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Abstract

Occupancy models involve both the probability a site is occupied and the

probability occupancy is detected. The homogeneous occupancy model,

where the occupancy and detection probabilities are the same at each site,

admits an orthogonal parameter transformation that yields a two-stage pro-

cess to calculate the maximum likelihood estimates so that it is not necessary

to simultaneously estimate the occupancy and detection probabilities. The

two-stage approach is examined here for the heterogeneous occupancy model

where the occupancy and detection probabilities now depend on covariates

that may vary between sites and over time. There is no longer an orthogonal

transformation but this approach effectively reduces the parameter space and

allows fuller use of the R functionality. This permits use of existing vector

generalised linear models methods to fit models for detection and allows the

development of an iterative weighted least squares approach to fit models

for occupancy. Efficiency is examined in a simulation study and the full
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maximum likelihood and two-stage approaches are compared on several data

sets.1

Keywords: Imperfect detection, Occupancy models, Covariates,

Conditional likelihood.

1. Introduction

Occupancy models were introduced in MacKenzie et al. (2002). They

model the probability a site is occupied and the probability that occupancy

is detected. We assume here that occupancy of a site is permanent over the

observation period. Data are collected over repeated visits to a number of

sites and consist of observations on whether occupancy is detected. It is

common that both the occupancy and detection probabilities are modelled

in terms of covariates, which can be time varying. Occupancy is related to

time independent site covariates and detection can be related to both these

site covariates and the time varying covariates. Thus modelling detection

can be more complex than modelling occupancy.

Occupancy models are currently fitted to data using the full likelihood

where the parameters associated with occupancy and detection are simul-

taneously estimated. The likelihood may be maximised numerically using

the R Development Core Team (2018) package unmarked (Fiske and Chan-

dler, 2015) for example. We have observed that the full likelihood can be

numerically unstable. This is distinct from boundary solutions that occur in

occupancy models, as noted in Wintle et al. (2004); Guillera-Arroita et al.

(2010); Karavarsamis et al. (2013); Hutchinson et al. (2015b). Without con-

1Software appears as annexes in the electronic version of this manuscript.
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straints, the full likelihood may not converge, may give local maxima, or give

estimates beyond the boundaries of the parameter space. Using the common

logit transformation can still give estimated probabilities that are effectively

zero or one. We examine this in simulations in Section 4 where it is seen that

maximum likelihood can give extreme estimates of occupancy parameters

when the two-stage approach does not.

Bayesian methods have been developed to estimate occupancy and de-

tectability, for example Milne et al. (1989); Lunn et al. (2000); Wintle et al.

(2003); MacKenzie et al. (2006); Gimenez et al. (2007); Royle and Dorazio

(2008); Gimenez et al. (2009); MacKenzie et al. (2009); Fiske and Chan-

dler (2011); Martin et al. (2011); Aing et al. (2011); Hui et al. (2011). An

empirical Bayes method is known but this can underestimate the variance

of the posterior distribution (Royle and Dorazio, 2008; Fiske and Chandler,

2011). Penalized likelihood methods for occupancy have also been developed

to help overcome the numerical instability of the maximum likelihood estima-

tors (Moreno and Lele, 2010; Hutchinson et al., 2015b). These may be fitted

using the occuPEN and occuPEN CV functions in unmarked package. In our

two-stage approach we address potential instability by considering detection

and occupancy separately. This allows us to compute the estimates over two

lower dimension parameter spaces. Moreover, the more complex modelling

of the effect of time dependent covariates on the detection probabilities is

relatively straightforward in the two-stage approach.

To help stabilise the numerical optimization algorithm the package unmarked
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(see p. 2 of the R vignette Fiske and Chandler (2015)2) recommends that co-

variates be standardized. However, as observed in the documentation for

the unmarked package, standardizing may cause problems with standard R

functions, such as predict. The smartpred package may solve some issues

but not in all instances of data dependent parameters. Moreover, there is no

guarantee that users will standardise their data. In addition, the choice of

algorithm for the numerical maximisation may be changed in optim, however

this may be sensitive to the algorithm used.

Recently Karavarsamis and Huggins (2017) showed that for the homo-

geneous occupancy model a simple transformation yielded orthogonal pa-

rameters resulting in a two-stage estimation procedure that simplified the

computation of the estimates. We see in Section 3 that this no longer holds

for heterogeneous models. Following the homogeneous case, a conditional

likelihood is used to estimate detection probabilities which is the first stage

of the analysis. This may be implemented using the vglm function in the

VGAM package in R (Yee, 2010, 2015; Yee et al., 2015). In the second stage,

the remaining partial likelihood, evaluated at the estimated detection prob-

abilities from the first stage, is used to estimate the occupancy probabilities.

This effectively reduces the parameter space and allows the use of vector

generalized linear model methods to fit models for detection. The partial

likelihood for occupancy may be maximised using several numerical meth-

ods, here we implement this using an iterative weighted least squares (IWLS)

approach.

2cran.at.r-project.org/web/packages/unmarked/vignettes/unmarked.pdf
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Our notation is given and the full likelihood is examined in Section 2. In

Section 3 we describe the two-stage approach. In the first stage in Section

3.1 we use conditional likelihood to estimate the detection probabilities, with

time independent detection probabilities discussed in Section 3.1.1 and time

dependent detection probabilities considered in Section 3.1.2. In the second

stage in Section 3.2 we introduce a partial likelihood approach to estimate

the occupancy probabilities using the detection probabilities estimated in

the first stage. In Section 3.2.1 we give an IWLS algorithm to compute the

occupancy estimates. A simulation study is conducted in Section 4 and the

methods are applied to several data sets in Section 5. Some discussion is

given in Section 6. Some technical derivations and the implementation of

vglm in this setting are given in the appendices.

