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Abstract: A novel class of models is introduced, with potential areas of application ranging from
land-use classification to brain imaging and geostatistics. The model class, denoted latent Gaussian
random filed mixture models (LGFM models), combines the Markov random field mixture model
with latent Gaussian random field models. The latent model, which is observed under measurement
noise, is defined as a mixture of several, possible multivariate, Gaussian random fields. Which of the
fields that is observed at each location is modeled using a discrete Markov random field. In order to
use the method for massive massive data sets that arises in many possible areas of application, such
as brain imaging, a computationally efficient parameter estimation method is required. Such an
estimation method, based on a stochastic gradient algorithm, is developed and the model is tested
on a magnetic resonance imaging application.

Key words: Gaussian mixture; Markov random fields; Random fields; Stochastic gradients

1 Introduction

Gaussian mixture models (GMMs) have successfully been used for classification in several areas of
application ranging from video surveillance [Stauffer and Grimson, 1999] to speaker identification
[Reynolds and Rose, 1995]. Also in geostatistics and statistical image analysis, classification and image
segmentation is often performed using GMMs in combination with the Expectation Maximization
(EM) algorithm [Dempster et al., 1977] for estimation. Let Y1, . . . ,Ym be observations of some,
possibly multivariate, process Y(s) at locations s1, . . . , sm. The classical GMM can then be formulated
as

π(Yi|θ) =
K
∑

k=1

wikπk(Yi|θk), (1)

independently for all i = 1, . . . m, where K is the number of classes, wik denotes the prior probability
of Yi belonging to class k, and πk(Yi|θk) denotes the distribution of class k, which is assumed to be
Gaussian, N(µk,Σk).

A drawback with classification based on the classical GMM is that any spatial dependency of
the data is ignored. A common strategy to account for spatial dependency in the data is allow for
dependency in the allocation variables (wik), which can be done in several ways. One way is to model
the class probabilities, wik, using a logistic normal model

wik =
exp(ηik)
∑

j exp ηij
, (2)

where ηk are assumed to be latent Gaussian fields [Fernández and Green, 2002]. Estimation under
this model is difficult, and one generally has to resort to computationally expensive MCMC methods.
Furthermore, for classification problems, the model is not ideal as the spatial model forces the posterior
weights to be smoothly varying, which often can reduce the predictive power of the model.

Another way to allow for dependency in the mixture weights is to note that in the random variable
Yi defined in (1) equals, in distribution,

K
∑

k=1

zikGik, (3)
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where Gik ∼ N(µk,Σk) and zik = 1(xi = k) is an indicator function for the event xi = k, where xi is a
multinomial distributed r.v. defined though the probabilities P(xi = k) = wik. Using this formulation
of the GMM, spatial dependency can be introduced by assuming that x = {xi} is a discrete MRF
[see e.g. Held et al., 1997, Zhang et al., 2001, Van Leemput et al., 1999]. We refer to this model as a
MRF mixture model.

Allowing for spatial dependency in the mixture weights is often reasonable and improves the
classification for spatial problems. However, from a modeling perspective the MRF mixture models
are not ideal since the data within each class is assumed to be independent observations of the same
Gaussian distribution, while one would also like to allow for spatial dependency of the data within
each class. Consider, for example, land-use classification from satellite images, where the classes in
the mixture are assumed to correspond to distinct land types such as forest, fields, water, etc. For
a given class, say forest, the measured values will depend on, for example, vegetation density and
vegetation composition which makes the assumption of independent measurements within the class
unrealistic.

In geostatistics, the most common approach to model spatially dependent data is to use latent
Gaussian random fields [see e.g. Cressie, 1991, Cressie and Wikle, 2011]. Collecting all measurements
{Yi} in a vector Y, a latent Gaussian model can be written as

Y = Bβ +Aξ + ε, (4)

where ξ is a (multivariate) mean-zero Gaussian random field, A is a matrix that connects the measure-
ments to the latent field, and εi is Gaussian measurement noise. The matrix B contains covariates for
the mean evaluated at the measurement locations, and the latent field evaluated at the measurement
locations is given by X = Bβ +Aξ. This modeling approach is often preferable if the latent process
is smoothly varying and it is highly useful for noise reduction and spatial interpolation in cases of
partial observations [Stein, 1999]. However, the latent Gaussian random fields are poorly equipped to
deal with the discontinuity of both process and covariance common for data in classification problems.

The aim of this work is twofold. First, we want to provide a new class of models that extends the
MRF mixture models and can be used for spatial modeling of data that is usually studied in spatial
classification problems. The goal is to provide a model class that can be used for classification but
also for noise reduction and spatial interpolation. The model class we propose, which we will refer to
as the latent Gaussian random field mixture (LGFM) models, combines the MRF mixture models and
the latent Gaussian models, by assuming that the latent field is a MRF mixture of Gaussian random
fields. The possible application areas for this model class ranges from geostatistics and land-use
classification problems to brain imaging and MRI modeling and estimation.

The second goal of this work is to provide an efficient estimation method for the LGFM and
MRF mixture models that simplifies their usage for applications with massive datasets. The main
computational bottle neck for likelihood-based estimation methods, for both the LGFM models and
the MRF models, is the computation of the normalizing constants of the joint densities. For the MRF
models there exists several ways to handle this issue, and the two most common methods are gradient-
based estimation and pseudo-likelihood estimation [Guyon, 1995]. Recently, gradient methods for
large-scale GRF models have been developed for likelihood estimation that efficiently deals with the
normalizing constants [Anitescu et al., 2012, Stein et al., 2013]. We propose a stochastic version of
the EM gradient method [Lange, 1995] based on pseudo-likelihoods, which handles the normalizing
constant for both the LGFM and the MRF mixture models efficiently.

