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Abstract

Multivariate categorical data are common in many fields. We are motivated by election polls studies assessing evi-

dence of changes in voters opinions with their candidates preferences in the 2016 United States Presidential primaries

or caucuses. Similar goals arise routinely in several applications, but current literature lacks a general methodology

which combines flexibility, efficiency, and tractability in testing for group differences in multivariate categorical data

at different—potentially complex—scales. We address this goal by leveraging a Bayesian representation which fac-

torizes the joint probability mass function for the group variable and the multivariate categorical data as the product of

the marginal probabilities for the groups, and the conditional probability mass function of the multivariate categorical

data, given the group membership. To enhance flexibility, we define the conditional probability mass function of the

multivariate categorical data via a group-dependent mixture of tensor factorizations, thus facilitating dimensionality

reduction and borrowing of information, while providing tractable procedures for computation, and accurate tests as-

sessing global and local group differences. We compare our methods with popular competitors, and discuss improved

performance in simulations and in American election polls studies.

Keywords: Bayesian hypothesis testing, Election poll, Multivariate categorical data, Tensor factorization

1. Introduction

Multivariate categorical data arise frequently in relevant fields of application. Notable examples include epidemi-

ology (e.g. Landis et al., 1988), psychology (e.g. Muthen and Christoffersson, 1981), social science (e.g. Santos et al.,

2015), and business intelligence (e.g. Bijmolt et al., 2004)—among others. In such settings it is increasingly common

to observe a vector of categorical responses for each subject, along with a qualitative variable indicating membership

to a specific group. For example, in psychological studies a vector of categorical traits is typically measured for each

individual, and the focus is on studying differences in these traits across groups, such as gender or level of education

(e.g. Shao et al., 2014). We are specifically motivated by election polls studies measuring changes in voters opinions

with their preferences for the Presidential candidates, expressed in the primaries or caucuses of the 2016 United States
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Table 1: Opinions on several political topics collected from voters during the 2016 American national elections, along with their preference for
Hillary Clinton or Bernie Sanders in the 2016 Democratic Presidential primaries.

VOTER 15 VOTER 16 . . .
Vote primaries xi Hillary Clinton Bernie Sanders . . .

Political opinions yi = (yi1, . . . , yip)
T

CLINTON

FEEL ANGRY Never Never . . .
. . . . . . . . . . . .
FEEL DISGUSTED Never Never . . .
LEADERSHIP Extremely well Very well . . .
. . . . . . . . . . . .
SPEAKS MING Extremely well Very well . . .
TRUMP

FEEL ANGRY Always About half the time . . .
. . . . . . . . . . . .
FEEL DISGUSTED Always Always . . .
LEADERSHIP Not well at all Not well at all . . .
. . . . . . . . . . . .
SPEAKS MING Extremely well Very well . . .

Presidential elections. These elections have attracted a considerable interest by the political scientists—mainly due

the striking and partially unpredicted results—thereby motivating ongoing attempts to understand the determinants

underlying the final outcomes. Most of the available political analyses provide qualitative explanations for the effect

of the media, and the effectiveness of the different campaigns and supported policies—among others. Refer to Lilleker

et al. (2016) for a careful summary of the most valuable studies and comments.

Although all the above explanations allow important insights, quantitative assessments providing empirical evi-

dence of the suggested conclusions in the light of the observed polls data, are fundamental to improve the current

understanding of the determinants underlying the 2016 United States Presidential elections. However, such contri-

butions are still lacking. This is mainly due to the only recent availability of relevant datasets, along with the broad

variability of the research interests characterizing the 2016 United States Presidential elections. In this contribution,

our overarching goal is to assess evidence of differences in political opinions between the subset of voters who chose

Hillary Clinton as Presidential candidate, and the one opting for Bernie Sanders in the 2016 Democratic Presidential

primaries. There is, in fact, a common perception in the media that Bernie Sanders may have been a more effective

candidate for the Democratic party in the Presidential campaign against Donald Trump (e.g. Lilleker et al., 2016).

As shown in Table 1, we address the above goal with a main interest on how the voters feelings toward Hillary

Clinton and Donald Trump, along with their evaluations on specific personality traits of the two Presidential candi-

dates, change between Hillary Clinton and Bernie Sanders voters in the 2016 Democratic Presidential primaries. The

data are obtained from the American National Election Studies available at http://electionstudies.org/,

and comprise five different feelings along with five specific personality traits for each of the two Presidential candi-

dates, thereby providing a total of p = 20 categorical opinions collected for each unit. There are n1 = 567 voters who
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expressed their preference for Hillary Clinton, and n2 = 386 voters who chose Bernie Sanders in the 2016 primaries.

According to Table 1, it is not clear—a priori—whether there exist group differences in the voters opinions, and, if

present, whether these differences are found in the entire vector of the p = 20 categorical variables, or only on a subset

of the marginals or higher-order structures—including the bivariates, and more complex joint combinations. Obtaining

statistical evidence of these differences at multiple scales, can provide interesting insights on how marginal, bivariate,

or more complex joint opinions of the voters change with their preference for Hillary Clinton or Bernie Sanders in the

2016 Democratic Presidential primaries. However, as discussed in Section 1.1 below, the available literature lacks—to

our knowledge—a general methodology to test for group differences in multivariate categorical data at multiple scales

under a single statistical model which combines flexibility, efficiency, and tractability.

To cover this gap, we propose in Section 2 a flexible dependent mixture of tensor factorizations, which allows the

joint probability mass function for the multivariate categorical data to be unknown, and changing with the groups via a

set of group-dependent mixing probabilities. The proposed representation allows substantial dimensionality reduction

and efficient borrowing of information in sparse tables, while providing a simple test for global group differences in the

entire probability mass function, based on a flexible formulation which reduces model misspecification issues. Taking

a Bayesian approach to inference, we define the prior distributions for the parameters in the proposed statistical model

to guarantee full support, and incorporate automatic multiplicity control when testing for local group differences in the

marginals, bivariates, and—potentially—more complex combinations. As discussed in Section 3, posterior inference

is available via a simple Gibbs sampler which incorporates the global test, and provides tractable methods for the local

tests via a model-based version of the Cramer’s V coefficient outlined in Section 2.1. The advantages associated with

the proposed methods are empirically described via simulations in Section 4, and compared to popular competitors.

Finally, Section 5 provides results for the motivating application on recent American election polls data.

1.1. Literature review

There is a wide interest in studying differences in political opinions across groups of voters defined by gender (e.g.