2. Notation and Full Likelihood

Consider S sites labelled s = 1, . . . , S and τ occasions at each site where

the presence of a species may be observed. We suppose that occupancy is

constant over the observation period. Let ψs be the probability that site s is

occupied and psj be the probability the species is observed at site s on visit

j given it is present at site s. Then θs = 1−
∏τ

j=1(1− psj) is the probability

of at least one detection at site s given the site is occupied. If there is no

dependence on the visit then psj = ps and θs = 1 − (1 − ps)τ . Let Ysj take

the value 1 if an individual was detected at site s on occasion j and zero

otherwise. Let Ys =
∑τ

j=1 ysj denote the number of occasions upon which

the species was detected at site s. We let Zs = I(ys = 0) be the indicator

of no detections at site s. Reorder the S sites s = 1, . . . , O,O + 1, . . . S,
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where 1, . . . , O denote the sites at which at least one detection occurred and

O + 1, . . . S the remainder sites at which no sightings occurred.

It is common for covariates that may be related to detection or occupancy

to be associated with each site. Suppose that ψs = h(xTsα) where xs is a vec-

tor of covariates associated with site s and α ∈ Rp is a vector of coefficients.

Let psj be the probability of detection at site s on occasion j if site s is oc-

cupied. We take psj = h(uTsjβ) where usj is a vector of covariates associated

with site s on occasion j, and let θs = 1 −
∏τ

j=1(1 − psj), for site and time

dependent detection. For time independent detection probabilities, we write

psj = ps = p(us,β) = h(uTs β), j = 1, . . . , τ , for a possibly different vector of

covariates us to that above and with corresponding coefficient vector β ∈ Rq.

In most applications h will be the logistic function h(x) = (1 + exp(−x))−1.

Let ps = (ps1, . . . , psτ )
T in the time dependent case and ps = ps otherwise.

The contribution to the full likelihood of site s, can be written as

Ls(ψs,ps) = (1− ψsθs)zs
{
ψs

τ∏
j=1

p
ysj
sj (1− psj)1−ysj

}1−zs

. (1)

The full likelihood is based on maximising the product of (1) over all the

sites. Let

`(ψs,ps) = zs log(1− ψsθs) + (1− zs) log(ψs)

+ (1− zs)
τ∑
j=1

ysj log(psj) + (1− zs)
τ∑
j=1

(1− ysy) log(1− psj)

be the contribution of site s to the log-likelihood. Then, assuming sites are

independent, the full log-likelihood is `(α,β) =
∑S

s=1 `(ψs,ps).
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3. The Two-Stage Approach

Following the homogeneous case of Karavarsamis and Huggins (2017) an

alternate approach is to let ηs (= ψsθs) be the unconditional probability the

species is detected at site s. Then we may write the contribution of site s to

the full likelihood, (1), as

L(ηs,ps) = (1− ηs)zsη1−zss ×

{∏τ
j=1 p

ysj
sj (1− psj)1−ysj

θs

}1−zs

= L1(ηs)L2(ps). (2)

The partial likelihood component L1(ηs) is a Bernoulli likelihood correspond-

ing to the detection of the species at site s and the partial component L2(ps)

is the conditional likelihood of ps given at least one detection at the site.

The contribution of site s to the log-likelihood is then

`(ηs,ps) = zs log(1− ηs) + (1− zs) log(ηs) (3)

+ (1− zs)

{
τ∑
j=1

ysj log(psj) +
τ∑
j=1

(1− ysj) log(1− psj)− log(θs)

}
.

(4)

Our interest is in exploiting the decomposition (2) to simplify the calculations

for complex models. To achieve this, we use (4) to estimate β in the first

stage of the estimation process. Let β̂ be the resulting conditional likelihood

estimator of β, and denote its large sample variance by Vβ. In the second

stage, let p̂s be the fitted value of ps and θ̂s the fitted value of θs. We then

replace ηs by η̃s = ψsθ̂s in the log-partial likelihood (3) and maximise this to

estimate α.
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From (4) the conditional likelihood estimator of β arises from solving

0 = S1(β) =
S∑
s=1

∂`(ηs,ps)

∂pTs

∂pTs
∂β

. (5)

Rather than solving (5) the maximum likelihood estimators of β arise from

solving

0 =
S∑
s=1

∂`(ηs,ps)

∂β

=
S∑
s=1

{
∂`(ηs, ps)

∂ηs

∂ηs
∂pTs

+
∂`(ηs, ps)

∂pTs

}
∂pTs
∂β

=
S∑
s=1

∂`(ηs, ps)

∂ηs

∂ηs
∂pTs

+ S1(β).

Thus unlike the simple homogeneous model considered in Karavarsamis and

Huggins (2017) the conditional likelihood estimators will not be the mle’s.

3.1. Stage 1: Estimating the Detection Probabilities

For the homogeneous model Karavarsamis and Huggins (2017) included

in their supplementary materials a plot of the estimated occupancy prob-

ability against values of the detection probability. This plot suggests that

the occupancy probability is relatively insensitive to small changes in the

detection probability. Thus modelling the detection probability may not be

crucial. However, particularly if there are big changes in the detection prob-

abilities between visits, correct modelling will be expected to improve the

estimates and may be of interest independent to ψ.
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3.1.1. Time Independent Detection Probabilities

This is the simplest case, apart from constant detection probability. In

this case ps = ps and the conditional likelihood reduces to

L2(β) =
O∏
s=1

pyss (1− ps)τ−ys
θs

,

which is a function of the number of detections at each site where there was

at least one detection, i.e. ys, s = 1, . . . , O. This is the conditional likelihood

of Huggins (1989) which may be easily maximised using the VGAM package,

with nomenclature similar to that used in generalised linear models (§17.2

Yee, 2015; Yee et al., 2015). See Appendix A, Appendix A.1 and Section 5

for details and examples.

3.1.2. Time Dependent Detection Probabilities

Recall that in this case we have distinct probabilities psj, j = 1, . . . , τ for

different visits to site s. A simple extension of the time independent model

allows an effect of the jth visit in the model for psj. That is, the covariate

vector usj contains an indicator of the visit time. This is modelled by allowing

the intercept to vary with the visit, and this is easily implemented in the VGAM

package. See Appendix A.2 and Section 5. More generally environmental

variables such as temperature or the time of day the visit was conducted may

vary between visits. When we allow the detection probabilities to depend on

time dependent covariates, the conditional likelihood corresponding to a site

s where occupancy was detected is now

L2(ps) =

∏τ
j=1 p

ysj
sj (1− psj)1−ysj

θs
.
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That is, the detections form a sequence of independent Bernoulli trials but

we only observe the outcome if there is at least one detection. Again this

model can be fitted using the VGAM package. See Appendix A.2 for details.

