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Abstract

Robust clustering from incomplete data is an important topic because, in many
practical situations, real data sets are heavy-tailed, asymmetric, and/or have arbitrary
patterns of missing observations. Flexible methods and algorithms for model-based
clustering are presented via mixture of the generalized hyperbolic distributions and its
limiting case, the mixture of multivariate skew-t distributions. An analytically feasi-
ble EM algorithm is formulated for parameter estimation and imputation of missing
values for mixture models employing missing at random mechanisms. The proposed
methodologies are investigated through a simulation study with varying proportions of
synthetic missing values and illustrated using a real dataset. Comparisons are made
with those obtained from the traditional mixture of generalized hyperbolic distribution

counterparts by filling in the missing data using the mean imputation method.
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1 Introduction

Finite mixture models are powerful and flexible tools for discovering unobserved heterogene-
ity in multivariate datasets. Assuming no prior knowledge of class labels, the application
of finite mixture models in this way is known as model-based clustering. As McNicholas

(2016a) points out, the association between mixture models and clustering goes back at



least as far as [Tiedeman| (1955), who uses the former as a means of defining the latter.

Gaussian mixture models are historically the most popular tool for model-based clustering

and dominated the literature for quite some time (e.g., |Celeux and Govaert), 1995} [Fraley|
land Rafteryl, 1998 McLachlan et al.| [2003; Bouveyron et all 2007 [McNicholas and Mur-|
phy}, 2008, 2010). The multivariate ¢-distribution, being a heavy-tailed alternative to the

multivariate Gaussian distribution, made (robust) mixture modelling based on mixtures of

multivariate ¢-distributions the most natural extension (e.g.,|Peel and McLachlan, 2000; An-|
drews and McNicholas, 2011} |2012; Steane et al., | 2012; Lin et al., [2014). In many practical

situations, however, real world datasets exhibit clusters that are not just heavy tailed but

also asymmetric; furthermore, clusters can also be asymmetric yet not heavy tailed. Over the
few past years, much attention has been paid to non-Gaussian approaches to model-based
clustering and classification, including work on multivariate skew-¢ distributions (e.g., ,
2010} [Vrbik and McNicholas|, 2012} [Lee and McLachlan| [2014} Murray et all,[2014alb|, 2017D)),

shifted asymmetric Laplace distributions (Franczak et al. 2014]), multivariate power expo-

nential distributions (Dang et al., 2015), multivariate normal inverse Gaussian distributions

(Karlis and Santourian, 2009; |(O’Hagan et al. [2016), generalized hyperbolic distributions
(Browne and McNicholas, [2015; [Morris and McNicholas, [2016; [Tortora et al. 2016)), and
hidden truncation hyperbolic distributions (Murray et al., [2017al). A comprehensive review

of model-based clustering work, up to and including some recent work on non-Gaussian
mixtures, is given by McNicholas| (2016b).

Unobserved or missing observations are frequently a hindrance in multivariate datasets

and so developing mixture models that can accommodate incomplete data is an important
issue in model-based clustering. The maximum likelihood and Bayesian approaches are two
common imputation paradigms for analyzing data with incomplete observations. Herein, the
missing data mechanism is assumed to be missing at random (MAR), as per
and |[Little and Rubin| (1987)), meaning that the probability that a variable is missing for a

particular individual depends only on the observed data and not on the value of the missing
variable. Note that missing completely at random (MCAR) is a special case of MAR. Under
MAR, the missing data mechanisms are ignorable for methods using the maximum likelihood
approach.

The maximum likelihood approach to clustering incomplete data has been well studied

and is often used, particularly for Gaussian mixture models (e.g., (Ghahramani and Jordan,
11994; Lin et al., 2006; Browne et al. 2013). Wang et al. (2004) present a framework max-




imum likelihood estimation using an expectation-maximization (EM) algorithm (Dempster
et al., |1977)) to fit a mixture of multivariate ¢-distributions with arbitrary missing data pat-
terns, which was generalized by |[Lin et al| (2009) to efficient supervised learning via the
parameter expanded (PX-EM) algorithm (Liu et al., [1998) through two auxiliary indicator
matrices. |Lin (2014) further develops a family of multivariate-t mixture models with 14
eigen-decomposed scale matrices in the presence of missing data through a computationally
flexible EM algorithm by incorporating two auxiliary indicator matrices. Wang and Lin
(2015) uses a formulation of the mixture of skew-t distributions for model-based clustering
with missing data.

We consider fitting mixtures of generalized hyperbolic distributions (MGHD) and mix-
tures of multivariate skew-t distributions (MST) with missing information. In each case, an
EM algorithm is used for model selection. The chosen formulation of the (multivariate) gen-
eralized hyperbolic distribution (GHD) is that used by Browne and McNicholas (2015]) and
has formulations of several well-known distributions as special cases such as the multivariate
skew-t, normal inverse Gaussian, variance-gamma, Laplace, and Gaussian distributions (cf.
McNeil et al. [2005). In addition to considering missing data, we develop families of MGHD
and MST mixture models, each with 14 parsimonious eigen-decomposed scale matrices cor-
responding to the famous Gaussian parsimonious clustering models of (GPCMs; |Banfield

and Raftery], [1993; |Celeux and Govaert, [1995)); see Table 7| (Appendix [Al).

2 Background

2.1 Generalized Inverse Gaussian Distribution

A random variable W € R™ is said to have a generalized inverse Gaussian (GIG) distribution,
introduced by (Good, 1953)), with parameters A, x, and ¢ if its probability density function
is given by

(w/x)”zw**lexp {_ww + x/w} | )
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where ¥, x € RT,\ € R, and K, is the modified Bessel function of the third kind with
index A. Herein, we write W ~ GIG(A, x, %) to indicate that a random variable W has the
GIG density as parameterized in . The GIG distribution has some attractive properties
(Barndorff-Nielsen and Halgreen, [1977; Blaesild, |1978; Halgreen) |1979; [Jorgensen, 1982]),

faic(w | A, x, ) =



including the tractability of the expectations:

al z o/ K/\—f—a(\/W)
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for o € R, and
oz ] = og (/) + 7 loa(KA (V) ®)

Specifically, for « = 1 and a = —1, we have
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Browne and McNicholas| (2015) introduce another parameterization of the GIG distri-
bution by setting w = /¥x and n = /x/v¥. Write W ~ Z(\,n,w); its density is given

by i
fotw | M) = S0 Sesp {5 (24 1)) (@)

for w > 0, where n € RT is a scale parameter and w € R is a concentration parameter.
These two parameterizations of the GIG distribution are important ingredients for building

the generalized hyperbolic distribution presented later.

2.2 Generalized Hyperbolic Distribution

Several alternative parameterizations of the GHD have appeared in the literature, e.g.,
Barndorff-Nielsen and Blaesild| (1981)), [McNeil et al| (2005), and Browne and McNicholas
(2015). Barndorff-Nielsen| (1977) introduces the generalized hyperbolic distribution (GHD)
to model the distribution of the sand grain sizes and subsequent reports described its statisti-
cal properties (e.g., Barndorft-Nielsen| (1978} |Barndorff-Nielsen and Bleesild, |[1981). However,
under this standard parameterization, the parameters of the mixing distribution are not in-
variant by affine transformations. An important innovation was made by McNeil et al.
(2005)), who gave a new parameterization of the GHD. Under this new parameterization, the

linear transformation of GHD remains in the same sub-family characterized by the param-



eters of the mixing distribution. However, there is an identifiability issue arising under this
parameterization. To solve this problem, Browne and McNicholas (2015)) give an alternative
parameterization.