The structure of this work is as follows. In Section 2, the model class is introduced and connections
to other related models are discussed. Section 3 contains an introduction to a particular choice of the
model components which is suitable for modeling of large datasets. Section 4 introduces an estimation
procedure that is suitable for this model class but also for the standard MRF mixture models and
the latent Gaussian models in cases of large datasets. In Section 5, the model class is used for noise
reduction in magnetic resonance (MR) imaging. Finally, Section 6 contains a discussion of possible
extensions and further work.
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2 Latent Gaussian random field mixture models

Let Y be the vector of, possibly multivariate, observations. The general structure of the LGFM
models is then

Yi = X(si) + ε,

X(s) =

K
∑

k=1

zk(s)Xk(s),

Xk(s) =

n
∑

j=1

Bkj(s)βkj + ξk(s).

(5)

Here, ε is mean-zero Gaussian measurement noise and X(s) is the latent process. The latent process
is described as a mixture of K Gaussian random field models, X1, . . . ,XK , and z is an indicator
field that determines which class that is present at each location. Each Gaussian component is
modeled using some covariates Bkj for the mean and a mean-zero Gaussian random field ξk with
some covariance structure, which may be different for the different classes.

This general class contains several interesting models, and some examples of realizations of uni-
variate models with K = 2 are shown in Figure 1. In the examples, Xk are independent stationary
Gaussian Matérn fields. The indicator field z is obtained as z1(s) = IZ(s)>0(s), z2(s) = IZ(s)≤0(s)
where Z(s) is a Gaussian Matérn field, i.e. z1(s) = 1 and z2(s) = 0 for all s where Z(s) > 0 and
z1(s) = 0 and z2(s) = 1 otherwise. In Panels (a) and (b), Z(s) is independent of Xk. Panel (a) shows
an example where X1 and X2 have the same covariance function but different mean values and Panel
(b) shows an example where X1 and X2 have the same mean values but different correlation ranges.
One can also imagine that z depends on some of the latent fields. Panels (c) and (d) are the same as
Panels (a) and (b) except that Z = X1. Thus, X1 is only observed if it is positive and otherwise X2

is observed.
There is a connection to the popular linear coregionalization models (LCM) [Zhang, 2007] in

geostatistics. In our notation, an LCM can be written as

Y (si) = µ(si) +

K
∑

k=0

ξk(si).

Thus, this model would be a special case of the LGFM models if we allowed zk(s) = 1 for all k and s.
For spatial classification problems, the domain for s is often discrete, e.g. pixels in satellite images

or voxels in MR images. In such situations, the model can be written more compactly as

Y =
K
∑

k=1

zk · (Bkβk +Aξk) + ε, (6)

where · denotes element-wise multiplication, B is a matrix containing the covariates evaluated at
the measurement locations, and A is a measurement matrix that determines which components
in ξk that are observed. The latent field evaluated at the measurement locations is now given by
X =

∑K
k=1 zk ·(Bβk +Aξk), which is a spatially correlated mixture of Gaussian random fields. Thus,

there is a clear connection between this model and the MRF mixture models; a MRF mixture model
with spatially dependent components is obtained by choosing z as the indicator field of a discrete
MRF.

For practical applications of the model one is typically interested in estimates of the latent field
X given the data. For spatial prediction and noise reduction, E(X|Y,Ψ), where Ψ is an estimate
of the model parameters, is used as a point-estimate of the latent field and V(X|Y,Ψ) is used as a

3



(a) (b)

(c) (d)

Figure 1: Examples of spatial mixture models with K = 2. The latent fields X1 and X2 are inde-
pendent stationary Gaussian Matérn fields and z is obtained as z1(s) = Z(s) > 0, z2(s) = Z(s) < 0
where Z(s) is a Gaussian Matérn field. In Panel (a), X1 and X2 have the same covariance function
but different mean values and X(s) is independent of Xk. In Panel (b), X1 and X2 have the same
mean values but different correlation ranges and X(s) is independent of Xk. Panels (c) and (d) are
the same as Panels (a) and (b) respectively, except that Z = X1.

measure of the uncertainty in that prediction. To calculate these, we note that

E(X|Y,Ψ) = E[E(X|Y, z,Ψ)|Ψ,Y],

V(X|Y,Ψ) = E[V(X|Y, z,Ψ)|Ψ,Y] + V[E(X|Y, z,Ψ)|Ψ,Y].

Here, E(X|Y, z,Ψ) and V(X|Y, z,Ψ) can be calculated analytically since these are posterior means
and covariances for Gaussian distributions. The outer expectation and variances, taken over z, are
typically not known analytically but can be estimated using Monte Carlo integration by sampling
from π(z|Y,Ψ). While sampling z, E(z|Y,Ψ) can be estimated and used to classify the data.

Since the model class is mainly targeted at applications on discrete domains, we choose to study
the discrete model in more detail and leave the practical details of the continuous models for further
research. In the following section, we outline a reasonable choice for the different components in the
model that makes the model applicable to large spatial problems. And in Section 4, an estimation
procedure for this particular model is presented.
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◦ • ⋆ • ◦

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦

(a)

◦ • ◦ • ◦

• ◦ • ◦ •

◦ • ◦ • ◦

• ◦ • ◦ •

◦ • ◦ • ◦

(b)

Figure 2: A fist order neighborhood structure (a) and corresponding sets of conditionally independent
pixels (b).

3 Model components

In this section, we present a particular choice for the model components in (6) which is suitable for
modeling of massive multivariate spatial datasets. To increase the computational efficiency of the
model, Markov properties are used both for the indicator process s and for the latent fields ξk.

