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Abstract

We introduce novel wild bootstrap procedures for testing superiority in unpaired two-sample
survival data. By combining different classical weighted logrank test we obtain tests with broader
power behavior. Right censoring within the data is allowed and may differ between the groups.
The tests are shown to be asymptotically exact under the null, consistent for fixed alternatives and
admissible for a larger set of local alternatives. Beside these asymptotic properties we also illustrate
the procedures’ strength in simulations for finite sample sizes. The tests are implemented in the
novel R-package mdir.logrank and its application is demonstrated in an exemplary data analysis.

Keywords: Right censoring, weighted logrank test, local alternatives, ordered alternatives, two-sample
survival model, wild bootstrap.

1 Introduction

A clinical two sample study may be conducted to infer superiority of a treatment over a control. For
time to event data, this task is usually coped with the one-sided version of the logrank test (Mantel,
1966; Peto and Peto, 1972). As it is ’only’ (asymptotically) optimal to detect alternatives in which
the hazards are proportional, several substitutes have been proposed. Beneath weighted logrank tests
(Tarone and Ware, 1977; Gill, 1980; Harrington and Fleming, 1982; Fleming and Harrington, 1991;
Lachin, 2009; Bagdonavicius et al., 2011), different modifications have been established in order to
derive certain power ’enhancements’ (at least in the two-sided case), see, e.g., Ehm et al. (1995);
Kosorok and Lin (1999); Bathke et al. (2009); Yang and Prentice (2010); Brendel et al. (2014); Garés
et al. (2015) and the references cited therein. From a methodological point of view, the projection-type
procedure of Brendel et al. (2014) slightly stands out as it in principle allows the simple construction
of a permutation test that is (asymptotically) optimal against a pre-specified number of alternatives of
interest. However, the method has not yet found its way into statistical practice for several reasons:

1. It primarily focus on a mathematical sound development of the method; rigorously using functional
analytic terminology.

For example, the test statistic is derived as projection of a vector of weighted logrank statistics onto
a functional cone corresponding to the choices of alternatives of interest. Although this is greatly
appreciated by the current authors its abstract description and very complex (and non-pivotal) limit
distribution might be too distant for most applied statisticians; especially

2. since the method has not yet been implemented in statistical software not to mention plain user
manuals.

3. Moreover, due to the complex limit distribution of their test statistic, the proposed permutation
method utilizes a rather unusual studentization technique by writing the critical value as part of
the test statistic to ensure asymptotic correctness.
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While it is nowadays (more or less) accepted that permutation tests for complex heterogeneous models
(here given by possibly different censoring distributions) need a certain studentization (Neuhaus, 1993;
Janssen, 1997; Janssen and Mayer, 2001; Chung et al., 2013; Pauly et al., 2015) the permutation
technique of Brendel et al. (2014) typically needs two iterative Monte-Carlo steps: Beneath the usual
Monte-Carlo approximation of the permutation distribution an additional one is a priori needed to
calculate the critical value within the test statistic. This regrettably results in too time consuming
calculations for critical values.

It is the aim of the present paper to address these points accordingly. In particular, employing
multiplier wild bootstrap resampling (Lin, 1997; Beyersmann et al., 2013; Dobler and Pauly, 2014;
Dobler et al., 2017; Bluhmki et al., 2018b) instead of permutation enables us to directly cope with
the complex limit distribution without making the above studentization detour. We rigorously
analyze the asymptotic properties of the resulting procedure, specifically preserving the asymptotic
optimality of the Brendel et al. (2014) method (Section 3.2 below). To give recommendations for
choosing proper multipliers and analyze the procedures’ finite sample properties, extensive simulations
(Section 4) are conducted under the null hypothesis and various alternatives. For an easy application,
we implemented the resulting recommendations within the R-package mdir.logrank available on
GitHub. Therein, our novel procedure can either be called via a user-friendly GUI (based on default
choices of typical alternatives) or a more enhanced function allowing for user-specific definitions of more
specific alternatives. Its application is exemplified during an analysis of lung cancer data (Section 5).
Before we follow this course of action we first fix the basic set-up in Section 2.

We note that all proofs are deferred to the appendix, where also additional simulation results and
a demonstration of the graphical user interface are presented.

2 Two-sample survival set-up

We consider a two-sample survival set-up given by mutually independent non-negative random variables

Tj,i ∼ Fj and Cj,i ∼ Gj (j = 1, 2; i = 1, . . . , nj). (1)

Here, Fj and Gj are continuous distribution functions, Tj,i denotes the survival time of subject
i in group j and Cj,i its corresponding right-censoring time. As usual within this setting, only
the right-censored survival times Xj,i = min{Tj,i, Cj,i} and their corresponding censoring status
δj,i = 1{Xj,i = Tj,i} (j = 1, 2; i = 1, . . . , nj) are actually observable. Based on the resulting n = n1+n2
pooled observations we would now like to infer whether the second group (e.g., the intervention group)
is superior to the first group (e.g., the control group) in terms of survival times. This leads to testing
H= : {A1 = A2} : {F1 = F2} against the one-sided alternative of stochastic ordering or superiority

K≥ : {A1 ≥ A2, A1 6= A2} = {F1 ≥ F2, F1 6= F2}, (2)

where Aj(t) = − log(1− Fj(t)) =
∫ t
0 (1− Fj)−1 dFj denotes the cumulative hazard function, j = 1, 2,

and the unknown censoring distributions can be interpreted as nonparametric nuisance parameters. In
case of proportional hazards dA1(t)/dA2(t) ≡ λ1(t)/λ2(t) ≡ ϑ+ 1 the well-known alternative {ϑ > 0}
particularly implies K≥.

To formulate relevant test statistics we adopt the usual counting process notation. Thus, let
Nj,i(t) = 1{Xj,i ≤ t, δj,i = 1} and Yj,i(t) = 1{Xj,i ≥ t}, j = 1, 2; i = 1, . . . , nj . Summation over all
subjects in group j yields Nj(t) =

∑nj
i=1Nj,i(t), the number of observed events in group j until time t,

and Yj(t) =
∑nj

i=1 Yj,i(t), the number of individuals in group j being at risk just before t. The pooled
processes N = N1 +N2 and Y = Y1 + Y2 can be interpreted in the same way. Now, the group-specific
Nelson–Aalen estimators for the cumulative hazards Aj(t) are given by

Âj(t) =

∫ t

0

1{Yj > 0}
Yj

dNj (j = 1, 2).

