaborate why these three cases are considered. Case (a) considers the situation
where SB ⊆ SW , in which SB can be well-represented by the first two eigenfunctions, and
thus both FPCA+LDA and sFLDA are expected to perform relatively well. In case (b),
the mean functions can not be fully represented by the eigenfunctions. This implies that
both SW and S⊥

W are informative, but not sufficient, for discrimination. Case (c) is a
typical example where SW ⊥ SB. Since the variation between the mean functions is much
smaller than the first few eigenvalues, performing FPCA results in the loss of considerable
information for discrimination; thus, FPCA+LDA acts similarly to a random guess in this
case.

Table 1: Classification error rates (%) for functional data under three simulation settings.
Case FLDA FPCA+LDA PPLS sFLDA
(a) 46.1± 4.0 33.3± 3.1 53.1± 3.5 33.0± 3.1
(b) 42.2± 4.9 53.5± 2.6 55.5± 2.8 23.3± 3.0
(c) 12.5± 13.0 66.0± 3.1 3.3± 10.0 0± 0.0

The results of the simulated functional data are summarized in Table 1, indicating
sFLDA works very well for all three cases. As expected, FPCA+LDA performs similarly
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to sFLDA and both outperform the other two methods in case (a). In case (b), sFLDA
significantly outperforms all the other approaches. In case (c), sFLDA does achieve asymp-
totically perfect classification as expected. PPLS and FLDA perform much better than
FPCA+LDA. As mentioned earlier, FPCA+LDA acts like a random guess as crucial in-
formation is lost for discrimination in the FPCA step.

Although one can always reconstruct longitudinal data, the classification results highly
depend on the reconstruction quality and generally are not better than those based on func-
tional data. So, we simply compare sFLDA with the approaches designed for longitudinal
data, i.e., FLDA, FPCA+LDA and FPCA+SVM (Wu and Liu, 2013). The results are
summarized in Table 2. FPCA+LDA, FPCA+SVM and sFLDA have similar performance
and all outperform FLDA in case (a). sFLDA significantly (resp. slightly) outperforms
FPCA+LDA and FPCA+SVM in case (b) (resp. (c)). When the number of observa-
tions per subject increases, the performance of sFLDA improves dramatically. However,
FPCA+LDA and FPCA+SVM do not perform significantly better with the increase in
mk,i. Please refer to Table 3 in the supplement and Table 1 for more details. Generally,
FLDA does not perform well in all three cases. Comparing Table 2 with Table 1, FLDA,
FPCA+LDA, and sFLDA perform similarly or worse due to fewer observations. Table 2
also provides the error rates under correctly specified scenario (Oracle) and the number of
incorrect decisions made by q-fold CV. As expected, q-fold CV does not perform well in
case (b) due to the mean functions only being partially represented by the eigenfunctions of
ΓW while additional useful information is contained in S⊥

W . This complex model structure
makes the model selection quite challenging, especially for sparsely and irregularly observed
longitudinal data. However, q = 5 appears to work nicely as the sFLDA misclassification
rates are very close to those under Oracle.

Table 2: Classification error rates (%) for longitudinal data under three simulation settings,
where M/M stands for model misspecification rate out of 100 runs due to performing q-fold
CV.

Case FLDA FPCA+LDA FPCA+SVM sFLDA M/M Oracle
(a) 44.9± 2.9 38.4± 2.7 38.6± 2.7 37.5± 2.8 25 37.0± 2.8
(b) 55.6± 2.6 57.3± 3.7 57.1± 3.6 46.1± 3.3 83 46.2± 3.9
(c) 59.3± 3.9 60.7± 4.7 60.1± 4.8 54.0± 5.0 5 54.4± 4.5

7 Data Analysis

Two real data examples under different configurations are considered. For the functional
dataset, we compare sFLDA with FLDA, FPCA+LDA and PPLS. For the longitudinal
dataset, sFLDA is compared with FLDA, FPCA+LDA, FPCA+SVM and PPLS. As PPLS
is not designed for longitudinal data, we reconstruct the latent trajectories by the imputa-
tion approach in Section 5 and perform PPLS to the reconstructed curves. All the tuning
parameters for the existing approaches (if any) are selected by leave-one-curve-out CV.
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Table 3: Misclassification rates (mean±std%) of Phoneme dataset.
n FLDA FPCA+LDA PPLS sFLDA
50 13.8± 0.6 16.3± 0.7 10.0± 0.5 9.0± 0.5
100 11.8± 0.4 16.3± 0.6 9.7± 0.5 7.8± 0.5