Atkeson and Rapoport, 2003), race (e.g. Brown, 2009), and affiliation party (e.g. Finkel and Scarrow, 1985)—among

others. In accomplishing this goal, a widely used approach proceeds by summarizing the multivariate categorical data

into a single latent class membership variable, while testing for group differences in these latent classes (Bolck et al.,

2004). Although the latent class analysis provides a useful simplification, the set of procedures required to perform

the above test are subject to systematic bias, and it is still an active area of research to improve this methodology (e.g.

Vermunt, 2010).

An alternative procedure is to avoid data reduction by assessing evidence of group differences in each categorical

variable via separate χ2 tests, while accounting for multiple testing via false discovery rate control (e.g Benjamini and

Hochberg, 1995). These methodologies do not incorporate dependence structures among the p categorical variables,

and therefore have low power. Pesarin and Salmaso (2010) addressed this issue via permutation tests preserving the

dependence structure in the multivariate categorical data. Although this contribution provides a possible solution, the
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proposed methods cannot capture differences that go beyond changes in the marginals of a multivariate categorical

variable, thus leading to inaccurate insights when the group differences are in higher-order structures.

To avoid the above robustness issues, one possibility is to define a test based on a provably flexible representation

for the probability mass function of the multivariate categorical data. Log-linear models (e.g. Agresti, 2013) represent

a popular class of procedures, but are characterized by an explosion in the set of possible interactions when the number

of variables increases. Indeed, even in moderate p settings, the number of parameters required to fully characterize

the joint probability mass function is massively larger than the sample size n, thereby leading to inaccurate inference

on group differences in the entire joint probability mass function, and higher–order dependence structures among the

categorical variables. To explicitly incorporate sparsity in log-linear models, Ntzoufras et al. (2000), and Nardi and

Rinaldo (2012) proposed a Bayesian stochastic search, and a group-lasso algorithm, respectively, for model selection.

However, when p is moderate to large, these procedures require restrictions for computational tractability, potentially

affecting flexibility. As a result inference can be a cumbersome task in high-dimensional settings.

In order to address the issues associated with log-linear models, an alternative recent literature avoids pre-specifying

graphical parametric structures in the multivariate categorical data, but leverages instead tensor factorizations. Dunson

and Xing (2009) proposed a Bayesian nonparametric representation which defines the probability mass function for

the multivariate categorical random vector as a mixture of products of multinomial distributions. This factorization

induces a provably flexible statistical model, which incorporates dimensionality reduction, and borrows information

between the cell probabilities in sparse tables to provide efficient inference on the entire joint probability mass func-

tion. Notable recent generalizations of the model proposed by Dunson and Xing (2009) incorporate additional sparsity

(Zhou et al., 2015), dynamic patterns (Kunihama and Dunson, 2013), classification of univariate outcomes (Yang and

Dunson, 2016), data imputation (Fosdick et al., 2016; Murray and Reiter, 2016), and inference in case-control studies

with several categorical predictors (Zhou et al., 2015). Refer to Johndrow et al. (2017) for a theoretical justification,

and connections with log-linear models.

Yang and Dunson (2016), and Zhou et al. (2015) focused on the conditional distribution of a univariate response,

with the categorical data acting as predictors. Consistent with the discussion in Section 1, we consider instead the dual

problem, assessing evidence of group differences in the entire probability mass function of a multivariate categorical

random variable. This is accomplished by factorizing the joint probability mass function for the group variable and the

multivariate categorical data, as the product of the marginal probabilities for the groups and the conditional probability

mass function of the multivariate categorical data, defined via a group-dependent mixture of tensor factorizations. As

discussed in Section 2, this formulation is flexible and tractable, facilitating accurate global and local testing.

2. Dependent mixture of tensor factorizations for multivariate categorical data

Let yi = (yi1, . . . , yip)
T ∈ Y = (1, . . . , d1) × · · · × (1, . . . , dp) denote the vector of categorical data observed

for the statistical unit i, and xi ∈ X = (1, . . . , dx) its corresponding group, for each unit i = 1, . . . , n. We seek a

4



provably flexible representation for the joint probability mass function πY ,X = {πY ,X(y, x) = pr(Y = y, X = x) :

y ∈ Y, x ∈ X} underlying data (y1, x1), . . . , (yn, xn), which facilitates accurate testing of independence between

the random variables Y andX . This goal can be formally addressed by assessing evidence against the null hypothesis

H0 : πY ,X(y, x) = πY (y)πX(x), for all y ∈ Y and x ∈ X , (1)

versus the alternative

H1 : πY ,X(y, x) 6= πY (y)πX(x), for some y ∈ Y and x ∈ X , (2)

with πY = {πY (y) = pr(Y = y) : y ∈ Y} and πX = {πX(x) = pr(X = x) : x ∈ X} denoting the unconditional

probability mass functions of Y and X , respectively.

In order to accurately test the system of hypotheses (1)–(2), and avoid issues arising from model misspecification,

it is important to develop a representation for πY ,X which is sufficiently general to approximate any possible prob-

ability mass function in the |Y × X | − 1 dimensional simplex P|Y×X|−1. For instance, restrictive representations

for the joint probabilistic process associated with Y , are expected to fail in detecting group differences in complex

structures of the multivariate categorical random variable, beyond those incorporated by the assumed statistical model

for πY ,X . To avoid this issue, without relying on excessively parameterized models, we express πY ,X(y, x) as

πY ,X(y, x) = πY |X=x(y)πX(x), for every y ∈ Y and x ∈ X , (3)

with the conditional probability mass function of Y given X = x factorized as a dependent mixture of products of

multinomial distributions, obtaining

πY |X=x(y) =

H∑
h=1

νhx

p∏
j=1

πhj(yj), for every y ∈ Y and x ∈ X , (4)

where πhj(yj) is the probability that the categorical random variable Yj assumes value yj in mixture component h,

for each yj ∈ (1, . . . , dj), j = 1, . . . , p and h = 1, . . . ,H , while νx = (ν1x, . . . , νHx) ∈ PH−1 are vectors of

mixing probabilities specific to each group x ∈ (1, . . . , dx). Representation (3)–(4) has several benefits. In particular

factorization (3) allows inference on changes in the multivariate random variable Y across the groups defined by X ,

with the conditional probability mass functions πY |X=x = {πY |X=x(y) = pr(Y = y | X = x) : y ∈ Y} fully

characterizing such variations for each group x ∈ (1, . . . , dx). Equation (4) generalizes instead unconditional tensor

factorization representations (Dunson and Xing, 2009) to provide a tractable model for the probability mass function

of Y , which is additionally allowed to flexibly change across the groups x ∈ (1, . . . , dx) via a set of group-specific

mixing probabilities. Moreover, the conditional independence assumption among the p categorical variables within
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each mixture component, allows substantial dimensionality reduction for tractable inference, while incorporating

effective borrowing of information. This facilitates modeling of higher-order structures in sparse tables, and shrinking

towards low-rank representations which are allowed to vary across groups via group-specific mixing probabilities νx.