3.2. Stage 2: Estimating Occupancy Probabilities

To estimate α we maximise the partial likelihood
∏S

s=1 L1s(η̃s) where, as

noted above, ps and hence θs has been replaced by its estimator from the

first stage p̂s = ps(β̂). The partial likelihood is L1(α) =
∏S

s=1 L1s(η̃s) ∝∏S
s=1(1− ψsθ̂s)zsψ1−zs

s . Let ws = 1− zs, then the log-partial likelihood is

`(α) =
S∑
s=1

{
(1− ws) log(1− ψsθ̂s) + ws log(ψs)

}
. (6)

This may be maximised numerically using the optim function in R (referred

to as “Partial” in tables). However, there are two other possible approaches.

3.2.1. Iterative Weighted Least Squares

An alternative to this method that is commonly used to compute esti-

mates from generalised linear models is the well known iterative weighted

least squares (IWLS) approach. To define this estimator for a logistic model,

let the matrix X have sth column xs. Let w = (w1, . . . , wS)T , ηs = θsψs,

η = (η1, . . . , ηS)T . Let η(α) be η evaluated at α. Set V = diag{(1 − η)η}

and U = diag{θsψs(1 − ψs)}. Let α(k) be the estimate at the kth step

and let Z = UXα(k) + w − η(α(k)). Then the estimate at the (k + 1)th

is α(k+1) =
(
XUV −1UXT

)−1
XUV −1UZ. The IWLS estimate is obtained

by repeating this step until convergence. Details are given in Appendix B.

An estimate of the expected Fisher information corresponding to the partial

likelihood, E {I(α,β)}, is given by Ĩ(α,β) = XUV −1UXT .
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3.2.2. Iterative Offset

As θs does not depend on α, maximising (6) is equivalent to maximising

`(α) =
S∑
s=1

{(1− ws) log(1− η̂s) + ws log(η̂s)} .

where η̂s − ψsθ̂s. Let as(xs) = log(θ̂s) − log{1 + exp(αTxs)(1 − θ̂s)}. Then

under the logistic model

ηs = ψsθ̂s = exp(αTxs + log(θ̂s))/{1 + exp(αTxs)}

= exp(αTxs + as(xs))/{1 + exp(αTxs + as(x))}

and as(xs) has the appearance of an offset. However, it is a function of the

linear predictor αTxs. This allows an alternative iterative approach.

3.3. Estimating the Standard Errors

We give the asymptotic variances of our occupancy estimators in the lin-

ear logistic case. Denote the partial score function byQ(α, β) = ∂ log (L1(α,β)) /∂α,

I(α,β) = −∂Q(α,β)/∂αT and B̃(α,β) = −∂Q(α,β)/∂βT . Let α̂(β) be

the estimator of α arising from solving Q(α,β) = 0 for a given β. We show

in Appendix C that under mild regularity conditions an estimator of the

variance of α̂(β̂) is

V̂ar{α̂(β̂)} = (7)

I{α̂(β̂), β̂}−1 + I{α̂(β̂), β̂}−1B̃{(α̂(β̂), β̂)}V̂βB̃{α̂(β̂), β̂}T I{α̂(β̂), β̂}−1.

The estimated occupancy probability is ψ̂s = [1 + exp{−xTs α̂(β̂)}]−1, which

is easily seen to have the estimated approximate variance V̂ar(ψ̂s) = {ψ̂s(1−

ψ̂s)}2xTs V̂ar{α̂(β̂)}xs.
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To compute (7) note that in both the time homogeneous and inhomoge-

neous cases we have

I(α,β) =
S∑
s=1

xsx
T
s

{
θs − 2ψs(α)θs + ψs(α)2θ2s + ws(1− θs)

{(1− ψs(α)θs}2

}
ψs(α){1−ψs(α)}.

(8)

However, B̃(α,β) is computed differently. In the time homogeneous case we

have

B̃(α,β) = −
∑S

s=1 xsu
T
s ψs(1− ψs)(1− ws)τ(1− θs)ps

(1− ψsθs)2
, (9)

whereas in the time heterogeneous case we have

B̃(α,β) = −
S∑
s=1

xsψs(1− ψs)(1− ws)(1− θs)
∑τ

j=1 psju
T
sj

(1− ψsθs)2
. (10)

Then in either case, the expression (7) holds (see Appendix C). Note that

if psj ≡ ps and usj ≡ us then
∑τ

j=1 psju
T
sj = τpsus (9) and (10) are the same.

In computing B̃(α,β) we can replace ws by its expectation ψsθs.

4. Simulations

To evaluate the two-stage approach (described in Section 3.2) we used

one site covariate for occupancy, an independent site covariate for detection

and a further independent single time varying covariate that also varied be-

tween sites. These were all taken to have standard normal distributions,

reflecting that it is common to standardise the covariates. We took varying

parameter values to reflect different mean occupancy and detection proba-

bilities. For each value of S and τ we simulated the covariates once then

for varying parameter values simulated occupancy and detection. We first
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conducted simulations to determine which of the three methods of estimating

occupancy performed best. Firstly we conducted simulations to determine

which of the methods, IWLS, direct maximisation of the partial likelihood

with optim (Partial) or iterative offset (Iterative) to use. Direct maximi-

sation using optim allows different optimization methods, the option BFGS

numerical maximisation method is adopted here. Comparison to CG and

Nelder-Mead method displayed improved convergence for BFGS. We con-

sider S = 500 and τ = 5, α = (1, 1), and β = (−1.5,−0.5,−0.5) giving for

our simulated covariates an average occupancy probability of 0.70 and an

average probability of detection at least once at a site of 0.65. We took 1000

simulations. The results are in Table 1. Efficiencies are computed relative to

the partial likelihood and are computed using the usual ratio of the variances

(Efficiency) and the ratio of median absolute deviations squared (Efficiency

(mad)). Median absolute deviations (mad) are given by mad = c× median

(|xi−xM |), where c = 1/Φ(−1)(3/4), Φ(−1)(3/4) is the third quartile of the

inverse standard normal distribution, and xM is the median of xi. We used

the function mad in R to calculate these. The medians showed little bias in

any of the methods although when the means were computed, direct max-

imisation of the partial likelihood (Partial) exhibited considerable bias. The

median absolute deviations of the IWLS and Partial methods were similar

as is also evident in the efficiencies computed using the mad. With a smaller

number of site visits, τ = 3 in Table 2 there is now some evidence of bias

in all methods and the IWLS is clearly the most efficient. In this case the

average probability of detection at least once at a site was 0.47.

