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1. INTRODUCTION

Dynamic state-space models (Durbin and Koopman, 2001), consisting of an unknown
state Markov process X0, X1, . . . and noisy observations of that process Y1, Y2, . . . that
are conditionally independent, are used in a wide variety of applications e.g. wireless
networks (Haykin et al., 2004), object tracking (Ristic et al., 2004) etc. The model
is specified by an initial distribution p(x0|θ), a transition kernel p(xt|xt−1, θ) and
an observation distribution p(yt|xt, θ). These distributions are defined in terms of a
collection of K static (e.g. non-time varying) parameters θ = (θ1, . . . , θK). The joint
model to time t is:

p(y1:t,x0:t, θ) =

(
t∏

j=1

p(yj|xj, θ)p(xj|xj−1, θ)

)
p(x0 | θ)p(θ), (1.1)

where y1:t = (y1, . . . , yt).
In this paper, we propose a new approach for approximating p(θ|y1:t). The prin-

cipal idea is to approximate the posterior on a carefully constructed grid to which
points are added or deleted where necessary. Our method is used alongside a large
range of state process estimation algorithms making it highly flexible, even for non-
linear or non-Gaussian models. We provide evidence corresponding to our claims
through a series of examples.

The literature has tended to focus on computation of the predictive distributions
p(xt|y1:t−1, θ) and p(yt|y1:t−1, θ), and the filtering distributions p(xt|y1:t, θ). Updating
of these distributions is by the well-known forward equations (Arulampalam et al.,
2002); for example for the prediction of state process we need to compute

p(xt|y1:t−1, θ) =

∫
p(xt|xt−1, θ)p(xt−1|y1:t−1, θ) dxt−1. (1.2)

1

ar
X

iv
:1

40
8.

45
59

v2
  [

st
at

.C
O

] 
 2

7 
Ju

n 
20

17



For the linear Gaussian case and assuming known parameters, these computations
reduce to the closed form of the Kalman filter (Kalman, 1960). Generally, Gaussian
forms of the model allows filtering and prediction to be done quickly, exactly and
sequentially, without the need to store the data sequence (West and Harrison, 1997).
Exact inference has also been achieved for models where the state process is discrete
(Cappé et al., 2005).

Extending inference to non-linear and/or non-Gaussian models has proved to be
challenging since analytical solutions to the above integrals do not exist. Functional
approximation approaches, derived from the Kalman filter, such as the extended
Kalman filter (Haykin, 2001), unscented Kalman filter (Julier and Uhlmann, 1997)
etc have been proposed. Monte Carlo approaches such as the bootstrap filter (Gordon
et al., 1993) and auxiliary particle filter (Pitt and Shephard, 1999) have also been
widely used. Attempts have also been made to combine sampling based methods
with functional approximations (Merwe et al., 2001).

As regards the static parameter estimation problem, few closed form solutions
are available. Different approaches are employed, often involving joint inference of
static parameters and the state process (Kantas et al., 2015). We will discuss some
of the existing methodologies in the next section.

Section 2. is a review of some of the online static parameter estimation methods,
some of which are used later for comparison. Section 3. outlines the principle of
the method. Sections 4. and 5. describe the two main issues to be resolved in
order to implement the method: approximations to one-step ahead filtering and
prediction densities, and updating the grid defining posterior density. A discussion
on the theoretical aspects of error accumulation is provided in section 6. Section 7.
illustrates the method and assesses its performance against alternative approaches.
Section 8. contains some concluding remarks.

2. ONLINE PARAMETER INFERENCE

REVIEW

In this paper, interest is in online inference of the the posterior distribution p(θ|y1:t),
along with the filtering and prediction densities associated with the state process
(and not on the joint density); a recent review is Kantas et al. (2015). Several
approaches have been proposed in the literature:

Joint KF/EKF/UKF: A common practice in the engineering literature is to add
dynamics to static parameters, such as assuming θt ∼ N(θt−1, Vt) with variance Vt
decreasing with t, and make inference on p(xt, θt|y1:t−1) at each time point using a
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single Kalman filter or extensions thereof. One advantage of this is that the state
and parameters are typically correlated a posteriori, even in linear systems (Haykin,
2001); however this is known to suffer from numerical instability issues.

Dual KF/EKF/UKF: Dual filters assume that the state and the parameter have
separate state space representations, and thus two filters can be run concurrently
(Wan and Nelson, 1997). The prediction p(xt|y1:t−1, θ̂old) is derived using the param-
eter mean and p(θt|y1:t−1, x̂old) is updated using the filtered state mean. Because each
posterior only uses the first moment of the other posterior and ignores the variance,
these methods are known to produce low variance posteriors.

Online gradient method: Sequential optimization of log(p(y1:t | θ)) is also possible.
If θ̂t−1 is the estimate after the first t−1 observations, it is updated to θ̂t after receiving
a new data yt (Poyiadjis et al., 2005). The problem of evaluating the gradient for the
whole data y1:t has been bypassed in the case of hidden Markov models (LeGland
and Mever, 1997). A problem associated with any gradient method is that it is
extremely sensitive to initialization and may converge to a local maximum.

Online EM: Online versions of the EM algorithm (Dempster et al., 1977), suitable
for a dynamic state space model with unknown model parameters, have been pro-
posed in Cappé (2011). A major advantage is that it always attempts to maximize
the likelihood, allowing methods such as variational inference to be used to estimate
the parameters. However this method can also converge to a local maximum.

Liu and West filter: This is the most generic among particle filter that performs
dual estimation of the state and parameters. Artificial dynamics are introduced for
the parameter and subsequently a kernel density estimate of p(θ|y1:T ) is proposed
from which θ can be sampled. Shrinkage is introduced to control for over-dispersion in
the kernel density function. A major drawback though is that it requires a significant
amount of tuning for quantities such as the kernel bandwidth.