Following [McNeil et al. (2005), a p x 1 random vector X is said to follow a generalized
hyperbolic distribution with index parameter A\, concentration parameters y and v, location
vector p, dispersion matrix 3, and skewness vector o, denoted by X ~ GH, (A, x, ¥, p, 3, av),
if it can be represented by

X =p+Wa+ VIVU, (5)

where ULW, W ~ GIG(\, x,v), U ~ N(0,X), and the symbol L indicates independence.
It follows that X | w ~ N(p + wa,wX). So, the density of the generalized hyperbolic

random vector X is given by

X +0(x, | 2)} 2 () X)VEK A2 (\/(X +o(x, | X)) (0 + aTE’la))

Y+ oY o 2m)P2 IS 2K\ (VX)) exp{—(x — p) T )
(6)

where §(x, 0 | ) = (x — pu)TE 7' (x — p) is the squared Mahalanobis distance between

x and p, K, is the modified Bessel function of the third kind with index A\, and ¥ =

(A, x, ¥, b, X, ) denotes the model parameters. The mean and covariance matrix of X are

x| 0) = |

EX)=p+EW)a and Var(X)=EW)X + Var(W)aaT, (7)

respectively, where E(W) and Var(1V) are the mean and variance of the random variable W,
respectively.

Note that, in this parameterization, we need to hold |X| = 1 to ensure identifiabil-
ity. Using || = 1 solves the identifiability problem but would be prohibitively restrictive
for model-based clustering and classification applications. Hence, |Browne and McNicholas
(2015) develop a new parameterization of the GHD with index parameter A, concentration
parameter w, location vector u, dispersion matrix 3, and skewness vector 3 = na, denoted
by X ~ GHD,(\,w, i, 3, 3). Note that n = 1. This formulation is given by

X=p+WB+ VWU, (8)

where ULW, W ~ GIG(w/n,wn, A), with n =1, and U ~ N (0,3). Under this parameter-



ization, the density of the generalized hyperbolic random vector X is

o+ 5% | 2)} 2 Koy (Ve 0 p [ D)+ 815 B))
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where 0(x, p | 3) and Ky_,/, are as described earlier. We use this parameterization when
we describe parameter estimation (cf. Section [3)).

The following result shows an appealing closure property of the generalized hyperbolic
distribution under affine transformation and conditioning as well as the formation of marginal
distributions, which is useful for developing new methods presented later. Suppose that X
is a p-dimensional random vector having a generalized hyperbolic distribution as in @D, ie.,
X ~ GHD, (A, w, p, 3, 3). Assume that X is partitioned as X = (X7, XJ)T, where X; takes

values in R™ and X, in R®™ = RP™% with

o= Ky ’ 8- B4 ’ > Y X 7
o Bs Yo X
where X, p, and B have similar partitions. Furthermore, 311 is d; X d; and X5 is dy X ds.

Proposition 1. Affine transformation of the generalized hyperbolic distribution. If X ~
GHD,(\,w, 1, %, B) and Y = BX + b where B € R¥? and b € R?, then

Y ~ GHDy(A\,w,Bu + b, BEBT, B3), (10)
Proof. The result follows by substituting into Y = BX +b. O]

Proposition 2. The marginal distribution of Xy is a generalized hyperbolic distribution as
m @ with index parameter A, concentration parameter w, location vector p,, dispersion

matriz 311, and skewness vector B3y, i.e., X1 ~ GHDy, (\,w, py, 311, 81).

Proof. The result follows by applying Proposition 1 and choosing B = [I,,0] and b = 0.
The parameters A\, w inherited from the mixing distribution W ~ Z(A,7 = 1,w) remain the

same under the affine transformation and marginal distribution. O

Proposition 3. The conditional distribution of Xy given X1 = X1 is a generalized hyperbolic



distribution as in (0)), i.e., Xo | Xy =x1 ~ GHa, (Ag1, X2, Y21, Bopr, X2p1, Bap1), where

d _
Aot = A — é? X =W+ (X1 — )T (0 — ),
Yo = w + BB, Moy = Mo + EI2EI11(X1 — ),
22\1 = Yigo — 2{2232127 52|1 =B, — 212211151-

The proof of Proposition 3 is given in Appendix B.

2.3 The Multivariate Skew-t Distribution

There are several alternative formulations of multivariate skew-t distributions appearing in
the literature (e.g., [Branco and Dey, [2001; Sahu, Dey, and Branco, [2003; |Murray, Browne,
and McNicholas|, [2014a} |Lee and McLachlan|, 2014)). [Lin and Lin (2011) develop a mixture of
multivariate skew-t distributions incomplete data using the formulation of Sahu et al.| (2003)).
Herein, the formulation of the multivariate skew-¢ distribution arising from the generalized
hyperbolic distribution is used. This formulation of the multivariate skew-t distribution has
been used by Murray et al.| (2014a) to develop a mixture of skew-¢ factor analyzers model.
Following McNeil et al. (2005), a p x 1 random vector X is said to follow a multivariate
skew-t distribution with degree of freedom parameter v, location vector p, dispersion matrix

3, and skewness vector 3, denoted by X ~ ST, (v, pu, 3, 3), if it can be represented by
X=p+WpB+ VWU, (11)

where ULW, W ~ 1G(v/2,v/2), U ~ N(0,%), with IG(:) denoting the inverse Gamma
distribution. It follows that X | w ~ N (p+wB, w3X) and the pdf of the multivariate skew-t

random vector X is given by

v+ (x| 2)} R (R W (v+0(x,p | E))(ﬁTZ”ﬁ)) 2)

x| 9) = [ /s (2m)P/2|2[12T (v/2)2v2 exp{~(x — p)TE "B}

This formulation of the multivariate skew-t distribution can be obtained as a special case of
the generalized hyperbolic distribution by setting A = —v/2 and x = v, and letting ¢» — 0.
Similarly, this formulation of the multivariate skew-t distribution has a closed form under

affine transformation and conditioning, and the formation of marginal distributions, which is



useful for developing new methods presented later. Suppose that X is a p-dimensional ran-
dom vector having the multivariate skew-t distribution as in (12)), i.e., X ~ ST, (v, u, X, B).
Assume that X is partitioned as X = (XI,X])T, where X, takes values in R* and X, in
R% = RP™% | with

. 15 8 B > _ Y X 7
125 B Yo Yo
where X, p, and B have similar partitions. Furthermore, 311 is d; X d; and X5 is dy X ds.