3.1 A discrete MRF model for z

A suitable model for the indicator field, z, determining the class belongings for each pixel, is a discrete
MRF. We let x be a discrete MRF taking values in {1, . . . ,K} and define zik = 1(xi = k). The joint
distribution of x can be formulated using the Gibbs distribution p(x) = Z−1 exp(−W (x)) where
W (x) =

∑

C VC(x) is the sum of the potential for all cliques generated by the neighborhood structure
and Z =

∑

ω exp(−W (ω)).
There are many potential choices for the neighborhood structure, but we use a simple first-order

neighborhood N⋆, which on a regular lattice in R
2 consists of the four closest nodes, in euclidean

distance, and in R
3 consists of the six closest nodes. In R

2, this neighborhood structure is illustrated
in Figure 2 (a) where • denotes the neighbors of the pixel ⋆. For this neighborhood structure, there
are only first and second-order cliques, and we use the potentials V{u}(x) = αk when xu = k, and
V{u,v}(x) = βk when xu = k and xv = k.

Hence, the model has parameters α = {αk} and β = {βk} where α determines the prior prob-
abilities for each class k and β are interaction parameters that governs the strength of the spatial
dependency. Since only the differences of the elements in α affect the model, we fix α1 to zero.
Simplified models are obtained by either fixing all αk = 0 or by assuming that all βk are equal to
some common parameter β.

3.2 A Gaussian random field model for ξ

We assume that ξk ∼ N(0,Q−1
k ) is a multivariate spatial Gaussian random field with a covariance

structure that is separable with respect to space the dimension of the data. This means that Qk

can be written as Qk = Qkd ⊗ Qks, where Qks is determined by a spatial covariance model and
Qkd is the multivariate part. The motivation behind this particular choice is that if there is no
spatial dependence in the data, one can choose Qks as the identity matrix and the model reduces to a
standard MRF mixture model. Since the precision matrix Qdk corresponds to the covariance matrix
Σk in the MRF mixture model, we do not assume any special structure of this matrix. It is therefore
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parametrized as Qdk = R⊤
dkRdk where

Rdk =













exp(η1) η2 η4 · · · ηx

0 exp(η3) η5 · · ·
...

0 0
. . .

0 0 0 0 exp(ηd(d+1)/2)













(7)

is the unique Choesky factor of Qdk with d(d+ 1)/2 parameters ηk.
In general, there are no restrictions on the spatial structure of the process, specified through

Qs. However, since we want to use the method for large problems we choose a model so that Qs is
sparse. For a discrete domain, we can then choose any type of GMRF model, e.g. the popular CAR
models [Besag, 1974]. The particular choice we use is a CAR model that corresponds to a Gaussian
Matérn field. Constructing the spatial precision matrix using the SPDE connection [Lindgren et al.,
2011] between the discrete CAR models and the continuous Matérn fields allows us to use separate
discretizations for z and ξ, which is desirable if the data is such that the process ξ is smoothly varying
compared to the resolution for z. The basic idea is to use a basis expansion ξ(s) =

∑n
i=1 ϕi(s)wi,

where {ϕi} are known compactly supported piecewise linear basis functions and w = {wi} is a zero
mean multivariate normal distribution with precision matrix Qs = cKC−1K, where K = (G+ κ2C)
with Gij = 〈∇ϕi, ∇ϕj〉, Cii = 〈ϕi, 1〉 and c as a positive scaling constant. The number of basis
functions, n, can be chosen smaller than the number of locations in the domain for z in order to
increase the computational efficiency of the model.

This particular choice of Qs corresponds to a Matérn field with shape parameter α = 2, which
for models in R

3 results in the exponential covariance function. Since the parameter κ2 needs to be
positive, we parametrize it as κ2 = exp(κ0). The constant c, in the precision matrix, is chosen so
that the spatial part have variance one, which achieved for c = Γ(2 −D/2)(4π)−D/2κD−4, where D
denotes the dimension of the spatial domain. This way, Qs determined the spatial correlation and
Qd controls the variances.

The particular choice of covariance structure presented here is a so called proportional correlation
model [Chiles and Delfiner, 1999] as the resulting stationary covariance function for ξ can be written
as C(h) = Q−1

d ρ(h),h ∈ R
d. There are several fully parametric alternatives to this model, such

multivariate Matérn fields [Hu et al., 2013].

3.3 The measurement noise ε

We assume that the measurement noise ε is mean-zero Gaussian white noise with a spatially constant
variance. One can either assume that the noise is the same for each dimension of the data, Σε = σ2Ind,
or one can allow for a separate variance for each dimension of the data, Σε = diag(σ2

1 , . . . , σ
2
d)⊗ In.

Here, Im denotes an m × m identity matrix. Since the variance parameters σi are positive, we
parametrize them as σi = exp(σi0)

4 Parameter estimation

Parameter estimation for MRF mixture models is difficult, and allowing for spatial dependency within
each class introduces further complications. Furthermore, we want these models to be useful for mas-
sive multivariate problems in R

3, which are common in MR imaging, and this makes computational
efficiency of the estimation procedure paramount.

The MRF mixture models are typically either estimated with some modified version of the EM
algorithm or through Monte Carlo (MC) methods. Both of these procedures are too computationally
demanding to be useful for the LGFM models. Instead, we base our estimation on the EM gradient
(EMG) algorithm. The main idea behind this method is that if one can easily calculate the gradient
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∇Ψ logL(Ψ; z,Y) of the augmented likelihood, then knowing the posterior π(z|y,Ψ) one can compute
the exact gradient of the log likelihood logL(Ψ;Y) as

∇Ψ logL(Ψ;Y) =∇Ψ log π(Y|Ψ) =
1

π(Y|Ψ)
∇Ψ

∫

π(Y, z|Ψ) dz

=

∫

π(Y, z|Ψ)

π(Y|Ψ)
∇Ψ log π(Y, z|Ψ) dz =

∫

π(z|Y,Ψ)∇Ψ log π(Y, z|Ψ) dz

=Ez [∇Ψ log π(Y, z|Ψ)|Y,Ψ] .