Storvik’s filter: Storvik (2002) generates particles from the parameter’s posterior
distribution without assuming any associated random drift. It is further assumed
that the posterior distribution of θ depends on a low-dimensional set of sufficient
statistics that can be efficiently updated for each t. The choice of this set is the
biggest stumbling block for this algorithm.

Particle learning: Carvalho et al. (2010) have provided a modified version of
Storvik’s filter which has proved to be more efficient. Sufficient statistics are de-
rived for the class of conditional dynamic linear models (CDLM), thus providing
additional structure to the algorithm. Further, the position of the resampling step
in Storvik’s algorithm is now interchanged with the propagation step, that allows
particle deficiency of the posterior of θ to be reduced.

For large t, particle degeneracy for sampling filters is difficult to avoid, even where
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artificial drift has been added (Andrieu et al., 2005; Kantas et al., 2015). Online EM
and gradient ascent methods do not have this problem. The method in this paper
has the same advantage as that of the latter approaches, making it suitable for long
sequences of data. It is to be kept in mind that ours is an on-line sequential algorithm
and the computational load does not increase over time, unlike other generic methods
like SMC2 (Chopin et al., 2013).

3. PRINCIPLE

The principle of the proposed method is based on two observations.
The first observation is that many dynamic state space models have a relatively

small number of static parameters, so that in principle p(θ |y1:t) can be computed
and stored on a discrete grid of practical size. This has been noted as a property of
many latent models (Rue et al., 2009).

The second observation is that there are useful identities for parameter estimation
in latent models. The one of interest here is a sequential version of the basic marginal
likelihood identity or BMI (Chib, 1995),

p(θ|y1:t) ∝ p(y1:t,x0:t, θ) / p(x0:t|y1:t, θ)|x0:t=x∗(θ) , (3.1)

that is valid for any x0:t = x∗(θ) for which p(x0:t|y1:t, θ) > 0 and forms the basis for
the integrated nested Laplace approximation (INLA); see Rue et al. (2009).

The sequential version of the BMI, which lies at the heart of this approach, is:

p(θ|y1:t) ∝ p(θ|y1:t−1) p(yt|xt, θ) p(xt|y1:t−1, θ) / p(xt|y1:t, θ)|xt=x∗(θ) . (3.2)

Typically x∗(θ) = arg maxxt p(xt|y1:t, θ) although the identity is valid for any xt
where p(xt|y1:t, θ) > 0. Equation 3.2 is useful for sequential estimation because its
computation does not grow with t, as is the case with Equation 3.1. Taking Equation
3.2, then if prediction and filtering approximations p̃(xt|y1:t−1, θ) and p̃(xt|y1:t, θ) are
available, any approximation p̃(θ|y1:t−1) can be updated:

p̃(θ|y1:t) ∝ p̃(θ|y1:t−1) p(yt|xt, θ) p̃(xt|y1:t−1, θ) / p̃(xt|y1:t, θ)|xt=x∗(θ) . (3.3)

Assuming that θ of low dimension, computing Equation 3.3 on a discrete grid offers
the potential for fast sequential estimation.

Alternatively, the sequential version of Bayes’ theorem,

p(θ|y1:t) ∝ p(θ|y1:t−1) p(yt|y1:t−1, θ). (3.4)
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and the availability of an approximation p̃(yt|y1:t−1, θ) from any of the filters men-
tioned, also allows for updating. Furthermore, using p(yt|y1:t−1, θ), one can compute
the marginal log likelihood log(p(y1:t)) =

∑t
j=1 log(p(yj |y1:j−1)), where

p(yj|y1:j−1) =

∫
p(yj|y1:j−1, θ) p(θ|y1:j) dθ ≈

∫
p̃(yj|y1:j−1, θ) p̃(θ|y1:j) dθ. (3.5)

The integration in Equation 3.5 is approximated quickly by a sum over the grid of
values of θ.

This suggests the following sequential estimation algorithm when an approximate
posterior predictive distribution, or just state prediction and filtering distributions,
are available. The process is initiated by choosing a prior p(θ) and then determin-
istically selecting a discrete set of points, say Θ0, to approximately cover the region
of high density of the prior, and compute p(θ) at each of the selected points. The
posterior of θ is updated at each point θti ∈ Θt by Equation 3.3 or 3.4. We would like
to reiterate that the objective of this study is not to track the complete trajectory
of the state process, but rather to update the posterior parameter and state-filtering
density over time.

In this method, p(θ |y1:t) may also be approximated by INLA up to some specified
time t = TINLA, and from then on the sequential update of Equation 3.3 or 3.4 is
used. This can be particularly helpful because INLA produces a grid Θt that usually
provides good support. The value of TINLA is determined by how quickly the update
is required, given that the INLA computation slows down with t. Note that TINLA can
be equal to 0, i.e. INLA is not used at all; this means the starting grid is constructed
on the prior p(θ).

A few issues remain to be addressed in order to implement this algorithm: the
form of the approximations p̃(yt|y1:t−1, θ) or that of p̃(xt|y1:t−1, θ) and p̃(xt|y1:t, θ)
and how to adapt the grid Θt so that it tracks the support of the posterior over time.
These issues are addressed in the next sections.

4. POSTERIOR PREDICTIVE AND

FILTERING DENSITY APPROXIMATIONS

For the Kalman filter, all the distributions required in Equations 3.2 and 3.4 are
Gaussian, producing exact updates. The means and variances of these Gaussians are
sequentially updated. West and Harrison (1997) is a comprehensive study of models
of this type.
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There is a large literature about more general filtering algorithms; see Doucet
et al. (2001). In this paper, we have used functional approximations of the filtering
distributions based on extensions to the Kalman filter that incorporate non-linearity
and non-Gaussian error while holding on to the basic principle of updating the first
two moments. The extended Kalman filter linearizes a non-linear model to create
a Gaussian approximation to the filtering and prediction densities. The unscented
Kalman filter (Julier and Uhlmann, 1997) also produces Gaussian approximations
to the filtering and prediction densities but propagates the means and covariances
through the non-linear function. It tends to be more accurate than the extended
Kalman filter, more so for strongly non-linear models.