7.1 Functional Data

The phoneme dataset (available at http://statweb.stanford.edu/~tibs/ElemStatLearn/)
is used here. The dataset consists of 4509 speech frames (transformed into log-periodogram
of length 256) of five phonemes (872 frames for “she”, 757 frames for “dark”, 1163 frames for
the vowel in “she”, 695 frames for the vowel in “dark”, and 1022 frames for the first vowel
in “water”). To evaluate the performance of different approaches, we split the dataset into
training and testing sets 100 times. In each split, we randomly select n log-periodogram
samples per phoneme for training, and the remaining ones are for testing. The misclassifi-
cation rates of different approaches with different training sample size n are summarized in
Table 3, indicating sFLDA outperforms all the other approaches, and PPLS works better
than FLDA and FPCA+LDA. Our algorithm selects three LDA directions from (2.1) and
one from (2.2). This suggests that SB 6⊆ SW may be more suitable for this data. This
dataset further demonstrates the advantage of our approach for multi-category classifica-
tion, where the LDA directions may be in a combination of (2.1) and (2.2).

7.2 Longitudinal Data

The relative spinal bone mineral density dataset (Bachrach et al. (1999), available at
http://statweb.stanford.edu/~tibs/ElemStatLearn) is considered. The measurements
were made on 154 North American adolescents with 70 male and 84 female children. The
observation yk,i,j represents the relative spinal bone mineral density for child i measured at
age tk,i,j. The measured densities are shown in Figure 1, with females in red (dot-dashed)
and males in blue (dashed). Even though females and males have different development
patterns (e.g. females develop earlier than males), the development also varies from subject
to subject, which makes the classification difficult.

The leave-one-out misclassification rates of sFLDA, FPCA+LDA, FPCA+SVM, PPLS
and FLDA are 29.2%, 30.1%, 30.1%, 33.1% and 35.7%, respectively. The first three ap-
proaches perform similarly and all slightly outperform FLDA and PPLS. FPCA+LDA
works better than PPLS, which suggests that the scenario SB ⊆ SW is more appropriate
for this case. Our algorithm selects the LDA direction through (2.2) and has the lowest
misclassification rate.

8 Conclusions

We have proposed sFLDA for both functional data and longitudinal data to find the optimal
LDA projections β’s in P⊥

W (SB) and PW (SB) sequentially. Theoretically, one could follow
the technique in He et al. (2003) to tackle the noninvertibility issue of ΓW while extending
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Figure 1: Bone densities measured on 154 North American adolescents (blue dot-dashed:
male; red dashed: female).

LDA to functional data directly. However, our strategy through (2.7) is more appealing in
that not only is the noninvertibility issue avoided but it is computationally easier. We have
also investigated the asymptotic properties of the proposed estimators. When all the β’s are
in P⊥

W (SB), we have shown that sFLDA can achieve asymptotically perfect discrimination
when a nearest centroid classifier is applied to the projected data.

The framework of sFLDA was developed under the LDA settings, where the covariance
functions among classes are identical. When the covariance structures among groups are
different, a few functional approaches based on the idea of quadratic discriminant analysis
have been proposed, such as James and Hastie (2001), and Delaigle and Hall (2012). Ex-
tending sFLDA for such general cases requires a more sophisticated procedure as the space
spanned by the eigenfunctions becomes much more complicated. We have been working on
this general problem with a completely different strategy and this remains an interesting
direction for future work.

Although sFLDA originates from extending Fisher’s LDA to its functional version, it
also works well empirically on high dimensional (HD) multivariate data classification (please
see the supplement for details). Note that (3.1) and (3.2) can simply be replaced with other
empirical estimates as no smoothing is needed in HD data. SVM is one of the best classifi-
cation approaches and is also the most widely used for HD data classification; however, it
requires lots of computational effort due to its complex quadratic computational algorithm
and the need to select tuning parameters. The computational burden becomes serious as
the data dimension and the sample size increases, which has particular relevance in the big
data era. Our numerical investigations have shown that sFLDA with less computational
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cost still yields comparable performance with SVM, especially when the sample size is mod-
erately large. Therefore, the proposed approach seems quite competitive and promising in
this era of big data.
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A Assumptions

Since the estimators µ̂k(t) and Γ̂W (s, t) are estimated by local linear smoothers, it is natural
to make the standard smoothness assumptions on the second derivatives of µk and ΓW . It
is assumed that in class k, the data (Ti,Yk,i), i = 1, · · · , nk, have the same distribution,
where Tk,i = (Tk,i1, · · · , Tk,imk,i

) and Yk,i = (Yk,i1, · · · , Yk,imk,i
). Notice that (Tk,ij, Yk,ij)

and (Tk,iℓ, Yk,iℓ) are dependent but identically distributed. Assume the density of time
at observation to be g(t). Suppose Yk,ij = µk(Tk,ij) + Uk,ij, where cov(Ui(s), Ui(t)) =
ΓW (s, t) + σ2I(s = t) and ΓW (s, t) =

∑∞
ℓ=1 λℓφℓ(s)φℓ(t). Additional assumptions and

conditions are listed below and similar ones can be found in Li and Hsing (2010).