Proposition 4. Affine transformation of the multivariate skew-t distribution. If X ~
STy(v,p,3,8) and Y = BX + b, where B € R**? and b € RP, then

Y ~ STy(v,Bu + b, BEBT, B3). (13)
Proof. The proof follows easily by substituting into Y = BX + b. O

Proposition 5. The marginal distribution of X is a multivariate skew-t distribution as
m with degree of freedom parameter v, location vector p,, dispersion matriz 311, and

skewness vector 3y, i.e., X1 ~ STy, (v, py, X711, 34)-

Proof. The proof follows easily by applying Proposition 4 and choosing B = [I;,,0] and
b = 0. The degree of freedom parameter v inherited from the mixing distribution W ~

IG(v/2,v/2) remains invariant under affine transformation and marginal distribution. [

Proposition 6. The conditional distribution of Xo given X1 = X1 is a generalized hyperbolic
distribution as in (6, i-e., Xo | x1 ~ GHa,(Aap1, Xaj1, Yap1, Mo, Bap, Bap ), where

Aopp = —(v+dy)/2, Xop = v+ (X1 — Hl)TEﬁl(Xl — ),
Yo = BB, Moy = Mo + EIQZIKXI — ),
3o = Xgp — 2{221_112127 ,32|1 =B, - EIQEIfﬂl'

The proof of Proposition 6 is similar to that for Proposition 3, hence is omitted. Similar

results for Proposition 4, 5, and 6 have been obtained in |Arellano-Valle and Genton| (2010)).



3 MGHD with Incomplete Data

Let Xy, ...,X, be p-dimensional random variables arising from a heterogeneous population
with G disjoint MGHD subpopulations. That is, each X; has the density

G
fMGHD(Xi \ @) = ZﬂngHD(Xi | )\ngg>u‘gazg7ﬁg)7 (14>

g=1

where 7, > 0, such that 290:1 7y = 1, are the mixing proportions, ® denotes the model
parameters, and foup (X | Ag, wy, p,, By, B,) is the GHD density defined in ).

To apply the MGHD model in the clustering paradigm, introduce z; = (21, .. ., 2iy)7,
where z;, = 1 if observation 7 is in component g and z;; = 0 otherwise. The corresponding
random variable Z; ~ M(1;mq,...,mg), i.e., Z; follows a multinomial distribution with one
trial and cell probabilities mq, ..., 7.

A three-level hierarchical representation of the MGHD model can be expressed by

Xi ’ Wig, Zig = 1~ N(Ng + wigﬁguwigzg)v
VVig |Zig:1NI<>\gun:17wg)a (15>
Zi~ M(L;my,...,7q).

The complete-data consist of the observed x; together with the missing group membership
2;ig and the latent w;y, fori =1,...,nand g = 1, ..., G, and the complete-data log-likelihood
is given by

n G
.(®) = ZZzig [log my + log ¢(x; | p, + wigBy, wigBy) + log h(wig | Ag,wy)] . (16)

i=1 g=1

Browne and McNicholas| (2015) present an EM algorithm for parameter estimation with
the MGHD when there is no missing data in x1,...,%X,. We are interested in parameter
estimation for the MGHD model when x4, ..., X, are partially observed with arbitrary
missing patterns. The missing data mechanism is assumed to be MAR. Assume now that we
split x; into two components, x7 and x}* that denote the observed and missing components
of x;, respectively. In general, each data vector x; may have a different pattern of missing

03T
(]

m;T
7

features, i.e., x; = (x;'T,x;T)T, but can be simplified for the sake of clarity.



o oT MT\T o o oT mTy 7 o
For each x; = (x;',x; '), partition the vector mean p, = (p,%, p,;)7, where pg ; and

Ky denote the sub-vectors of p, matching the observed and missing components of x;,

oT
9,8

00 om 00\—1 om\—1
29 — Eg,i Eg,i and 271 _ (Eg,i) (Eg,i> ’ (17>
Xgi i ? (ZgH) =g

respectively. Similarly, the skewness vector is 3, = ( ,B;Z-T )T and the covariance matrix

>, as

correspond to x; = (x;7,x;7)T. As a result, in addition to the observed x¢, the missing group
membership z;4, and the latent variable w;,, the complete-data also include the missing data
x;*. In the framework of the EM algorithm, the missing data x}" are considered to be random
variables that are updated in each iteration. Hence, the complete-data log-likelihood is

rewritten as

n G
lc(a) = Z Z Zig [ log 7Tg+ 1Og Qb(X(i), X;n | l‘l’g + wig/@ga wigzg) + log hI(wig | )‘ga wg)} :
i=1 g=1

Given ([15)), we establish the following:
e The marginal distribution of X? given is
G
X;,‘) ~ Z 7.‘-ngrHD,pr’ ()\97 Wy, u;,ia 23?7;7 ﬁ;i)a
g=1

where p? is the dimension corresponding to the observed component x7, which should

be exactly written as p;* but here is simplified.

e The conditional distribution of X" given x; and z;, = 1, according to Proposition 3,

1S
X0 | X, 2y = 1 GHy e (Nl ol il S0, 8310 (18)
where
woe =, - 2 X = (0 ) T(E) 8 — ),
P = Wy (BLT(EN) B, bl = (S0 T(R%) 7 (x0 — p),
TP = B (SemT(E0) 7R gr = g (Zm)T(£29) 762,
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e The conditional distribution of X" given x¢, w;,, and z;4 = 1 is
X3 x5, Wigs 2ig = 1~ N o1 (u;nz\o + wigﬁmlo wzgzmlo>~ (19)

gt

e The conditional distribution of W; given x3 and z;; = 1 is

(o] (0] 00\ — [e] 00 p?
Lﬂﬂxm%g=1~(HG<%+%Bmﬁﬁ%ﬂ ﬁW¢@+6<mum|zwx&—~—)-

2
(20)
After a little algebra, we get the complete data log-likelihood function is
1 L
ZZzzglogwg—l—ZZzlg [ = log 27?)—§logwlg §log|29 \}
=1 g=1 =1 g=1
n G o o o o o o m m
B lz Z tr E;lzig 1 (XI; - I‘l’in,i)(xi 0_ Ng,Z)T (X;_ Ngm,i)(xim_ Pfgm,i)T
2 i—1 g—1 Wig \ (X" — p’g,i)T<Xi - Ng,z‘) (x" — Hg,z')(xz‘ - Hg,z')T
1 n G ,60 '
DI I P ( Bi;’) (62— )T (- u‘;;-)T)) (21)
i=1 g=1 g5t
1 n G %O — u 1 n G
335 (s (1) (e ) - 35 sy,
i=1 g=1 ? g,? i=1 g=1

G

+ . Zzig [()\g — 1) logw;y — log(2K,(wy)) — % (wig + wtg)} :

On the kth iteration of the E-step, the expected value of the complete data log-likelihood
is computed given the observed data xJ,...,x? and the current parameter updates o
That is, we need to compute E(Z;, | x2; © k)) E(Wiy | X9, 215 = 1; %)) E(log Wi, | X9, 2y =
100, E(L/W, | x0.2, = 1,0%), EXP | x%,2, = Luw;OY), and E(XI(XP)T |
X0, 2ig = 1 wZ,G)(k)

First, let 2 z ) denote the a posteriori probability that i-th observation belongs to the g-th

component of the mixture, based on the observed data:

k) k k) ok
2(k) . ]E( | @ k)) 7Tg fGHDP (X )\( OJg ?u’g(z)72gz( )nag,(z))
gy = B(Zig | x; E B o) syool®) | golh)y
Zz 1775 fGHDpZ(X >sz v &g P )

g

11



Given , , and , we have the following expectations as to the latent variable W:

k”+&w4@@|zmw>
o(k)T oo(k)
§ 4 BTz el

o(k) oo(k) k o(k oo(k)\_1 go(k
Ko, (Ve +5<xz,ugi =+ e ) )