The idea is then to use the exact gradient in a gradient descent method. At step p in the EMG
algorithm, the gradient of the likelihood is calculated and a step

Ψ(p+1) = Ψ(p) + S∇Ψ logL(Ψ;Y)

where S is a matrix determining the step size. Taking S = γI where I is the identity matrix, we
obtain an ordinary gradient descent method which has linear convergence. Ideally, we would like to
take S as the inverse of the Hessian matrix H to obtain a Newton method with quadratic convergence.
Often, one cannot compute the true Hessian matrix of the log-likelihood, and Lange [1995] instead
proposed using

S = Ez(HΨ(log π(Y, z|Ψ))|Y,Ψ), (8)

where HΨ(f)ij = ∂2 f
∂Ψi ∂Ψi

is the hessian operator. The motivation behind this choice of scaling
matrix is that from dealing with spatial data we have experienced that the two first conditional
moments often are little affected by changes in the parameters, which would indicate that S is a good
approximation of the true hessian with the advantage of being readily available in most situations.

In the MRF mixture models, we cannot evaluate the gradient of the likelihood analytically, and
one can then use MC sampling to estimate the gradient as

∇Ψ logL(Ψ;Y) = Ez [∇Ψ log π(Y, z|Ψ)|Y,Ψ] ≈
1

T

T
∑

t=1

∇Ψ log π(Y, z(t)|Ψ),

where z(t) are draws from π(z|Y,Ψ). In a similar fashion, one can use MC sampling to evaluate the
approximate Hessian that is used to determine the step size

S ≈
1

T

T
∑

t=1

HΨ(log π(Y, z(t)|Ψ)).

We refer to this estimation procedure as the MCEMG algorithm.
To simplify the presentation, we split this section in three parts. In the first part, we go through

the details of the estimation for the MRF mixture model, presenting a version of the method based
on pseudo-likelihoods. In the second part we cover estimation for the latent Gaussian model, and
one should note here that the estimation method is an attractive alternative for estimation of latent
Gaussian models for massive datasets since it avoids all calculations of log-determinants, which is
usually the computational bottleneck in maximum-likelihood estimation procedures for such problems.
Finally, we combine the results for the MRF mixture models and the latent Gaussian models to and
estimation procedure for the full LGFM model.

4.1 Estimation of the MRF mixture model

As a first step towards an estimation method for the LGFM models, we in this section discuss param-
eter estimation of the MRF mixture models. To make the results of this section more easily applicable
to the LGFM model, we parametrize the Gaussian distributions using the mean and cholesky factor
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of the precision matrix. Let θk = {µk,Qk} where Qdk = Σ−1
k is parametrized as Qdk = R⊤

dkRdk and
Rdk has the form (7). Thus, the model parameters that need to be estimated are Ψ = {α,β,θ},
where θ = {θ1, . . . ,θK} contains all parameters for the Gaussian distributions, θk = {µk,ηk}.

Maximum likelihood estimation for this model is difficult since there is no simple form for the
data likelihood. However, if we augment the data with the hidden class belongings, the augmented
likelihood has a simpler form, L(Ψ; z,Y) = π(z|α,β)π(Y|z,θ). This suggest that we could use an
EM algorithm [Dempster et al., 1977] where one would iterate calculating the function

Q
(

Ψ,Ψ(p)
)

= E
[

logL(Ψ; z,Y)|Y,Ψ(p)
]

, (9)

where Ψ(p) denotes the current estimate of Ψ at the pth iteration of the algorithm and then maximize

Q
(

Ψ,Ψ(p)
)

with respect to Ψ in order to obtain the next estimate of the parameter vector.

Unfortunately, the normalizing constant Z for the MRF distribution depends on the parameters
and is intractable for large problems. Thus, we cannot evaluate π(z|α,β). A solution to this problem
is to replace π(z|α,β) with a pseudo-likelihood, πp(z|α,β), which is a product of the full conditionals
of x. Let fik =

∑

j∈Ni
zjk denote the sum of the neighboring pixels to zik, the conditional class

probability of a pixel i can then be written as P(xi = k|fik,α,β) = E(zik|fik,α,β) ∝ exp (αk + βkfik),
and the pseudo-likelihood is

πp(z|α,β) =
∏

i

π(xi|xj, j ∈ Ni,α,β) =
∏

i

exp(
∑

k αkzik +
∑

k βkzikfik)
∑

k exp(αk + βkfik)
.

To avoid bias due to this procedure, only conditionally independent pixels are included in the product
simultaneously, and the coding method [Besag, 1974] is used to combine the estimates based on
different combinations of conditionally independent sets of pixels. Since the neighborhood structure
in Figure 2 (a) is used, two sets of conditionally independent pixels are obtained using the checkerboard
pattern shown in Figure 2 (b), where the black nodes are conditionally independent given the white
nodes and vice versa.

Hence, the function we need to calculate the expectation of to obtain Q
(

θ,θ(p)
)

is

logPL(Ψ; z,Y) = log π(Y|z,θ) +
∑

k,i

αkzik +
∑

k,i

βkzikfjk −
∑

i

log

(

∑

k

exp(αk + βkfik)

)

. (10)

Using the pseudo likelihood for the MRF part of Q, the function can be written as

Q(Ψ,Ψ(p)) =E(log(πp(z|α,β)) +
∑

i

∑

k

E(zik|Y,θ(p)) log π(Yi|θk).