Other finite dimensional suboptimal filters have also been proposed. Some of
them are the Gaussian sum filter (Ito and Xiong, 1999), quadrature filters (Davis
and Rabinowitz, 2007) etc. In our examples, we have used the Kalman filter, the
unscented Kalman filter and the quadrature filter.

5. UPDATING THE GRID

Recall that θ is of dimension K and assume that there is an initial grid available at
time t = TINLA. If INLA is not used then TINLA = 0 and an initial grid Θ0 is assumed
that covers the region of high density of the prior. It is also assumed that the grid
is made up of points along a set of basis vectors for RK , so that it can be written as
the Cartesian product

Θt = Θt1 ×Θt2 × · · · ×ΘtK , (5.1)

where each Θtk = {θtk1, . . . , θtkntk
} is a set of ntk ordered values for the kth component

of θ.

5.1 Checking the Grid

For t > TINLA, the grid is checked every Tupdate observations to see if it is still an
appropriate support for p̃(θ |y1:t).

The following simple approach appears to perform well in the examples of the
next section. First, the basis that represents the coordinate system for θ is not
changed; it is assumed that by t = Tstart there is a basis that will be satisfactory for
all future t. Second, changes to the grid are based on the univariate marginals of the

6



posterior along the grid coordinates. For the kth coordinate, the marginal is:

p̃k(θtki|y1:t) =
∑

θ∈Θt,−k,i

p̃ (θ |y1:t)

 K∏
l=1
l 6=k

δ(θtl)

 , i = 1, . . . , ntk,

where, to give the appropriate marginalizing sum, Θt,−k,i is Θt with Θtk = θtki1nk
,

summation is over all coordinates except the kth, and δ(θtl) is the step size on the
grid at θ along the lth coordinate at time t.

Changes are considered when the support of the marginals is not adequately
covered by the grid in one of the following situations:

1. If p̃k(θtk1|y1:t) or p̃k(θtkntk
|y1:t) (i.e. the values at each end of the grid support)

are greater than a certain proportion, say δaddext (chosen to be between 0.15 and
0.3) of the value at the mode of the marginal p̃k(θ|y1:t) then an extra point will
be added at that end in Θt+1,k e.g. at θnk1− δk and/or θnkntk

+ δk, where δk is a
step size along coordinate k. Either addition has the effect, through Equation
5.1, of adding a K − 1 dimensional hyperplane to Θt+1. This is referred to as
an external point addition.

2. Similarly, if either edge value p̃k(θtk1|y1:t) or p̃k(θtkntk
|y1:t) is less than a certain

small proportion, say δdropext (chosen to be small, say 0.001) of the marginal
mode then either point is removed for Θt+1,k. Either deletion removes a K − 1
dimensional hyperplane from Θt+1. The resulting new edge points in Θt+1,k are
then also checked and removed if they also satisfy the criterion, allowing more
than 1 point to be removed from each end of each Θtk. Internal grid points are
not dropped in this approach. This is referred to as external deletion.

3. If the change in marginal between two existing points, relative to its modal
value, ∣∣∣∣ p̃(θtki |y1:t)− p̃(θtk,i−1 |y1:t)

maxntk
m=1 p̃(θtkm |y1:t)

∣∣∣∣ ,
is larger than a certain threshold value, say δaddint (usually chosen between 0.3
and 0.4) then an extra point is added to Θt+1,k at (θtki + θtk,i−1)/2. This adds
a K−1 dimensional hyperplane to Θt+1. This is called internal point addition.

Figure 1 shows examples of these additions and deletions. Note that it is possible
to increase or decrease the thresholds over time and can be tweaked by the user in
advance; for example keeping in mind the fact that the posterior shrinks over time
one can assign a lower value to δaddint later in time such that more points are added to
the region of high density.
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Figure 1: Addition and deletion from the grid, where • denotes points that are not
changed and + denotes points that are added or deleted. From left to right: external
addition, internal addition and external deletion.

5.2 Computing p̃(θ|y1:t) at added points in Θt

For a set of newly added points to the grid, the most obvious next step is to compute
p̃(θ|y) at any θ that has been added from Θt−1. However, this is computationally in-
feasible as t gets large and furthermore it would remove the property of the algorithm
that it does not require the entire filtering sequence to be rerun from scratch.

Instead, extrapolation or interpolation methods are used to compute a value of
p̃(θ|y) at any added external and internal point respectively from the existing values
of p̃. Several methods exist e.g. kriging (Cressie, 1993), thin plate splines (Wahba,
1990) etc. We use tensor product spline surfaces (Schumaker, 2007), more specifically
tensor product linear interpolation on the log scale. In our experience so far, this
method is both fast and produces good values for new p̃(θ|y).

Tensor product linear interpolation has also been used to compute the mo-
ments of the state estimation filter corresponding to the added external or inter-
nal grid points, which in turn provides us with necessary filtering densities such as
p(xt|y1:t, θ), p(xt|y1:t−1, θ) and p(yt|y1:t−1, θ). For such points, this simple method
works in most cases since we are essentially providing an informative starting value
for moments in the Kalman filter framework, even in multivariate settings. Table 1
summarises the complete algorithm.
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Table 1: The sequential parameter estimation algorithm.

specify TINLA, Tupdate;
t = 0;
if TINLA == 0:

specify grid Θ0 to cover high-density-region of p(θ);
repeat:

if t ≤ TINLA:
compute discrete grid Θt, i.e. p̃(θ|y1:t) for θ ∈ Θt using INLA;

else:
if (t− TINLA) mod Tupdate == 0:
update grid Θt using method of Section 5.;

else: Θt = Θt−1;
for each θ ∈ Θt:
compute p̃(yt|y1:t−1, θ), or p̃(xt|y1:t−1, θ) and p̃(xt|y1:t, θ), using

filtering;
update p̃(θ|y1:t) from p̃(θ|y1:t−1) by Equation 3.3 or 3.4.