Ky g (el 40000 1550l + (80 ) 80

Ag

0y = B(Wyy | %5, 5y = 1;0%) =

g

X

’

k o
b = (1 Wiy | x¢, 259 = 1;00)

28 — pf w_é’“) : B yr(ze)- s, %
k o ..ok oo(k
wi) + 8 (xg, pol) |z )+ o(x Z,ugmz )

Koo, (el 5(X?,u§,(f) =+ D)D)
X 2
(Ve + 62 1 2Nl + 8z )

oo(k
+5( zhu‘g(z)‘z ())

gt

k k ook k
w§>+<ﬂg2>> (2001 go®)

aatlog{Kt (\/( P00k, ) | 2wl + (85 (k))( ) By ))}

Y

K 0
k p;
PV

C(k:) c— E(log I/I/ig | X?)zig = ]_’ @(k)) = log

g

(o)
7

= =Py

For convenience, we use the following notation analogous to Browne and McNicholas| (2015):

k no Ak) ~(k k) 7(k) (k (k _(k k (k) (K
ng : = Zz 1 Zz(g)7 Qg ) = - 1/”9 Zz 1 Zzg Eg b( - 1/ )Zz 1 zg)bzg ) and CE? ) = 1/”2 ) Zz 1 Zz(g)c( )
For the actual missing data X™, we will also need the following expectations:

~m(k m o m|o(k k) ~mlo(k
Xz‘g()': E(X? [ x7, 219 =1) = Ngl()Jr ()ﬁgl(),
= E((1/ W)X | X2, 259 = 1) = b p*® - gie®),
mwyym o mok k) mlo(k mlo(k
= E((1/W)XPX]T | 7, zig:n:z O 0l g ()

g,t

mlo(k m|o(k m|o(k) m|o(k k) pmlo(k mlo(k
+l‘l"()(/6| )) +IB\(( \()) +a§g)ﬁgi()(ﬁg@l())

On the k-th iteration of the M-step, the expected value of the complete data log-likelihood

12



is maximized to get the updates for the parameter estimates as follows:

k
(k+1) _ ng :
7Tg s
n

(k) (k) o
1 (ag 'bj, )X¢
(k+1) __ i
Hy =0 Z% ( (k) m(k) Amuc))?
Zz 1 zg ( )b ) i=1 ag Xig = — X
1 (B — pM)xe
By = Zzi ( () gm(k)  omih) |
Z? 1 zg ( )b ) i=1 ! bg ig  — Xig

n

1 A(B) (k1 _ _
(k+1) — Zzi(g)zl(g ) ( Ngkﬂ))B(kH)T ﬂ(k+1 ( ”;kﬂ)) aék)lc_l(glcﬂ)L,-),(kﬂ)T7

g C p (
9 i=1
where
. 1 P k+1) ( X
X9 =~ “ig ~m(k+1) | >
TLE] v =1 Xig
k o(k+1 o(k+1 ~0 ~m( k o
sy _ (06— w0 — g g Y — b
1 - ~1m k) k; A m k. 1 k 1 ,
! (& ® = b ) (x¢ — g™ T
and
m(k+1) _ Zm(k) ~m(k) ~m(k+1)T N m(k+1) k)T . m(k—i—l) m(k+1)
kig =Xig kg — My + b I’l’g T

(k+1)

Finally, the estimates of )\g 0+ and Wy are given as solutions to maximize the function

w

g(Ags wg) = —log (K, (wy)) + (Ag — 1)y — ig(ag + Bg)y

and the associated updates are

-1
9
k+1 =(k) y (k) K
AGHD) — £6) 3 () lgA(k)log<K)\gk)(w!(]))>] :

-1
0 0?

Wit = o — | g A, W) || 5 as (A W) |
Owyg Owy

The family of MGHD mixture models, with 14 parsimonious eigen-decomposed scaled
covariance matrices corresponding to the famous GPCM family of models is proposed (see

Appendix |A| for a brief discussion, including nomenclature). Details on the MST with

13



incomplete data are analogous to the MGHD with incomplete data and are provided in

Appendix D]

4 Notes on Implementation

4.1 Initial values

It is well known that the EM algorithm can be heavily dependent on the initial values;
indeed, good initial values of parameter estimates may speed up convergence. In this study,
the following procedure for automatically generating initial values is used, unless otherwise

specified.
e Fill in the missing values based on the mean imputation method.

e Perform k-means clustering and use the resulting clustering membership to initialize
the a posteriori probability 732-(3). Accordingly, the initial values for the model parame-

ters are then given by:

n (0 n (0 n (0 ~ ~
O >t Zi(g) - (0) > e Zz(g)xi &0) > e Zz‘(g)(xi - liéo))@(i - liéo))T
(0) — &i=1"19 — L=lmg T e
Ty N n A0 ' g n 2(0) .
> et Zig > im1 Zig

e Set the skewness parameter Béo) to be close to zero for symmetric data.

e When applicable, we set wéo) = 1 and )\go) = —1/2 for the index and concentration

parameters, which represents a special case of GHD (i.e., normal-inverse Gaussian)

distribution, or set véo) = 50 for the near-normality assumption.

To enhance the computational efficiency of the EM algorithm, we update the parameters
per missing pattern instead of per individual. We suggest rearranging X according to unique

patterns of the missing data. The procedure can be implemented as follows:

e Build a binary n by p indicator matrix R = [r;;], with each entry r;; = 1 if X;; is

missing and r;; = 0 otherwise;
e Find all unique missing patterns; and

e Update parameters per missing pattern instead of per individual.
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4.2 Model Selection and Stopping Criterion

In general, the number of mixture components G is not known a priori, and needs to be
estimated from the data. Two widely used model selection techniques are the Bayesian
information criterion (BIC; [Schwarz, 1978) and the integrated completed likelihood (ICL;
Biernacki et al., |2000), which are given respectively by

n G
BIC = 2I(x,0) — plog(n) and ICL~BIC+2) > MAP{%,}log(y),

i=1 g=1

A

where [(©) is the maximized log-likelihood evaluated at the maximum likelihood estimate
O, p is the number of free parameters, n is the number of observations, Z;, represents the
estimated a posteriori probability that x; arises from the gth component, and MAP denotes
the maximum a posteriori probability such that MAP {2;,} = 1 if max, {2;,} occurs in the
gth component and MAP {2,,} = 0 otherwise. The bigger the BIC or ICL value, the better
the fitted model.

The EM algorithm can be stopped iterations after the maximum number of iterations,
or when the Aitken stopping criterion (Aitken, [1926) is satisfied. The Aitken acceleration

at iteration k is
[(R41) _ (k)

O = 1 -1

where [(®) is the log-likelihood at iterations k. This yields an asymptotic estimate of the
log-likelihood at iteration k + 1:

1

(k+1) _ 7(k)
1 =19 4 —

(l(k‘+1) — l(k))

(Bohning et al., [1994; |Lindsay, [1995)), and the EM algorithm is stopped when (D ) < €,
provided this difference is positive (McNicholas et al., 2010).

5 Numerical Examples

Studies based on both simulated and real datasets are used to compare the clustering per-
formance of the proposed approach. Our proposed family of models for incomplete data is

compared to multivariate ¢ mixture with ML estimation in the presence of missing values
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(Mt). BIC is used to select the model; models with higher values of BIC are preferable.
The adjusted Rand index (ARI; Hubert and Arabie, [1985) is used to compare predicted
classifications to true classes when applicable. The Rand index (Rand, 1971) is the ratio
of pairwise agreements to total pairs, and the ARI corrects the Rand index to account for
chance agreement. The ARI has expected value 0 under random classification and takes
the value 1 for perfect class agreement. A detailed discussion of the ARI, and arguments in

favour of its use, are given by Steinley| (2004)).

