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Abstract

The case-control and case-only designs are commonly used to detect the gene-

environment (G-E) interaction. In principle, the tests based on these two designs

require a pre-specified genetic model to achieve an expected power of detecting

the G-E interaction. Unfortunately, for most complex diseases the underlying

genetic models are unknown. It is well known that mis-specification of the

genetic model can result in a substantial loss of power in the detection of the

main genetic effect. However, limited effort has been dedicated to the study of

G-E interaction. This issue has been investigated in this article with a conclusion

that the genetic model mis-specification can not only undermine the power of

detecting G-E interaction in both case-control and case-only designs but also

distort the type I error rate in case-control design. To tackle this problem, a

class of robust tests, namely MAX3, have been proposed for both the case-

control and case-only designs. The proposed tests can well control the type

I error rate and yield satisfactory power even when the genetic model is mis-

specified. The asymptotic distribution and the p-value formula for MAX3 have

also been derived. Comprehensive simulation studies and a real data application

on the genome-wide association study (GWAS) have been conducted using these
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analytical tools and the results demonstrate desirable operating characteristics

of the proposed robust tests.

Keywords: Gene-environment interaction, Robust test, Genetic model,

Case-control design, Case-only design

1. Introduction

Rapid development in human genetics and epidemiology has revealed that

genetic susceptibility and environmental exposures play a synergistic role in

many complex diseases. This understanding has boosted the development of

gene-environment (G-E) interaction study in population genetics, which inves-5

tigates the joint genetic and environmental interactive effect on the risk of de-

veloping diseases (Hunter, 2005). The case-control design has been commonly

used to detect the G-E interaction, where the interactive effect can be conve-

niently modeled by a multiplicative term of genotypes and exposure levels based

on a prospective logistic regression model. However, in such design, samples are10

classified by both the genotypes and exposure levels, which may result in a sub-

stantial loss of power (Mukherjee et al., 2012; Marigorta and Gibson, 2014).

Alternatively, under the assumption of G-E independence and rare disease, the

G-E interaction can be evaluated by simply assessing the G-E association on

the cases only. Such case-only design can yield a higher power than a case-15

control design when these assumptions hold (Piegorsch et al., 1994; Umbach

and Weinberg, 1997).

In both case-control and case-only designs, if the genetic model of inheri-

tance can be specified a priori, then a score test can be performed to detect

the G-E interaction. The genetic model determines the orders of individuals’20

risk of having the disease based on the number of risk alleles in the genotype.

Generally speaking, for a diallelic marker, three genetic models, namely the

recessive (REC), multiplicative (MUL) and dominant (DOM) are commonly

used (Sasieni, 1997; Freidlin et al., 2002). For each genetic model, an optimal

set of scores should be used to maximize the power of the test. In particular,25
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the value 0, 1/2 and 1 are the optimal scores to code the genotype conferring

one risk allele when the genetic model is REC, MUL and DOM, respectively

(Zheng et al., 2003). Hence, if the genetic model is correctly specified, the cor-

responding optimal scores can maximize the power of the score test. However,

for many complex diseases, the underlying genetic models are unknown and us-30

ing an inappropriate genetic model can substantially undermine the power of

the tests (Zheng et al., 2003). Therefore, robust tests against genetic model

mis-specification are in urgent demand.

Despite intensive studies on robust tests for detecting the main genetic effect

(Wang and Sheffield, 2005; Gonzalez et al., 2008; Zheng et al., 2008; Yamada35

and Okada, 2009; Zang et al., 2010), little has been dedicated for the G-E

interaction effect. Hence, the purpose of this paper is to fill this research gap.

Specifically, we first investigate the impact of genetic model mis-specification on

testing the G-E interaction. Interestingly, we find that the genetic model mis-

specification highly affects the case-control design by distorting both the type40

I error rate and power, but only decreases the power for the case-only design.

Furthermore, to handle the genetic model uncertainty, we have developed robust

tests for both designs. The asymptotic formulas to calculate the p-value of the

robust tests together with an user-friendly software are also released in this

paper to facilitate the use of the proposed methods in practice. Simulation45

study demonstrate that the proposed robust tests could control type I error rate

under the null hypothesis and yet yield satisfactory power under the alternative

hypothesis, even when the genetic model is mis-specified. The proposed method

is also applied to a real genome-wide association study (GWAS) dataset for

illustrative purpose.50

The rest of this paper is organized as follows. We develop the robust tests

for the case-control design and case-only design in Sections 2 and 3. In Sec-

tions 4 and 5 we extend the proposed tests to handle non-monotonic genetic

model and categorical environment factor with possible environmental level mis-

classification. In Section 6, we carry out comprehensive simulation studies to55

investigate the operating characteristics of the proposed tests. In Section 7,
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we apply the robust tests to analyze a genome-wide association study (GWAS)

of bladder cancer (Rothman et al., 2010). We provide a brief discussion and

concluding remarks in Section 8.

2. Robust test for case-control design60

Assume m1 cases and m0 controls being genotyped in a case-control study

and let n = m0+m1 denoting the total sample size. For ease of presentation, we

consider a binary environmental factor E and a diallelic marker G, for which we

are interested in testing the impact of the gene-environmental (G-E) interaction

effect on the disease risk. Let G = 0, 1, 2 denote the three genotypes aa, Aa65

and AA with A indicating the minor allele conferring high risk of the disease.

Let E = 0(E = 1) denote an unexposed (exposed) individual. Let D denote

the disease status with D = 0(D = 1) representing an unaffected (affected)

individual. The case-control data can be displayed in the form of a 2×6 table as

presented in Table 1. As expressed in Table 1, we use rijk to denote the number70

of individuals with D = i, G = j and E = k and define njk = r0jk + r1jk.

Table 1: Case-control data with a diallelic marker G and a binary environmental exposure

factor E.

G = 0 G = 1 G = 2

E = 0 E = 1 E = 0 E = 1 E = 0 E = 1 Total

D = 0 r000 r001 r010 r011 r020 r021 m0

D = 1 r100 r101 r110 r111 r120 r121 m1

Total n00 n01 n10 n11 n20 n21 n

Let Dl, Gl and El be the phenotype, genotype and environmental factor for

the lth sample in case-control study. We define fjk = Pr(Dl = 1|Gl = j, El = k)

as the penetrance level conditional on G = j and E = k, by which the recessive

(REC), multiplicative (MUL) and dominant (DOM) genetic models correspond75

to f1k = f0k, f1k =
√
f0kf2k and f1k = f2k for k = 0, 1 respectively (Sasieni,
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1997).