6. APPROXIMATION ERROR

Theoretical results about the error in approximating p(θ | y1:t) using this approach
can be divided amongst the various aspects of the approximation:

1. Error from using a discrete grid;

2. Convergence of the filtering algorithm, including state filtering;

3. Interpolation error in relation to adding grid points.

In this section, existing results around each of these 3 aspects are discussed and a
roadmap to proving error bounds is laid out.

It is noted that the unnormalised p̃(θ|y1:t) evolves independently at each point
in the grid, except for the case of points that are added, where the initial value
of p̃(θ|y1:t) is an interpolation of neighbouring values. Convergence results for the
polynomial interpolation that is used here are well documented (Kress, 1998). For
densities with uniformly bounded derivatives, we can ensure that the interpolation
is arbitrarily accurate by increasing the order of the polynomial. However, for the
rest of this section, we consider a simpler case where adding/dropping points is not
permitted, allowing the third source of error to be ignored and making it sufficient
to consider the error in p̃(θ|y1:t) at one value θ ∈ Θt only, and then separately the
consequences of that for errors related to the use of a discrete grid.
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For the discretization error, were the approximation to be exact on the grid e.g.
p̃(θ|y1:t) = p(θ|y1:t), ∀θ ∈ Θt then the standard theory of Riemann integration gives
us that all integrals of p(θ|y1:t), at least over compact sets, will be approximated ar-
bitrarily well by finite difference summations of p̃(θ|y1:t) as the grid density increases,
including over irregular grids.

Therefore the key to results about bounding the error in the approximation of
p(θ|y1:t) by p̃(θ|y1:t) lies in the choice of starting values (that come from the prior),
error from the use of approximate filters and how that error propagates through to
p̃(θ|y1:t) by repeated application of Equations 3.3 or 3.4 at a single grid point. These
results are the most challenging of the 3 error sources to discuss.

At time t, given that our algorithm provides the following filtering distribution

p̃(θ|y1:t) = Cp̃(θ)
∏
i

p̃(yi|y1:i−1, θ),

where C is the accumulated constant of proportionality, the total variation norm
between the log of the approximation and the actual data generating process is the
following (see Appendix for details):

|log p(θ|y1:t)− log p̃(θ|y1:t)| ≤ |log p(θ)− log p̃(θ)|+
∑
i

|log p(yi|y1:i−1, θ)− log p̃(yi|y1:i−1, θ)| .

Given that the error is bounded by a sum that is infinite in the limit, it seems that at
best it will be possible to show that the error |log p(θ|y1:t)− log p̃(θ|y1:t)| is bounded
rather than converging to 0.

Convergence of log p̃(θ|y1:t) to log p(θ|y1:t) can possibly be achieved under the
following relatively strong conditions:

• p̃(yt|y1:t−1, θ) converges to p(yt|y1:t−1, θ) as t→∞ for each θ.

• Further, assuming that both p̃(yt|y1:t−1, θ) and p(yt|y1:t−1, θ) are bounded away
from both 0 and∞ on a compact subset of Rd in the limit is then sufficient for
convergence between log p̃(yt|y1:t−1, θ) and log p(yt|y1:t−1, θ).

• Convergence need to be sufficiently fast between log p̃(yt|y1:t−1, θ) and log p(yt|y1:t−1, θ)
such that

∑
i |log p(yi|y1:i−1, θ)− log p̃(yi|y1:i−1, θ)| is bounded. For example,

geometric convergence of log p̃(yt|y1:t−1, θ) to log p(yt|y1:t−1, θ) will give a bounded
error to |log p(θ|y1:t)− log p̃(θ|y1:t)| by the geometric sum formula.

Convergence results in the literature pertain to the state process xt and hence
to differences between p(xt | y1:t, θ) and p̃(xt | y1:t, θ). These results can easily be
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extended to the prediction distribution p̃(yt|y1:t−1, θ). Focus is on the stability of the
filter, so that the total variation norm

‖p(xt |y1:t, θ)− p̃(xt |y1:t, θ)‖ −−→
t→0

0.

In the simplest setting, convergence results are well researched on:

• For the linear filter, properties such as uniform detectability and uniform stabi-
lizability provide the conditions for convergence (Anderson and Moore, 1981).
Since for θ ∈ Θt, the Kalman filter converges for any p̃(x0), convergence for
our algorithm would essentially depend only on p̃(θ), where p̃(·) represents the
prior chosen by us, while p(·) is the prior in the true data generating process.

• Finite state space models provide simple settings to study convergence of the fil-
ter. Assuming that the actual data generating process arises from p(·), whereas
we use p̃(·) as the prior; one can calculate p(xt |y1:t, θ) and p̃(xt |y1:t, θ) respec-
tively. The total variation between p(xt |y1:t, θ) and p̃(xt |y1:t, θ) is bounded
above under ergodic signal, bounded error density, conditions on initial values
and certain “mixing” conditions (Atar and Zeitouni, 1997). The upper bound
is dependent on the Hilbert metric between p̃(x0) and p(x0) and mixing pa-
rameters (see Appendix for more details). For our algorithm, this would mean
that convergence of p(θ |y1:t) would again be dependent on our choice of the
prior p̃(θ) along with the aforementioned conditions.

Convergence results for non-linear systems are much more difficult to compute;
the existing proofs are based on assumptions which are very restrictive, especially
in terms of practical application. An illustration of a potential approach in general
nonlinear filtering is provided in Chigansky (2006), where convergence is proved along
the same lines as that of finite state space models.