Before we subsequently define the weighted logrank test statistic we have to introduce the pooled
Nelson–Aalen Â(t) =

∫ t
0 1{Y > 0}/Y dN (t ≥ 0) as well as the pooled Kaplan–Meier estimator F̂

2



given by

1− F̂ (t) =
∏

(j,i):Xj,i≤t

(
1− δj,i

Y (Xj,i)

)
=

∏
(j,i):Xj,i≤t

(
1− ∆N(Xj,i)

Y (Xj,i)

)
(t ≥ 0).

Here, ∆N(t) = N(t)−N(t−) denotes the increment of the counting process N at time t. Then the
weighted logrank statistic (Fleming et al., 1987; Andersen et al., 1993) is defined as

Tn(w) =
( n

n1n2

)1/2∫ ∞
0

w(F̂ (t−))
Y1(t)Y2(t)

Y (t)

[
dÂ1(t)− dÂ2(t)

]
,

where the weight function w ∈ W corresponds to the main alternative of interest and is taken from the
space

W = {w : [0, 1]→ [0,∞) continuous and of bounded variation; w(x) > 0 for some x ∈ [0, 1]}

in our one-sided case of interest. Gill (1980) proved asymptotic normality Tn(w)
d→ N(0, σ2) under the

null hypothesis H= for each w ∈ W. He suggested to estimate the limiting variance σ2 by

σ̂2n(w) =
n

n1n2

∫ ∞
0

w(F̂ (t−))2
Y1(t)Y2(t)

Y (t)
dÂ(t). (3)

However, tests based on the one-sided test statistic Tn,stud(w) := Tn(w)/σ̂n(w) 1{Tn(w) > 0} cannot
be (asymptotically) optimal for the whole alternative K≥. Roughly speaking, the weighted logrank
test φn,α(w) = 1{Tn,stud(w) > z1−α} leads to an ’optimal’ decision for local alternatives of the form
(Gill, 1980)

Kw :
{
λ1/λ2 = 1 + ϑw(F2)/

√
n : ϑ > 0

}
, (4)

see Section 3 for its mathematically explicit form. Here, z1−α denotes the (1 − α)-quantile and
α ∈ (0, 1/2) as we assume throughout. Restricting to ϑ > 0 in (4) ensures that Kw ⊂ K≥, i.e.
stochastic ordering F1 ≥ F2, holds. As (4) is rather abstract we recall its meaning for the (classical)
logrank test: As it is based on the constant weight function w ≡ 1 we thus obtain its optimality for
proportional hazard alternatives of the form λ1/λ2 ≡ 1 + ϑ/

√
n. It is clear from (4) that Kw ( K≥, i.e.

the wrong choice of weight function w may lead to a substantial loss in power. To enlarge Kw, Brendel
et al. (2014) adopted the projection idea of Behnen and Neuhaus (1989) to the present survival set-up,
resulting in considerably larger optimality regions and broader power functions. We shortly explain
their idea in the next Subsection and enhance it by means of a multiplier bootstrap technique and
clever choice of weight functions.

3 Asymptotics of Projection-type Tests

For our investigations we throughout assume the usual asymptotic sample size condition

(A1) n1/n→ κ ∈ (0, 1) as min(n1, n2)→∞.

Moreover, let τj = sup{u ≥ 0 : [1 − Fj(u)][1 − Gj(u)] > 0} (j = 1, 2) denote the observation times’
upper limit within group j. To avoid the trivial case of purely censored data we additionally assume
that max{F1(τ), F2(τ)} > 0 if τ = min{τ1, τ2} <∞.

3.1 Optimal combination of weighted logrank statistics

Let w1, . . . , wm ∈ W be fixed weights corresponding to alternatives of interest (several examples are
discussed in Sections 4–5 below). Brendel et al. (2014) then proposed a test with broader power
function on an enlarged alternative. Roughly speaking, their procedure is asymptotically optimal for
Kw1 , . . . ,Kwm as well as all local alternatives Kw with arbitrary mixture of weights w =

∑m
i=1 βiwi > 0

with β1, . . . , βm ≥ 0. Denote their union as Km. The choice of weights w1, . . . , wm ∈ W together with
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the restriction to non-negative β’s ensures that Km ⊂ K≥. It is, however, worth to note that the
asymptotic results below do not require the constraint to weights from W but are even correct for
more general continuous w` : [0, 1]→ R, w 6= 0 of bounded variation, ` = 1, . . . ,m.

Anyhow, to achieve the outlined broader power behavior Brendel et al. (2014) proceed as follows:
Starting with the more simple two-sided test they pool all weighted logrank statistics in an m-
dimensional vector Tn = [Tn(w1), . . . , Tn(wm)]T and use the quadratic form Qn := TT

n Σ̂−Tn to detect
two-sided deviations from the null hypothesis H=. Here, B− denotes the Moore–Penrose inverse of a
matrix B and Σ̂n is the multivariate extension of (3) given by its entries

(Σ̂n)r,s =
n

n1n2

∫ ∞
0

ws(F̂ (t−))wr(F̂ (t−))
Y1(t)Y2(t)

Y (t)
dÂ(t) (r, s = 1, . . . ,m).

They then show that Qn can be expressed as an empirical projection of the hazard ratio difference
∆̂ = dÂ1/dÂ − dÂ2/dÂ onto the space V = {

∑m
i=1 βiwi(F̂ ) : β1, . . . , βm ∈ R} spanned by the pre-

chosen weights w`. In the one-sided case it is thus natural to restrict the projection of ∆̂ to the
positive cone V≥ = {

∑m
i=1 βiwi(F̂ ) : β1, . . . , βm ≥ 0}. They then prove that this eventually leads to

the following maximum statistic in several quadratic forms

Sn = max{0,TT
n,JΣ̂−n,JTn,J : ∅ 6= J ⊂ {1, . . . ,m}; Σ̂−J Tn,J ≥ 0}. (5)

Here, we used the notation ZJ = (Zj)j∈J for a vector Z ∈ Rm while B−J denotes the Moore-Penrose
inverse of BJ = (Br,s)r,s∈J for a matrix B ∈ Rm×m with indices taken from J ⊂ {1, . . . ,m}.

In the case m = 1 of only one weight (5) equals the squared one-sided test statistic Sn =
Tn(w1)

2/σ̂2(w1)1{Tn(w1) > 0} given below Equation (3). Due to the rather complex structure of Sn
for general m, its asymptotic limit distribution is rather complicated and non-pivotal. Brendel et al.
(2014) therefore propose a studentized permutation test in Sn and prove its asymptotic optimality for
testing H= against Km. However, as outlined in the introduction, their procedure is computationally
too exhaustive. A first step, to retort this issue is rather simple: We only treat linearly independent
weights as this considerably simplifies the calculation of the involved Moore-Penrose inverse (Ditzhaus
and Friedrich, 2018) and the limit distribution of Sn. As typical weights are given by polynomials (cf.
Brendel et al., 2014 and Sections 4– 5 below), their linear independence is automatically given. Thus,
the subsequent assumption, which we assume throughout, is no actual restriction from a practical
point of view.