According to the definition, when the genetic model is specified, the impact

of Gl and El on the disease status Dl can be conveniently formulated by the

following logistic regression model:80

log
(Pr(Dl = 1|Gl, El)

Pr(Dl = 0|Gl, El)

)
= α+ δE + x(β + λE)I(G = 1) + (β + λE)I(G = 2), (1)

where I(·) is an indicator function, δ is the main environmental effect, β is

the main genetic effect, λ is the G-E interaction effect and x is a real number

between 0 and 1 representing the underlying genetic model . The interest here is

to test the null hypothesis H0 : λ = 0. It is straightforward to see that x = 0 and

1 correspond to the REC and DOM models, respectively. If the disease is rare,85

based on model (1) we have the approximation
fjk
f0k
≈ e

(
xI(j=1)+I(j=2)

)
(β+λk), by

which x = 1/2 is the optimal score for the MUL model. However, if the disease

is not rare, the optimal score turns out to be a function of the parameters α,

δ, β and λ and insisting on using x = 1/2 for the MUL model can result in

a loss of power. In reality, the disease prevalences for most genetic hereditary90

diseases are substantially low and 1/2 is commonly used as the optimal score

for MUL model (Freidlin et al., 2002; Zheng et al., 2003) and we adopt this

approximation in this paper.

If the genetic model is correctly specified, we can derive a score test based

on model (1) by using an optimal choice of x to test H0 : λ = 0. We denote the95

test as Zmodel1(x). However, when the underlying genetic models are unknown

the consequence of using a mis-specified genetic model for test Zmodel1(x) is

summarized in the following theorem.

Theorem 1. When the genetic model is mis-specified, using Zmodel1(x) to

test the G-E interaction is invalid as it can cause significant bias under both the100

null and alternative hypotheses.

To prove Theorem 1, we need to derive the score function based on model
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(1) as

x(r111 − n11f̂11) + (r121 − n21f̂21),

where f̂jk is the estimate of fjk based on the case-control data under the null

hypothesis of λ = 0. Specifically, f̂jk can be expressed as

f̂jk =
1

1 + e−α̂−δ̂k−
(
xI(j=1)+I(j=2)

)
β̂
.

If the genetic model is mis-specified, then β̂ is a biased estimate for β even

when λ = 0. Consequently, f̂jk is also biased and the score function under

model (1) does not converge to 0. Therefore, Zmodel1(x) based on model (1) is

invalid under genetic model mis-specification. We note that for detecting the105

main genetic effect β without the G-E interaction effect λ, the score tests are

valid even when the genetic model is mis-specified although the power loss can

be substantial (Zang, 2011). Hence, the genetic model mis-specification is a

more serious issue in detecting the G-E interaction for the case-control study.

Therefore, it is necessary to develop a robust method which can handle genetic110

model uncertainty.

To resolve this issue, we propose to accommodate model (1) by relaxing the

genetic model assumption for the main genetic effect β. That is, instead of using

one single β, we propose to use two dummy variables β1 and β2 to represent

the main genetic effect, and then propose a logistic model with genetic model115

assumption only on the G-E interaction term by the following

log
(Pr(Dl = 1|Gl, El)

Pr(Dl = 0|Gl, El)

)
= α+ δE + β1I(G = 1) + β2I(G = 2) +

{
xI(G = 1) + I(G = 2)

}
λE. (2)

We note that model (2) degenerates to the saturated model when there is

no G-E interaction, which ensures the validity of the inference for λ based on

model (2). With model (2) at hand, we can derive score test to detect the G-E

interaction. In particular, let f̃jk be the estimate of fjk in model (2) under the120

null hypothesis λ = 0, then the score function can be derived as

U(x) = x(r111 − n11f̃11) + (r121 − n21f̃21) = x(r111 −
n11

1 + e−α̃−β̃1−δ̃
) + (r121 −

n21

1 + e−α̃−β̃2−δ̃
),
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where α̃, β̃1, β̃2 and δ̃ are the MLEs based on model (2) given λ = 0. Further-

more, let us define ψ = (α, β1, β2, δ)
′ and the information matrix of model (2)

can be written in the form of a block matrix as

I(x) =

 Iλ(x) Iλψ(x)′

Iλψ(x) Iψ

 .

Based on this information matrix, we can derive V (x) = Iλ(x)−Iλψ(x)′I−1ψ Iλψ(x)

as the variance estimate for U(x) (see Appendix A for the details). The score

test statistic for H0 : λ = 0 based on model (2) is then given by

Zmodel2(x) =
U(x)√
V (x)

=
x(r111 − n11f̃11) + (r121 − n21f̃21)√

Iλ(x)− Iλψ(x)′I−1ψ Iλψ(x)
.

Under the null hypothesis of no G-E interaction, Zmodel2(x) asymptotically fol-125

lows the standard normal distribution with any real valued x.

Zmodel2(x) is statistically rigorous under the null hypothesis. However, its

performance under the alternative hypothesis still depends on the value of

x, which represents the genetic model. When the genetic model is known,

Zmodel2(x) with an appropriate choice of x can be used. However, this test is

vulnerable to the mis-specification of x. That is, if λ 6= 0, using Zmodel2(x) with

a mis-specified x could suffer from a substantial loss of power. To overcome this

limitation, we propose a maximum test statistic as

MAX3cc = max(|Zmodel2(0)|, |Zmodel2(1/2)|, |Zmodel2(1)|).

Noting that MAX3cc does not asymptotically follow the normal distribution

anymore, due to the multiple comparisons and correlations among Zmodel2(0),

Zmodel2(1/2) and Zmodel2(1). Hence, to use this statistic, its distribution under

the null hypothesis should be determined first.130

Let Z = (Zmodel2(0), Zmodel2(1/2), Zmodel2(1))′, then Z asymptotically fol-

lows a multivariate normal distribution N(0,Σ) under H0, with Σ denoting the

variance-covariance matrix of Z. If we assume Σ as known, and let f(z,Σ) be

the density function for the multivariate normal variable Z under H0, for any
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observed value t, the p-value of MAX3cc can be obtained as:135

Pr(MAX3cc > t|H0) = 1− Pr(|Zmodel2(0)| ≤ t, |Zmodel2(1/2)| ≤ t, |Zmodel2(1)| ≤ t)

= 1−
∫ t

−t

∫ t

−t

∫ t

−t
f(z,Σ)dz.

In particular, Σ in the p-value formula can be expressed as

Σ =


1 ρ0,1/2 ρ0,1

ρ0,1/2 1 ρ1/2,1

ρ0,1 ρ1/2,1 1

 ,

where ρx1,x2
is the correlation between Zmodel2(x1) and Zmodel2(x2) for any

x1, x2 = 0, 1/2, 1 and x1 < x2. The key now is to derive the expression of

ρx1,x2
.