As discussed in Proposition 2.1, considering a conditional independence assumption within each mixture compo-

nent, and accounting for group-dependence only in the mixing probabilities, do not affect flexibility and incorporates

borrowing of information across the shared mixture components, along with tractable tests of independence between

Y and X—as we will discuss in Section 2.1.

Proposition 2.1. Any πY ,X ∈ P|Y×X|−1 can be factorized as in (3)–(4) for some H .

PROOF. Since it is always possible to factorize πY ,X(y, x) as πY ,X(y, x) = πY |X=x(y)πX(x), for each y ∈ Y and

x ∈ X , Proposition 2.1 holds if any collection of conditional probability mass functions πY |X=x = {πY |X=x(y) =

pr(Y = y | X = x) : y ∈ Y}, admits representation (4), for every x ∈ (1, . . . , dx). Adapting Corollary 1 in Dunson

and Xing (2009), it is always possible to separately represent each πY |X=x(y) as

πY |X=x(y) =

Hx∑
hx=1

νhx

p∏
j=1

πhxj(yj), y ∈ Y,

for every group x ∈ (1, . . . , dx), with πhxj(yj) denoting the probability that the categorical random variable Yj

assumes value yj in mixture component hx, given that X = x. Hence, the proof follows after defining each πhj for

h = 1, . . . ,H and j = 1, . . . , p as the sequence of unique component-specific probability mass functions appearing

in the above separate factorizations for at least one group x ∈ X . Consistent with this representation, the associated

group-specific mixing probabilities will be νhx = νhx if πhj = πhxj , j = 1, . . . , p and νhx = 0, otherwise, proving

Proposition 2.1. �

Proposition 2.1 holds for some H , which is typically unknown. However, since the set Y × X has finitely many

elements, H admits an upper bound H̄ which is finite. Hence, we fix H̄ at a conservative threshold, and perform

Bayesian inference leveraging priors for νx, x ∈ (1, . . . , dx) which allow adaptive deletion of unnecessary mixture

components not required to characterize the data (e.g. Rousseau and Mengersen, 2011). If all the mixture components

are occupied after performing posterior computation, this suggests that H̄ should be increased.

Large H̄ is typically required in situations when the underlying dependence structure is complex, compared to the

sample size. In these contexts Bhattacharya and Dunson (2012), and Johndrow et al. (2017) proposed a generalization

of Dunson and Xing (2009) which allows the latent class indicator variable to be multivariate, in order to improve

flexibility, without necessarily relying on a large number of mixture components. Although our model can be general-

ized to these representations, we obtained good performance in simulations and applications also under a factorization

adapting the model in Dunson and Xing (2009). Therefore, we leverage their building-block representation which is

interpretable, computationally tractable, and allows simple testing—as discussed in the subsequent Section 2.1.
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νhx zi

xiπX

yi πhj

x ∈ (1, . . . , dx)

h = 1, . . . , H

j = 1, . . . , p

h = 1, . . . , H

Figure 1: Graphical representation of the mechanism to generate data (yi, xi) from model (3)–(4).

2.1. Model interpretation and hypothesis testing at different scales

Figure 1 provides a graphical representation of the probabilistic generative mechanism associated with our repre-

sentation of the joint probability mass function πY ,X via (3)–(4). According to Figure 1, the group membership xi is

simply generated from the univariate categorical random variableX with unconditional probability mass functionπX .

Conditionally on the group membership xi, the data yi are instead generated from the multivariate random vector with

conditional probability mass function πY |X=xi
factorized as in (4). In accomplishing this goal, a latent class variable

zi ∈ (1, . . . ,H) is first generated from a categorical variable with probability mass function νxi . Then, given zi = h,

the entries yij of yi are generated from conditionally independent categorical random variables with probability mass

function πhj = {πhj(yj) : yj ∈ (1, . . . , dj)} for every j = 1, . . . , p. This hierarchical representation provides key

benefits in terms of computational tractability as discussed in Section 3.2, while substantially reducing dimensionality,

and providing a simple test for global group differences in the multivariate categorical random variable. In fact, it is

easy to show that under (3)–(4) for πY ,X , the system (1)–(2) reduces to the simpler test assessing evidence against

H0 : (ν11, . . . , νH1) = · · · = (ν1dx , . . . , νHdx), (5)

versus the alternative

H1 : (ν1x, . . . , νHx) 6= (ν1x′ , . . . , νHx′), (6)

for some x 6= x′. This test substantially improves tractability, without affecting accuracy. In fact, according to the

aforementioned Proposition 2.1, the system (5)–(6) leverages a representation of πY ,X which is provably general,

and therefore reduces concerns arising from model misspecification.

Rejection of the global null in the system (5)–(6) provides evidence of group differences in the multivariate cat-
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egorical random variable Y . However, such changes may be attributable to several structures. Consistent with this

discussion, we additionally consider local analyses assessing evidence of group differences in each marginal Yj of Y ,

j = 1, . . . , p, and in the bivariates of each pair (Yj , Yj′), for every j = 1, . . . , p and j′ = 1, . . . , p, j′ 6= j.

We address this aim by relying on a test which leverages the model-based version of the Cramer’s V coefficient.

Specifically, we assess evidence of group differences in each marginal Yj , for j = 1, . . . , p, by studying the coefficients

ρj =

 1

min{dx, dj} − 1

dx∑
x=1

dj∑
yj=1

{πYj ,X(yj , x)− πYj (yj)πX(x)}2

πYj
(yj)πX(x)

 1
2

, (7)

for each j = 1, . . . , p, where πYj (yj) denotes pr(Yj = yj), whereas πYj ,X(yj , x) = pr(Yj = yj , X = x) = pr(Yj =

yj | X = x)pr(X = x) = πYj |X=x(yj)πX(x) for every yj ∈ (1, . . . , dj) and group x ∈ (1, . . . , dx). Measuring

the association between Yj and X with ρj ∈ [0, 1] provides a convenient choice for interpretation. In fact, according

to (7), a value of ρj very close to 0 provides evidence of low dependence between Yj and X , meaning that Yj is not

expected to change across groups.