A.1 For some constant ∆t > 0 and ∆T <∞, ∆t ≤ g(t) ≤ ∆T for all t ∈ T . Further, g(·)
is differentiable with a bounded derivative.

A.2 The kernel function K(·) is a symmetric probability density function on [−1, 1] and

is of bounded variation on [−1, 1]. Further, we denote ν2 =
∫ 1

−1
u2K(u)du.

A.3 The mean function µk’s are twice differentiable and their second derivatives are
bounded.

A.4 E(|Uk,ij|λ) < ∞ and E(supt∈T |Xk(t)|δ) < ∞ for some δ ∈ (2,∞); hk → 0 and
(h2k/γn1)

−1(log nk/nk)
1−2/δ → 0 as nk → ∞.

A.5 All second-order partial derivatives of ΓW exist and are bounded on T × T .

A.6 E(|Uk,ij|2δφ) <∞ and E(supt∈T |Xk(t)|2δφ) <∞ for some δφ ∈ (2,∞); hW → 0 and
(h4W + h3W/γn1 + h2W/γn2)

−1(log n/n)1−2/δφ → 0 as n→ ∞.

A.7 〈µk, φi〉 ≤ Di−α for some positive constant D, where α > 1.
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B Bandwidth Selection

The bandwidths of µ̂k’s and that of Γ̂W are chosen via leave-one-curve-out CV as suggested
by Rice and Silverman (1991). Specifically,

hk = arg min
h∈R+

nk
∑

j=1

1

mk,j

mk,j
∑

ℓ=1

{

Yk,jℓ − µ̂
(−j)
k (tk,jℓ)

}2

,

where µ̂
(−j)
k (tk,jℓ) is the estimated µk(tk,jℓ) when h is the bandwidth and the observations

of the j-th curve are not used to estimate µk. Similarly, the bandwidth for ΓW is defined
as

hW =arg min
h∈R+

c
∑

k=1

nk
∑

j=1

1

mk,j(mk,j − 1)

∑

1≤ℓ1 6=ℓ2≤mk,j

{

Rk,j,ℓ1,ℓ2 − Γ̂
(−j)
W (tk,jℓ1, tk,jℓ2)

}2

,

where Γ̂
(−j)
W (tk,jℓ1, tk,jℓ2) is the estimated ΓW (tk,jℓ1, tk,jℓ2) when h is the bandwidth and

Rk,j,ℓ1,ℓ2’s of the j-th curve are not used to estimate ΓW .

C Some Details for Section 2.1

C.1 {βi}c
′

i=1 ∈ P⊥
W
(SB)

To show: βj = ψj for j = 1, . . . , c′

Note that µk(t) = rk(t)+r
∗
k(t) for t ∈ T , where rk ∈ P⊥

W (SB) and r∗k(t) =
∑∞

j=1〈µk, φj〉φj(t)
is in PW (SB). Simple calculations lead to ΓB = ΓB\W +Re, where

ΓB(s, t) =
c

∑

k=1

πkµk(s)µk(t), and

ΓB\W (s, t) =

c
∑

k=1

πkrk(s)rk(t).

Clearly, 〈β,ΓBβ〉 = 〈β,ΓB\Wβ〉 if β ∈ P⊥
W (SB). Therefore, βj = ψj .

C.2 {βi}c
′+c

′′

i=c′+1 ∈ PW (SB)

To show: β(t) =
∑c′′

i=1 aiψ
∗
i (t)

Since PW (SB) is the space spanned by {r∗k}ck=1 and ψ∗
i ’s are the eigenfunctions of ΓBW ,

a given β ∈ PW (SB) can be represented as β(t) =
∑c′′

i=1 aiψ
∗
i (t), where ai’s are basis

coefficients. Direct calculations lead to

〈β,ΓBWβ〉 = aTΩBa, (C.1)

and
〈β,ΓWβ〉 = aTΩWa. (C.2)
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Combining (C.1) and (C.2), (2.2) becomes

max
β∈PW (SB),‖β‖=1

〈β,ΓBβ〉
〈β,ΓWβ〉

= max
β=

∑c′′

i=1
aiψ∗

i ,‖β‖=1

〈β,ΓBβ〉
〈β,ΓWβ〉

= max
‖a‖=1

aTΩBa

aTΩWa
,

(C.3)

because 〈β,ΓBβ〉 = 〈β,ΓBWβ〉 when β ∈ PW (SB), and ‖β‖ = 1 implies ‖a‖ = 1. There-
fore, (2.2) is equivalent to (C.3). Since PW (SB) ⊆ SW , ΩW is nonsingular and thus in-
vertible. As a result, (C.3) is equivalent to (2.7). Once a is solved by (2.7), we have

β(t) =
∑c′′

i=1 aiψ
∗
i (t).
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