Most solutions to general state space filtering are sub-optimal, and initial estimate
is found to play a very important role. Kluge et al. (2010) and others before them
proved that estimation error in EKF is exponentially bounded in mean square under
permitted nonlinearity and very conservative bounds for each of initial error and noise
covariance matrix. Other filters like UKF or Gaussian filters require tuning of signal
covariance matrices to achieve stability; no quantitative bounds have been computed
and verification of existing assumptions prove to be exceptionally complex (Xiong
et al., 2009). It is extremely difficult to generalise these results to our method, and
hence pointwise convergence of p̃(θ|y1:t) would possibly depend on our choice of prior
p̃(θ) along with the conditions associated with each filter, as well as those mentioned
under general conditions.
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A simulation study we have performed substantiates the claim above, vis a vis a
linear Gaussian model. Both for state and parameter, priors have been constructed
to be extremely narrow and the true starting values for the data generating process
are “very distant” from the region of high density of these priors. Our filter was
occasionally found to diverge under these circumstances. An ill-defined state process
prior caused more issues than a parameter prior.

7. EXAMPLES AND COMPARISON WITH

ALTERNATIVE APPROACHES

Our method has been implemented for four real data sets and its performance is
compared to offline methods such as INLA, MCMC, iterated filtering (Ionides et al.,
2011)and PMCMC (Andrieu et al., 2010), as well as the online method of Liu and
West (henceforth referred to as L&W filter). Computation times have not been
compared because of the difficulties in accounting for differences in implementation
and code optimization that have been made across all of these methods, even given
that they are all written in R. For INLA, the R-INLA package was used (see www.r-
inla.org), for MCMC in stochastic volatility model the package stochvol was used
(Kastner, 2016b) and for iterated filtering, PMCMC and the L&W filter, the R

package pomp was used (King et al., 2010).
For all the examples the heuristic parameters are set at δaddext = 0.2, δdropext = 0.001

and δaddint = 0.35. The starting grid has been constructed by placing a regular grid on
the region of high density of the prior.

7.1 Nile data

The local level model (West and Harrison, 1997) is a simple dlm of the form

yt = xt−1 + ηt, (7.1)

xt = xt−1 + εt, (7.2)

where ηt ∼ N(0, σ2
obs) and εt ∼ N(0, σ2

sys). Here it is fitted to the well-known Nile
data set, being annual measurements of the river Nile at Ashwan from 1871 to 1970.
Paremeter inference is done for θ = (log(σ2

obs), log(σ2
sys)). These data have been

elaborately studied by others e.g. Cobb (1978), Durbin and Koopman (2001) etc.
Maximum likelihood estimates are σ̂2

obs = 15100 and σ̂2
sys = 1468.

The sequential inference algorithm is implemented with a variety of informative
and non-informative priors for θ and x0. The starting grid has been constructed on

12
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Figure 2: Trace plots of the median (solid line), 2.5% and 97.5% posterior quantiles
(shaded) of the log variances. The MLE given all the data is a dashed line.

40 points in each dimension. Performance is evaluated qualitatively through trace
plots of the posterior median. We would also like to mention at the outset that
average runtime was about 3 secs.

Because of a lack of identifiability between σ2
obs and σ2

sys, there is significant
sensitivity to the prior and outlier observations. This can cause the approximation
to concentrate around a local mode in the posterior.

This is illustrated in Figure 2, where trace plots of parameters with three different
prior distributions are given:

Prior 1: Flat log inverse gamma prior with shape = 0.1 and scale = 1 for both log
variance parameters and an uninformative prior for x0, namely normal with
mean 0 and variance 100;

Prior 2: An informative log inverse gamma prior for log(σ2
sys) with shape = 4506

and scale = 6760490, and that for log(σ2
obs) with shape = 45006 and scale =

675015000. Also an informative normal(1000, 100) for x0;

Prior 3: Flat prior for log(σ2
sys) and log(σ2

obs) (same as Prior 1) and a prior for x0

similar to Prior 2 but with larger variance (10000).

13
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Figure 3: Prior density (dashed line) of θ over-layed on posterior density calculated
exactly (solid line) and using our method (all other line types) over various combi-
nations of priors on x0. These densities are scaled to fit. The vertical line is the
MLE.

It can be seen that in this example, the prior on the state process (or equivalently
the starting value for x0) plays the most significant role. The marginal posterior
distributions are largely in agreement with the MLE in spite of the prior influence,
as is evident in Figure 3. It should be mentioned here that when we used INLA to
provide the starting grid, our algorithm managed to identify the MLE even when
the priors were uninformative for all unknowns (prior 1).

As regards model fit, Figure 4 plots the posterior predictions p(yt+1|y1:t) with the
data. Predictive performance is good and the effect of the prior is seen in generally
tighter prediction intervals where the prior was informative.

It has already been mentioned that the maximum likelihood estimation of the
unknown static parameters in this model are σ2

obs = 15100 and σ2
sys = 1468. The

L&W filter was run 50 times for each of the 3 above mentioned priors. Table 2 shows
the median of each of the 2.5%, 50% and 97.5% posterior quantiles at t = 100. The
methods largely agree under priors 2 and 3, but L&W fails to track the MLEs in the
uninformative prior case (prior 1).
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Figure 4: The one-step ahead predictive median (dashed line), 2.5% and 97.5%
quantiles (shaded) along with data (solid line).

7.2 Tokyo rainfall data

Figure 5 displays the number of instances of rainfall over 1 mm in Tokyo for each
day during the years 1983 − 1984 (Kitagawa, 1987). For each calendar day t, t =
1, . . . , 366 the data is defined as the following:

yt = 0 if no rain in either year,

= 1 if rain in only 1 year and,

= 2 if rain in both years,

with only 1 observation at t = 60, corresponding to 29th February 1984. These data
have been analyzed before by several authors, for example Fahrmeir and Tutz (2001)
and Rue and Held (2005).