5.1 Simulation Studies

The simulated datasets are each two-component mixtures: a mixture of Gaussian distribu-
tions (GMM) with a general VEE covariance structure, a mixture of skew-t distributions
(MST) with a diagonal VEI covariance structure, and a mixture of generalized hyperbolic
distributions (MGHD) with a general VEE covariance structure. The GMM datasets are
generated via the R function rmvnorm from the mvtnorm package for R, and the MST and
MGHD datasets are generated using R code based on the stochastic representations in ((11))
and (), respectively.

For each mixture component, n, = 200 two-dimensional vectors x; are generated. The
presumed parameters of 3, (¢ = 1,2) for the VEE and VEI models are the same as those
considered in |Celeux and Govaert| (1995) and |Lin| (2014]). Each mixture component is centred
on a different point giving well-separated and overlapping mixtures. Where applicable, the
skewness parameters are 3, = (1,1)T and B, = (=1, —1)T, the degrees of freedoms for the
MST is v; = 7 and vy = 5, and the values of other parameters for the MGHD are w; = wy, =6
and \; = —1/2 and Ay = 1.

The datasets considered in the simulation studies are summarized in Table[I]|and examples
are plotted in Figure [ The datasets are overlapping, making this a relatively difficult
clustering scenario even when the datasets are complete.

Artificial missing datasets are simulated by removing n x r elements from each column
of the simulated samples through two different MAR patterns and the MCAR mechanism
under three missing rates — r = 0.05 (low), » = 0.15 (moderate), and r = 0.3 (high) —
while maintaining the condition that each observation has at least one observed attribute.
For the MAR mechanism, data points in the first column are sorted in descending order.

Column 2 is then divided into four equal blocks and, for each block, a specified number of
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Table 1: Summary of simulated datasets.

Dataset Distribution Covariance structure (X,) Separation between components

Sim1 MGHD VEE Well-separated
Sim?2 MGHD VEE Overlapping
Sim3 MST VEI Well-separated
Sim4 MST VEI Overlapping
Simb GMM VEE Well-separated
Sim6 GMM VEE Overlapping
Sim1 Sim2
¥ o | a° AA;‘A
Sim4
9 4 2
Sims Simé
< o . N mh L b
etap fasgpe % o
o ot ™ nf" ORI
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Figure 1: Exemplar scatter plots for simulated datasets, where colour and plotting symbol
represent true labels (component membership).
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elements (see Table [2)) are removed at random. When p = 1, the second column is used.

Table 2: Number of missing observations for each pattern.

T Pattern 1 Pattern 2
5% (10,3,6,1) (1,6,3,10)
15% (30,9,18,3) (3,18,9,30)
30% (60,18,36,6) (6,36,18,60)

First, we examine the ability of our proposed model to recover underlying parameters
when the number of components and the covariance structure are correctly specified. These
experiments comprise 100 replications per combination of missing pattern and missingness
rate. The means of the parameter estimates with their associated standard deviations and
bias are summarized in Table 8§ and |§] (Appendix. The means of most parameter estimates
are close to the true values with small standard deviations when » = 0.05. The standard
deviations increase as the missing rate increases, while at the same time, the average ARI
slightly decreases. The means of estimated A; and \; in Sim1l are quite far from the true
value because we obtain those estimates using an approximation to the Bessel function. In
addition, there is no significant difference among the three missing patterns. Therefore, we
use MCAR in the rest of the data examples.

As another illustration, we explore the flexibility of the MGHD model for incomplete data
and study the performance of the BIC for model selection. As mentioned in the introduction,
the GHD is a flexible distribution with skewness, concentration, and index parameters. We
compute the average ARI for the parsimonious MGHD and MST models introduced here as
well as Mt under the circumstances of unknown clusters (G = 1,...,4). The detailed results

are summarized in Table [10] (Appendix [E]). From Table [10] we observe the following:

e The average ARI decreases as the missing rate rises. As expected, overlapping compo-
nents typically have lower ARI than the well-separated components. In addition, the
average ARI considerably decreases when the missing rate reaches 30% (r = 0.30) for
Sim2, Sim4 and Sim6.

e Our proposed parsimonious MGHD models for incomplete data perform significantly
better than Mt¢. The family of MGHD models generally yields much higher ARI than
its competitor parsimonious MST for incomplete data when the datasets are generated

from a generalized hyperbolic distribution.
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e The BIC always finds the true number of clusters when using the MGHD for incomplete
data, but tends to overestimate the number of clusters when using the MST or Mt for

incomplete data for datasets with overlapping mixtures.

e The BIC prefers MGHD over Mt in Simb and Sim6 where the data is generated from
GMMs. We find that the samples are not necessarily symmetric, particularly with
missing values. Figure [2| and [3] show exemplar scatter plots for data from Sim5 and
Sim6 for » = 0.10. The Mt tends to overestimate the number of clusters, hence, has a

lower averaged BIC.

Y.miss[,2]
0
|
Y.miss[,2]
0

Y.miss[,1] Y.miss[,1]

Figure 2: Exemplar scatter plots for Simb, with true labels (left) and clustering results
from the best Mt models (right), where colour and plotting symbol represent true (left) or
predicted (right) class.
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Y.miss[,2]

Y.miss[,1]

Y.miss[,2]

Y.miss[,1]

Figure 3: Exemplar scatter plots for Sim6, with true labels (left) and clustering results
from the best M¢ models (right), where colour and plotting symbol represent true (left) or

predicted (right) class.

5.2 Breast Cancer Diagnostic Dataset

The breast cancer diagnostic data consists of ten real-valued features on 569 cases of breast

tumours — 357 benign and 212 malignant. The mean, standard error, and “worst” or largest

of these features were computed for each image, resulting in 30 attributes. This dataset is

complete, so for illustration purposes we consider levels of missing data r = 0.05 and r = 0.15

by deleting observations through an MCAR mechanism while maintaining the condition that

each observation has at least one observed attribute. The dataset is scaled prior to analysis.
The family of MGHD, MST and Mt models were fitted to these data for G = 1,...,4.
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We randomly assign each observation to one of the G groups and start with 20 random
initializations of the algorithm, selecting the model with the maximum likelihood values.
The key statistics of the best models for MGHD, MST and Mt are shown in Table |3l The
results of this analysis show that the parsimonious MGHD outperforms the other models for

all levels of missing data.

Table 3: A comparison of averaged BIC, ARI and the number of times (nt) when G = 2 is
chosen among MGHD, MST, and Mt models on the tumour dataset with G =1, ..., 4.

r=0.05 r=0.15
Avg.BIC Avg. ARI nt Avg.BIC Avg.ARI nt
MGHD 12145 0.65 18 9654 0.58 16
MST 12661 0.55 15 10574 0.56 16
Mt 13605 0.47 10 11605 0.36 10

5.3 Pima Indians Diabetes Data

Data on the diabetes status of 768 patients is obtained from the UCI Machine Learning
data repository. The data include information on eight attributes, in which the attribute
of number of times pregnant is treated as continuous variable because its range is from
0 to 14. These data are a popular benchmark dataset for clustering for truly missing values,
as 376 of the observations have at least one attribute missing. The data are overlapping
and the numerous missing observations make clustering difficult. The detailed description
of the attributes and their associated missing rates are summarized in Table[d] The dataset
features 268 patients with a diabetes diagnosis and 500 without, and these are treated as
two clusters. Again, this dataset is scaled prior to the analysis.