To do this, we “artificially” build the following logistic model

log
(Pr(Dl = 1|Gl, El)

Pr(Dl = 0|Gl, El)

)
= α+ δE + β1I(G = 1) + β2I(G = 2) + (x1λ1 + x2λ2)EI(G = 1) + (λ1 + λ2)EI(G = 2). (3)

140

Under model (3), the null hypothesis of no G-E interaction corresponds to

H0 : λ1 = λ2 = 0. Furthermore, model (2) and model (3) are identical under the

null hypothesis. Therefore, under the null hypothesis, the maximum likelihood

estimates of α, β1, β2 and δ based on model (3) are the same as model (2) under

the null hypothesis.145

Based on model (3), we can write the log-likelihood function as

l = αr100 − n00log(1 + eα) + (α+ δ)r101 − n01log(1 + eα+δ)

+ (α+ β1)r110 − n10log(1 + eα+β1) + (α+ β1 + δ + x1λ1 + x2λ2)r111 − n11log(1 + eα+β1+δ+x1λ1+x2λ2)

+ (α+ β2)r120 − n20log(1 + eα+β2) + (α+ β2 + δ + λ1 + λ2)r121 − n21log(1 + eα+β2+δ+λ1+λ2),

and the score function as

(
∂l

∂λ1
,
∂l

∂λ2
)|ψ=ψ̃,λ1=λ2=0 =

(
x1(r111−n11f̃11)+(r121−n21f̃21), x2(r111−n11f̃11)+(r121−n21f̃21)

)
=
(
U(x1), U(x2)

)
.

Therefore, ρx1,x2 is simply the correlation coefficient between the score func-

tion U(x1) and U(x2), which can be derived from the information matrix of

the developed log-likelihood function l. Let us define the information ma-

trix for the likelihood function l in the form of a block matrix as I(x1, x2) =150
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 Iλ1λ2
(x1, x2) Iλ1λ2ψ(x1, x2)′

Iλ1λ2ψ(x1, x2) Iψ

 , the expression of ρx1,x2 is summarized in

the following theorem.

Theorem 2. Let Iλ1λ2(x1, x2) = (Iλ1λ2
(x1, x2)−Iλ1λ2ψ(x1, x2)′I−1ψ Iλ1λ2ψ(x1, x2))−1,

the correlation ρx1,x2 can be expressed as

ρx1,x2 =
(1, 0)

(
Iλ1λ2(x1, x2)

)−1
(0, 1)′√

(1, 0)
(
Iλ1λ2(x1, x2)

)−1
(1, 0)′(0, 1)

(
Iλ1λ2(x1, x2)

)−1
(0, 1)′

.

The proof of Theorem 2 and the detailed expression of ρx1,x2 are given in Ap-155

pendix B. Hence, after plugging in ρx1,x2
back into the formula for Pr(MAX3cc >

t|H0), we get the asymptotic expression of the p-value formula. With this p-

value formula at hand, we can easily apply MAX3cc to detect the G-E inter-

action for case-control design. As MAX3cc considers different genetic models

simultaneously and takes the maximum, it is robust against the genetic model160

uncertainty.

3. Robust test for case-only design

For rare disease, when a binary genetic factor is independent of the environ-

mental factor, G-E interaction can be tested by assessing the gene-environmental

association using case-only data, and such case-only design typically yields a165

much higher power than case-control design (Piegorsch et al., 1994; Umbach

and Weinberg, 1997; Schmidt and Schaid, 1999). We herein extend the work

from binary genetic factor to diallelic marker with three genotypes and propose

a robust test for case-only study.

Let us define θj =
f00fj1

(1−f00)(1−fj1)/
fj0f01

(1−fj0)(1−f01) and qj = Pr(E = 1|G =170

j,D = 1), we have the following theorem to detect G-E interaction in case-only

design.

Theorem 3. θj is the odds ratio of G-E interaction given G = j (j = 1, 2)
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from either model (1) or (2) in case-control design. Under the assumption of

G-E independence and rare disease, θj can be approximated by
qj(1−q0)
(1−qj)q0 , which175

is the odds ratio of having E = 1 between G = j and G = 0 conditional on

D = 1 (case only).

To prove Theorem 3, consider model (1) in a case-control design, we have

θj =
eαeα+δ+x(β+λ)I(j=1)+(β+λ)I(j=2)

eα+xβI(j=1)+βI(j=2)eα+δ
= exλI(j=1)+λI(j=2).

Along the same lines, consider model (2) in a case-control study, we have

θj =
eαeα+δ+β1I(j=1)+β2I(j=2)+{xI(j=1)+I(j=2)}λ

eα+β1I(j=1)+β2I(j=2)eα+δ
= exλI(j=1)+λI(j=2).

Hence, θj is the odds ratio of G-E interaction given G = j (j = 1, 2) in both180

models. Further, under the assumption of G-E independence and rare disease,

θj can be approximated as:

θj ≈
fj1f00
fj0f01

=

Pr(E=1|G=j,D=1)Pr(D=1|G=j)
Pr(E=1|G=j)

Pr(E=0|G=0,D=1)Pr(D=1|G=0)
Pr(E=0|G=0)

Pr(E=0|G=j,D=1)Pr(D=1|G=j)
Pr(E=0|G=j)

Pr(E=1|G=0,D=1)Pr(D=1|G=0)
Pr(E=1|G=0)

=
qj(1− q0)

(1− qj)q0
.

This completes the proof of Theorem 3. Note that
qj(1−q0)
(1−qj)q0 is the odds ratio

of having E = 1 between G = j and G = 0 conditional on D = 1, which can

be estimated by using case-only data. Therefore, if we regress E on G using185

case-only data, we have the following logistic regression model:

log
(Pr(E = 1|G,D = 1)

Pr(E = 0|G,D = 1)

)
= α∗ + xλI(G = 1) + λI(G = 2), (4)

where λ represents G-E interaction effect exactly the same as developed in the

case-control study.

Let θ̂
(cc)
j be the estimate of the odds ratio of G-E interaction given G = j

from case-control design and θ̂
(ca)
j be the counterpart from the case-only design.
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After some algebra we obtain their variance estimates as

V̂ar(θ̂
(cc)
j ) =

1∑
d=0

j∑
g=0

1∑
e=0

1/rdge; V̂ar(θ̂
(ca)
j ) =

j∑
g=0

1∑
e=0

1/r1ge.