(A2) Suppose for all ε ∈ (0, 1) that w1, . . . , wm are linearly independent on [0, ε], i.e.,
∑m

i=1 βiwi(x) = 0
for all x ∈ [0, ε] implies β1 = · · · = βm = 0.

Under this framework we obtain the following result about the asymptotic null distribution of Sn,
which involves inverse matrices instead of general Moore-Penrose-inverses thanks to Assumption A2.

Theorem 1 (Convergence under the null). Suppose that the null H= is true and set F0 = F1 = F2.
(a) The matrix Σ̂ converges in probability to a non-singular matrix Σ = (Σr,s)r,s with entries Σr,s =∫

(wrws)(F0)ψ dF0, where ψ = [(1−G1)(1−G2)]/[κ(1−G1) + (1− κ)(1−G2)].
(b) The test statistic Sn in (5) converges in distribution to

S = max{0,TT
JΣ−1J TJ : ∅ 6= J ⊂ {1, . . . ,m}; Σ−1J TJ ≥ 0},

where T ∼ N(0,Σ). Moreover, the distribution function t 7→ P (S ≤ t) of S is continuous on (0,∞)
with P (S = 0) ≤ 1/2.

From Theorem 1 we obtain by φn,α = 1{Sn > qm,1−α} an asymptotically exact test, i.e., E(φn,α)→
α, where qm,1−α denotes the (1 − α)-quantile of the distribution of S. Due to Assumption A2 the
exact distribution of S can be derived as in the proof of Theorem 3.2.7 in Behnen and Neuhaus (1989).
However, it is rather cumbersome and depends on several unknown parameters and functions. To
overcome this asymptotic non-pivotality of Sn we later suggest an asymptotic correct wild bootstrap
approach in Section 3.2. Before this, we state further asymptotic properties of the test φn,α which will
later carry over to its wild bootstrap version. To this end, we first note that in case of m = 1 and
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w1 = w our test is equivalent to the weighted logrank test φn,α(w) = 1{Tn,stud(w) > z1−α} based on
w. With this in mind we discuss the consistency of our test φn,α for general m and explain how it
combines the strength of these classical singly-weighted tests.

Theorem 2 (Consistency). Let K ⊂ K≥ be any fixed alternative. Then the test φn,α is consistent for
testing H= versus K, i.e., EK(φn,α)→ 1, whenever a singly-weighted logrank test φn,α(wi) is consistent
for some i = 1, . . . ,m.

For the singly-weighted logrank tests it was already shown (Fleming and Harrington, 1991, Theorem
7.3.1) that φn,α(w) with strictly positive weight w > 0 is consistent for fixed ordered alternatives
F1 ≥ F2 with F1(t) > F2(t) for some t < τ . Hence, we recommend to choose at least one strictly
positive weight wi, where we prefer to include the classical logrank weight w ≡ 1.

To state the asymptotic optimality with respect to Km we now explicitly specify the corresponding
local alternatives. To this end, let F0 be a baseline distribution function with corresponding cumulative
hazard function A0 and consider the local alternatives

Aj,n(t) =

∫ t

0
1 + cj,nw(F0) dA0 (t ≥ 0), cj,n =

(−1)j+1

nj

(n1n2
n

)1/2
(6)

for some w ∈ W. Due to w ≥ 0 we obtain a local alternative with A1,n ≥ A2,n. Note, that different to
the rather lax description of Km we here assume perturbations of λj , j = 1, 2, in opposite directions
which is needed to prove

Theorem 3 (Asymptotics under local alternatives). Define ψ and Σ as in Theorem 1, where now
F0 is the baseline distribution function. Then Sn converges in distribution under the alternative (6)
to a random variable S as in (5), where now T ∼ N(a,Σ) is multivariate normal distributed with
expectation vector a = (

∫
w(F0)wi(F0)ψ dF0)i=1,...,m.

This result can be used to prove that φn,α is admissible for all local alternatives of the form (6) with
w ∈ Wm = {w =

∑m
i=1 βiwi : β1, . . . , βm ≥ 0, w > 0}, the cone spanned by the pre-chosen weights.

In other words, there is no test achieving higher asymptotic power for all local alternatives given
by weights w ∈ Wm simultaneously. To state this, denote by Qn,βββ, βββ = (β1, . . . , βm) ∈ [0,∞)m, the
distribution of the data (X1,1, δ1,1, . . . , X2,n2 , δ2,n2) under the local alternative (6) with w =

∑m
i=1 βiwi.

Furthermore, let En,βββ be the expectation under Qn,βββ. In particular, Qn,0 and En,0 represent the
situation under the null hypothesis H=.

Theorem 4 (Asymptotic admissible). There exists no test sequence ϕn of asymptotic size α, i.e.
with lim supn→∞En,0(ϕn) ≤ α, such that lim infn→∞[En,βββ(ϕn) − En,βββ(φn,α)] is non-negative for all
0 6= βββ ≥ 0 and positive for some w ∈ Wm.

In this sense φn,α is asymptotically optimal for the alternative spanned by the pre-chosen weights
w`. How to calculate critical values efficiently, is discussed below.

3.2 Wild Bootstrap

For a practical application of φn,α critical values have to be calculated. As qm,1−α depends on unknown
quantities we propose a multiplier wild bootstrap technique (Wu, 1986) which has previously been
applied in other survival designs (Lin, 1997; Beyersmann et al., 2013; Dobler and Pauly, 2014; Bluhmki
et al., 2018a). To this end, let G1,1, . . . , G1,n1 , G2,1, . . . , G2,n2 be n independent and identical distributed
multipliers with E(Gj,i) = 0, var(Gj,i) = 1 and finite fourth moment E(G4

j,i) <∞. The Gj,i are also
called wild bootstrap weights and are supposed to be independent of the data. As in Bluhmki et al.
(2018a) the first idea is to randomly weight the subject-specific counting processes Nj,i within the