We consider a similar strategy to study group differences in the bivariate probability mass functions for every pair

(Yj , Yj′) across the categories of X . As in equation (7), this is accomplished by studying the coefficient

ρjj′ =

 1

min{dx, djdj′} − 1

dx∑
x=1

dj∑
yj=1

dj′∑
yj′=1

{πYj ,Yj′ ,X(yj , yj′ , x)− πYj ,Yj′ (yj , yj′)πX(x)}2

πYj ,Yj′ (yj , yj′)πX(x)

 1
2

, (8)

for every x ∈ (1, . . . , dx) and pair (Yj , Yj′), j = 1, . . . , p, j′ = 1, . . . , p, j′ 6= j. In equation (8), πYj ,Yj′ ,X(yj , yj′ , x)

denotes the joint probability that Yj , Yj′ and X take values yj , yj′ and x, respectively, while πYj ,Yj′ (yj , yj′) is the

joint probability of the pair (yj , yj′), and πX(x) the marginal probability to observe the group x. Consistent with the

above discussion, a value of ρjj′ very close to 0 suggests low evidence of changes in (Yj , Yj′) with X .

Beside providing simple measures for interpretable inference on local group differences, the above model-based

Cramer’s V coefficients incorporate dependence in the multiple tests via the factorization (3)–(4), and therefore are

expected to improve power. Moreover, according to Proposition 2.2, the Cramer’s V coefficients in (7) and (8) can be

easily computed from the quantities in our model, facilitating tractable testing at multiple scales under a single model.

Proposition 2.2. Let J ⊂ (1, . . . , p) denotes a generic subset of the indices set (1, . . . , p), such that J ∪ J c =

(1, . . . , p), and let YJ denote the multivariate categorical random vector containing the variables with indices in the

set J . Then, under the factorization (3)–(4) for πY ,X(y, x), we obtain πYJ |X=x(yJ ) =
∑H
h=1 νhx

∏
j∈J πhj(yj),

and πYJ (yJ ) =
∑
x∈X πX(x){

∑H
h=1 νhx

∏
j∈J πhj(yj)}.

PROOF. To obtain πYJ |X=x(yJ ) we need to marginalize out in πY |X=x(y) all the configurations yJ c ∈ YJ c . To
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accomplish this goal note that Y = (YJ ,YJ c) and y = (yJ ,yJ c). Therefore, recalling factorization (4), we obtain

πYJ |X=x(yJ ) =
∑

yJc∈YJc

H∑
h=1

νhx
∏
j∈J

πhj(yj)
∏
j∈J c

πhj(yj) =

H∑
h=1

νhx
∏
j∈J

πhj(yj)

 ∑
yJc∈YJc

∏
j∈J c

πhj(yj)

 ,
=

H∑
h=1

νhx
∏
j∈J

πhj(yj),

where the last equality follows after noticing that
∏
j∈J c πhj(yj) is the joint probability mass function of a multivari-

ate categorical random vector with |J c| independent variables and joint sample space YJ c . Therefore the summation

of its joint probability mass function on the whole sample space provides
∑
yJc∈YJc

∏
j∈J c πhj(yj) = 1. Exploit-

ing model (3) for πY ,X(y, x), the proof of πYJ (yJ ) =
∑
x∈X πX(x){

∑H
h=1 νhx

∏
j∈J πhj(yj)} is an immediate

consequence of the above derivations. �

Although Proposition 2.2 facilitates inference on group differences in many complex higher-order functionals of

Y , we focus on changes in interpretable local structures of relevant interest in these types of analyses. Note also that,

to assess statistical evidence of group differences in these local structures we rely on the systems of interval hypotheses

H0j : ρj ≤ ε versus H1j : ρj > ε, j = 1, . . . , p for the marginals, and H0jj′ : ρjj′ ≤ ε versus H1jj′ : ρjj′ > ε,

j = 1, . . . , p, j′ = 1, . . . , p, j′ 6= j, for the bivariates, with ε an appropriately selected small threshold denoting

the minimum effect size required to declare the presence of a group difference. Popular thresholds in social science

studies are ε = 0.1 and ε = 0.3, denoting small and moderate differences, respectively (e.g. King et al., 2010). Since

there is not an overall agreement in this choice, we consider an intermediate threshold ε = 0.2, and maintain this

default setting in our simulations in Section 4, and in the application in Section 5, to assess sensitivity to this choice.

3. Bayesian inference

Although inference and hypothesis testing for the model discussed in Section 2 can potentially proceed under dif-

ferent paradigms, we rely on a Bayesian treatment of the representation (3)–(4), and the associated testing procedures.

This choice is appealing in allowing coherent uncertainty quantification, effective borrowing of information, simple

inference via the posterior distribution, along with the possibility to incorporate appropriate prior distributions which

facilitate automatic multiplicity control for the local tests (e.g. Scott and Berger, 2010), and adaptation of the model di-

mensions (e.g. Rousseau and Mengersen, 2011). Section 3.1 describes our prior specification and properties, whereas

Section 3.2 provide a pseudo-code with step-by-step implementation of the tractable Gibbs sampler associated with

the proposed statistical model.

3.1. Prior specification and properties

We define independent priors πX ∼ ΠX , νx ∼ Πν , x ∈ (1, . . . , dx) and πhj ∼ Ππj , j = 1, . . . , p, h = 1, . . . ,H ,

for the quantities in (3)–(4) to induce a prior Π forπY ,X which has full support, facilitates tractable posterior inference
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on the association between Y and X , and incorporates shrinkage along with automatic multiplicity control.

In enhancing computational tractability we let ΠX and Ππj
, for j = 1, . . . , p, correspond to conjugate Dirichlet

priors, obtaining πX ∼ Dir(α1, . . . , αdx), and πhj ∼ Dir(γj1, . . . , γjdj ) independently for j = 1, . . . , p, and h =

1, . . . ,H . The prior Πν is instead defined to automatically incorporate the global test in (5)–(6). Lock and Dunson

(2015) recently addressed a related goal in order to test for equality in distribution, with a particular focus on Gaussian

mixture models. We adapt their procedure to our conditional tensor factorization, obtaining

νx = (1− T )υ + Tυx, x ∈ X ,

υ ∼ Dir(1/H, . . . , 1/H), υx ∼ Dir(1/H, . . . , 1/H), x ∈ X , (9)

T ∼ Bern{pr(H1)}.

According to equations (9), when T = 0 the mixing probability vectors are forced to be equal across all groups, while

if T = 1 these vectors are allowed to be different. As shown in Lock and Dunson (2015), combining this prior with

a flexible characterization for the kernels in the mixture model—as in our formulation—provides a provably accurate

test for the equality in distribution under a general specification for the mixture components, thereby representing a

valid candidate also for our methods. Moreover, by choosing small hyperparameters in the Dirichlet priors in (9) we

also facilitate automatic deletion of redundant mixture components (Rousseau and Mengersen, 2011).