It is easy to see that V̂ar(θ̂
(cc)
j ) > V̂ar(θ̂

(ca)
j ), indicating a higher power to

detect G-E interaction in case-only design.190

Based on model (4), we can apply the Cochran-Armitage trend test (Sasieni,

1997; Armitage, 1955) to detect the interaction effect in case-only design. In

particular, after defining φ =
∑2
j=0 r1j1/m1, s(1) = x and s(2) = 1, the closed

form of the trend test statistic for testing H0 : λ = 0 is

Zmodel3(x) =

∑2
j=1 s(j){(1− φ)r1j1 − φr1j0}√

m1φ(1− φ)
{∑2

j=1 s
2(j)(r1j1 + r1j0)/m1 − (

∑2
j=1 s(j)(r1j1 + r1j0)/m1)2

} .
Therefore, when the G-E independence and disease rareness assumptions

hold, Zmodel3(x) can be applied to test G-E interaction. Under the null hypoth-

esis of no G-E interaction, Zmodel3(x) asymptotically follows a standard normal

distribution for any x between 0 and 1. It is noteworthy that Zmodel3(x) is sen-

sitive to the choice of genetic model under the alternative hypothesis. Similar

to the case-control design, we propose a maximum test statistic in the case-only

design as

MAX3ca = max(|Zmodel3(0)|, |Zmodel3(1/2)|, |Zmodel3(1)|).

MAX3ca is a maximum-type statistic based on the trend tests, whose null distri-195

bution can be derived from a multivariate normal distribution. We have devel-

oped a user-friendly R package named “Rassoc” which can easily calculate the

p-value of MAX3ca (Zang et al., 2010; Zang, 2011). The package can be freely

downloaded at CRAN (https://cran.r-project.org/src/contrib/Archive/Rassoc/).

4. Robust test without monotonic assumption200

The proposed robust tests MAX3cc and MAX3ca focus on three commonly

used genetic models (REC, MUL and DOM), which all assume a monotonic
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minor allele-penetrance relationship. That is, the value of fjk will monotonically

increase as the number of the minor allele j increases. However, for certain

diseases, the monotonic assumption may be violated and the underlying genetic205

model may be far beyond the commonly used ones. For example, an over-

dominant model (f1k ≥ f2k) and an under-dominant model (f1k ≤ f0k) have

been discussed in the literature (Gillespie, 2004). Hence, it is of our interest

to extend the use of MAX3cc and MAX3ca for scenarios where the monotonic

assumption does not hold.210

We propose to use two parameters λ1 and λ2 to characterize the G-E inter-

action with G = 1 and G = 2 separately. Then, the likelihood function for the

case-control design can be written as

log
(Pr(Dl = 1|Gl, El)

Pr(Dl = 0|Gl, El)

)
= α+ δE + β1I(G = 1) + β2I(G = 2) + λ1I(G = 1)E + λ2I(G = 2)E. (5)

Hence, testing the G-E interaction effect is equivalent to testing the null

hypothesis H0 : λ1 = λ2 = 0. By using logistic model (5), we can construct a215

likelihood ratio test, defined as χ2
cc, which follows a chi-square distribution with

2 degree of freedom. Following Zheng et al. (Zheng et al., 2006) and Zang et

al. (Zang et al., 2010), it can be shown that χ2
cc can be expressed in the form

of Zmodel2(x) as:

χ2
cc =

1

1− ρ̂20,1

{
Zmodel2(0)2 + Zmodel2(1)2 − 2ρ̂0,1Zmodel2(0)Zmodel2(1)

}
.

Along the same lines, we can construct χ2
ca for case-only design as:220

χ2
ca =

1

1− γ̂20,1

{
Zmodel3(0)2 + Zmodel3(1)2 − 2γ̂0,1Zmodel3(0)Zmodel3(1)

}
,

where γ0,1 is the correlation coefficient between Zmodel3(0) and Zmodel3(1). The

closed form expression of γ0,1 can be found in Zang et al. (Zang et al., 2010).

It is worth noting that the construction of χ2
cc and χ2

ca do not rely on any

restrictive relationships between the minor allele and the penetrance. Thus,

12



these tests are robust with or without the monotonic relationship. However,225

if the monotonic assumption does hold, the MAX-type tests should be more

powerful.

5. Robust test with categorical environmental factor

In the previous sections, we assume the environmental factor E to be binary.

If E is categorical with more than two levels, a practical solution is to trans-230

form this multi-level variable into a binary variable using certain thresholding

method. However, mis-classification of E may potentially harm the performance

of the proposed test. In this section, we briefly investigate how to extend the

proposed robust test to handle multi level categorical environmental factor.

Let us define E as a categorical variable with K levels 0, 1, · · · ,K − 1. In

case-control design, the likelihood function can be written as

log
(Pr(Dl = 1|Gl, El)

Pr(Dl = 0|Gl, El)

)
= α+

K−1∑
k=1

δkI(E = k)+

2∑
j=1

βjI(G = j)+

K−1∑
k=1

λk
{
xI(G = 1)+I(G = 2)

}
I(E = k).

Based on this model, we can construct a likelihood ratio test for the hypoth-235

esis of no G-E interaction as H0 : λ1 = λ2 = · · · = λK−1 = 0. We denote the

test as χ2
cc(x) with x relying on the genetic model. Under the null hypothesis,

χ2
cc(x) follows a chi-square distribution with K − 1 degrees of freedom. When

the genetic model is unknown, similar to MAX3cc, we propose a MAX-type

robust test defined as240

LMAX3cc = max
(
χ2
cc(0), χ2

cc(1/2), χ2
cc(1)

)
.

For case-only design, when E has more than two levels, we can use the

baseline-category logit model to fit the data as:

log
(Pr(E = k|G,D = 1)

Pr(E = 0|G,D = 1)

)
= αk + xλkI(G = 1) + λkI(G = 2).

Based on this model, we can construct a likelihood ratio test, defined as

χ2
ca(x), for the G-E interaction. Similarly, a robust test can be developed for

case-only design as LMAX3ca = max
(
χ2
ca(0), χ2

ca(1/2), χ2
ca(1)

)
.245
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Unfortunately, different from MAX3ca and MAX3cc, there is no formula

available yet for the asymptotic distributions of LMAX3cc and LMAX3ca. Nev-

ertheless, following Zang et al. (Zang et al., 2010), a bootstrap resampling

method can be used to approximate the p-values for LMAX3cc and LMAX3ca.

As LMAX3cc and LMAX3ca do not require to classify a multi-level categorical250

E into a binary variable, they are robust against both the genetic model and

environmental factor mis-classification.