Nelson–Aalen estimator Âj leading to its wild bootstrap version

ÂGj (t) =

∫ t

0

1{Yj > 0}
Yj

d
( nj∑
i=1

Gj,iNj,i

)
=

nj∑
i=1

Gj,i

∫ t

0

1{Yj > 0}
Yj

dNj,i (t ≥ 0), (7)
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j = 1, 2. Now, replacing Âj by ÂGj in the definitions of Tn(w) and Tn we obtain their wild bootstrap

counterparts TGn (w) and TG
n , respectively. This could already be used to obtain a wild bootstrap

version of Sn. However, it is generally recommended to additionally bootstrap the studentization (Hall
and Wilson, 1991), i.e. the empirical covariance matrix Σ̂n. Following Dobler and Pauly (2014); Dobler
et al. (2017) and Dobler (2016) a multiplier bootstrap version thereof is given by

(Σ̂G
n )r,s =

2∑
j=1

nj∑
i=1

n

n1n2

∫ ∞
0

ws(F̂ (t−))wr(F̂ (t−))
Y1(t)Y2(t)

Y 2(t)
G2
j,i dNj,i(t) (r, s = 1, . . . ,m). (8)

Now, substituting Tn by TG
n and Σ̂n by Σ̂G

n in the definition of Sn leads to its wild bootstrap version
SGn . We note that another possibility for bootstrapping Σ̂n as, e.g., proposed by Beyersmann et al.
(2013), is given by the empirical covariance matrix of TG

n . However, our simulation results preferred
the usage of (8), cf. Section 4 below and the appendix for details.

Now, only the question remains which weights should be chosen. Due to the asymptotic normality
of Tn it seems plausible to choose standard normal Gj,i as proposed by Lin (1997). Regarding the
discrete character of the involved counting processes, however, it might also be reasonable to utilize
discrete distributed multipliers instead to better reflect their finite sample behavior. This has, e.g.,
been argued by Beyersmann et al. (2013) and Dobler et al. (2017) who proposed the use of centered
Poisson multipliers. Another possibility is given by simple random signs (so-called Rademacher weights)
that are uniformly distributed on {−1, 1}. In case of linear regression models the latter exhibited
preferably finite sample properties (Liu, 1988; Davidson and Flachaire, 2008). Anyhow, we formulate
the asymptotic validity of this approach for arbitrary weights and thereafter compare the three above
multiplier choices in simulations.

Theorem 5 (Wild bootstrap under the null). Define S as in Theorem 1. Then the wild bootstrap
version SGn asymptotically mimics its null distribution, i.e. under H= we have convergence in probability

sup
x≥0

∣∣∣P (SGn ≤ x|(X1,1, δ1,1), . . . , (X2,n2 , δ2,n2))− P (S ≤ x)
∣∣∣→ 0. (9)

Consequently, φGn,α = 1{SGn > qGn,1−α} is an asymptotically exact level α test for H=, where

qGn,α denotes the α-quantile of SGn given the data (Xj,i, δj,i)1≤i≤nj ,j=1,2. Different to the permutation
approach of Brendel et al. (2014) the proposed multiplier resampling technique directly recovers the
asymptotic null distribution of the test statistic. This is not only methodologically desirable but
also allows to work without any further modifications of the resampling as, e.g., a time-consuming
studentization technique as needed in Brendel et al. (2014).

In addition to the asymptotic behavior under the null, the power behavior of φn,α under fixed and
local alternatives carries over to its wild bootstrap version φGn,α.

Theorem 6 (Wild bootstrap under fixed and local alternatives). (a) Let K ⊂ K≥ be any fixed
alternative. Then φGn,α is consistent for K whenever φn,α is consistent for K.

(b) Under the local alternatives (6) φGn,α and φn,α share the same asymptotic power behavior, i.e.,

En,w(|φn,α − φGn,α|)→ 0. In particular, φGn,α is asymptotically admissible in the sense of Theorem 4.

4 Simulations

To complement our theoretical large sample studies from above a simulation study was conducted in
which we investigate our tests’ small sample properties.

4.1 Type-I error

Since monotonic transformation of the observations do not affect the rank tests’ outcome we can restrict
ourselves to standard exponential distributed survival times. The censoring times are simulated by
exponential distributions Exp(µj), where the scale parameter µj > 0 (j = 1, 2) depends on the group
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only. In the first setting, the parameter µj is chosen such that it reflects an average censoring rate
of 10% in the first group and of 30% in the second group. In addition, we also discuss two cases of
equal censoring with rates of 15% and 30%, respectively. Moreover, we consider four different scenarios
(n1, n2) = (25, 25), (20, 30), (50, 50), (30, 70) representing balanced and unbalanced settings with small
to moderate sample sizes. The nominal level α is set to 5%. After playing around with several weights
we consider three directions given by

w1(x) = 1, w2(x) = (1− x)4, w3(x) = x4 (x ∈ [0, 1]). (10)

Here, w1 corresponds to the classical logrank test giving equal weight to all times. In contrast, w2 and
w3 put more emphasize on early and late times, respectively. It is easy to check that the weights are
linearly independent. Thus, Assumption A2 is fulfilled. We also investigate the effect of different wild
bootstap multipliers. In particular, we choose from either Rademacher, normal or centered Poisson
multipliers Gj,i. All computations are done using the computing environment R (R Core Team, 2018),
version 3.5.0, based on Nsim = 5, 000 simulation runs and Nboot = 1, 000 bootstrap runs for each
scenario. The resulting empirical sizes are displayed in Table 1.

Table 1: Empirical sizes in % (nominal level 5%) for three different wild bootstrap versions of our test.
The survival and censoring times were simulated by exponential distributions.

(n1, n2) censoring in % Normal Poisson Rademacher

(10,30) 6.02 9.14 5.18
(20,30) (15,15) 5.96 8.98 4.66

(30,30) 5.86 8.66 4.24

(10,30) 5.54 9.04 5.14
(25,25) (15,15) 5.84 9.02 5.16

(30,30) 5.86 9.06 5.46

(10,30) 5.38 8.28 4.72
(30,70) (15,15) 5.02 8.04 4.40

(30,30) 5.92 8.62 4.38

(10,30) 5.48 8.50 5.72
(50,50) (15,15) 5.80 8.84 5.38

(30,30) 5.26 8.24 5.10

It is apparent that the wild bootstrap test φGn,α based on centered Poisson multipliers tends to quite
liberal conclusions with true type-I-error rates around 8− 9%. This is completely different to findings
in competing-risks settings (Beyersmann et al., 2013), where centered Poisson appeared to be preferable
over standard normal ones. In particular, in our situation choosing normal or Rademacher multipliers
considerably enhances the type-I-error control with rates between 4− 6%. Thereof, we recommend
Rademacher multipliers due to a slight liberality of the test based on normal ones. Simulation results
for empirical covariance estimators of TG

n instead of Σ̂G
n given in the appendix did not alter this

general conclusion. However, the test based on Poisson multipliers then exhibits a better behavior with
type-I-errors between 5− 8% while the two others tend to be more liberal in this case. We therefore
restrict our further power investigations to Rademacher multipliers together with Σ̂G

n = Σ̂n (in this
case) as covariance estimator in the bootstrap test.