Because there are two known clusters, we fix G = 2 and compare the BIC and ICL values
for 14 covariance structures of our proposed parsimonious MGHD and MST models. The
clustering results are summarized in Table [5 [Linl (2014) perform the Mt and matches the
true cluster labels with 66.7% accuracy. Compared to |Lin| (2014]), our proposed parsimonious
MGHD model for incomplete data gives a higher accuracy rate (69.11%). The best model is
the two-component MGHD model and 3,=EVE. Group 1 consists mainly of the non-diabetic
patients and Group 2 consists mainly of the diabetic patients. We then fit the best model
with 100 random initializations; Table [6] shows the key parameter estimates for this model

as well as the corresponding standard errors. The standard errors of the model parameters
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Table 4: A description of Pima Indian diabetes dataset.

No. missing values Sample mean Sample std. dev.

Number of times pregnant 0 3.85 3.37
Plasma glucose concentration ) 120.89 31.97
Diastolic blood pressure (mm Hg) 35 69.11 19.36
Triceps skin fold thickness (mm) 227 20.54 15.95
2-hour serum insulin(mu U/mL) 374 79.80 115.24
Body mass index 11 31.99 7.88
Diabetes pedigree function 0 0.47 0.33
Age (years) 0 33.24 11.76

Table 5: The BIC, ICL, selected 3, and the correct classification rate for our proposed
approaches for clustering on the Pima Indian diabetes dataset.

3, BIC ICL Accuracy
MGHD EVE —14016.95 —14053.61 69.11%
MST VVI —14109.1 —14186.1 62.37%

have been calculated using the bootstrap method described in [Efron and Tibshirani (1986).
The estimates for p, + B3, are quite similar to the parameter estimates presented in Wang
and Lin| (2015). The estimates for the skewness parameters indicate the presence of skewness

in most of the variables.

6 Discussion

Approaches for clustering incomplete data where clusters may be heavy tailed and /or asym-
metric is introduced, based on MGHD and MST. There approaches were further extended to
parsimonious families of MGHD and MST models via eigen-decomposition of the component
scale matrices. The BIC and ICL were used for model selection. It is well known that the
BIC can tend to overestimate the number of clusters in practice; however, the results pre-
sented herein show that this overestimation can sometimes be mitigated via a more flexible
component density such as the MGHD. An EM algorithm was developed to fit the MGHD
and MST models to incomplete data, and later implemented in R. It is worth mentioning
that our approaches are also applicable in situations with no missing data; and so we have
MGHD and MST analogues of the models of |Celeux and Govaert| (1995). Our MGHD and

MST models were applied to real and simulated heterogeneous datasets for clustering in the
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Table 6: Summary of key model parameter estimates (standard errors) for the best chosen
model (i.e., MGHD with ¥, = EVE) for the Pima Indian diabetes dataset.

Parameter

Hig —0.80 ( ) 2.98 ( )
Hag —0.97 (0.22) 1.35 (4.01)
H3g —0.69 (0.14) 1.10 (2.65)
flag 0.15 (0.08) —0.50 (4.59)
g —1.26 (1.73) 0.18 (0.25)
Heg —0.66 (0.07) 0.57 (0.78)
g —0.74 (0.12) —2.67 (8.41)
Hsg —1.20 (0.31) —2.01 (2.04)
Big 0.57 (0.05) —2.18 (1.79)
Bag 0.77 (0.47) —0.92 (0.25)
Bag 0.54 (0.40) —0.78 (1.18)
Bag 0.53 (0.31) 0.58 (0.38)
Bsq 0.11 (0.13) 0.11 (0.32)
Begq 0.57 (0.16) —0.37 (0.51)
B4 0.63 (0.18) 1.27 (0.46)
Bsg 0.87 (0.16) 2.91 (1.85)
Wy 2.39 (1.81) 14.18 (6.83)
Ag 0.02 (0.34) —3.18 (4.60)
T 0.71 (0.09) 0.29 (0.10)
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presence of missing values, and the PMGHD family performed favourably when compared
to the PMST family as well as the MGHD and MST approaches with mean imputation.

In the present work, the missing data mechanism is assumed to be MAR. Future work
will focus on a departure from this assumption. As a starting point, the behaviour of param-
eter estimates for models considered herein when we depart from the MAR assumption will
be studied. Although we demonstrated the PMGHD and PMST approaches for clustering,
they also can be applied for semi-supervised classification, discriminant analysis, and density
estimation; furthermore, they could be used within the fractionally-supervised paradigm (Vr-
bik and McNicholas, [2015). Furthermore, Bayesian analysis via a Gibbs sampler is another
popular approach to handle missing data in multivariate datasets (e.g., Lin et al., 2009)),
so a fully Bayesian treatment will be considered as an alternative to the EM algorithm for
parameter estimation. Finally, it will also be interesting to generalize all existing approaches
to developing mixture of generalized hyperbolic factor analyzer models (Tortora et al., 2016,
mixtures with hypercube contours (Franczak et al.l 2015)), and mixtures of multiple scaled

generalized hyperbolic distributions for incomplete data (Tortora et al., [2017)).
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A GPCM Family

Banfield and Raftery| (1993) consider an eigen-decomposition of the component scale matrices

(which is equivalent to the component covariance matrices for Gaussian mixtures), i.e.,

2y = )‘gFgAgI‘lga (22)
where \; = ]Eg|1/ P T, is the matrix of eigenvectors of X,, and A, is a diagonal matrix, such
that |Ay| = 1, containing the normalized eigenvalues of 3, in decreasing order. Note that the

columns of I’y are ordered to correspond to the elements of A . As Banfield and Raftery| (1993)
point out, the constituent elements of the decomposition in can be viewed in the context of
the geometry of the component, where A, represents the volume in p-space, A, the shape, and Iy
the orientation. By imposing constraints on the elements of the decomposed covariance structure
in (22)), |Celeux and Govaert| (1995)) introduce a family of GPCMs (Table [7)).

Table 7: The nomenclature and scale matrix structure for each member of the GPCM family.