6. Simulation studies

In this section, we conduct comprehensive simulation studies to investigate

the operating characteristics of the proposed tests in both case-control and case-255

only studies. In detail, we first simulate G from a minor allele frequency (MAF)

φ with the assumption of Hardy-Weinberg equilibrium and apply the following

logistic model to simulate the dependence between G and E as:

log
(Pr(E = 1|G)

Pr(E = 0|G)

)
= τ + γ1I(G = 1) + γ2I(G = 2), (6)

by which G and E are independent if and only if γ1 = γ2 = 0. With the

disease prevalence conditional on G and E simulated from formula (1), the case-

control data can be further simulated from multinomial distributions with the

associated probabilities:

Pr(G,E|D) =
Pr(D|G,E)Pr(E|G)Pr(G)∑
G,E Pr(D|G,E)Pr(E|G)Pr(G)

.

We study the empirical type I error rates of the proposed tests for case-

control design by comparing the conventional score test Zmodel1(x), proposed260

score test Zmodel2(x) with the robust test MAX3cc. We generate case-control

data by specifying the MAF φ = 0.3, α = −6, δ = 1, λ = 0 from model (1) and

τ = 0, γ1 = 0.5, γ2 = 1 from model (6). We consider three genetic models (REC,

MUL and DOM) for the non-zero marginal genetic effect β. Table 2 summarizes

the simulation results based on 10,000 replicates with different sample sizes m0,265
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Table 2: Empirical type I error rates (%) of Zmodel1(x), Zmodel2(x) and MAX3cc for the

case-control design. The significance level is 0.05.

β = 1 β = 2 β = 3

Sample size Test REC MUL DOM REC MUL DOM REC MUL DOM

m0 = m1 = 500 Zmodel1(0) 4.8 5.3 5.6 4.9 5.6 7.3 4.9 6.6 9.8

Zmodel1(0.5) 5.4 5.0 4.3 4.9 4.7 6.5 6.6 4.7 10.8

Zmodel1(1) 5.2 5.1 4.8 5.1 4.8 5.1 5.1 4.8 4.4

Zmodel2(0) 5.0 5.5 5.4 5.5 5.3 5.1 5.3 4.8 5.5

Zmodel2(0.5) 4.8 5.4 5.1 5.2 5.4 5.5 5.5 5.3 5.3

Zmodel2(1) 4.8 5.3 5.0 5.0 5.3 5.4 4.9 5.5 5.4

MAX3cc 4.7 5.3 5.0 5.2 5.2 5.1 5.3 5.3 5.3

m0 = m1 = 1000 Zmodel1(0) 5.1 5.5 6.8 5.1 6.8 9.9 5.0 8.3 10.5

Zmodel1(0.5) 5.7 4.8 4.6 4.8 5.3 7.1 7.3 5.0 14.1

Zmodel1(1) 4.7 5.0 4.8 5.0 4.8 5.2 5.7 4.9 4.8

Zmodel2(0) 5.2 5.0 5.1 5.2 5.1 5.4 5.4 5.3 4.9

Zmodel2(0.5) 5.0 5.2 5.4 5.2 5.5 5.3 5.2 5.4 5.5

Zmodel2(1) 5.2 5.2 5.5 5.0 5.4 5.4 5.1 5.1 5.0

MAX3cc 5.0 5.0 5.5 5.0 5.4 5.3 5.1 5.4 4.9
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m1 and main genetic effects β. Note that type I error rates greater than 6% are

considered as inflated and labeled in bold font. Our simulation study clearly

demonstrates that the conventional score test Zmodel1(0) and Zmodel1(0.5) have

more severely inflated type I error rates when the genetic model is mis-specified,

as claimed in Theorem 1. On the other hand, the newly developed score test270

Zmodel2(x) and robust test MAX3cc can control the type I error rates in a

satisfactory range. It is noteworthy that the inflation are substantial with a

significant main genetic effect β and could be further magnified by a larger

sample size. For example, when m0 = m1 = 500, β = 3 and DOM being the

true genetic model for β, the type I error rates of Zmodel1(0) and Zmodel1(0.5)275

are 9.8% and 10.8%, respectively, which increase to 10.5% and 14.1% in the case

of m0 = m1 = 1000. In contrast, Zmodel2(x) and MAX3cc consistently control

the type I error rates around 5% across all the settings considered here.

Table 3 presents the empirical type I error rates of Zmodel3(x) and MAX3ca

for case-only design. The same parameter settings as in Table 2 are used except280

that γ1 = γ2 = 0 is specified to ensure G-E independence. As expected, both

Zmodel3(x) and MAX3ca can consistently control the type I error rates around

the 5% significance level, which ensure the validity of the proposed tests.

In addition, to further justify the proposed robust tests, we plot the empir-

ical cumulative distributions of the p-values of MAXcc and MAXca under null285

hypothesis with different sample sizes in Figure 1 and Figure 2. As shown in

these figures, the empirical cumulative distributions fit the uniform distribution

U(0, 1) very well even for a small sample size of 200.

The validity of using MAX3ca for case-only design relies on the assumption

of disease rareness and G-E independence. Therefore, it is important to study290

the potential bias of MAX3ca if the assumption is violated. Specifically, let ζ be

the disease prevalence, in Figure 3 we provide the bar plot of the empirical type I

error rates of MAX3ca with different ζ and γ2, which determines the magnitude

for G-E dependence. As depicted in Figure 3, when the G-E independence

assumption holds, the empirical type I error rates of MAX3ca is consistently295

close to the nominal significant level 5% for a disease prevalence up to 10%.
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Table 3: Empirical type I error rates (%) of Zmodel3(x) and MAX3ca for the case-only design.

The significance level is 0.05.

β = 1 β = 2 β = 3

Sample size Test REC MUL DOM REC MUL DOM REC MUL DOM

m0 = m1 = 500 Zmodel3(0) 4.9 5.3 5.0 5.4 5.1 5.0 5.2 4.8 4.9

Zmodel3(0.5) 5.0 5.1 5.1 5.1 5.1 4.9 5.1 4.9 4.9

Zmodel3(1) 4.7 4.9 4.8 5.2 5.2 4.8 5.6 5.1 5.3

MAX3ca 4.8 5.3 4.9 5.1 5.3 4.8 5.3 4.9 5.2

m0 = m1 = 1000 Zmodel3(0) 5.5 5.2 5,1 5.4 5,1 4.7 5.3 5.4 4.9

Zmodel3(0.5) 5.4 4.8 4.9 5.5 5.4 5.2 5.1 5.3 4.9

Zmodel3(1) 4.7 5.0 5.0 5.3 5.1 5.1 5.2 5.2 5.1

MAX3ca 5.0 5.3 4.9 5.4 5.2 4.9 5.4 5.4 4.8

Figure 1: Empirical cumulative distribution for the p-value of MAXcc under the null hypoth-

esis with different sample sizes.
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Figure 2: Empirical cumulative distribution for the p-value of MAXca under the null hy-

pothesis with different sample sizes.
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However, with a moderate G-E dependence of γ2 = 0.5, the type I error rates can

be inflated to over 15% even when the disease prevalence is as low as ζ = 0.01.