4.2 Power behavior against various alternatives

In this section we present simulation results for our test’s power under various scenarios. Regarding
the results of Section 4.1 we consider only the Rademacher wild bootstrap version of our test based on
w1, w2, w3 from (10). We compare our test with the Rademacher wild bootstrap versions of the singly-
weighted tests based on only one of the three weights/directions, respectively. The simulation settings
are the same as in Section 4.1 except for the first group’s distribution. Here, we replace the standard
exponential distribution by a perturbation of it in the three hazard directions w1 (proportional), w2

(early) and w3 (late). To be more specific, we consider the situation described in (4) for w = wi: We
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choose 8 equidistant values of ϑ from 0.3 to 2.4 for the early (w2) and late (w3) hazard alternatives,
respectively, as well as from 0.1 to 0.8 for the proportional (w3) hazard alternative. For ease of
presentation we only consider the larger sample size settings (n1, n2) = (50, 50), (30, 70) with censoring
rates (15%, 15%) and (10%, 30%), respectively. The tests’ empirical power curves are displayed in
Figures 1–3.

Proportional hazards

ϑ

em
pi

ric
al

 p
ow

er

0.2
0.4
0.6
0.8

samp: (30,70), cens: (10%,30%)

0.2 0.4 0.6 0.8

samp: (30,70), cens: (15%,15%)

0.2 0.4 0.6 0.8

samp: (50,50), cens: (10%,30%)

0.2
0.4
0.6
0.8

samp: (50,50), cens: (15%,15%)

Late
Prop
Early
3 Dir

Figure 1: Power simulation results (α = 5%) under the proportional hazard alternative for the test
based on all three directions (3 Dir) and the three singly-weighted tests based on one of these directions.

Early hazards
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Figure 2: Power simulation results (α = 5%) under the early hazard alternative for the test based on
all three directions (3 Dir) and the three singly-weighted tests based on one of these directions.

In all scenarios the same phenomenon can be readily seen: The singly-weighted test φn,α(w) based
on the same weight w, which is used for the alternative, leads to the highest empirical power values in
each scenario, e.g. φn,α(w2) had largest power for early hazards. Due to the admissibility result stated
in Theorems 4 and 6 this is not surprising. The test φn,α based on the three directions w1, w2, w3

always leads to the second highest values. This confirms the primary intention and its strength: instead
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Late hazards
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Figure 3: Power simulation results (α = 5%) under the late hazard alternative for the test based on all
three directions (3 Dir) and the three singly-weighted tests based on one of these directions.

of having an optimal test for a single weight alternative we broaden the power and get a test with
good power behavior under various alternatives. Having this goal in mind one may choose far more
than three weights. But, as already pointed out by Ditzhaus and Friedrich (2018) for the two-sided
situation, choosing too many weights may result in flatter power curves. In addition, this also increases
the computational load of the procedure as the maximum statistic (5) requires the calculation of 2m− 1
(sub-) quadratic forms.

Finally, we also consider a scenario for which the alternative does not correspond to the above
weights w1, w2, w3. We pick w(x) = x(1− x) giving more weight to ’central’ times, i.e., times around
the median, and choose 8 equidistant values of ϑ between 0.2 and 1.6. Here, one would a priori suspect
a worse power behavior of the singly-weighted logrank tests which are sensitive to early and late hazard
alternatives. In fact, the results displayed in Figure 4 are in line with our intention and the previous
power results.

Moreover, the singly-weighted classical logrank test φGn,α(w1) has the highest power values in all

scenarios and the novel test φGn,α again exhibits the second highest power; closely following the power

curve of φGn,α(w1).

5 Real data example

To illustrate the applicability of our procedure we re-analyze the Veteran’s Administration lung cancer
study from Prentice (1978). The data set is included in the R-package survival via the command
veteran. It consists of 137 survival times of males with inoperable lung cancer, including 9 censored
observations corresponding to a censoring rate of nearly 7%. In the study two interventions, a standard
and an experimental chemotherapy, were compared on four different tumor types. As the tumor type
had a statistically significant impact on the survival time (Kalbfleisch and Prentice, 1980) we restrict
our exemplary analysis to the tumor type small cell. In this setting, group 1 corresponds to the
experimental chemotherapy while the standard chemotherapy is represented by group 2. We test the
alternative K≥ that the experimental chemotherapy has a negative effect on the patients’ mortality
compared to the standard treatment. Although it contradicts the findings of Kalbfleisch and Prentice
(1980), we also analyze the whole data set ignoring the different tumor types for didactic reasons; now
testing superiority of the experimental group. The (group-specific) Kaplan-Meier curves are displayed
in Figure 5 for both examples.

To check K≥ we apply our test based on the early, proportional and late weights w1, w2, w3 as already
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Central hazards
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Figure 4: Power simulation results (α = 5%) under the central hazard alternative for the test based on
all three directions (3 Dir) and the three singly-weighted tests based on one of these directions.

done in the previous section. As recommended in Section 4.1 we only consider the Rademacher wild
bootstrap multipliers. To estimate the corresponding bootstrap quantile we use Nboot = 104 iterations.
In particular, these are exactly the default configurations of Marc’s novel R-function mdir.onesided
implemented within the package mdir.logrank available on GitHub. We briefly illustrate its application
on the current study: After loading the data set the columns consisting of the survival times, the
censoring and the group status are renamed to time, event and group, respectively. For example, in
the veteran data set the coding 1 for standard and 2 for experimental chemotherapy was used (i.e., the
group status is permuted when compared to ours). Then the command mdir.onesided(data, group1 =
2) calculates the desired p-value of a superiority of the standard chemotherapy group (coded as group 1
in the R data set). Hence, mdir.onesided(data, group1 = 1) would lead to a test for superiority of
the experimental group. For the user’s convenience we also implemented a GUI, where the user can
easily specify weights of the form w(x) = xr(1− x)g with r, g ∈ N or even choose one of the other two
wild bootstrap approaches. Thereby, it is automatically checked whether Assumption A2 is fulfilled for
the chosen weights. In case of linearly dependent weights a linearly independent subclass is selected
automatically. The GUI is called upon the command calculateGUI() and a detailed step-by-step
description of its applicability with corresponding screen-shots is given in the appendix. Finally, more
general weights are also accessible but only via the pure command mdir.onesided.