Next, we compare the IWLS method for the two-stage approach of es-

13



Table 1: Stage 2: Efficiency for estimating occupancy probabilities for the two-stage ap-

proach for three methods; IWLS, direct maximisation of the partial likelihood using optim

(Partial), or iterative offset (Iterative). Simulation results to compare numerical methods

S = 500, τ = 5, mean ψ = 0.7, mean θ = 0.65, α = (1, 1) and β = (−1.5,−0.5,−0.5).

IWLS Partial Iterative

Actual α 1.00 1.00 1.00 1.00 1.00 1.00

Median 1.02 1.00 1.02 1.00 1.02 1.01

mad 0.25 0.25 0.25 0.26 0.32 0.31

Mean 1.03 1.02 1.97 1.47 1.15 1.15

sd 0.28 0.26 5.66 2.70 1.03 1.04

Efficiency 41656.85 10910.59 3014.89 677.40

Efficiency(mad) 100.00 107.35 61.96 67.59

timation of occupancy to the full likelihood of MacKenzie et al. (2002). In

Table 3 we consider S = 500 and τ = 5. We took 1000 simulations at each

parameter combination. With a small number of standardised covariates the

MacKenzie maximum likelihood estimators were expected to perform well.

These were computed using the occu function in the R package unmarked

(see Appendix D for a brief description). We report the median and mad

of the estimates. With lower detection probabilities occasionally the IWLS

algorithm did not converge in 200 iterations. In that case the partial like-

lihood could be directly maximised. The bias of both procedures was low.

As expected the efficiencies of estimating the parameters associated with de-

tection were low. The efficiencies of the two-stage estimator in estimating

the occupancy probabilities was good and was generally around 100% for the

covariate term, but less that 100% for the intercept. The large efficiencies

14



Table 2: Stage 2: Efficiency for estimating occupancy probabilities for the two-stage ap-

proach for three methods; IWLS, direct maximsiation of the partial likelihood using optim

(Partial), or iterative offset (Iterative). Simulation results to compare numerical methods

S = 500, τ = 3, mean ψ = 0.7, mean θ = 0.47, α = (1, 1) and β = (−1.5,−0.5,−0.5).

IWLS Partial Iterative

Actual α 1.00 1.00 1.00 1.00 1.00 1.00

Median 1.17 0.99 1.17 1.02 1.23 1.03

mad 0.57 0.24 0.62 0.31 0.68 0.54

Mean 1.17 1.05 1.34 1.15 1.81 1.67

sd 0.49 0.33 0.99 0.55 2.03 1.77

Efficiency 400.97 284.07 23.69 9.65

Efficiency(mad) 120.18 165.64 81.85 32.49

for smaller occupancy and detection probabilities were due to several unusu-

ally large maximum likelihood estimates. Similarly the small efficiencies for

smaller detection probabilities but larger occupancy probabilities were due

to large values of the two-stage estimates.

A plot of 1000 simulated occupancy estimates from our approach were

compared to the full likelihood (see Figure 1). The model included time

varying covariates using the two-stage approach for the IWLS method and the

same was modelled with occu; α = (1, 1), β = (−1.5,−0.5), and βt = −0.5.

Overall, the two-stage estimator gave estimates that were more accurate

and more consistent and that occu may give extreme estimates of occupancy

parameters when the two-stage approach does not. There was a single outlier

that was omitted from the plot for clarity. Corresponding summary statistics

are given in Table 4.
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Table 3: Simulation results for S = 500, τ = 5 for four studies with mean probabilities

(ψ, p): (0.7, 0.65), (0.31, 0.65), (0.7, 0.37) and (0.31, 0.37). Efficiency is based on the vari-

ance rather than the mad. Medians for the two-stage method (med two-stage) and full

maximum likelihood estimates (med mle), as well as their median absolute deviations ‘mad

two-stage’ and ‘mad mle’, respectively. Occupancy for the two-stage approach estimated