Both Fahrmeir and Tutz (2001) and Kitagawa (1987) fitted the same model, in
which the state process, which is related to the probability πt = p(rain on day t)
through a logit link, is a random walk process. The model is given by,

yt =

{
Bin(1, πt), t = 60 (February 29)

Bin(2, πt), t 6= 60.
(7.3)

πt = 1 / (1 + exp(−xt)), (7.4)

xt = xt−1 + εt εt ∼ N (0, σ2). (7.5)
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Sequential BMI Liu & West

σ2
state σ2

obs σ2
state σ2

obs

Prior 1
15253 10863 76302 131621

(12847, 28340) (3608, 20325) (15041, 175546) (26393, 213275)

Prior 2
1494 15061 1499 15002

(1440, 1541) (14948, 15123) (1457, 1548) (14863, 15137)

Prior 3
937 15361 1121 15479

(181, 4832) (9530, 21165) (246, 4991) (10763, 23214)

Table 2: Comparison of the medians of 2.5%, 50% and 97.5% posterior quantiles for
the Nile data between the method in this paper and that of L&W.

Rue and Held (2005) use a circular random walk of order 2 for the state process
that cannot be directly analyzed using the “forward looking” state space approach
employed here. Instead a second order difference random walk, also in Fahrmeir and
Knorr-Held (2000), is used:

xt = 2xt−1 + xt−2 + εt εt ∼ N (0, σ2). (7.6)

The state variance parameter σ2 is the lone parameter in this problem. We have
used EKF to compute the estimation in the state process as discussed extensively
in Fahrmeir (1992). A flat prior for the state variance parameter is used and INLA
is used for the first TINLA = 10 iterations which is sufficient to get a grid with good
posterior support. Average runtime for this data was approximately 30 secs.

Figure 6 shows the sequential parameter learning and comparison with ’batch’
methods: INLA and an MCMC procedure. All 3 methods give a similar inference
by the time that all the data are observed.

Figure 7 plots the smoothing mean π̂t |y1:366, σ̂
2
t along with bands denoting 2.5%

and 97.5% quantiles. The smoothing mean seems to capture the “rainy patches” in
Tokyo quite well and matches with similar inferences made in other works.
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Figure 5: Instances of rainfall over 1 mm in Tokyo for each day from 1983 to 1984.
The alphabets in the x-axis denote months of the year.
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Figure 6: The posterior distribution of σ2 and comparison to INLA and an MCMC
procedure. Left is a summary of p(σ2 |y1:t): posterior median (solid line), 2.5 and
97.5 percentiles (shaded), posterior mean given all the data from INLA (dashed line)
and MCMC (dotted line). Right: final posterior p(σ2 |y1:366).
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Figure 7: Summary of p(πt |y1:366, σ̂
2
t ) where σ̂2

t is the posterior mode: posterior
median (solid line) 2.5 and 97.5 percentiles (shaded region) and data (solid vertical
lines).

7.3 Stochastic volatility model

The stochastic volatility model (Taylor, 1982) can be written:

yt = exp (xt / 2) εt, (7.7)

xt = µ+ φ(xt−1 − µ) + σηt, (7.8)

xt ∼ N
(
µ, σ2 / (1− φ2)

)
,

where εt and ηt are independent standard Gaussian variables. The set of unknown
static parameters in the model are θ = (µ, φ, σ2): the level of log-variance µ, the
persistence of log-variance φ and the volatility of log-variance σ.

The daily difference of the dollar-pound exchange rates between October 1st and
June 28th, 1985, plotted in Figure 8, are analysed with this model.

The algorithm was applied to these data with a set of 32 different priors, corre-
sponding to a mixture of informative and uninformative cases. The starting grids
for each prior were 40 for each parameter.

Medians of the posterior quantiles for all the parameters, across the 32 prior
specifications, along with 1−step ahead predictions, are plotted in Figure 9, along
with the posterior mean from an analysis of all the data using the MCMC approach of
Kastner (2016a) and INLA. It can be seen that there is good robustness to the prior
specification, at least once most of the data are analysed. A much larger estimate

18



−2

0

2

4

0 250 500 750
Time

lo
g(

$−
£ 

ex
ch

an
ge

 r
at

e)

Figure 8: Logarithms of daily difference of the dollar-pound exchange rates between
October 1st and June 28th, 1985.

of σ2 is given by INLA; our method and the MCMC approach are in much better
agreement. The bottom-right panel assesses model fit via box plots of posterior
p-values (Gelman, 2003), which demonstrates good predictive performance of our
method regardless of the prior specifications. The average runtime for our method
is approx. 280 sec including calculation of posterior quantiles and p-values.

In addition, Table 3 shows a similar comparison with the method of L&W. The
table summarises the posterior distribution across the 32 priors, showing the median
of the posterior median, 2.5% and 97/5% quantiles once all the data were analysed.
In general, the table shows the difficulties of parameter estimation for this model,
with large differences between the approaches. Our method is in rough agreement
with L&W, but it is also able to provide a reasonable estimate for the AR parameter.
INLA showed the largest sensitivity across the different priors that were used. L&W
provide narrower probability bounds than our method.

7.4 Univariate non-stationary growth model

The univariate non-stationary growth model (UNGM) is a very challenging model for
parameter estimation and has been discussed in numerous occasions in the literature;
see Kitagawa (1996); Andrieu et al. (2010) for discrete time and Xu and Yoon (2009)
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Figure 9: Medians of posterior 2.5%, 50% and 97.5% quantiles over the 32 prior runs
for each of the parameters. The solid and dashed lines correspond to the parameter
estimate with all the data from INLA and the MCMC approach. The bottom-right
panel plots the Bayesian p-values over various priors on x0.
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Method µ̂ (95% Intervals) φ̂ (95% Intervals) σ̂2
y (95% Intervals)

Our method −0.99 (−1.24,−0.53) 0.93 (0.84, 0.98) 0.014 (0.002, 0.039)

Liu & West −0.81 (−1.29,−0.37) 1 (1, 1) 0.016 (0.012, 0.018)

MCMC −0.9 (−0.96,−0.82) 0.968 (0.943, 0.975) 0.037 (0.03, 0.059)

INLA −0.9 (−0.95,−0.86) 0.976 (0.956, 0.983) 0.49 (0.25, 0.72)

Table 3: Posterior 2.5%, 50% and 97.5% quantiles for each of the parameters from:
our approach, L&W’s, MCMC and INLA.

for continuous time version. The model is given by:

yt = x2
t / 20 + εt, where εt ∼ N (0, σ2

y), (7.9)

xt = 0.5xt−1 + 25xt−1 / (1 + x2
t−1) + 8 cos(1.2 t) + ηt, where ηt ∼ N (0, σ2

x),
(7.10)

x0 ∼ N(0, 1).