In addition to our test, we calculate the p-values of the classical singly-weighted tests φn,α(wi) for
i = 1, 2, 3. The resulting p-values are displayed in Table 2. The plot of the Kaplan–Meier curves for
the first example suggest a superiority of the first group’s distribution function, or in other words the
alternative seem to be true. This first graphical impression can be supported statistically since our
test’s p-value is smaller than 5%. Contrary, the application of the classical logrank test φn,α(w1) or
the test φn,α(w2) based on an early weight would not lead to a significant rejection. For the pooled
data set (consisting of all tumor types), φn,α(w2) again rejects the null, whereas φn,α(w1) and φn,α(w2)

do not reject. This is in line with Figure 5 since the Kaplan–Meier estimator F̂1 for the first group
exceeds the one F̂2 of the second group for late times but is smaller than F̂2 for early times. In all, no
overall superiority can be graphically proven, which is also the statistical result of our test.

6 Discussion and Outlook

We investigated the problem of testing for superiority in an unpaired two-sample survival set-up,
allowing for heterogeneous censoring structures. To enlarge the power functions of classical weighted
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Figure 5: (Group-specific) Kaplan–Meier curves of the veteran data set considering all tumor types
(left) or only the type ’small cell’ (right). The curves corresponding to the standard chemotherapy are
solid (—) and the ones of the experimental chemotherapy are dashed (- - -), respectively.

Table 2: p-values of our test φGn,α based on early, proportional and late hazard weight as well as of the
classical singly-weighted tests φn,α(wi), i = 1, 2, 3, for the veteran data set respecting all tumor types
or only the type small cell, respectively.

data set 3 weights prop early late

small cell tumor 0.043 0.066 0.279 0.003
all tumor types 0.086 0.533 0.703 0.028

logrank tests, we followed the idea of Brendel et al. (2014) and enhanced it in two directions. They
proposed a projection-type permutation test that is asymptotically optimal for a fixed number of pre-
determined alternatives such as early, proportional or late hazard differences. However, their procedure
is computationally exhaustive; particularly due to a complicated permutation technqiue that accounts
for the test statistics’ complex limit distribution and also needs two time-consuming Monte-Carlo loops
for calculating p-values. To this end, we first simplified their statistic by only allowing the combination
of alternatives corresponding to linearly independent weight functions. We explain that this is no loss
at all from a practical point of view but instead leads to a more simple limit distribution. This allows
for a more simple and direct approximation by means of wild bootstrap multiplier resampling. The
so gained wild bootstrap test is then shown to be asymptotically correct under the null, consistent
and also optimal for the chosen alternatives of interest. To give recommendations for the choice of
multipliers simulations for several weights corresponding to alternatives of interest were run. Instead of
the usual standard normal we found a preference for Rademacher multipliers. Moreover, to illustrate
the effect of the chosen weights corresponding to alternatives of interest we conducted several power
simulation resulting in the simplified recommendation to include at least weights for early, proportional
and late hazard differences.

The new methods are implemented in the R-package mdir.logrank available on GitHub, where
Rademacher multipliers and a combination of weights for early, proportional and late hazard alternatives
are set as the default choice. However, different choices are also possible and implemented. An analysis
of a two-armed lung study explains its aplicatoin and additionally illustrates the effect of the different
choices of weights.

The potential transfer of the current methodology to more complex designs, e.g. allowing for more
than two groups or even more than the two states may be part of future research.
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A The Proofs

For a slightly abbreviated formulation of the proof steps we set κ1 = κ and κ2 = 1− κ.

A.1 Proof of Theorem 1

In the proof of their Theorem 1 Ditzhaus and Friedrich (2018) showed that the covariance matrix
Σ is non-singular under Assumption A2. Moreover, Brendel et al. (2014) already verified that Σ̂
converges in probability to Σ and that Tn tends in distribution to T ∼ N(0,Σ). Since Σ and so Σj

is invertible for any subset ∅ 6= J ⊂ {1, . . . ,m} we can deduce immediately the convergence of the
corresponding Moore–Penrose inverses Σ̂−J to Σ−J = Σ−1J as there finally is no rank jump in probability.
Consequently, the convergence of Sn to S in distribution follows from the continuous mapping theorem.
The statements about the distribution function t 7→ P (Z ≤ t) and the probability P (Z = 0) were
already shown by Brendel et al. (2014), see Lemma 9.3 in their supplement.

A.2 Proof of Theorem 2

Fix i ∈ {1, . . . ,m}. Clearly, Sn ≥ Tn(wi)
2/σ̂2(wi)1{Tn(wi) > 0}. Hence, φn,α is consistent for a fixed

alternative K whenever φn,α(wi) is consistent for K. This implication was already observed by Brendel
et al. (2014), see their Theorem 2.

A.3 Proof of Theorem 3

Combining Theorem 7.4.1 of Fleming and Harrington (1991) and the Cramér–Wold device we can
verify the distributional convergence of Tn to T. This was already done by Brendel et al. (2014), see
their Theorem 9.1 in the supplement. The final statement of Theorem 3 follows from the continuous
mapping theorem.

A.4 Proof of Theorem 4

As already indicated in the main paper our test statistic can be interpreted as a certain projection,
see Theorem 1 of Brendel et al. (2014). Behnen and Neuhaus (1989) studied this type of projection
statistics and verified the following representation of Sn, see their Equations (3.2.1) and (6.3.3):

Sn = sup{2βββTTn − βββT Σ̂βββ : βββ ∈ [0,∞)m}. (11)

Let Mm ⊂ Rm×m be the set of all positive definite matrices. Then Rm ×Mm 3 (x,Γ) 7→ f(x,Γ) =
sup{2βββTx− βββTΓβββ : βββ ∈ [0,∞)m} is jointly continuous in both arguments, see Lemma 7.5.7 of Behnen
and Neuhaus (1989). Moreover, x 7→ f(x,Γ) is convex for each fixed matrix Γ ∈Mm. Both properties
are needed in the following derivations.