Leveraging (9), evidence against the global null hypothesis is available from pr{H1 | (y1, x1), . . . , (yn, xn)} =

pr{T = 1 | (y1, x1), . . . , (yn, xn)}, which can be easily computed via the Gibbs sampler outlined in Section 3.2—

refer in particular to step 4 in Algorithm 1. The posterior probabilities for the local alternatives are instead available via

pr{H1j | (y1, x1), . . . , (yn, xn)} = pr{ρj > ε | (y1, x1), . . . , (yn, xn)}, j = 1, . . . , p for the tests on the marginals,

and pr{H1jj′ | (y1, x1), . . . , (yn, xn)} = pr{ρjj′ > ε | (y1, x1), . . . , (yn, xn)}, j = 1, . . . , p, j′ = 1, . . . , p, with

j′ 6= j, for the bivariates. Note that, considering small interval local hypotheses defined via a model-based version of

the Cramer’s V coefficients, allows the proposed model to place a positive probability mass on each local null, with

this probability having a prior distribution induced by ΠX , Πν , and Ππj , j = 1, . . . , p, via (7)–(8). According to Scott

and Berger (2010), these conditions guarantee automatic multiplicity control within a Bayesian framework, thereby

providing an additional relevant benefit associated with the proposed methods.

The above discussion is further confirmed by Proposition 3.1, guaranteeing that the induced prior Π for πY ,X via

(3)–(4) has full support in the probability simplex P|Y×X|−1. This is a key result to guarantee the accuracy of our

inference procedures, which may display poor performance if Π assigns zero probability to a subset of the possible

true data generating processes.

Proposition 3.1. Let πY ,X ∼ Π, with Π denoting the prior for πY ,X induced by ΠX , Πν , Ππ1
, . . . ,Ππp

via (3)–(4),

then Π{πY ,X :
∑
y∈Y

∑
x∈X |πY ,X(y, x)− π0

Y ,X(y, x)| < ε} > 0 for any ε > 0, and π0
Y ,X ∈ P|Y×X|−1.

PROOF. Recalling Proposition 2.1, it is always possible to rewrite the L1 distance
∑
y∈Y

∑
x∈X |πY ,X(y, x) −

10



π0
Y ,X(y, x)| between πY ,X and π0

Y ,X as

∑
y∈Y

∑
x∈X
|πX(x)

H∑
h=1

νhx

p∏
j=1

πhj(yj)− π0
X(x)

H∑
h=1

ν0hx

p∏
j=1

π0
hj(yj)|,

with ν0hx = ν0hx
if π0

hj = π0
hxj

, j = 1, . . . , p and ν0hx = 0, otherwise, for x ∈ (1, . . . , dx). Therefore the prior

probability Π{πY ,X :
∑
y∈Y

∑
x∈X |πY ,X(y, x)− π0

Y ,X(y, x)| < ε} assigned to a neighborhood of π0
Y ,X is

∫
1

∑
y∈Y

∑
x∈X
|πY ,X(y, x)− π0

Y ,X(y, x)| < ε

dΠX(πX)dΠν(νx)

H∏
h=1

p∏
j=1

dΠπj
(πhj),

with πY ,X(y, x) and π0
Y ,X(y, x) factorized as above, and 1{·} denoting an indicator function. Following Dunson

and Xing (2009), a sufficient condition for the above integral to be strictly positive is that all the above priors have full

L1 support on their corresponding spaces. As ΠX and Ππ1
, . . . ,Ππp

are Dirichlet priors, by definition ΠX has full

L1 support on the simplex P|X |−1, and Ππj has full L1 support on the simplex Pdj−1, for each j = 1, . . . , p.

To conclude the proof we need to show that pr(
∑dx
x=1

∑H
h=1 |νhx − ν0hx| < εν) > 0 for every εν > 0, and

(ν0
1 , . . . ,ν

0
dx

), when the group-specific mixing probabilities ν1, . . . ,νdx have prior Πν defined as in equation (9).

Marginalizing out the testing indicator T , a lower bound for the previous probability is

pr(H0)pr

(
dx∑
x=1

H∑
h=1

|υh − ν0hx| < εν

)
+ pr(H1)

dx∏
x=1

pr

(
H∑
h=1

|υhx − ν0hx| <
εν
dx

)
.

If the true model is generated under independence between X and Y , the true mixing probability vectors are constant

across groups, and therefore the Dirichlet priors for υ and υx, x ∈ (1, . . . , dx), ensure the positivity of both sum-

mands. When instead the true mixing probability vectors change across groups, the term pr(H0)pr(
∑dx
x=1

∑H
h=1 |υh−

ν0hx| < εν) is no more guaranteed to be strictly positive. However pr(H1)
∏dx
x=1 pr(

∑H
h=1 |υhx − ν0hx| < εν/dx) re-

mains positive for every εν > 0, since under the alternative we assume independent Dirichlet priors Πυ1
, . . . ,Πυdx

for the group-specific mixing probability vectors, each one having full L1 support on PH−1. �

As πY ,X is fully characterized by finitely many parameters {πY ,X(y, x) : y ∈ Y, x ∈ X}, Proposition 3.1,

also guarantees that Π{πY ,X :
∑
y∈Y

∑
x∈X |πY ,X(y, x) − π0

Y ,X(y, x)| < ε | (y1, x1), . . . , (yn, xn)} → 1 for any

ε > 0, almost surely when π0
Y ,X is the true probability mass function, thereby ensuring also posterior consistency.

3.2. Posterior computation

Posterior computation proceeds via a simple and efficient Gibbs sampler, exploiting the hierarchical representation

of model (3)–(4), outlined in Figure 1. Refer to Algorithm 1 for a pseudo-code with detailed steps. Source R code, and

tutorial implementations are available at https://github.com/danieledurante/GroupTensor-Test.
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Algorithm 1: Gibbs sampler for posterior computation

begin
[1] Update the marginal probability mass function πX for the group variable X , from the full conditional
(πX | −) ∼ Dir(α1 + n1, . . . , αdx + ndx), with the generic nx denoting the total number of statistical
units in group x ∈ (1, . . . , dx);
[2] Sample the latent class indicator variables zi ∈ (1, . . . ,H) for each unit i;
for i from 1 to n do

Sample zi ∈ (1, . . . ,H) from the categorical variable with probabilities

pr(zi = h | −) =
νhxi

∏p
j=1 πhj(yij)∑H

q=1 νqxi

∏p
j=1 πqj(yij)

,

for every h = 1, . . . ,H .