with IWLS method.
Occupancy Detection Occupancy Detection

Int x1 Int x2 time Int x1 Int x2 time

Mean Prob 0.70 0.65 0.31 0.65

Actual 1.00 1.00 -1.50 -0.50 -0.50 -1.00 1.00 -1.50 -0.50 -0.50

med two-stage 1.01 1.01 -1.51 -0.51 -0.50 -0.99 1.01 -1.52 -0.50 -0.50

mad two-stage 0.26 0.23 0.11 0.10 0.07 0.19 0.18 0.16 0.15 0.11

med mle 1.01 1.01 -1.51 -0.50 -0.49 -0.99 1.01 -1.52 -0.51 -0.50

mad mle 0.25 0.23 0.09 0.07 0.07 0.18 0.18 0.14 0.11 0.10

Efficiency 90.65 101.74 66.04 52.03 93.13 93.67 99.41 69.72 54.69 91.09

Efficiency(mad) 91.64 98.57 70.62 54.81 94.00 93.19 102.40 73.01 49.57 96.52

Mean Prob 0.70 0.37 0.31 0.37

Actual 1.00 1.00 -2.50 -0.50 -0.50 -1.00 1.00 -2.50 -0.50 -0.50

med two-stage 1.01 0.99 -2.53 -0.50 -0.50 -0.97 1.03 -2.55 -0.52 -0.50

mad two-stage 0.65 0.41 0.23 0.19 0.10 0.41 0.27 0.37 0.29 0.15

med mle 1.03 1.00 -2.51 -0.50 -0.50 -0.97 1.05 -2.53 -0.49 -0.50

mad mle 0.57 0.39 0.16 0.09 0.09 0.36 0.28 0.28 0.16 0.14

Efficiency 0.15 0.22 43.13 23.13 81.39 371.60 3223.71 50.28 23.03 81.91

Efficiency(mad) 78.85 87.63 51.67 22.50 84.41 78.39 102.95 57.02 29.27 85.60

Table 5 shows that occu gives estimates that are large four times more

often than our approach. We present agreement between our approach and

occu to estimating occupancy. Agreement between the two methods is de-

fined as the number of estimates that are either both or neither greater than

three (α̂1 > 3), less than or equal to three (α̂1 ≤ 3), or when these dis-

agree. occu gives estimates that are greater than three (i.e α̂1 > 3) four

times more often than our IWLS method i.e. 36 to 12 (Table 5). The table

clearly demonstrates there is no universal best method for finding estimates

for occupancy. When IWLS fails i.e. does not converge, then we recommend

using optim or occu.
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Figure 1: Comparison of estimated occupancy parameters (α̂) between occu and two-stage

method with IWLS for 1000 simulations with α = (1, 1), β = (−1.5,−0.5), and βt = −0.5.

Top figure shows intercept estimates and bottom figure estimates for the slope parameter.

5. Applications

5.1. Data Set 1

Hutchinson et al. (2015b) use a publicly available data set from Hutchin-

son et al. (2015a)3 to illustrate their penalized likelihood approach. The

data set contains detections of 25 avian species over 3 visits to each of 656

3https://datadryad.org//resource/doi:10.5061/dryad.t40f2
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Table 4: Simulation study of 1000 estimates of the occupancy parameters with α = (1, 1),

β = (−1.5,−0.5), and βt = −0.5.

Occupancy Detection

Int x1 Int x2 time

Mean Prob 0.72 0.63

Actual 1.00 1.00 -1.50 -0.50 -0.50

med two-stage 0.98 1.03 -1.53 -0.52 -0.51

mad two-stage 0.63 0.57 0.25 0.28 0.15

sd two-stage 7.82 9.94 0.28 0.28 0.16

med mle 1.10 1.16 -1.52 -0.53 -0.51

mad mle 0.70 0.65 0.21 0.17 0.15

Efficiency 67.55 45.33 68.41 38.92 90.47

Efficiency(mad) 99.94 125.16 71.13 38.25 93.37

sites from a field study in 2011 in southern Indiana, USA. We use the entire

data set. There are six site-specific vegetation covariates available (labelled

vegcov1, vegcov2, ...vegcov6) and four time dependent survey covari-

ates time, temp, cloud and julian measured for each visit to each site.

These are included in the data data frame as time1, time2, ...julian2,

julian3. All the covariates have been standardised. We consider the entire

data set for the first species. We considered four models for the detection

probabilities. The first only involved the site covariates, the second the site

covariates and time dependent intercepts, the third site and time dependent

survey covariates and the last involved site and time dependent survey co-

variates and time dependent intercepts. The values of the AIC from the

conditional likelihood are: Site only: AIC = 1517.4, Site + Time Varying In-
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Table 5: Agreement for intercept estimates greater, or less, than three when the actual

value to be estimated is α1 = 1.

occu method

Two-stage IWLS α̂1 ≤ 3 α̂1 > 3

α̂1 ≤ 3 832 36

α̂1 > 3 12 37

tercept: AIC = 1511.1, Site + Survey: AIC = 1488.3, Site + Survey + Time

Varying Intercept: AIC = 1486.2. The best model of these includes the site

covariates, time dependent survey covariates and time dependent intercepts.

The resulting two-stage (Two-stage) estimates (with IWLS method) are dis-

played in Table 6 along with the full maximum likelihood estimates (Full

likelihood) computed using the occu function in the R package unmarked

(fitting the model with occu is briefly described in Appendix D). The max-

imum likelihood and two-stage estimates are very similar.

In the model for detection there are 6 site covariates and 4 survey co-

variates. This gives 210 = 1024 possible models (or 211 if one allows time

varying intercepts.) Whilst this is a large number of models, in the absence

of variable selection methods in VGAM it is nevertheless feasible to compute

the AIC for each model. We can then repeat this process for the model for

occupancy after fixing the best detection model. The best fitting model for

the detection probabilities using the AIC is indicated in Table 6. The func-

tion vglm allows more flexibility in the modelling. For example, by chang-

ing parallel.t=FALSE∼0 to parallel.t=TRUE∼0 the coefficients associated

with each variable in the detection model may be time varying. We do not

pursue this further here. Of course as occupancy is assumed constant over
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the visits we do not model the occupancy coefficients as time varying.

Table 6: Occupancy and detection estimates for full likelihood and two-stage approaches

for the detection model with site and survey covariates and time varying intercept for the

Hutchinson data (∗ indicates the variables retained in the best fitting model using the

two-stage approach). For each covariate, we report its: estimate (Estimate), standard

error (se), Student’s t-statistic (t), and p-value (p).
Full Likelihood Two-stage