We cannot evaluate the expectation of the pseudo likelihood analytically, and we therefore replace
it with an MC approximation, which requires sampling from the posterior distribution. Using Bayes
formula and the independence assumption, one has

E (zik | fik,Y,Ψ) ∝ p (yi | θk) exp (αk + βkfik) = exp (α̃ik + βkfik)

with α̃ik = αk + log π(Yi|θk). Thus, the posterior distribution is simply a non-stationary extension
of the original MRF model. We can therefore use Gibbs sampling to draw samples z(t) from the
posterior. Dividing the nodes using the checkerboard pattern in Figure 2 (b), and denoting the black

nodes zb and the white nodes zw, Gibbs sampling of z is performed by iterating sampling z
(t)
w from

π(zw|z
(t−1)
b ,Y,Ψ) and sampling z

(t)
b from π(zb|z

(t)
w ,Y,Ψ).

Now, this is about as far as one gets with the EM algorithm since the M step is highly problematic.
Versions of the MRF mixture model has been used several times in tissue classification of magnetic
resonance images [Held et al., 1997, Zhang et al., 2001, Van Leemput et al., 1999], and in these
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situations the model is usually fitted to data using an EM estimator for the Gaussian parameters
together with an iterated conditional modes (ICM) estimator for the MRF parameters. Convergence
of this mixed estimation procedure is not easy to motivate theoretically, and the method can be
computationally demanding.

However, the EM gradient method is straight-forward to implement. The derivatives need to
evaluate the gradient are presented in Appendix A. At step p in the EM gradient algorithm,
we run the Gibbs sampler to approximate the gradient and the scaling S and then take a step
Φ(p+1) = Φ(p) + S∇Ψ logPL(Ψ;Y). Thus, there is no need for numerical optimization or Taylor
approximations to calculate the parameter updates, as is needed if an EM algorithm is used. Note
that ∇Ψ logPL(Ψ′;Y) = ∇ΨQ(Ψ,Ψ′)|Ψ=Ψ′ , thus the function maximized in the gradient algorithm
is the same function maximized in the EM-algorithm.

4.2 Estimation of the latent Gaussian model

As a second step towards the estimation procedure for the full LGFM models, we in this section
discuss the estimation of the latent Gaussian model (4) where ξ is given introduced in Section 3.2 and
ε is introduced in Section 3.3. To simplify the presentation, we assume that the measurement noise
has a common variance for all dimensions of the data, and the extension to separate noise variances
is trivial.

Let Ψ = {µ,η, σ, κ} be the vector containing all model parameters. Since the model is Gaussian,
likelihood estimation of all parameters can be performed by numerical optimization of log π(Ψ|Y),
which has a closed form [see e.g. Bolin and Lindgren, 2011]. Even though this procedure is commonly
used and theoretically straight-forward, it is computationally demanding. The problem is that one

needs to calculate the determinant of Q̂ = Q+ 1
σ2A

⊤A and solve the quadratic form Y⊤AQ̂
−1

A⊤Y

each time the optimizer evaluates the likelihood. This is most efficiently done using sparse Cholesky
factorization and back-substitution; however, even though one has a separable covariance structure,
this does not help when calculating the Cholesky factor, which makes the evaluation of the likelihood
highly computationally demanding for large multivariate spatial problems.

The need to calculate the determinant of Q̂ is avoided if the EMG method is used. Hence, the
likelihood is augmented with the latent variable ξ and we calculate the gradient and the scaling matrix
S by the procedure described above. The augmented log-likelihood is

l = log π(Y, ξ|Ψ) = −mσ0 −
1

2e2σ0

(Y −Bβ −Aξ)⊤(Y −Bβ −Aξ) +
1

2
log |Q| −

1

2
ξ⊤Qξ,

and the derivatives needed to evaluate the gradient of the log-likelihood L(Ψ;Y) are presented in
Appendix B.

The gradient method replaces computing |Q̂| with computing various traces and there are two
computational issues that have to be solved for the method to be applicable to large data sets. The

first is to solve ξ̂ = Q̂
−1

b for a vector b, which can be done using sparse cholesky factorizations and
back-substitution. However, in order to reduce the computationally complexity we instead use the
preconditioned conjugate gradient method (PCG) with a robust incomplete Cholesky preconditioner
[Ajiz and Jennings, 1984] to solve the equation.

The second issue is to solve the various traces of inverse matrices present in the expressions for
the gradients. Recent work in spatial statistics [Anitescu et al., 2012, Stein et al., 2013] has proposed
solving this issue using stochastic programming. The basic idea is to note that E[u⊤Qu] = tr(Q) for
any vector u of independent random variables ui with mean zero and variance one [Hutchinson, 1990].
Thus, we can rewrite all the traces in the gradient ∇l as expectations, which can ben be approximated

using Monte Carlo integration. For example tr
(

Q−1
s

∂Qs

∂ φj

)

= E

[

u⊤ ∂Qs

∂ φj
Q−1

s u
]

is replaced with

k−1
∑k

i=1 u
⊤
i

∂Qs

∂ φj
Q−1

s ui. The standard choice for ui is to use mean-zero Bernoulli random variables

but for spatial problems the variance of the estimator can be reduced by for example using the probing
vectors proposed by Aune et al. [2012]. The PCG method is used to efficiently calculate Q−1

s ui.
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The resulting approximation, ∇lk, of the gradient ∇l is a random function with E [∇lk] = ∇l.
Shapiro et al. [2009] shows that, under mild conditions, the local minimum of ∇lk converges to a local
minimum of ∇l with probability one as k → ∞. Using the iterative methods in combination with
the EM gradient method results in a highly computationally efficient method for estimating latent
Gaussian models.