The parameters are θ = (σ2
y, σ

2
x). Estimation procedures for parameters for this

model have focussed on batch analysis rather than online. As well as being highly
nonlinear, both in the state and the observation process, the state process is mul-
timodal, making filtering and prediction difficult, particularly when x2

t/2 is small
relative to σy (Kotecha and Djurić, 2003).

Data were simulated from this model with σ2
y = σ2

x = 1. For estimation of the
state process, both the augmented UKF (Wu et al., 2005) and quadrature methods
were applied, and the latter performed better, at the cost of a longer computation
time. Updating the posterior using p(yt|y1:t−1, θ) — that is, the sequential version of
Bayes Law — produced better performance. Another issue is prior sensitivity, which
can be considerable because of the nonlinearity and lack of identifiability in the state
process. Because of this, to evaluate our method, multiple data sets from this model
were generated, while keeping the prior on the state and parameters to be the same
in all the runs with the grid to be 40 for both.

Figure 10 summarises the inference over these 24 runs which ran over an average
time of 850 sec again including computation for posterior quantiles and p-values
which slows the process down signifiantly. Note the extremely narrow posterior
bounds for each run (top row of the plot), along with consistent under-estimation of
the state variance parameter.

An explanation for the under-estimation of σ2
x is that while σ2

y has been identified
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Figure 10: Top: posterior modes, 2.5% and 97.5% quantiles for all 24 runs. Bottom:
2.5%, 50% and 97.5% percentiles of the posterior medians from the 24 runs.

by our method, note the high variability between the runs, mostly indicating over-
estimation, an indication of an identifiability problem. In several cases, the posterior
distribution diverged considerably from the true value, usually due to the presence of
severe nonlinearity. Furthermore, the individual runs were found to have extremely
narrow probability bounds, implying that the posterior is concentrated in a narrow
region of parameter space. However, Figure 11, shows that predictive performance
is good (this is for a single run). It is possible to identify the problem faced in
identifying the observation when it is close to 0, i.e. when x2

t/2 is small, in the figure.

Table 4 compares the performance of the L&W method and two other offline
methods: iterated filtering and PMCMC. All the algorithms were provided with a
similar set of priors and their posterior medians were recorded. The values provided
in the table are the 2.5%, 50% and 97.5% percentiles of these medians from multiple
runs. L&W algorithm seem to have estimated the state variance parameter correctly,
while our method clearly under-estimated it. However, performance of our algorithm
is better for the measurement variance parameter. A major disadvantage for the
L&W method is that all the runs ended in a single particle, thus degeneracy is
certain, a problem our method does not face. Iterated filtering does contain the
true parameter values in its bounds, but at the cost of very large standard errors.
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Figure 11: Left: snapshot of the 1-step marginal predictive median (dashed) and
probability bounds (band) along with the data (solid) for a single run. Right: box
plot of posterior p-values.

PMCMC is the only method which estimates both the parameters correctly, even
though it is extremely sensitive to the proposal distribution for the parameters and
very easily can get caught in local modes. This goes on to display the extreme
complication associated with the UNGM model, because of the nonlinearity in both
levels of the state space models. In conclusion one may say that for models with
severe nonlinearity and identifiability issues existing online algorithms fail to fit the
model well.

Method σ̂2
x (95% Intervals) σ̂2

y (95% Intervals)

Our method 0.15 (0.04, 0.54) 2.19 (0.27, 16.25)

Liu & West 1.19 (0.43, 14.6) 9.29 (0.84, 23.27)

Integrated filtering 0.47 (0.47, 76.93) 33.18 (0.62, 34.68)

PMCMC 2.01 (0.67, 9.93) 3.11 (0.52, 5.35)

Table 4: The median, with 2.5% to 97.5% percentiles of posterior medians over
multiple runs from our approach, L&W, iterated filtering and PMCMC.
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8. CONCLUSION

A method of sequential static parameter estimation for generalized dynamic state
space models has been proposed and compared to multiple alternative approaches,
both online and offline. Our method achieved similar accuracy to the offline methods
in almost all the examples provided and usually performed better than the particle
filter. Furthermore, it does not suffer from usual scenarios of degeneracy.

Our method has several appealing properties. It can be applied to models with a
non-Gaussian state process, and so is more general than INLA. When the underlying
process is Gaussian, it can make use of INLA for a good initialization. It is a very
flexible framework in that any filtering and prediction algorithm, not just those used
here, can be plugged in as the approximations for posterior predictive or filtering
distributions. Dynamic grid updating by tensor product splines is fast, simple and
seems to work well, at least in the examples described in the paper; many alter-
native interpolation methods could be implemented once this approach fails to be
sufficiently accurate. Finally, the algorithm is trivially parallelizable over the grid;
the computation of p̃(θj|y1:T ) at each θj is completely independent.

The principal disadvantage of the approach is that it is restricted to models with
a relatively small number of fixed parameters, hence suited for example to inference
on hyper-parameters related to the case of hierarchical model in a dynamic setting.
Since the number of hyper-parameters in such models are usually much smaller than
the number of parameters, which themselves could be time dependent, our algorithm
can be fast enough for online Bayesian inference.