Based on these results, we suggest checking the assumption of G-E independence

before using the case-only design.300

Table 4 presents the empirical statistical power for the proposed tests in

case-control study under different genetic models (REC, MUL and DOM). We

fix the sample size to be m0 = m1 = 500 and consider different configurations

of the main effect (δ, β) and G-E interaction effect λ. Since Zmodel1(x) cannot

control the type I error rate, the comparison is restricted to Zmodel2(x) and305

MAX3cc. Table 4 clearly demonstrates the benefit of using MAX3cc. Although

Zmodel2(x) with a correctly specified x could always achieve the maximal power

under each configuration, its power loss is also substantial when the genetic

model is mis-specified. For example, when (δ, β) = (1, 1) and λ = 1, although

Zmodel2(1) obtains the highest power of 77.7% with a correctly specified genetic310

model DOM, this value plummets to 18.1% with an incorrect REC model. In

addition, the power of the test drops to 9.8% if Zmodel2(0) is instead used for the

DOM model. On the other hand, MAX3cc always holds a plausible power for

different genetic models. In particular, compared with all the Zmodel2(x) tests,

MAX3cc always yields the highest minimal power regardless of the true genetic315

models. Table 5 lists the results for case-only study comparing Zmodel3(x) and

MAX3ca. Results in Table 5 are similar to those in Table 4, i.e., Zmodel3(x)

is vulnerable to the genetic model mis-specification while MAX3ca can always

yield a desirable power.

Table 6 and 7 compare MAX-type tests (MAX3cc and MAX3ca) with chi-320

square-type tests (χ2
cc and χ2

ca) for both the case-control and case-only studies.

In addition to the commonly used genetic models (REC, ADD, DOM), we also

consider the under-dominant model (U-DOM) with f1k ≤ f2k and the over-

dominant model (O-DOM) with f1k ≥ f2k. In particular, we specify x = −0.5

to simulate data under U-DOM model and x = 1.5 for the O-DOM model. As325

expected, if the monotonic minor allele-penetrance assumption holds ( such as

REC, ADD and DOM), the MAX-type tests are more powerful than the chi-
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Figure 3: Empirical type I error rates for MAXca in case-only study with different disease

prevalence ζ. γ2 represents the dependence level between E and G. γ1 = γ2/2 and m0 =

m1 = 500.
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Table 4: Empirical power (%) of Zmodel2(x) and MAX3cc for case-control design. The signif-

icance level is 0.05 and m0 = m1 = 500.

λ = 1 λ = 1.5 λ = 2

(δ, β) Test REC MUL DOM REC MUL DOM REC MUL DOM

(1,1) Zmodel2(0) 67.8 37.6 9.8 93.1 63.5 10.0 99.1 81.3 9.9

Zmodel2(0.5) 46.9 61.9 65.7 77.8 87.1 80.8 92.9 96.6 84.8

Zmodel2(1) 18.1 51.6 77.7 33.0 77.4 91.6 50.9 90.6 95.6

MAX3cc 59.5 56.7 70.8 89.9 83.2 87.8 98.4 94.9 93.6

(1,2) Zmodel2(0) 70.5 37.7 6.5 93.0 61.5 6.5 98.7 78.7 6.7

Zmodel2(0.5) 55.4 56.9 39.4 83.3 82.1 52.2 94.9 93.5 56.6

Zmodel2(1) 24.0 44.1 59.2 44.4 68.1 76.9 63.4 82.5 84.2

MAX3cc 64.3 52.5 51.1 90.3 77.9 71.1 97.9 91.1 80.5

(2,1) Zmodel2(0) 53.2 26.3 5.8 81.5 44.0 4.9 95.3 60.3 5.8

Zmodel2(0.5) 38.6 45.8 46.9 66.9 69.9 62.4 87.1 84.2 68.9

Zmodel2(1) 17.5 37.6 57.9 31.5 59.6 76.1 49.6 74.9 84.1

MAX3cc 45.9 40.3 50.5 76.2 64.7 70.4 92.8 80.9 80.1
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Table 5: Empirical power (%) of Zmodel3(x) and MAX3ca for case-only design. The signifi-

cance level is 0.05 and m0 = m1 = 500.

λ = 0.5 λ = 0.75 λ = 1

(δ, β) Test REC MUL DOM REC MUL DOM REC MUL DOM

(1,1) Zmodel3(0) 50.5 21.9 6.0 85.5 42.2 6.6 98.1 62.1 7.1

Zmodel3(0.5) 37.8 36.3 33.8 73.1 64.3 52.4 93.3 83.9 67.3

Zmodel3(1) 16.6 29.5 46.1 34.0 52.2 70.0 55.0 71.5 84.4

MAX3ca 42.9 32.1 38.1 80.0 58.8 62.2 96.7 79.6 79.0

(1,2) Zmodel3(0) 54.9 20.6 5.1 86.0 38.7 5.1 97.2 56.5 5.0

Zmodel3(0.5) 47.4 29.9 14.4 79.2 55.2 21.1 94.2 74.1 27.9

Zmodel3(1) 25.2 23.0 24.8 47.4 41.5 40.5 68.7 58.4 54.4

MAX3ca 49.3 27.1 19.6 81.9 50.4 33.5 96.1 70.0 46.5

(2,1) Zmodel3(0) 23.6 9.9 4.4 48.4 17.2 4.2 73.4 27.3 3.8

Zmodel3(0.5) 18.4 18.7 17.9 37.3 31.9 28.5 61.1 49.4 37.5

Zmodel3(1) 10.4 16.0 24.7 17.5 27.8 40.6 28.1 42.2 54.5

MAX3ca 19.5 16.8 19.2 41.1 28.2 33.3 66.7 44.6 46.2
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Table 6: Empirical power (%) of MAX3cc and χ2
cc for case-control design. The significance

level is 0.05, m0 = m1 = 500, (δ, β) = (2, 2), φ = 0.3, α = −6, γ1 = 0.5, γ2 = 1.

λ = 1 λ = 1.5 λ = 2

Genetic model MAX3cc χ2
cc MAX3cc χ2

cc MAX3cc χ2
cc

REC 52.7 49.3 79.7 77.0 93.2 91.9

ADD 40.8 36.3 63.2 59.2 77.9 74.9

DOM 42.0 41.3 62.5 60.9 75.0 74.6

U-DOM 58.8 64.4 85.2 87.9 95.4 96.7

O-DOM 53.0 55.2 73.6 74.8 89.4 90.8

Table 7: Empirical power (%) of MAX3ca and χ2
ca for case-only design. The significance level

is 0.05, m0 = m1 = 500, (δ, β) = (2, 2), φ = 0.3, α = −6, γ1 = 0, γ2 = 0.