Parameter Estimate se t p Estimate se t p

Occupancy ψ

Intercept∗ 2.27 0.15 14.98 0.00 2.26 0.15 14.91 0.00

vegcov1∗ 0.50 0.18 2.78 0.01 0.52 0.17 3.00 0.00

vegcov2 0.03 0.17 0.15 0.88 0.01 0.17 0.04 0.97

vegcov3 0.07 0.17 0.41 0.68 0.06 0.16 0.34 0.73

vegcov4∗ 0.37 0.13 2.89 0.00 0.37 0.12 3.03 0.00

vegcov5 0.14 0.13 1.06 0.29 0.14 0.13 1.10 0.27

vegcov6∗ -0.29 0.16 -1.85 0.06 -0.29 0.15 -1.88 0.06

Detection p

Intercept:1∗ 1.07 0.30 3.60 0.00 1.09 0.30 3.67 0.00

Intercept:2∗ 1.48 0.12 12.00 0.00 1.48 0.12 12.04 0.00

Intercept:3∗ 2.27 0.30 7.70 0.00 2.26 0.30 7.62 0.00

vegcov1∗ 0.56 0.09 6.06 0.00 0.55 0.09 6.02 0.00

vegcov2∗ -0.25 0.09 -2.79 0.01 -0.25 0.09 -2.76 0.01

vegcov3 -0.10 0.09 -1.16 0.24 -0.09 0.09 -1.05 0.30

vegcov4∗ 0.18 0.08 2.37 0.02 0.18 0.07 2.34 0.02

vegcov5∗ 0.10 0.08 1.34 0.18 0.11 0.07 1.46 0.14

vegcov6∗ -0.10 0.09 -1.18 0.24 -0.11 0.09 -1.27 0.20

time -0.07 0.07 -0.93 0.35 -0.07 0.07 -0.98 0.33

temp∗ -0.24 0.08 -3.09 0.00 -0.24 0.08 -3.11 0.00

cloud∗ -0.13 0.07 -1.90 0.06 -0.13 0.07 -1.93 0.05

julian∗ -0.74 0.23 -3.23 0.00 -0.73 0.23 -3.18 0.00

5.2. Data II

A smaller data set is given on the website James Peterson 4 that presents

data on detections of brook trout collected via electrofishing in three 50 m

sections of streams at 57 sites in the Upper Chattachochee 371 River basin,

4http://people.oregonstate.edu/~peterjam/occupancy_workshop/hands_on.

html
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USA. These data contained a site covariate, Elevation (Ele) and a time de-

pendent covariate stream mean cross-sectional area (CSA). These variables

are on quite different scales. The average elevation was approximately 2861

and the mean cross-sectional area was less than 2. We considered four mod-

els, just the site covariates, site covariates and time varying intercepts, site

and survey covariates and site and survey covariates with time varying in-

tercepts. Using the default settings in occu the estimates did not converge.

This was rectified by using the “Nelder-Mead” method set to a maximum

of 2000 iterations. The two-stage estimator had no such problems. The es-

timates for the unstandardised data are in Table 7 (a). The estimates are

generally similar. For the standardised data, occu with the default options

did converge. The results are given in Table 7 (b). The estimates are again

quite similar.
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Table 7: Occupancy and detection estimates for full likelihood and two-stage approaches

for the (a) unstandardised and (b) standardised brook trout data. For each covariate, we

report its: estimate (Estimate), standard error (se), Student’s t-statistic (t), and p-value

(p). Occupancy for the two-stage approach estimated with IWLS method.
Full Likelihood Two-stage

Parameter Estimate se t p Estimate se t p

(a) Unstandardised

Occupancy ψ

Intercept -3.9716 0.6858 -5.7914 0.0000 -4.0452 1.1218 -3.6060 0.0003

Ele 0.0013 0.0003 4.5338 0.0000 0.0013 0.0004 3.6441 0.0003

Detection p

Intercept 0.0580 0.7352 0.0788 0.9372 -0.1609 1.2397 -0.1298 0.8968

Ele 0.0004 0.0002 1.9697 0.0489 0.0004 0.0003 1.2516 0.2107

CSA -0.8325 0.2822 -2.9503 0.0032 -0.7438 0.2873 -2.5888 0.0096

(b) Standardised

Occupancy ψ

Intercept -0.19 0.36 -0.52 0.60 -0.34 0.32 -1.04 0.30

Ele 1.53 0.45 3.42 0.00 1.48 0.40 3.71 0.00

Detection p

Intercept -0.14 0.35 -0.38 0.70 -0.16 0.36 -0.44 0.66

Ele 0.36 0.35 1.04 0.30 0.43 0.37 1.18 0.24

CSA -0.82 0.28 -2.97 0.00 -0.80 0.28 -2.81 0.00
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6. Discussion

In Karavarsamis and Huggins (2017) we examined the two-stage approach

for the homogeneous occupancy model. Here we examined the two-stage

approach for the heterogeneous occupancy model where the occupancy and

detection probabilities now depend on covariates that may vary between sites

and over time.

In our applications here the two-stage estimator gave similar estimates

to the full maximum likelihood with the occu function in package unmarked.

For the large standardised data set first considered the estimates from the two

methods were very similar. The two-stage method has advantages in model

selection as the dimension of the space to be searched can be enormously

reduced. By considering two smaller dimensional parameter spaces and using

IWLS in both stages it is also numerically more stable so that standardisation

is less important. It also gives access to the VGAM methodology in estimating

detection. We defer further exploration elsewhere.

The default in the occu function in the unmarked package uses a vector

of zeroes as starting values and if the algorithm does not converge suggests

the user provides starting values. However, there is no guidance on how to

find suitable values. A simulation study showed that occu may give extreme

estimates of occupancy parameters when the two-stage does not.

If there are too few redetections the two-stage estimator can fail. This

results from conditioning on at least one detection. However, when the main

focus is on estimating occupancy, the occupancy probability appears to be

relatively insensitive for small changes in detection probability (Karavarsamis

and Huggins, 2017).
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Appendix A. Conditional Likelihood using VGAM

The R package VGAM (Yee, 2010) is a powerful and flexible package that fits

models to vector responses. As such, at first glance it can be overwhelming.
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However, its handling of time dependent covariates makes it preferable to

writing one’s own functions. Here we give a description of how it can be

used to fit some common models to detections using conditional likelihood

in the first stage of our approach.

Appendix A.1. Fitting Time Independent Covariates for Detection

In our two-stage approach the conditional likelihood fits the model for

detection to data from the sites where there was at least one detection. This

can be done the posbinomial family in the VGAM function vglm. Firstly

the data is reduced to those sites where there was at least one detection.