Finally, a short discussion on computational complexity of our algorithm is pro-
vided. In this paper, our method has not been formally compared to the other
online algorithms in terms of computation time, such as L&W method, because the
latter is applied from an R package, which would have more optimized coding than
ours. This method has computational complexity O(Gp) where G is the number
of grid points in each dimension and p = dim(θ). Because of the recursive nature
of the algorithm, the computation is independent of t. For each grid point, the
complexity also depends on that of the Kalman filter, EKF, UKF or other state es-
timation methods; total complexity then becomes O(Gp ? K), where K corresponds
to computation in the state estimation process. For the Kalman filter, for example,
K = O(n3 + n2m + nm2 + m3) where n and m denote the dimensions of the state
and observation process respectively. However note that because of the nature of the
algorithm, the state estimation steps can be trivially parallelized across points in the
grid.
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9. Appendix

9.1 Convergence of filtering distribution under Hilbert met-
ric approach

We will first present the general form for a discrete time filter. Let X = (Xt) be a
Markov sequence with values in Rd and transition probability density p(xt|xt−1, θ)
and initial probability density p(x0|θ). The observation process Y = (Yt) is an
i.i.d sequence conditional of X, such that we have p(yt|xt, θ) as the likelihood. We
drop the dependence on θ from future references as they don’t play a role in the
convergence proofs involving state filtering.

The filtering equation of Xt given Y1:t for the general problem can be written as

πt(xt) =
p(yt|xt)

∫
Rd p(xt|xt−1)πt−1(xt−1)dxt−1∫

Rd p(yt|xt)
∫
Rd p(xt|xt−1)πt−1(xt−1)dxt−1 dxt

.

Even though the filtering equation above is nonlinear, its solution at each time point
is obtained by using the linear Zakai equation:

ρt(xt) = p(yt|xt)
∫
Rd

p(xt|xt−1)πt−1(xt−1)dxt−1, for t ≥ 0, (9.1)

and thus we have

πt(xt) =
ρt(xt)∫

Rd ρt(u)du
. (9.2)

The Hilbert projective metric approach has been used to prove the stability result
of the state filter for a finite state space model by Atar and Zeitouni (1997) and by
LeGland and Oudjane (2004) in particle filters. Let S ⊆ Rd be a measurable set
and M+ be the space of nonnegative measures on (S,B(S)) with the partial order
relation p � q if p(A) ≤ q(A) for any measurable A ⊆ S. The measures p and q are
comparable if c1p � q � c2p for some constants c1, c2 > 0.

Definition (Hilbert projective distance metric) The Hilbert projective distance is
defined as

h(p, q) = log
supA,q(A)>0 p(A)/q(A)

infA,q(A)>0 p(A)/q(A)
, p, q ∈M+ are comparable

and h(p, q) =∞ otherwise.

The following properties of the Hilbert metric are useful:
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1. h(p, q) is a non-negative symmetric function;

2. It satisfies the triangle inequality

h(p, q) ≤ h(p, r) + h(r, q), p, q, r ∈M+;

3. h(p, q) = 0 iff p = cq for some c > 0;

4. h(p, q) = h(c1p, c2q) for any p, q ∈M+ and any scalars c1, c2 > 0;

5. ‖p− q‖ ≤ 2
log(3)

h(p, q) for any p, q ∈ Sd−1.

Further let K be a linear operator, mappingM+ to itself, then the Birkhoff contrac-
tion coefficient is defined as

τ(K) = sup
0<h(p,q)<∞

h(Kp,Kq)

h(p, q)
. (9.3)

Defining h-diameter as H(K) = supp,q∈M+
h(Kp,Kq), we have

τ(K) = tanh

(
H(K)

4

)
. (9.4)

In the filtering concept, the operator is of a particular integral structure and then if
the transition kernel satisfies the “mixing conditions”, i.e. if ∃ constants κ? and κ?

s.t.
0 < κ? ≤ p(xt|xt−1) ≤ κ? <∞,

it can be shown that

τ(K) ≤ κ? − κ?
κ? + κ?

< 1. (9.5)

Let π = (πt)t≥0 be the filtering posterior that one can get from the data generating
process and π̃ = (π̃t)t≥0 be the applied model, and p(x0) and p̃(x0) be the respective
initializations. The condition p(x0) << p̃(x0), i.e. p̃i(x0) = 0 =⇒ pi(x0) = 0 is
sufficient for p̃(x0) to be a valid initialization. Under these assumptions we have the
following theorem

Theorem 9..1 Suppose the signal evolves on a subset S ⊆ Rd, i.e. p(Xt /∈ S) = 0
for all t ≥ 0. Assume that h(p(x0), p̃(x0)) <∞ and there exists a reference measure
on S, with respect to which the transition law of the signal has a uniformly positive
and bounded density, i.e.

0 < λ? ≤ p(xt|xt−1) ≤ λ? <∞.
Then

‖πn − π̃n‖ ≤
2

log(3)
h(p(x0), p̃(x0))

(
λ? − λ?
λ? + λ?

)n
, n ≥ 1.
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9.2 Outline for convergence proof in our algorithm

Given that our algorithm provides the following filtering distribution:

p(θ|y1:t) ∝ p(θ|y1:t−1) p(yt|y1:t−1, θ),

= Ctp(θ|y1:t−1) p(yt|y1:t−1, θ),

= Cp(θ)
∏
j

p(yj|y1:j−1, θ).

We now have

log p(θ|y1:t) = log p(θ) + logC +
∑
j

log p(yj|y1:j−1, θ).

Assuming p̃(·) is the approximate filter and p(·) is the true posterior coming from
the true data generating process, the total variation norm between the corresponding
logs is

|log p(θ|y1:t)− log p̃(θ|y1:t)|

=

∣∣∣∣∣[log p(θ) + logC +
∑
j

log p(yj|y1:j−1, θ)]− [log p̃(θ) + log C̃ +
∑
j

log p̃(yj|y1:j−1, θ)]

∣∣∣∣∣ ,
≤ |log p(θ)− log p̃(θ)|+

∑
j

|log p(yj|y1:j−1, θ)− log p̃(yj|y1:j−1, θ)| .

We can provide an upper bound to the above inequality provided the conditions
mentioned in the main body of the paper hold.
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