λ = 1 λ = 1.5 λ = 2

Genetic model MAX3ca χ2
ca MAX3ca χ2

ca MAX3ca χ2
ca

REC 57.4 54.1 83.0 80.8 91.9 90.6

ADD 31.0 27.9 48.0 44.5 57.1 53.8

DOM 23.8 23.3 34.9 33.9 40.5 39.7

U-DOM 68.3 71.0 88.2 89.5 94.2 95.5

O-DOM 13.5 14.5 18.1 18.6 21.6 21.8

square-type tests. However, if this assumption is violated ( such as U-DOM and

O-DOM), the chi-square-type tests are preferable.

As pointed out in Zang et al. (Zang et al., 2010), an alternative bootstrap330

re-sampling method can be used to approximate the p-value of the robust test.

Compared with the asymptotic method, the computational burden for the boot-

strap resampling method is much heavier. However, the bootstrap method can

still be useful, especially when the sample size is small and an asymptotically

normal distribution assumption may be inaccurate. Hence, in Table 8 we com-335

pare the asymptotic method with the bootstrap method and the total sample

size varies from 200 to 1000. Based on Table 8, the differences between the two
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Table 8: Empirical power (%) of MAX3cc for case-control design and MAX3ca for case-only

design using asymptotic method (Asy) and bootstrap resampling method (Boot). φ = 0.3,

τ = 0, γ1 = γ2 = 0, (δ, β) = (1, 1), α = −6, m0 = m1, sample size=m0 +m1.

λ = 0.75 λ = 1

Test Sample size Method REC MUL DOM REC MUL DOM

MAX3cc 1000 Asy 43.4 41.5 58.1 66.2 61.7 76.0

Boot 42.6 40.8 57.2 66.7 62.4 75.5

500 Asy 25.9 25.6 35.3 40.8 39.6 51.0

Boot 24.7 25.0 36.1 39.7 38.3 50.7

200 Asy 16.0 16.6 23.7 23.5 23.9 31.4

Boot 14.6 15.3 22.9 21.8 24.3 30.8

MAX3ca 1000 Asy 79.9 57.8 63.6 96.8 80.5 78.9

Boot 78.3 56.6 64.3 96.3 80.8 79.5

500 Asy 47.4 32.8 36.6 73.7 50.0 52.3

Boot 47.7 33.5 37.2 72.8 50.9 53.2

200 Asy 20.5 17.4 24.1 34.1 25.4 32.5

Boot 20.9 18.1 25.3 33.7 26.2 31.7

methods are rather small. Hence, we recommend using the asymptotic method

for the proposed robust tests owing to its computational efficiency.

Additionally, another objective of Table 8 is to compare MAX3cc for the340

case-control design with MAX3ca for the case-only design, so that we could

assess how much power can be gained by using the case-only design. To make

a fair comparison, we specify ζ = 0.01 and γ1 = γ2 = 0 to ensure the integrity

of MAX3ca. Based on the simulation results, we conclude that the power gain

can be substantial. For example, with a total sample size of 1000 and a true345

G-E interaction effect λ = 0.75, the power gain by using case-only design is over

35% under the REC model and over 15% under the MUL model.
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7. Application on real data

We have applied the proposed tests to a GWAS dataset from a multi-stage

case-control study of bladder cancer (Rothman et al., 2010). 3,532 cases and350

5,120 controls of self-described European descent were genotyped on a total

of 591,637 SNPs in stage one. The 100 most significant SNPs in stage one

were selected and forwarded to stages two and three for validation with an

additional 2,243 cases and 2,789 controls. Combined with the data generated

in previous studies, the authors identified 10 SNPs associated with bladder355

cancer. In addition to the main genetic effect, the authors also investigated

the interaction of the 10 significant SNPs with cigarette smoking status as an

environmental risk factor. The conventional score test Zmodel1(x) based on

the logistic regression model (1) was used by the authors to analyze the data

under the MUL genetic model assumption and reported rs1495741 as the SNP360

with significant G-E interaction with a p-value of 0.0013. However, based on

our theoretical derivation (Theorem 1) and simulation results (Table 2), the

conventional test may be biased if the genetic model is mis-specified.

We re-analyze the case-control data for the 9 of 10 significant SNPs (GSTM1

Del is excluded due to its incomplete genotype information). Specifically, we365

apply model (2) to this case-control data and use Zmodel2(x) and MAX3cc to

detect possible G-E interaction. Table 9 lists the p-values. Zmodel2(x) under dif-

ferent genetic model assumptions yields quite different p-values, indicating the

sensitivity of this test with respect to the choice of x. For example, Zmodel2(1)

gives p-value of 0.01 whereas Zmodel2(0) gives p-value of 0.71 for SNP rs1495741.370

In contrast, MAX3cc incorporates all the three genetic models and generates a

single and more objective p-value which should be used to draw the statistical

conclusion when the underlying genetic model is unknown. Finally, when the

overall type I error rate is controlled at 5% and the Bonferroni correction is

used for multiple comparisons among the 9 SNPs, based on MAX3cc, none of375

the existing SNPs reports significant G-E interaction. Hence, we speculate that

the significant G-E interaction reported from the previous study may be a false-
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Table 9: G-E interaction testing results for the SNPs with the risk for urinary bladder cancer

P-values

SNPs Zmodel2(0) Zmodel2(0.5) Zmodel2(1) MAX3cc

rs9642880 0.85 0.66 0.60 0.84

rs710521 0.78 0.71 0.71 0.91

rs2294008 0.79 0.82 0.54 0.79

rs401681 0.04 0.07 0.40 0.10

rs798766 0.74 0.58 0.43 0.67

rs1014971 0.18 0.26 0.52 0.33

rs8102137 0.11 0.87 0.41 0.22

rs11892031 0.01 0.18 0.48 0.01

rs1495741 0.71 0.02 0.01 0.01

positive finding due to the problematic logistic regression model (1) being used

on the original data analysis, as supported by Theorem 1 and the simulation

results from Table 2.380

8. Discussion

In this article, we investigate the impact of the genetic model uncertainty

on examining the G-E interaction in both case-control and case-only designs.

In case-control design, mis-specification of genetic model can distort both the

null and alternative distributions of the test statistic. On the other hand, in385

case-only design, mis-specification of genetic model will only affect the power

while keeping the test validity under the null hypothesis. We propose two robust

tests, namely MAX3cc and MAX3ca, for assessing G-E interaction effect in case-

control and case-only designs, respectively. Rather than relying on a single test

wherein the pre-specified genetic model might be incorrect, the proposed robust390

tests take the maximum absolute value of the three optimal score tests for the

REC, MUL and DOM models as the test statistic and therefore yield plausible
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power regardless of the underlying genetic model. The asymptotic formulas to

calculate the p-values of the proposed maximum-type tests are provided in this

article. Our simulation studies and a real data application demonstrate that the395

newly developed testing methods have substantially increased performance and

robustness in comparison with the existing one in detecting the G-E interaction

effect. The associated R code to implement the proposed robust tests can be

obtained upon request.