[3] Update the component-specific probability mass functions πhj in equation (4);
for h from 1 to H do

for j from 1 to p do
Update πhj from (πhj | −) ∼ Dir(γj1 + njh1, . . . , γjdj + njhdj ), with the generic njhyj denoting

the number of statistical units in component h having value yj for the variable Yj .

[4] Sample the testing indicator T from the full conditional Bernoulli variable with

pr(T = 1 | −) =
pr(H1)

∏dx
x=1

∫
(
∏H
h=1 υ

nhx

hx )dΠυx

pr(H0)
∫

(
∏H
h=1 υ

nh

h )dΠυ + pr(H1)
∏dx
x=1

∫
(
∏H
h=1 υ

nhx

hx )dΠυx

,

=

[
1 +

pr(H0)

pr(H1)

∏H
h=1 Γ( 1

H + nh)

Γ( 1
H )HΓ(n+ 1)

dx∏
x=1

Γ( 1
H )HΓ(nx + 1)∏H
h=1 Γ( 1

H + nhx)

]−1
,

where nh is the total number of units in mixture component h, and nhx is the total number units in group x
allocated to component h. The above equation can be easily obtained adapting derivations in Lock and
Dunson (2015). Exploiting the Gibbs samples for T , the posterior probability of the global alternative can
be easily obtained as the proportion of samples in which T = 1;
[5] Update the group-specific mixing probability vectors νx, x ∈ (1, . . . , dx);
if T=1 then

Update each group-specific mixing probability vector νx separately from the full conditional
(νx | −) ∼ Dir(1/H + n1x, . . . , 1/H + nHx), for x ∈ (1, . . . , dx)

else if T=0 then
Let ν1 = · · · = νdx = υ, with υ updated from the full conditional distribution
(υ | −) ∼ Dir(1/H + n1, . . . , 1/H + nH);

4. Simulation study

We consider three relevant simulation studies to evaluate the empirical performance of the proposed methodologies

in several scenarios, characterized by different types of dependence between Y andX . In particular, in a first scenario

we generate the data to obtain sparse dependence structures in Y , with these higher-order dependencies, along with

the induced marginals, being the same across the two groups defined by the variable X . The second scenario induces

instead dependence betweenY andX , by incorporating group differences in the marginals ofY , along with variations
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in more complex higher-order structures, including a subset of the bivariates. Finally, the third scenario characterizes

a challenging situation in which there are no changes in the marginals of Y , but only sparse group differences in the

bivariates. Hence, the dependence between Y and X is in fewer higher-order structures. The goal in defining these

challenging simulation scenarios is to assess whether the proposed model can characterize probabilistic generative

mechanisms having different properties, thereby ensuring accurate testing in broad settings. Consistent with this goal,

we focus on dx = 2 groups, and p = 15 categorical variables having d1 = · · · = d15 = 4 possible categories. Data

(yi, xi), i = 1, . . . , n, are simulated for n = 400 units, whose group membership xi is generated from a categorical

variable with probabilities π0
X(1) = 0.5 and π0

X(2) = 1−π0
X(1) = 0.5. The multivariate categorical responses yi are

instead simulated from generative mechanisms incorporating the specific properties of the aforementioned scenarios.

In particular, in the first simulation scenario the generative mechanism associated with Y does not change with

groups—i.e. π0
Y |X=x = π0

Y . However, to evaluate the flexibility of the proposed model, we define a challenging

representation for π0
Y , in which the subset of variables having indices in J = (1, 5, 10, 12, 15) are generated from a

joint probability mass function with pr(Y1 = Y5 = Y10 = Y12 = Y15 = y) = 0.1, for each y ∈ (1, . . . , 4), and the

remaining probability mass of 0.6 assigned in equal proportion to the other 45 − 4 combinations of categories. The

variables with indices in J c are instead simulated independently from their corresponding marginal probability mass

function π0
Yj
∼ Dir(10, 10, 10, 10). In the second simulation, we induce instead sparse group differences in marginals

and bivariates. To incorporate this behavior, we still simulate variables with indices in J c independently, but force

the marginals of Y2 and Y8 to change with groups, by letting π0
Y2|X=1 = π0

Y8|X=1 = (0.45, 0.45, 0.05, 0.05), and

π0
Y2|X=2 = π0

Y8|X=2 = (0.05, 0.05, 0.45, 0.45). The variables with indices in J are instead generated as in the first

scenario for X = 1. When X = 2 these variables are instead simulated independently from the marginal probability

mass function π0
Yj∈J |X=2 = (0.25, 0.25, 0.25, 0.25). As a result we incorporate group differences in the marginals

of Y2 and Y8, along with changes in the bivariates for any pair of variables including Y2 or Y8, and any pair (Yj , Yj′),

with j ∈ J , j′ ∈ J . In fact, note that, the joint generative mechanism for the variables with indices in J ensures

that π0
Yj∈J |X=1 = (0.25, 0.25, 0.25, 0.25). Therefore only the bivariates of these variables change with groups in the

second scenario, whereas the marginals remain constant. Consistent with this discussion, the third scenario maintains

the same generative process, with the exception of assuming again π0
Y2|X=1 = π0

Y2|X=2 and π0
Y8|X=1 = π0

Y8|X=2 as

in the first scenario. As a result, no group differences in the marginals are observed, and the dependence between Y

and X in the third scenario is only due to sparse group differences in the bivariates (Yj , Yj′), with j ∈ J , j′ ∈ J .

Before studying the empirical performance, it is worth noticing that the above scenarios rely on generative mecha-

nisms not explicitly related to the statistical model proposed in (3)–(4), thereby allowing a more effective validation of

the flexibility of our methodologies, since the data are not generated from the model described in Section 2. The three

scenarios are indeed more closely related to a log-linear model characterized by sparse and higher-order dependence

structures, thus providing a challenging setting. To highlight the benefits associated with the proposed methodologies,

we compare performance in global testing with the nonparametric approach of Pesarin and Salmaso (2010), and the

latent class models (e.g. Bolck et al., 2004)—estimating the latent classes with the R package poLCA. The competitors

13



in local testing are instead separate χ2 tests with and without false discovery rate control (Benjamini and Hochberg,

1995). Accurate and tractable inference under a log-linear model would be possible only by including the structure

and restrictions of the above scenarios. However, these properties are not known a priori, and the focus of inference is

actually learning these structures. Hence, due to the complex higher-order dependencies in the above simulations, an

unstructured log-linear model would require a massive amount of parameters to incorporate these structures, thereby

leading to intractable and inefficient inference in practice. Hence, we avoid comparison with log-linear models.