Nomenclature Volume Shape Orientation pIP
EIT Equal Spherical AL
VII Variable Spherical b |
EEI Equal Equal Axis-Aligned AA
VEI Variable Equal Axis-Aligned AgA
EVI Equal Variable Axis-Aligned AA,
VVI Variable Variable Axis-Aligned Mg
EEE Equal Equal Equal ALATY
VEE Variable Equal Equal A TATY
EVE Equal Variable Equal ALA,TY
EEV Equal Equal Variable )\I‘gAI‘;
VVE Variable Variable Equal ATATY
VEV Variable Equal Variable AT AT
EVV Equal Variable Variable AT, AT
VVV Variable Variable Variable ATy AT

B Some Useful Matrix Computations

We here present some useful matrix computation results that are employed in the derivation of the
conditional pdf of a partitioned generalized hyperbolic and multivariate skew-t random vector X

in Propositions 3 and 6.
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Consider a partitioned random vector X of p-dimension that follows the pdf as in @ with

X My B X1 X
X — _ _ 5= (23
I () I ) B RS I

where X; and Xy have dimensions d; and dys = p — di, respectively. The mean, skewness and
dispersion matrix are composed of blocks of appropriate dimensions as partitions of X. Sometimes,

.. . . . . . . -1
it is more convenient to work with the inverse of dispersion matrix 3™ :

st _ (311 — 1235, B,) —311212(r — B3 D) (24)
—(B2 = X[, 30 Xo) BB (322 — 2,3, )
Furthermore, we have for the determinant of 3:
det(E) = det(ZH)det(Egg — 2{22I11212). (25)

C Outline of Proof of Proposition 3

Here, we derive the conditional density of Xy given that X; = x; if X; and X5 are jointly gen-
eralized hyperbolic distributed, i.e., X ~ GHD,(\,w, u, X, 3) with the partition in Appendix A.
Although basic probability theory indicates that the conditional pdf is a ratio of the joint and
marginal pdfs, the expression takes a very complicated form. The results from Appendix A are
heavily used in the course of the derivations. The conditional density is given by

Fxalx, (2 | x1) = JW

'S B (2m)P/2| B2 Ky W)exp{ (-1 B}

|:w+5(X1,N1|211):| g Lee d1/2(\/(‘”+5(x17“1‘211 W+/61211,6 )
w+/8-{21_11161 (2m)41/2| 2011 [1/2 Ky (w)exp{—(x1— ;) Tzn B}

|:w+5xp,|2 ] t K- p/z \/<w+6(x7u|2 (wﬁTE*l,@))
A—

where we combine @ and Proposition 2. For the moment, we focus on the linear form and quadratic
form in which x enters the pdf in @D Inserting the partition of X, u, 3, and 3 in and the
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inverse of dispersion matrix X" into the quadratic form yields

S, | B) = (x —p)TE  (x — p) = ((Xl — )T (x2 - Hz)T> DR (Xl : M1>

X2 = Mo
= (x1 = )T (B11 = Z12Z X)) (x5 — pq)
— (x2 = 1) T(B22 — BN Ti2) By (k1 — )
— (%1 — ) TE D12(Bae — B2 210) (%2 — o)
+ (x2 = 1) (B0 — B 11 Bi2)  (x2 — po)
= (x1 — Ih)TEﬁl(Xl - 1)
+(x1 = p) T2 B12(B2e — 2L D) BLE (x1 - p)
Xy — po)T(Bog — 2,211 Zi2) BB (x1 — py)
X1 — p1) T8 B1a(Boo — DL Bi2) 7 (x2 — p)
+ (%2 = p19)T (B2 — B 211 B12)  (x2 — po)
= (x1— 1) 217 (x1 — pq)
+ (%2 = pp — BB (x1 — 1)) (Be — B Bia) (%2 — po — B0y (x5 — 1))
= 6(x1, py | B11) + 0(x2, poy1 | apn), (26)

(
= (
=
(

where oy = pg + 220 (x1 — py) and Yo = (B2 — 2L En)

Similarly, inserting into the linear form, following the same algebra as above, yields

(== B = ((x1 = )T (2= aa)T) B (Z)

= (x1 — /Jfl)TEl_ll:Bl + (x2 — pg — 21221_11(1&1 — )T (B2 — 2122511212)_1([32 - 212251151)
= (x1 = p)TE By + (%2 — M2|1)T25|11:62\1a (27)

where py); and Xy are as described above, and By, = B, — 21,316

Furthermore, we investigate the term 37X '3, we obtain

1 -1 Bl
Ts1g_ (g7 BT\ %
g'="s= (6] 5}) ( 52)
= BIZ1181 + (B2 — ZL,X1181) (B2 — ZLE11Z12) (B2 — 2[,31181)
=B 6; + ﬁ;|122|1,32\1- (28)

Finally, we substitute , , , and , and p = dy + ds into the conditional density,
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and after some simple linear algebra, we obtain

A A—dy/2

w01,y [ 211) +3(x2, gy [ X)) ’ B2, 8, ] °
w+16121_11161+16;|122|152\1 w+6(x1,u1|211)

d
(2m) F B — B, 5] Do 2
K}\_%_%Q <\/(w +6(x1, g | B11) + 6(xa, poyy | Bopn))(w + B 1181 + ,3;|122|152\1))

Ky ay (o 0aa o [0+ BIBi18) ) exp—(xa = ) Z5 )

fxox, (X2 | x1) =

X

Set Aojp = A — &, Xop = w + 8(x1, 11 | B11), and ¥y = w + B]X1] By, then we obtain

do
Aoj1— 3
2

Xoj1 + 6(X2, ot | Eop1)
Va1 +5;‘122\1ﬁ2|1

|1

y (%) 2 K>‘2|1—d2 <\/(¢2|1 + 5;|122|152|1)(X2|1 + 6(x2, o | 22\1))) |

fx2\X1(X2 \ X1) =

2

dg 1 _
(2m) |22\1|2KA2|1(\/X2|1¢2|1)9Xp(—(x2 - H2|1)T22|1152|1)

Comparison with @ reveals that this is a generalized hyperbolic distribution in the parame-
terization of [McNeil et al.| (2005]) with

dq _
Agjp = A — 5 Xopt = w4 (x1— py) T8 (%1 — py),
top = w + BIE], B, Mo = po + EhLE0 (%1 — ),
232|1 =Yg — Ebzﬁlzl% /32|1 = 52 - 212251151-

D MST with Incomplete Data

Analogous to the MGHD model , the MST model takes the density

G
FusT(Xi | ©) = mo for (X | vg, g, g, B,), (29)

g=1
where © = (7, vy, pgy, Xy, B,) with vy = (v1,...,vy) and 7, pg, Xy, and B, are as defined above.
By introducing the group membership variables Z; ~ M(1;7,...,mg), convenient three-layer
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hierarchical representations are given by

Xi | wig, zig = 1~ N (g + wigBy, wigBg)
Wig | zig = 1 ~1G(vg/2,v4/2). (30)
Zi ~ M(L;my,...,7q)

Assume that the matrix X = (X°T,X™T)T contains missing data. For each x; = (x;7,x;"T

)7, we
write p, = (,ugz, K. o, By = (,Bg l,ﬁgj)T, and finally the gth dispersion matrix X, is partitioned

as in . Hence, based on , we have the following conditional distributions:
e The marginal distribution of X? is

G

X3~ Z”ngT,pf (Ags Wgs g i X935 Bg.i)
g=1

where pf is the dimension corresponding to the observed component x7, which should be

exactly written as p;* but here is simplified.

e The conditional distribution of X" given x? and z;, = 1, according to Proposition 6, is

X;n | X'(i)a Zig = L~ GHp*p? ()‘I;?loa leoaw;nz‘oa 211'07 I;llonam‘o) (31)
where
Vg + DY _
o = -2 Ul = g O — )T (3597 (8 — 1),
G = ByT(Z) By Mt = ks + (ST (20%) (¢ — pg ),
I = pmm_(geamT(5e0) ' mon g = g, — (30)T(299) 163,
e The conditional distribution of X" given x?, w;q, and z;; = 1 is
Xt | %7, wig, zig = 1~ Np_pe (uw| —I—wlgﬁgl ,wlgzmb). (32)

e The conditional distribution of Wj; given x? and z;; = 1 is

o 00\ — v +p§)
Wig ’ Xy Rig = 1~ GIG (ﬁz;(zg,z) ngg + 5( za”’gz ‘ Z ) _92> . (33>