4.3 Estimation of the LGFM model

With the estimators for the MRF mixture model and the latent Gaussian model derived, it is now
simply a matter of combining these two for making the estimator for the LGFM model. We augment
the data-likelihood by both the MRF z and the GRFs ξ = {ξ1, . . . , ξk}, and let l = log π(Y, z, ξ|Ψ)
where Ψ now denotes all model parameters. To calculate the required gradient, we note that

∇Ψ logL(Ψ;Y) =

∫

π(z, ξ|Y,Ψ)∇Ψ log π(Y, z, ξ|Ψ) dzdξ

=

∫

π(z|Y,Ψ)

∫

π(ξ|z,Y,Ψ)∇Ψ log π(Y, z, ξ|Ψ) dξ dz

= Ez (Eξ (∇Ψ log π(Y, z, ξ|Ψ) | z,Y,Ψ) | Y,Ψ)

= Ez (∇Ψ log π(z|α,β) + Eξ (∇Ψ log π(Y, ξ|z,σ) | z,Y,Ψ) | Y,Ψ) .

As in previous section, the expectation with respect to z must be approximated using MC sampling.
However, since the expectation with respect to ξ is known analytically, see Appendix B, we can use
Rao-Blackwellization to calculate gradient as

∇Ψ logL(Ψ;Y) =
1

N

T
∑

t=1

(

∇Ψ log π(z(t)|α,β) + Eξ

(

∇Ψ log π(Y, ξ|z(t),σ) | z(t),Y,Ψ
))

.

This means that we can use the gradients calculated in the previous sections with two minor changes
for implementing the estimation procedure for the full LGFM model.

The first difference is that the Gaussian likelihood (4.2) for each, independent, field ξk is replaced
with

log π(Y, ξk|z
(t),Ψ) =−m

(t)
k σ0 −

1

2e2σ0

(Y(t) −B
(t)
k β −A

(t)
k ξk)

⊤(Y(t) −B
(t)
k β −A

(t)
k ξk)

+
1

2
log |Qk| −

1

2
ξ⊤k Qkξk

where m
(t)
k = d

∑

j zkj and Y(t), A
(t)
k and B

(t)
k are constructed by taking Y, A, and B and only

keeping the rows that corresponds to the pixels with z
(t)
k = 1. Thus, m, A and B are replaced with

m
(t)
k , A

(t)
k and B

(t)
k respectively in the Gaussian gradients presented in Appendix B.

The second difference is how z(t) is simulated. Unlike for the regular MRF mixture model, Y|θk
is not a vector independent variables and the sampling method for z in the MRF mixture model
therefore has to be modified. To simulate z(t), we introduce an extra step in the Gibbs sampler for
the MRF mixture model as follows

1. Sample the Gaussian fields {ξk}
(t) from their respective distributions π(ξk|Y, z(t−1),Ψ).

2. Sample z
(t)
w from π(zw|z

(t−1)
b ,Y, {ξk}

(t),Ψ).

3. Sample z
(t)
b from π(zb|z

(t)
w ,Y, {ξk}

(t)},Ψ).

Since Y|{ξk}
(t),Ψ is a vector of independent variables, the second and third step of the Gibbs

sampler are performed in the same way as for the MRF mixture model. It should also be noted that
the sampled fields {ξk}

(t) are not used in the optimization other than to generate z(t).
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Figure 3: A noisy MR image of size 166× 124 pixels.

The simulation from π(ξk|Y, z(t−1),Ψ) is typically solved using Cholesky factorization of Q̂k =

Qk +
1
σ2 (A

(t)
k )⊤A

(t)
k ; however, this is not possible for large data sets. We instead use the following

method, from [Papandreou and Yuille, 2011], which avoids the calculation of Cholesky factors entirely,

1. Generate x =
(

(KC−1/2)⊗Rdk

)

x1 +
1
σ (A

(t)
k )⊤x2 where x1 and x2 are vectors of independent

N(0, 1) random variables.

2. Solve Q̂kξk = x+ 1
σ2 (A

(t)
k )⊤(Y(t) −B

(t)
k β).

Also here, the PCG method with a robust incomplete Cholesky preconditioner is used to solve the
linear equation in the second step.

5 An application to magnetic resonance imaging

There are a number of possible applications to brain imaging that could be considered for this model
class. However, in this section we only present a simple application to noise reduction. The MR
image we analyze is a subset of data that previously has been used for CT substitute generation and
is described in detail in Johansson et al. [2011]. The image is taken with a radial UTE sequence with
a 10 degree flip angle, a repetition time of 6 ms, and an echo time of 0.07 ms. The UTE images were
reconstructed to a matrix with 192 × 192 × 192 voxels with isotropic resolution and a voxel size of
1.33 mm. For simplicity, we analyze only one slice of this data, which is of size 192×192 pixels. After
removing parts of the slice that only contains areas outside the head, we obtain the image shown in
Figure 3 which is of size 166 × 124 pixels.

As seen in the figure, the data is somewhat noisy and the goal is therefore use statistical techniques
to reduce the noise in the image. As a first method, we use a standard latent Gaussian model, which
can be described as the LGFM model in Section 3 with K = 1. The resulting estimate, X̂, is shown
in Figure 4 (a) and the kriging residuals, X̂ −Y , are shown in Figure 4 (b). If the model was correct,
there should be no spatial structure in the residuals. However, we clearly see the contour of the head
in the residuals, which means that this simple latent Gaussian model likely is insufficient for doing
noise reduction of this image.
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LGM LGFM1 LGFM2 LGFM3

κ2 0.0256 0.0550 0.0132 0.0005
σ2 0.0396 0.0303 0.0303 0.0303
τ 2.8437 4.1980 194.14 0.0081
µ 1.3568 1.5297 0.3857 3.2251

Table 1: Parameter estimates for the latent Gaussian model (LGM) and the three mixture components
of the LGFM model. The spatial dependency parameter β for MRF in the LGFM model was assumed
to be the same for all classes, and was estimated to 2.73, and the prior parameters αk were fixed to
zero. The estimation was done on data standardized to have variance one.
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Figure 4: Estimated MR image using a latent Gaussian model (a) and the kriging residuals (b).