4.1. Performance in global and local testing

We perform posterior inference under the proposed model (3)–(4) with priors defined in Section 3, setting α1 =

α2 = 1/2, γj1 = · · · = γjdj = 1/dj for each j = 1, . . . , p, and pr(H1) = pr(H0) = 0.5. We maintained these default

hyperparameters in all the three simulations to assess sensitivity to prior settings, observing no evidence that posterior

inference is sensitive to these hyperparameter’s choices. We consider 5000 Gibbs samples and set a conservative upper

bound H̄ = 20, allowing the sparse Dirichlet prior Πν to adaptively empty redundant mixture components (Rousseau

and Mengersen, 2011). Trace-plots suggest that convergence is reached after a burn-in of 1000. We additionally obtain

very good mixing, with most of the effective sample sizes for the quantities of interest around 2400 out of 4000.

Using the Gibbs samples for T , in the first simulation scenario, we obtain a posterior probability for the global

alternative p̂r{H1 | (y1, x1), . . . , (yn, xn)} < 0.051, providing correct evidence of no group differences in the multi-

variate categorical data. We observe similarly accurate performance for the other two simulation scenarios, providing

a posterior probability p̂r{H1 | (y1, x1), . . . , (yn, xn)} > 0.95, which correctly highlights the global dependence

between Y and X in both scenarios. The permutation test proposed in Pesarin and Salmaso (2010) provided correct

results in the first two scenarios—when independence and dependence are evident from the marginals—but failed to

reject H0 with a p-value of 0.4 in the third scenario. This is not surprising, as this procedure aggregates p-values of

multiple tests assessing evidence of group differences in the marginals—which do not vary with groups in the third

scenario. We additionally attempted the global testing procedure based on the latent class analysis (Bolck et al., 2004),

estimating the latent classes with the R package poLCA. Also this approach produced accurate conclusions in the first

two scenarios. However, we found the results quite unstable in the last case. This may be related to the systematic

bias associated with this procedure as well as possible convergence issues in the expectation-maximization algorithm.

As shown in Figure 2, our procedure provides also accurate results in assessing local group differences. Consistent

with the three generative mechanisms of the simulated data, the posterior distributions for the coefficients ρj provide

evidence of group differences in the marginals only for Y2 and Y8 in the second scenario. We obtain, in fact, p̂r{ρj >

0.2 | (y1, x1), . . . , (yn, xn)} > 0.952 only for j ∈ (2, 8), in the second scenario. Similarly accurate performance is

found in the local tests on the bivariates. Consistent with the first scenario, the posterior distribution for the coefficient

1The estimated posterior probability of H1 can be easily obtained as the relative frequency of the MCMC samples in which T = 1.
2The estimated posterior probabilities of H1j and H1jj′ can be easily obtained as the relative frequencies of the MCMC samples in which

ρj > 0.2, and ρjj′ > 0.2, respectively.
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SCENARIO 1.  Estimated pr( ρjj′ > 0.2 ) SCENARIO 2.  Estimated pr( ρjj′ > 0.2 ) SCENARIO 3.  Estimated pr( ρjj′ > 0.2 )
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Figure 2: Performance in testing of local group differences. Upper panels: for the three simulation scenarios, posterior estimate of pr(H1j) =
pr(ρj > 0.2), to assess evidence of group differences in the marginals Yj , j = 1, . . . , 15. Lower panels: for the same scenarios, posterior estimate
of pr(H1jj′ ) = pr(ρjj′ > 0.2) to test for group differences in the bivariates (Yj , Yj′ ). The gray dashed lines in the upper panels represent the
0.95 threshold on the posterior probability of the alternative. The x symbols in the lower panels denote instead those pairs of variables whose
bivariates are declared to change across groups according to the proposed local tests—i.e. p̂r{ρjj′ > 0.2 | (y1, x1), . . . , (yn, xn)} > 0.95.

ρjj′ correctly highlight no group differences in the bivariates, with p̂r{ρjj′ > 0.2 | (y1, x1), . . . , (yn, xn)} < 0.05 for

all j = 1, . . . , p and j′ = 1, . . . , p, with j′ 6= j. As expected, the changes in the two marginals observed in the second

scenario, induce also group differences in the bivariates for pairs of variables including Y2 or Y8. We correctly learn

also changes across groups in the joint probability mass function for pairs (Yj , Yj′) with j ∈ J and j′ ∈ J , j′ 6= j,

consistent with the settings of the second scenario. The same finding is obtained in the third simulation, correctly

providing p̂r{ρjj′ > 0.2 | (y1, x1), . . . , (yn, xn)} > 0.95 only for pairs (Yj , Yj′) with j ∈ J and j′ ∈ J , j′ 6= j.

Local analyses via separate χ2 tests produced several false positives and false negatives when multiplicity control

is not considered. Including a false discovery rate control at a level 0.10 via Benjamini and Hochberg (1995), improves

the results, but still provides one false discovery for the local tests on the bivariates in the second scenario, and one

false discovery for the local tests on the marginals in the third scenario. These empirical findings further support the

proposed procedures, which gain power by borrowing information across the local tests, and incorporate an automatic

multiplicity control via the hierarchical Bayesian formulation (e.g. Scott and Berger, 2010). In fact, according to the

above results, the proposed methods effectively control the false discoveries, without requiring additional procedures.
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5. Application to the 2016 American National Election Studies

We apply the proposed methodologies to a subset of the 2016 polls data from the American National Election

Studies (ANES) available at http://electionstudies.org/, and described in Section 1. Recalling our mo-

tivating application, the dataset comprises p = 20 categorical measurements of voters opinions and feelings for the

two main candidates in the 2016 United States Presidential elections—namely Hillary Clinton and Donald Trump.

These categorical data are available on a five item scale, and are collected for n1 = 567 voters who chose Hillary

Clinton during the 2016 Democratic Presidential primaries, and n2 = 386 voters who expressed preference for Bernie

Sanders. Consistent with the discussion in Section 1, our aim is to understand if the voters feelings and opinions for

Hillary Clinton and Donald Trump, change with their preference for Hillary Clinton or Bernie Sanders expressed in

the 2016 Democratic Presidential primaries. Although the ANES dataset provides additional information, and more

elaborated analyses could be devised, our fundamental goal is to validate the proposed methods on an interpretable

real-data application of potential interest in political studies. Indeed, qualitative political analyses of Presidential pri-

maries are common (e.g. LeDuc, 2001; Cain, 2015), and—as discussed in Section 1—there is an active debate about

the possible effects of a different outcome in the 2016 Democratic Presidential primaries on the final 2016 United

States Presidential elections (e.g. Lilleker et al., 2016).