As in the case of the MGHD model with incomplete data, the complete data consists of the
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observed x;, the missing group membership z;,, the latent w;y, as well as the actual missing data

xi*, fori=1,...,nand g =1,...,G. Again, the complete data log-likelihood function is given by

n

(@) = Z Zzig [log Ty + log o(x7, %" | g+ wig:ggv wigXg) + log fia(wig | U9/27”9/2)] . (34)
i=1 g=1

Furthermore, one can simplify to

ZZ% log 7y + ZZng {— log(27m) — = longg %log ’2;@

zlgl i=1 g=1

(xF = b ) (7 = pg )T (%7 = g ) (X" — )T
Zzt ( < in _ ml)T( o o ) 1Zrn m ))

i
W) = pg)T

i—1 g=1 (%" = pg)T(x? = g ) (" = py
Iy S -1 ’Bgvi o o NT m m\T
T 522“ g zig | o ((Xz = Hg )T (X" — gy ) (35)
=1 g=1 g,t
n G o
Dt (z( Z
=1 g=1 l'l’g,z i=1 g=1

On the kth iteration of the E-step, the expected value of the complete-data log-likelihood is
computed given the observed data X° and the current parameter updates ©®). Denote by T(k)
the a posteriori probability that the ith observation belongs to the gth component of the mixture.
Specifically, it can be calculated as

k k (k k)
7rg fSTp (Xz7v5(] )7l~‘l‘g(7,)7 20@ )7160( )

k ook
Zz 1771 fST,p (Xz’vl( )7“15) )’/@u )

D) E(Zig | x7 @(k))

g

Given the observed data x°, the current parameter updates O™ and conditional distributions
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and , taking expectations for leads to the following expectation updates in the E-step:

( ) +6(x NHZ(Z“ | Zoo(k))
ﬁ;(f) (Eoo(k:) 1[62(119
oo(k) o(k oo(k)\_1 po(k
Koz (V07 000 150 ”@g,f Na0))

X )

Ky (08T 5 00 T2 o) ) )
B® = B(1/W;, | X, 2y = 1;0W)

ig
o(k oo(k) 0
B (k) + pl . I@g(z )T(E ( ) 1Bg(zk
o (k) 5 2 ( ) 5 o(k) 2
+ ( Xis I“l‘g i ‘ ) + ( X M’g % ’ ,i )

k o
Az(g) = E(Wig ‘ X;, 2ig = 1 (")(k)) = J

k oo(k) o(k oo(k)\_1 qo(k
K_ (04021 (W 0+ 30t g | Zoet) (B T (S ) lﬁg,(i))>
>< )

k) (k k)T
Ky cgys (V0 80,0 12582080

(k)+6( Z7ﬂgz)| OO(kJ)
k 00 (k
I@gfi)T( )) lﬁgl
0 o
+ e s (Vo 4 st =T a) ) |
)A(m(k‘) E(Xm | X  Zig = 1) — “m|o(k) 4 A(k)ﬂm\o(k)’

zg K

= E((1/W:)X® | X9, 215 = 1) = B o™ 4 ginie®),

= B((1/w) XPXMT | X9, 259 = 1) = Em|0( ) 4+ Bfg)uﬂ(’( )(M;ﬂlo(k))T

+ me‘ o(k )(ﬂm\o(k )T _|_13m\0(k (ﬂmlo(k))T + A(k)ﬁm‘ o(k )(,Bm‘p(k))T.

g,? g, )t g,

CZ-(:) i=E(log Wiy | X2, 21 = 1; %)) = log (J

t=— (v 4p2 )2

For convenience, let nék) => &) A(k =1/ng (k) Z" rMA® B _g = l/n(gk) S ® gk

- zlzg’ zlzg ig =1 "ig ig
and Cék) = 1/n§k> S 7™ On the kth iteration of the M- step, we get updates for the

'leg ig
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parameter estimates of the mixture as follows:

k+1) _ 1
=
(k+1) _ .
Hg ZZL . Al(:) (A(k)B(k) g Ti (A(k ) . )A(?;(k) )
n (k) (k)yy0
1 B - B,
By = n 2R 70 k) _ Z ( m(k) ~)m(k)> ’
Z’L 1 'Lg (A B =1 29 _Xig
2§k+1) k) Z ~ (k) 5 k+1 e _ “gkﬂ))ﬁ!(]kﬂn B 6(k+1)( 'uékJrl)) + Aék+1)6§k+1)18£(]k+1)-|-7
where
_ 1 oy [ X9
X9 = 1) ZTig cm(k+1) | 2
Ng =1 Xig
2(k+1) . ( BZ(;JFI)(X? _ Hg(lk+1))(xg _ Hg7(I€+1)) (XE’ _ ﬂg(kJrl))(f(?gl(kJrl) - B§§+1)ﬂ;n(k+l))-r>
; - ~m(k k+1) Am k+1 m(k+1 ’
(ng( +1) B( +1) )( ug(z'i' )) kig( +1)
where
kg(k—i—l) §n;(k:+1) _f(?;(k)ﬂr;(k—i-l)T l’l’g m(k+1) & ()T+B(k) (k+1)Am(k+1)

Finally, as for the degree of freedom parameter v,, the update does not exist in closed form.

The update vékﬂ) is the solution of

oD D)
log 92 +1-9p g an )):O, (36)

where ¢(-) is the digamma function.

E Results from Simulation Studies

The results from the simulation studies are summarized in Tables[§] [9] and
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Table 10: A comparsion of average BIC and ARI between MGHD, MST, and Mt models
(replications=100) with G =1,...,4.

MGHD MST Mt

BIC ARI BIC ARI BIC ARI

r = 0.05 —1534 0.95 —1644 0.88 —1663 0.75

Sim1 r =0.15 —1412 0.87 —1517 0.82 —1559 0.69
r = 0.30 —1230 0.74 —1301 0.69 —1396 0.60

r = 0.05 —1647 0.73 —1683 0.64 —1823 0.59

Sim?2 r =0.15 —1435 0.62 —1538 0.52 —1677 0.48
r = 0.30 —1201 0.46 —1266 0.36 —1463 0.36

r = 0.05 —1667 0.82 —1689 0.76 —1789 0.64

Sim3 r =0.15 —1517 0.76 —1502 0.66 —1622 0.63
r = 0.30 —1203 0.70 —1264 0.60 —1410 0.48

r = 0.05 —1546 0.72 —1608 0.41 —1849 0.33

Sim4 r =0.15 —1333 0.60 —1440 0.37 —1727 0.27
r = 0.30 —1142 0.12 —1171 0.23 —1385 0.20

r = 0.05 —1507 0.94 —1613 0.74 —1619 0.88

Simb r=20.15 —1366 0.85 —1507 0.66 —1450 0.78
r = 0.30 —1193 0.71 —1340 0.59 —1247 0.64

r =0.05 —1356 0.68 —1445 0.40 —1614 0.38

Sim6 r =0.15 —1262 0.58 —1389 0.38 —1522 0.35
r = 0.30 —1130 0.40 —1263 0.28 —1385 0.29
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