When there is no time dependence, computing the estimates using vglm is

straightforward. We illustrate this for the data of Hutchinson et al. (2015b,a)

as these data contain both site and visit (i.e. time dependent) covariates. For

these data, the data frame data is a reduced data frame that contains data

from the sites where occupancy was detected. The variable Y is the number

of times the species was detected at each occupied site, τ is the number of

visits to each site, and site covariates are vegcov1,vegcov2,. . . ,vegcov6. See

Figure A.2 for selected output (τ = 3 in this example). The parameter

estimates may then be used in the second stage of the analysis.

With the univariate response Y , the implementation is very similar to glm.

The term omit.constant=TRUE does not affect the fitting but removes the

constant terms from the computation of the AIC. These estimates may then

be input into the second stage procedure to estimate parameters associated

with the occupancy model.
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> V.out=vglm(cbind(Y,3-Y)~vegcov1+vegcov2+vegcov3+vegcov4

+vegcov5+vegcov6,

family=posbinomial(omit.constant=TRUE),data=data)

> coef(V.out)

# (Intercept) vegcov1 vegcov2 vegcov3 vegcov4

# 1.5590909 0.5493825 -0.2512287 -0.1048756 0.1656597

# vegcov5 vegcov6

# 0.1186192 -0.1277806

Figure A.2: Fitting the detection model for time homogeneous covariates.

Appendix A.2. Fitting Time Dependent Covariates for Detection

Time dependent models for detection may be fitted to data using the

posbernoulli.t family in the vglm function in VGAM. Fitting these models

is more complex as many more models are available and the response consists

of the detections on each visit to the site and is hence multivariate. We again

use the data from Hutchinson et al. (2015b,a). The time dependent covariates

are time, temp, cloud and julian measured for each visit to each site. These

are included in the data data frame as time1, time2, . . . julian2, julian3. With

a vector valued response there is the possibility that the coefficient associated

with a covariate may change with the visit, so the associated modelling and

hence the functions to fit the models are more complex. See Yee (2010,

§6.3) for a worked example in a capture-recapture context. In Figure A.3 we

first fit a simple model with time dependent intercepts and the relationship

with the site covariates remains independent of time. This was specified

through the parallel.t argument to the posbernoulli.t family. Note that
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> V.out=vglm(cbind(survey1,survey2,survey3)

~ vegcov1+vegcov2+vegcov3+vegcov4+vegcov5+vegcov6,

family=posbernoulli.t(parallel.t=FALSE~1), data=data)

> coef(V.out)

# (Intercept):1 (Intercept):2 (Intercept):3 vegcov1 vegcov2

# 1.8583766 1.5130892 1.3527893 0.5515551 -0.2522520

# vegcov3 vegcov4 vegcov5 vegcov6

# -0.1052631 0.1663444 0.1190595 -0.1282785

Figure A.3: Fitting a model with time dependent intercepts.

parallel.t=FALSE∼1 is the default for the posbernoulli.t family but for

clarity we explicitly incorporate it in Figure A.3.

Incorporating time dependent covariates is a little more complex and

requires use of the xij and form2 arguments in VGAM. The form2 argument

is straightforward. It gives all the variables in the model and needs to be

included if xij is used. The xij argument specifies that covariates have

different values at different visits. To implement it is necessary to construct

a new variable, for example time.tij, for each time dependent variable in

the model and incorporate them in the data frame. In our case this gives four

new variables, time.tij, temp.tij, cloud.tij and julian.tij in Figure

A.4.

Appendix B. Iterative Weighted Least Squares

The potential instability of the maximum likelihood estimates when com-

puted using numerical optimization, through the function optim in R mo-
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> V.out=vglm(cbind(survey1,survey2,survey3)

~vegcov1+vegcov2+vegcov3+vegcov4

+vegcov5+vegcov6+time.tij+temp.tij+cloud.tij+julian.tij,

data=Data.all,

xij=list(time.tij~time1+time2+time3-1,temp.tij~temp1+temp2+temp3-1,

cloud.tij~cloud1+cloud2+cloud3-1,julian.tij~julian1+julian2

+julian3-1),

family=posbernoulli.t(parallel.t=FALSE~0),

form2=~vegcov1+vegcov2+vegcov3+vegcov4+vegcov5+vegcov6+time.tij

+temp.tij+cloud.tij+julian.tij+time1+time2+time3+temp1+temp2

+temp3+cloud1+cloud2+cloud3+julian1+julian2+julian3)

> coef(V.out)

# (Intercept) vegcov1 vegcov2 vegcov3 vegcov4

# 1.60651791 0.54525171 -0.24061702 -0.08727207 0.16955603

# vegcov5 vegcov6 time.tij temp.tij cloud.tij julian.tij

# 0.108527 -0.112085 -0.069456 -0.238605 -0.161028 -0.264658

Figure A.4: Fitting a model using with time varying covariates but constant intercept for

the two-stage approach in vglm.
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tivated us to develop an iterative weighted least squares (IWLS) approach.

This is quite straightforward for the logistic model in our two-stage approach.

Recall E(ws) = ηs = θsψs. Let η = (η1, . . . , ηS)T , w = (w1, . . . , wS)T and

the q0 × S matrix X has sth column xs. Then, as θs is not a function of α,

maximising the partial log-likelihood (6) is equivalent to maximising `(η) =∑S
s=1 {(1− ws) log(1− ηs) + ws log(ηs)}. Then, with V = diag{(1−η)η} we

have u(η) = ∂`(η)/∂η = V −1(w−η). Let γs = xTsα and γ = (γ1, . . . , γS) =

Xα. Now, ∂ηs/∂γs = θsψs(1 − ψs) and ∂γs/∂α = xs so that ∂ηs/∂α =

θsψs(1 − ψs)xs. That is, ∂ηT/∂α = XU where U = diag{θsψs(1 − ψs)}

or the partial score equations may be written as u(α) =
(
∂ηT/∂α

)
u(η) =

XUV −1(w − η(α)). The expected conditional Fisher information is then

J(α) = −E
(
∂u(α)/∂αT

)
= XUV −1UXT . Recall Z = UXα(k) + w −

η(α(k)). Then

α(k+1) ≈ α(k) + J(α)−1u(α(k))

= α(k) +
(
XUV −1UXT

)−1
XUV −1(w − η(α(k)))

=
(
XUV −1UXT

)−1
XUV −1

(
UXα(k) +w − η(α(k))

)
=
(
XUV −1UXT

)−1
XUV −1Z.