Let Qβββ = N(Σβββ,Σ) (βββ ∈ Rm). Then it is easy to see that
dQn,βββ
dQn,0

converges in distribution under

Qn,0 to
dQβββ
dQ0

(Z) with Z ∼ Q0 (Ditzhaus and Friedrich, 2018, Proof of Theorem 4). Using the notation of
statistical experiments (Strasser, 1985, Sections 60 and 80), this means that the statistical experiment
{Qn,βββ : βββ ∈ Rm} converges weakly to the Gaussian experiment {Qβββ : βββ ∈ Rm}. In other words,
{Qn,βββ : βββ ∈ Rm} fulfills Le Cam’s asymptotic normality. We can now deduce from Le Cam’s first
lemma (Strasser, 1985, Theorem 61.3) that Qn,βββ and Qn,0 are mutual contiguous for all βββ ∈ Rm.
In particular, any convergence holds in Qn,βββ-probability if and only if it does so in Qn,0-probability.

Combining this and the convergence of Σ̂ under the null (Theorem 1) yields that Σ̂ converges in
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Qn,βββ-probability to Σ for every βββ ∈ Rm. Hence, we can deduce from Theorem 3, the continuity of f
and Lebesgue’s dominated convergence theorem that

En,βββ(φn,α) = En,βββ(1{f(Tn, Σ̂) > qm,1−α})→
∫

1{f(x,Σ) > qm,1−α}dQβββ(x).

Define φ∗α = 1{f(x,Σ) > qm,1−α}. The acceptance region A = {x ∈ Rm : f(x,Σ) ≤ qm,1−α} of
φ∗α is convex. Hence, we can conclude from Stein’s theorem, see e.g. Theorem 5.6.5 of Anderson
(2003), that φ∗α is admissible in the limiting model {Qβββ : βββ ∈ [0,∞)m} for testing H : {βββ = 0} versus
K : {βββ ≥ 0, βββ 6= 0}. Contrary to our claim let us now assume, that there is a test sequence ϕn
(n ∈ N) of asymptotic size α such that lim supn→∞En,βββ(ϕn − φn,α) is nonnegative for all 0 6= βββ ≥ 0
and positive for at least one of these βββ’s. By a theorem of Le Cam (Strasser, 1985, Theorem 62.3)
there is a test ϕ of the limiting model {Qβββ : βββ ∈ [0, ,∞)m} such that En,βββ(ϕn)→

∫
ϕ dQβββ for all βββ ≥ 0

along an appropriate subsequence. But this implies that ϕ is of size α for the limiting null H : βββ = 0
and

∫
ϕ − φ∗α dQβββ is nonnegative for all 0 6= βββ ≥ 0 as well as positive for at least one of these βββ’s.

Clearly, this contradicts the admissibility of φ∗α and, finally, proves the (asymptotic) admissibility of
our test.

A.5 Proof of Theorems 5 and 6

As explained below it is sufficient for all statements of Theorems 5 and 6 to proof that (9) holds for
some real-valued random variable S0, say, under H= as well as under fixed alternatives K, respectively,
where the distribution of S0 depends on the underlying distributions F1, F2, G1, G2 and equals the
one of S under H=. From the latter the asymptotic exactness under the null follows immediately.
Moreover, we obtain En,0(|φn,α − φGn,α|)→ 0 from Lemma 1 of Janssen and Pauls (2003). Due to the
mutually contiguity of Qn,0 and Qn,βββ explained in the proof of Theorem 4 this convergence carries over
to local alternatives, i.e., we obtain En,βββ(|φn,α − φGn,α|)→ 0 for all βββ ∈ [0,∞)m. If φn,α is consistent

for a fixed alternative K and, thus, Sn converges to ∞ we can deduce from the tightness of SGn given
the data that φGn,α is consistent as well, compare to Theorem 7 of Janssen and Pauls (2003).

Introduce yj = κj(1−Gj)(1−Fj) (j = 1, 2) and y = y2 + y2. A direct consequence of the extended
Glivenko-Cantelli is sup{|Yj(t)/n−yj(t)| : t ∈ [0,∞)} → 0 and, thus, sup{|Y (t)/n−y(t)| : t ∈ [0,∞)} →
0, both in probability. The same argumentation leads to sup{|Nj(t)/n − Lj(t)| : t ∈ [0,∞)} → 0 in
probability, where Lj(t) = κjP (Xj,1 ≤ t,∆j,1 = 1) = κj

∫
[0,t](1−Gj) dFj (t ≥ 0; j = 1, 2). Moreover,

F̂ (x) = 1− exp
(
−
∫ x

0
log(1− Y −1)n d

N

n

)
→ 1− exp

(
−
∫ x

0
(1− y−1) dL

)
≡ F (x) (x < τ).

By the monotonicity of the limit and standard subsequence arguments we can deduce sup{|F̂ (t)−F (t)| :
t ∈ [0, x]} → 0 in probability for every x < τ . For every subsequence it is easy to construct a sub-
subsequence that all uniform convergence results hold simultaneously with probability one. Since the
final results do not depend on the pre-chosen subsequence we may operate in the following only along
such sub-subsequences and on an appropriate event set with probability one. Hence, given the data
we can treat the counting processes Nj , N, Yj , Y and the Kaplan–Meier estimator F̂ as (nonrandom)
functions such that the previously mentioned uniform convergence statements hold. We do so in the
following by always keeping the data fixed.

Let X(1) ≤ . . . ≤ X(n) be the order statistics of the pooled sample (Xj,i)j,i. Furthermore, let G(i)

be the multiplier corresponding to X(i). Obviously, G(1), . . . , G(n) are still independent and identical
distributed with the same distribution as G1,1. Define

ξ
(r)
n,i =

( n

n1n2

)1/2
G(i)wr(F̂ [X(i)])

Y1Y2
Y

(X(i))
[∆N1(X(i))

Y1(X(i))
−

∆N2(X(i))

Y2(X(i))

]
(1 ≤ r ≤ m; 1 ≤ i ≤ n).

Thus we can represent the bootstrap version of Tn as TG
n =

∑n
i=1 ξξξn,i, where ξξξn,i = (ξ

(1)
n,i , . . . , ξ

(m)
n,n )T

(1 ≤ i ≤ n). Using the multivariate Lindeberg-Feller theorem we can prove that it converges (given

15



the data) in distribution to a multivariate normal distributed random vector T0 ∼ N(0,Σ0) with
covariance matrix Σ0 given by its entries

(Σ0)r,s = (κ1κ2)
−1
∫

(wr ◦ F )(ws ◦ F )
y21y

2
2

y2
(y−21 dL1 + y−22 dL2) (1 ≤ r, s ≤ m).

In particular, the covariance matrices Σ0 and Σ coincide under the null H= : A1 = A2 due to∫ t
0 y
−1
j dLj = Aj(t).
To accept the stated convergence first note that ∆N1(X(i))∆N2(X(i)) equals 0. With this in mind

it is easy to check that

n∑
i=1

E(ξ
(r)
n,iξ

(s)
n,i) =

n

n1n2

∫
(wr ◦ F̂ )(ws ◦ F̂ )

Y 2
1 Y

2
2

Y 2

(dN1

Y 2
1

+
dN2

Y 2
2

)
→ (Σ0)r,s (r, s = 1, . . . ,m).