Focusing on our specific motivating dataset it is not clear—a priori—whether, and for which variables, underlying

groups differences are present. In fact, the focus is on democratic voters sharing the same party affiliation. Therefore,

their general opinions and feelings toward Hillary Clinton and Donald Trump, may remain substantially unchanged

when comparing the subsets of voters expressing their finer–scale preference for one of the two alternative democratic

candidates. On the other hand, the substantial differences characterizing the democratic candidates Hillary Clinton

and Bernie Sanders (e.g. Lilleker et al., 2016), may have attracted subset of voters with different opinions and feelings

toward Hillary Clinton and Donald Trump. However, it is not clear a priori whether the preference for Hillary Clinton

and Bernie Sanders, is associated with different positive opinions and feelings for Hillary Clinton or varying negative

evaluations of Donald Trump—or both. These considerations motivate the implementation of the statistical model

and testing procedures described in Section 2, which are specifically developed to allow effective inference on group

differences at varying scales. In accomplishing this goal, we perform posterior computations with the same settings of

the simulation studies in Section 4. Also in this case we obtain convergence after a burn-in of 1000 and good mixing,

with most of the effective sample sizes around 2300 out of 4000.

Results from posterior inference offer interesting insights on group differences in voters opinions with p̂r{H1 |

(y1, x1), . . . , (yn, xn)} > 0.95 providing strong evidence of changes in opinions between Hillary Clinton and Bernie

Sanders voters. To assess the robustness of this result, we also performed posterior inference based on datasets that

randomly matched the observed voting preferences for Hillary Clinton or Bernie Sanders, with a corresponding vector

of evaluations on the p items, effectively removing the possibility of a dependence between Y and X . In 10 of these

trials we always obtained p̂r{H1 | (y1, x1), . . . , (yn, xn)} ≈ 0, as expected.
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(a) Different feeling towards Hillary Clinton and Donald Trump in the two groups of voters.
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(b) Assessments of different personality traits characterizing Hillary Clinton and Donald Trump in the two groups of voters.

Figure 3: Posterior mean (gray bars), and 0.95 credible intervals (gray segments) of the difference πYj |X=1 − πYj |X=2 between the marginal
probability mass functions of each qualitative variable in the groups of voters who chose Hillary Clinton and Bernie Sanders, respectively, during
the 2016 Democratic Presidential primaries.

The multiple local tests on the marginals interestingly suggest that the above global variations are attributable to

different feelings and opinions on Hillary Clinton. Evaluations of Donald Trump instead do not differ across groups

with maxj∈JD [p̂r{ρj > 0.2 | (y1, x1), . . . , (yn, xn)}] = 0.078, where JD denotes the set of indices for the variables

characterizing feelings and opinions on Donald Trump. Figure 3 clarifies these findings by summarizing the posterior

distribution of the difference πYj |X=1 − πYj |X=2 between the probability mass functions characterizing the feelings
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Figure 4: Posterior mean, 0.025 posterior quantile, and 0.975 posterior quantile, for the Cramer’s V coefficients ρjj′ , measuring group differences
in each bivariate. The x symbols denote those pairs of variables whose bivariates are declared to change across groups according to the proposed
local tests—i.e. p̂r{ρjj′ > 0.2 | (y1, x1), . . . , (yn, xn)} > 0.95.

and opinions on Hillary Clinton and Donald Trump, in Hillary Clinton and Bernie Sanders voters, respectively. Lever-

aging Proposition 2.2, these quantities are defined as πYj |X=x(yj) =
∑H
h=1 νhxπhj(yj), for each yj ∈ (1, . . . , 5).

Consistent with the local tests, the opinions on Donald Trump remain mostly constant across the two groups, whereas

those for Hillary Clinton change. According to Figure 3, these group differences are reasonably due to more negative

feelings and opinions expressed by Bernie Sanders voters on Hillary Clinton.

As shown in Figure 4, the changes in the marginals induce also evident group differences in the probability mass

function for pairs of variables including at least one assessment on Hillary Clinton. When studying the block of items

related to the feelings and opinions on Donald Trump, we do not observe, instead, evidence of group differences in

the bivariates. This is an interesting finding, which suggests that the democratic voters share the same joint opinions

on the Republican candidates, and express their preference during the primaries mostly based on evaluations of the

Democratic candidate, rather than considering their opinions on the potential Republican competitor in the subsequent

Presidential elections. Indeed, we applying the model and methodologies described in Section 2 only to the vector of

items YJD measuring feelings and opinions on Donald Trump, we obtained a posterior probability for the global al-

ternative p̂r{H1 | (y1, x1), . . . , (yn, xn)} ≈ 0, effectively proving the absence of group differences in the Republican

candidate assessments, not only in the marginals and the bivariates, but also in higher-order combinations of items.

6. Discussion

Motivated by recent political election studies providing multivariate categorical data on voters opinions and pref-

erences for Presidential candidates, we have developed a novel methodology for testing of group differences in multi-

18



variate categorical data at different scales. The proposed procedures rely on a single statistical model based on tensor

factorizations, thereby allowing inference and testing on several underlying structures, within a coherent methodolog-

ical framework. Although this goal can be also accomplished in log-linear models, the proposed group-dependent

mixtures of tensor factorizations substantially reduce dimensionality and provide tractable testing procedures, while

crucially preserving flexibility—as proved in theoretical studies. These key properties are directly related to the effec-

tive borrowing of information within the mixture representation, which additionally induces dependence among the

different tests, thus allowing improved power compared to separate univariate tests. Taking a Bayesian approach to

inference, we additionally incorporate adaptive selection of the model dimension, and automatic multiplicity control

via carefully specified priors. The simulation studies, and the real-data application provide empirical guarantee of the

above properties, and highlight improved performance when compared to popular alternatives.

The proposed methods are applicable in broad settings, including unordered and ordered multivariate categorical

data. Indeed, in the motivating real-data application there is a natural ordering among the categories of the observed

items, which may motivate inclusion of additional structure to incorporate order restrictions (e.g. Agresti and Natara-

jan, 2001). Although these properties can be easily incorporated within the multinomial kernels in (4), we avoided

additional complications to maintain the model general and fully flexible. In fact, there is no guarantee—a priori—that

the ordering in the categories is translated into order restrictions for the probabilistic generative mechanisms of the

associated variables. Another promising direction of research is to incorporate additional dimensionality reduction in

equation (4). In particular, although the proposed statistical model massively reduces the number of parameters com-

pared to log-linear representations, inference may be still cumbersome in large and sparse tensors. A possibility to

address this issue is to exploit additional sparsity, by adapting representation (4) to incorporate the recently developed

sparse–PARAFAC model proposed in Zhou et al. (2015).
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