This gives the iterative procedure of Section 3.2.1.

Appendix C. Derivation of the Standard Errors

We outline the proof of (7) for the linear model with logistic link. Let α0

and β0 denote the true values of α and β and let β̂ be a consistent estimator

of β. Here this will be the conditional likelihood estimator of β but our

results are more general than that. We suppose that for a qo × qp matrix
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B(α,β), and a qo × qo matrix A(α,β),

S−1B̃(α0,β0) = S−1
∂Q(α0,β0)

∂βT0
→ B(α0, β0),

−S−1∂Q(α0, β0)

∂αT0
→ A(α0, β0)

and that the central limit theorem is applicable so that

S−1/2Q(α0, β0)
d−→ N(0,ΣQ). (C.1)

We also suppose that the estimators β̂ arising from the first stage are con-

sistent and satisfy S1/2(β̂ − β0)
d−→ N(0,Σβ) for some q × q matrix Σβ.

That is, Var(β̂) = Σβ/S. Note that using vglm to estimate β using condi-

tional likelihood yields an estimate of Var(β̂|O). Then we approximate Σβ

by SVar(β̂|O). Finally, we suppose that the partial score functions for α are

uncorrelated with those for β. We have noted in §3 that this holds for the

likelihood conditional on at least one detection at a site.

The log-partial likelihood is

`(α,β) =
∑S

s=1 {(1− ws) log(1− ψs(α)θs) + ws log(ψs(α))} , so that

Q(α,β) = ∂`(α,β)/∂α =
∑S

s=1 xs{ws − ψs(α)θs}(1− ψs(α))/{1−ψs(α)θs}.

The first order expansion of Q(α̂, β̂) about α0 yields

S1/2
(
α̂(β̂)−α0

)
=
{
S−1I(α0, β̂)

}−1
S−1/2Q(α0, β̂),

and that of Q(α0; β̂) about β0 yields

S−1/2Q(α0; β̂) ≈ S−1/2Q(α0,β0) + S−1B̃(α0,β0)S
1/2(β̂ − β0)

which together give

S1/2(α̂(β̂)−α0) ≈ A(α0,β)−1
{
S−1/2Q(α0,β0) +B(α,β0)S

1/2(β̂ − β0)
}
.
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The central limit theorem and recalling that the partial score functions are

uncorrelated then gives

S1/2(α̂(β̂)−α0) ∼ Np

(
0, A(α0,β0)

−1
{

ΣQ +B(α0,β0)ΣβB(α0,β0)
T
}
A(α0,β0)

−T
)
,

where

ΣQ = S−1Var (Q(α0,β0)) = S−1E (I(α0,β0)) .

That is Var{α̂(β̂ )} = S−1
{
A(α0, β0)

−1 + A(α0, β0)
−1B(α0, β0)ΣβB(α0, β0)

TA(α0, β0)
−T}.

To estimate the standard errors, recall I(α, β) = −∂Q(α, β)/∂αT yielding

(8).

Next we determine B̃(α, β) in the time homogeneous case. As

∂Q(α, β)

∂θs
= −xsψs(1− ψs)(1− ws)

(1− ψsθs)2
, (C.2)

and θs = 1− (1− ps)τ , the chain rule gives,

qs =
∂Q(α, β)

∂ps
= −xsψs(1− ψs)(1− ws)τ(1− ps)τ−1

(1− ψsθs)2
.

As ∂ps/∂β = ps(1− ps)us we then see that

∂Q(α, β)

∂βT
= B̃(α, β) = −

S∑
s=1

xsu
T
s ψs(1− ψs)(1− ws)τ(1− ps)τps

(1− ψsθs)2
.

As Σβ = SVar(β̂ ) = SVβ where Vβ is the covariance matrix of β̂ and it is

easily seen that Var{α̂(β̂ )} reduces to (7).

In the time heterogeneous case θs = 1 −
∏τ

j=1(1 − psj). Hence for the

logistic model,

∂θs
∂β

=
τ∑
j=1

∏
k 6=j

(1− psk)
∂psj
∂β

=
τ∑
j=1

τ∏
k=1

(1− psk)psjusj = (1− θs)
τ∑
j=1

psjusj.

As (C.2) still holds this yields the modification of the expression (7) for the

standard errors as given in §3.1.2.

34



Appendix D. Fitting the Full Likelihood with occu

The use of occu is well documented. Here, we briefly describe its use as

it handles time varying (or time dependent) covariates differently to vglm.

To fit our full model using occu we first construct a matrix of factors, Visit,

corresponding to the three visits. We then construct a list Obs that contains

data frames of the time varying covariates. This is then converted into an

unmarkedFrameOccu object, D. The model is then fitted to the data, as shown

in Figure D.5. Thus in either the vglm or occu approaches there is an initial

data manipulation step requiring construction of an appropriately structured

data frame, then the fitting to data. With vglm there is then a second step

to estimate the occupancy model.
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> Visit=matrix(as.factor(c(rep("a",656),rep("b",656),rep("c",656))),

ncol=3)

> Obs=list(time=as.data.frame(Model.out@T.ij[,c(1,5,9)]),

temp=as.data.frame(Model.out@T.ij[,c(2,6,10)]),

cloud=as.data.frame(Model.out@T.ij[,c(3,7,11)]),

julian=as.data.frame(Model.out@T.ij[,c(4,8,12)]),

Visit=as.data.frame(Visit))

> D=unmarkedFrameOccu(y=Model.out@Detect,

siteCovs=as.data.frame(Model.out@X[,-1]),obsCovs=Obs)

> O.5.out=occu(~Visit+vegcov1+vegcov2+vegcov3+vegcov4+vegcov5+vegcov6

+time+temp+cloud+julian-1~vegcov1+vegcov2+vegcov3+vegcov4+vegcov5

+vegcov6,data=D,engine=c("C"))

> O.5.out@estimates

Figure D.5: Fitting a model with occu for time varying covariates on the full model.
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