Ideally, our MAX3 tests can be used to predict the underlying genetic model.400

Then, a score test which is optimal for the identified genetic model can then

be used. This naive method, however, can inflate the type I error rate due to

multiple comparisons. As an alternative approach, we may adopt a more so-

phisticated two-stage test which mimics the genetic model selection approach to

take the correlation between the model prediction and hypothesis testing into405

consideration (Zang et al., 2010; Zheng et al., 2008). In this article, we focus on

the conventional case-control and case-only designs with at least moderate G-E

interaction effect. However, when the interaction effect is low, it may be ques-

tionable to use these designs due to a lack of sufficient quality samples. Hence,

novel designs are needed for low interaction effects. In addition, we assume that410

the environmental factor E is casual and can be precisely measured. Unfor-

tunately, in reality the causal factor E is often unaccessible or not accurately

measurable and it is known that a mis-specified E can also distort the G-E in-

teraction testing result (Boonstra et al., 2016). Hence, it is worth extending the

proposed robust tests to account for measurement error of E.415

We dedicate this paper to single marker association study. With the rapid

development of next generation sequencing, more and more complex diseases

have been found to be associated with multiple gene variants, especially the

rare variants. Hence, it is of great interest to extend the proposed tests to

handle multiple variants. In the field of multiple variants genetic association420

study, burden test (Li et al., 2008; Madsen et al., 2009) and sequence kernel

association test (SKAT) (Wu et al., 2011; Lee et al., 2012) are arguably two of

the most popular tests, and we are aware that both tests generally assume a
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known genetic model to construct test statistics. We suspect that similar to the

single marker association test, these multiple variants tests may be sensitive to425

genetic model misclassification as well. To the best of our knowledge, no robust

test has been proposed for multiple variants genetic association study. We hope

the robust tests proposed in this paper can be somehow inspiring in this active

research area. Further study in this area is warranted.
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APPENDIX A: Expression for V (x)

Denote ψ = (α, β1, β2, δ)
′ as the nuisance parameters, we can write the

observed information matrix based on model (2) in the form of a block matrix

as

I(x) =

 Iλ(x) Iλψ(x)′

Iλψ(x) Iψ

 ,

Where
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Iλ(x) = x2n11f̃11(1− f̃11) + n21f̃21(1− f̃21),

Iλψ(x) =


xn11f̃11(1− f̃11) + n21f̃21(1− f̃21)

xn11f̃11(1− f̃11)

n21f̃21(1− f̃21)

xn11f̃11(1− f̃11) + n21f̃21(1− f̃21)

 ,

Iψ =


∑2
j=0

∑1
k=0 njk f̃jk(1− f̃jk)

∑1
k=0 n1k f̃1k(1− f̃1k)

∑1
k=0 n2k f̃2k(1− f̃2k)

∑2
j=0 nj1f̃j1(1− f̃j1∑1

k=0 n1k f̃1k(1− f̃1k)
∑1
k=0 n1k f̃1k(1− f̃1k) 0 n11f̃11(1− f̃11)∑1

k=0 n2k f̃2k(1− f̃2k) 0
∑1
k=0 n2k f̃2k(1− f̃2k) n21f̃21(1− f̃21)∑2

j=0 nj1f̃j1(1− f̃j1 n11f̃11(1− f̃11) n21f̃21(1− f̃21)
∑2
j=0 nj1f̃j1(1− f̃j1

 ,
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with

f̃jk =
1

1 + e−α̃−β̃1I(j=1)−β̃2I(j=2)−δ̃k

and α̃, β̃1, β̃2 and δ̃ are the MLEs based on model (2) given λ = 0. By inverting

the information matrix, we have

I−1(x) =

 Iλ(x) Iλψ(x)′

Iλψ(x) Iψ(x)

 ,

Iλ(x) =
(

Iλ(x)− Iλψ(x)′I−1ψ Iλψ(x)
)−1

.

Finally, based on the inverted information matrix, the variance estimate for

U(x) is

V (x) = V̂ar(U(x)) =
1

Iλ(x)
= Iλ(x)− Iλψ(x)′I−1ψ Iλψ(x).

Appendix B: Expression of ρx1,x2

We can write down the information matrix in the form of block matrix as

I(x1, x2) =

 Iλ1λ2
(x1, x2) Iλ1λ2ψ(x1, x2)′

Iλ1λ2ψ(x1, x2) Iψ

 ,
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the detailed expression of Iψ are given in Appendix A and we have

Iλ1λ2(x1, x2) =

 x21n11f̃11(1− f̃11) + n21f̃21(1− f̃21) x1x2n11f̃11(1− f̃11) + n21f̃21(1− f̃21)

x1x2n11f̃11(1− f̃11) + n21f̃21(1− f̃21) x22n11f̃11(1− f̃11) + n21f̃21(1− f̃21)



Iλ1λ2ψ(x1, x2) =


x1n11f̃11(1− f̃11) + n21f̃21(1− f̃21) x2n11f̃11(1− f̃11) + n21f̃21(1− f̃21)

x1n11f̃11(1− f̃11) x2n11f̃11(1− f̃11)

n21f̃21(1− f̃21) n21f̃21(1− f̃21)

x1n11f̃11(1− f̃11) + n21f̃21(1− f̃21) x2n11f̃11(1− f̃11) + n21f̃21(1− f̃21)

 .

445

The inverted information matrix is then given by

I−1(x1, x2) =

 Iλ1λ2(x1, x2) Iλ1λ2ψ(x1, x2)′

Iλ1λ2ψ(x1, x2) Iψ(x1, x2)

 .

Iλ1λ2(x1, x2) = (Iλ1λ2
(x1, x2)− Iλ1λ2ψ(x1, x2)′I−1ψ Iλ1λ2ψ(x1, x2))−1.

Finally, the variance-covariance matrix for (U(x1), U(x2)) is
(

Iλ1λ2(x1, x2)
)−1

.

Therefore, the correlation ρx1,x2 can be expressed as

ρx1,x2 =
(1, 0)

(
Iλ1λ2(x1, x2)

)−1
(0, 1)′√

(1, 0)
(
Iλ1λ2(x1, x2)

)−1
(1, 0)′(0, 1)

(
Iλ1λ2(x1, x2)

)−1
(0, 1)′

.
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