As an alternative to the latent Gaussian model, we fit a LGFM model with three mixture com-
ponents. The reason for choosing three components is to keep the model simple while being able to
separate the air outside the head and the bone from the other tissue types, as these two classes clearly
stands out in the image. In order to keep the model simple, the MRF parameters αk are fixed to zero
and a common β parameter is assumed for all classes. Estimates of the other parameters are shown
in Table 1, which also shows the parameter estimates for the latent Gaussian model as a reference.

Starting values for the LGFM estimation are obtained by first doing a classification of the data
using a standard Gaussian mixture model and then estimating a latent Gaussian model for each class
in the estimated mixture. The classification using the LGFM model is shown in Figure 5, Panel (a)
and the corresponding classification is show in Panel (b). One should note that this classification is
unsupervised and obtained as a byproduct while fitting the LGFM model, and it clearly finds the
desired regions in the image. Panel (c) shows the difference between the LGFM estimate and the
LGM estimate in Figure 4 (a), and one sees that the difference is quite large, especially near the
tissue boundaries. Finally, Panel (d) shows the kriging residuals of the LGFM model in the same
color scale as the residuals of the latent Gaussian model in Figure 4 (b), and although there is still
some structure in the residuals, the result is much better.

Thus, the LGFM model performs much better than the latent Gaussian model, and one of the
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Figure 5: Estimated MR image using a LGFM model with three classes (a) and the corresponding
classification (b). Panel (c) shows the difference between this estimate and the estimate using a
latent Gaussian model, the color scale has been truncated to the middle 98% of the values to improve
the visibility, which means that the largest differences are truncated in the color scale. Panel (d)
shows the kriging residuals for the LGFM model, which shows much less spatial structure than the
corresponding residuals for the latent Gaussian model. The color scale in Panel (d) has been set to
match the color scale in Figure 4 (b).
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reasons for this is that the model parameters are allowed to vary between the classes. This behavior
could also be obtained by using a non-stationary latent Gaussian model, where the parameters are
allowed to vary with space. However, the second important reason for the better behavior of the
LGFM model, which is much harder to obtain using a non-stationary latent Gaussian model or an
adaptive smoother is that the estimate for each class only uses data that is classified as belonging to
that class. This allows for much sharper changes in the resulting estimate, and such behavior cannot
be obtained in any simple way using an ordinary latent Gaussian model.

In this example, the main purpose was noise reduction and using the LGFM model we obtained a
classification of the image as a byproduct. If the main objective was segmentation, a method worth
mentioning is the popular adaptive segmentation method by Wells III et al. [1996]. It is worth noting
that this method fits into the general LGFM framework. In our notation, their model that is used
for classification can be written as

log(Yi) = ξi +

K
∑

k=1

zikGik (11)

where the field ξ is denoted a bias field and the second part is a standard gaussian mixture model (z is
not a MRF in this model). This model can be reformulated as a transformed LGFM model, without
measurement noise and with dependent mixture fields ξki = ξi +Gki. An important difference that
should be noted is that Wells III et al. [1996] assumes that the covariance matrix for ξ is a known
band matrix and makes no attempts at estimating it, while we estimate the covariance function for
each class.

6 Discussion

This work has introduced the class of LGFM models as well as a computationally efficient stochastic
gradient parameter estimation method for the model class.

There are a number of directions in which this work can be extended. The methods were tested
on a simple noise reduction application in brain imaging and we are working on more applications,
such as substitute CT generation and land-use classification. We focused on a particular model here
that is suitable for modeling of massive data sets on regular grids, but it would also be interesting to
test the model for more typical geostatistical problems in continuous space. This would not require
much work though the particular MRF model for the allocation process would have to be modified.

The proposed estimation method is not only useful for the LGFM models but also for regular
MRF mixture models and latent Gaussian models. We have not shown any theoretical properties
of the estimator here and to the authors knowledge, there are no applicable results available to
show consistency of the estimator for the proposed model class. Comets and Gidas [1992] showed
consistency for the maximum likelihood estimator for the MRF mixture models, but the consistency
of the maximum likelihood estimator for the LGFM models, the pseudo likelihood estimators for the
MRF mixture models, and the pseudo likelihood estimators for the LGFM models are to the authors
knowledge unknown, and certainly something for further research.

Finally, the basic estimation method is straightforward to implement. However, we used several
sophisticated techniques to reduce the computational cost of the estimation, which increases the
complexity of the implementation. We are therefore working on a software package that implements
these methods and will simplify their practical usage.
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A MRF gradients

Let l = log (PL(Ψ; z,Y)), where PL is the pseudo likelihood of the MRF mixture model (10), the
derivatives in the gradient are then given by

∂ l

∂ αk
=
∑

i

zik −
∑

i

exp(αk + βkfik)
∑

l exp(αl + βlfil)

∂ l

∂ βk
=
∑

i

zikfik −
∑

i

exp(αk + βkfik)fik
∑

l exp(αl + βlfil)

∇µk
l =

∑

i

zikQdk(Yi − µk)

∂ l

∂ ηkj
=
∑

i

zik

(

Idiag −
1

2
(Yi − µk)

⊤ ∂Qdk

∂ ηkj
(Yi − µk)

)

.