It remains to verify the Lindeberg condition for each component. Since |ξ(r)n,i | ≤ ηn−1/2|Gi| for some
η > 0 independent of i, r, n we obtain for every ε > 0

n∑
i=1

E([ξ
(r)
n,i ]

21{|ξ(r)n,i | ≥ ε}) ≤ ηE(G2
(1)1{|G(1)| ≥ n1/2η−1ε})→ 0

by Lebesgue’s dominated theorem and E(G2
(1)) = 1. This proves that TG

n converges in distribution to

T0 ∼ N(0,Σ0). Thus, it remains to analyze Σ̂G
n . To this end we introduce Σ1 ∈ Rm×m with entries

(Σ1)r,s = (κ1κ2)
−1
∫

(wr ◦ F )(ws ◦ F )
y1y2
y

d(L1 + L2)

y
(r, s = 1, . . . ,m).

Under H= : F1 = F2 we have
∫
y−1 d(L1 + L2) =

∫
(1 − F1)

−1 dF1 and, hence, Σ1 and Σ coincide
under H=. Moreover, it can easily checked that

E((Σ̂G
n )r,s) = (Σ̂n)r,s → (Σ1)r,s.

Since (a1 + . . .+ am)2 ≤ m2(a21 + . . .+ a2m) for all ai ∈ R and w is bounded by M , say, we obtain

E((Σ̂G
n )2r,s) ≤ m2M4

n∑
i=1

E(G4
(i))

n2

n21n
2
2

= m2M4E(G4
(1))

n3

n21n
2
2

→ 0.

Consequently, Σ̂G
n → Σ1 in probability follows from Chebychev’s inequality. Similar to the argumenta-

tion in Theorem 1 for Σ, it follows that Σ1 is non-singular. Thus, Σ̂−n,J converges to Σ−11,J for every
nonempty subset J ⊂ {1, . . . ,m}. Altogether we can conclude from the continuous mapping theorem
that SGn converges in distribution to the real-valued random variable

S0 = max{0,TT
0,JΣ−11,JT0,J : ∅ 6= J ⊂ {1, . . . ,m}; Σ−11,JT0,J ≥ 0},

where the distribution of S0 equals the one of S under H= Together with the arguments from the onset
this completes the proof.

B Additional simulation results

As stated in the main paper, we repeated the simulations under the null with Σ̂G
n replaced by the

empirical covariance matrix of TG
n obtained in the Nboot = 1, 000 bootstrap Monte-Carlo runs (separately

for each simulation run). The resulting empirical sizes are displayed in Table 3.
Compared to the results from in Table 1 in the main paper, the test based on Poisson multipliers

now performs much better. It is still quite liberal but not as pronounced as with Σ̂G
n . Contrary, the

tests corresponding to the Rademacher and normal multipliers are now more liberal. Consequently,
studentization by Σ̂G

n should be preferred for them. Thus, leading to the interesting conjecture that
the choice of studentization (empirical or based on squared multipliers) also depends on the choice
of wild bootstrap multipliers. Anyhow, taking both results together, the Rademacher weights with
studentization obtained via Σ̂G

n showed the best results in our situation.
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Table 3: Empirical sizes in % (nominal level 5%) for three different wild bootstrap versions of our test
using the empirical variance of TG

n for studentization. The survival and censoring times were simulated
by exponential distributions.

(n1, n2) censoring in % Normal Poisson Rademacher

(10,30) 8.7 6.6 8.1
(20,30) (15,15) 10.5 8.3 9.5

(30,30) 10.7 7.8 9.9

(10,30) 6.8 4.9 5.8
(25,25) (15,15) 8.7 6.3 7.3

(30,30) 9.2 6.7 8.2

(10,30) 9.1 6.6 7.8
(30,70) (15,15) 9.9 7.5 8.4

(30,30) 10.8 8.3 9.4

(10,30) 7.2 4.9 5.8
(50,50) (15,15) 7.9 5.7 6.4

(30,30) 7.8 5.4 6.2

C GUI of mdir.onesided

For a simple use of our R function mdir.onesided we implemented a graphical user interface (GUI).
Note that our GUI only works when the R package RGtk2 is installed. After loading the R package
mdir.logrank the command calculateGUI() opens the first window (Figure 6), where the user can
choose between the one-sided and the two-sided test. After choosing One-sided and clicking on the OK

Figure 6: GUI: Decision between the one-sided and two-sided test.

button the window for the one-sided test appears (Figure 7). The data set location can be specified
directly or by the load data button. To ensure that the data set is loaded correctly the user should
check which symbols/characters are used for column separation and decimals, respectively, and indicate
both in the two boxes intended for that. Keep in mind that rows consisting of the survival times, the
group and censoring status need to be included in the chosen data set and need to be named by time,
group and event, respectively. Via the Extract button the groups’ coding or the groups’ names are
extracted from the data set. The user then can choose the first group, i.e., the group corresponding
to F1 in our notation. Now, clicking the OK button starts the calculation for the default settings,
i.e., the test based on the weights/directions w1, w2, w3 which we used for our simulations in the main
paper. For demonstration we load the veteran data set consisting of all tumor types. As already done
in Section 5, we test for the superiority of the experimental chemotherapy and, thus, choose the group
coded by 1 to be the first group. A screenshot for this set-up with the default settings is displayed in
Figure 8. Here, the slightly different p-value compared to Section 5 in the main paper (0.087 instead of
0.086) is due to a different seed and corresponding Monte Carlo error. But the user can also change
the wild bootstrap approach, the bootstrap runs and specify other weights of the form

wr,g(x) = xr(1− x)g
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Figure 7: GUI: Empty window for the one-sided test.

with exponents r, g ∈ {1, . . . , 20}. Note, that 1, 000 bootstrap runs with three chosen weights are
calculated in a few seconds while 10, 000 runs need less than 1 minute. Moreover, check boxes are
provided for a quicker selection of the four common hazard directions: proportional (w0,0), early (w0,4),
late (w4,0) and central (w1,1). In Figure 9 a further screenshot for the veteran data is given, where now
the weights w0,0, w1,3 and w5,1 are considered.
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Figure 8: GUI: Application of our test with the default settings to the veteran data set.
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Figure 9: GUI: Application of our test with user specified directions to the veteran data set.
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