Here Idiag is one if ηkj is an element on the main diagonal of Rdk and zero otherwise. We have

∂Qdk

∂ ηkj
=

∂R⊤
dk

∂ ηki
Rdk +R⊤

dk

∂Rdk

∂ ηki
(12)

where the derivative ∂Rdk

∂ ηki
is a matrix with all elements zero except the element that corresponds to

ηki. These expressions can be obtained with almost no extra cost while running the Gibbs sampler
to sample z. The derivatives needed to evaluate the scaling matrix S are

∂2 l

∂ αk1 ∂ αk2

=
∑

i

(

−Ik1=k2

exp(αk1 + βkfik1)
∑

l exp(αl + βlfil)
+

exp(αk1 + βk1fik1) exp(αk2 + βk2fik2)

(
∑

l exp(αl + βlfil))2

)

∂2 l

∂ βk1 ∂ βk2
=
∑

i

(

−Ik1=k2

exp(αk1 + βkfik1)f
2
ik1

∑

l exp(αl + βlfil)
+

exp(αk1 + βk1fik1) exp(αk2 + βk2fik2)fik1fik2
(
∑

l exp(αl + βlfil))2

)

∂2 l

∂ αk1 ∂ βk2
=
∑

i

(

−Ik1=k2

exp(αk1 + βkfik1)fik1
∑

l exp(αl + βlfil)
+

exp(αk1 + βk1fik1) exp(αk2 + βk2fik2)fik1
(
∑

l exp(αl + βlfil))2

)

where Ik1=k2 controls that that factor is only included when k1 = k2. We also need the the derivatives
of the parameters for the independent Gaussian distributions:

∆µk
l = −

∑

i

zikQdk

∂2 l

∂ ηkj1 ∂ ηkj2
= −

1

2

∑

i

zik (Yi − µk)
⊤ ∂2Qdk

∂ ηjj1 ∂ ηkj2
(Yi − µk)

∂

∂ ηkj
∇µk

l =
∑

i

zik
∂Qdk

∂ ηkj
(Yi − µk)

where
∂2Qdk

∂ ηjj1 ∂ ηkj2
= Ij1=j2Idiag

∂Qdk

∂ ηkj
+

∂R⊤
dk

∂ ηkj1

∂Rdk

∂ ηkj2
+

∂R⊤
dk

∂ ηkj2

∂Rdk

∂ ηkj2
(13)

Except for the derivatives with respect to µk, all these derivatives are also need for the estimation of
the LGFM model.
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B Gaussian gradients

Let l = log π(Y, ξ|Ψ), the expectation of the derivatives then needed to evaluate the gradients of the
Gaussian likelihood (log π(Y|Ψ)) are

E

[

∂ l

∂ κ0
|Y,Ψ

]

= nd(D/4− 1) + deκ0 tr
(

K−1C
)

+ ξ̂
⊤
Qd ⊗ Q̃sξ̂ + tr

(

Qd ⊗ Q̃sQ̂
−1
)

,

E

[

∂ l

∂ ηj
|Y,Ψ

]

= Idiag −
1

2
ξ̂
⊤∂Qd

∂ ηj
⊗Qsξ̂ −

1

2
tr

(

∂Qd

∂ ηj
⊗QsQ̂

−1
)

,

E

[

∂

∂ β
l|Y,Ψ

]

= e−2σ0B⊤
(

Y −Bβ −Aξ̂
)

,

E

[

∂

∂ σ0
l|Y,Ψ

]

= −m+ e−2σ0

(

(

Y −Bβ −Aξ̂
)⊤ (

Y −Bβ −Aξ̂
)

+ tr
(

A⊤AQ̂
−1
)

)

.

Here, ∂Qd

∂ ηj
is given by (12), ξ̂ is the expected value of ξ given the current parameter estimates,

ξ̂ = Q̂
−1 1

σ2A
⊤(Y−Bβ), and Q̃s = (1−D/4)Qs−ceκ0K. For the scaling S, we also need expectation

of the second derivatives:

E

[

∂2

∂ κ20
l|Y,Ψ

]

= eκ0d tr
(

K−1C
)

+ e2κ0d tr
(

Q−1
s C

)

+ ξ̂
⊤
Qd ⊗

∂ Q̃s

∂ κ0
ξ̂ + tr

(

Qd ⊗
∂ Q̃s

∂ κ0
Q̂

−1

)

,

E

[

∂2

∂ ηi ∂ ηj
l|Y,Ψ

]

= −
1

2
ξ̂
⊤ ∂2Qd

∂ ηi ∂ ηj
⊗Qsξ̂ −

1

2
tr

(

∂2Qd

∂ ηi ∂ ηj
⊗QsQ̂

−1
)

E

[

∂2

∂ κ0 ∂ ηj
l|Y,Ψ

]

= ξ̂
⊤∂Qd

∂ ηj
⊗ Q̃sξ̂ + tr

(

∂Qd

∂ θj
⊗ Q̃sQ̂

−1
)

E

[

∂2

∂ β2 l|Y,Ψ

]

= −e−2σ0B⊤B

E

[

∂2

∂ σ2
l|Y,Ψ

]

= −2e−2σ0

(

(

Y −Bβ −Aξ̂
)⊤ (

Y −Bβ −Aξ̂
)

+ tr
(

A⊤AQ̂
−1
)

)

E

[

∂2

∂ β ∂ σ0
l|Y,Ψ

]

= −2
∂

∂ β
l.

Here ∂2 Qd

∂ ηi ∂ ηj
is given by (13) and

∂ Q̃s

∂ κ0
= −

(D − 4)2

8
Qs + c(3 −D)eκ0K− ce2κ0C.
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