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Abstract—We present a novel approach for estimating con-
ditional probability tables, based on a joint, rather than
independent, estimate of the conditional distributions belonging
to the same table. We derive exact analytical expressions for
the estimators and we analyse their properties both analytically
and via simulation. We then apply this method to the estimation
of parameters in a Bayesian network. Given the structure
of the network, the proposed approach better estimates the
joint distribution and significantly improves the classification
performance with respect to traditional approaches.
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I. INTRODUCTION

A Bayesian network is a probabilistic model constituted
by a directed acyclic graph (DAG) and a set of conditional
probability tables (CPTs), one for each node. The CPT of
node X contains the conditional probability distributions of
X given each possible configuration of its parents. Usually
all variables are discrete and the conditional distributions are
estimated adopting a Multinomial-Dirichlet model, where
the Dirichlet prior is characterised by the vector of hyper-
parameters α. Yet, Bayesian estimation of multinomials is
sensitive to the choice of α and inappropriate values cause
the estimator to perform poorly [1]. Mixtures of Dirichlet
distributions have been recommended both in statistics [2],
[3] and in machine learning [4] in order to obtain more
robust estimates. Yet, mixtures of Dirichlet distributions
are computationally expensive; this prevents them from
being widely adopted. Another difficulty encountered in CPT
estimation is the presence of rare events. Assuming that all
variables have cardinality k and that the number of parents is
q, we need to estimate kq conditional distributions, one for
each joint configuration of the parent variables. Frequently
one or more of such configurations are rarely observed in
the data, making their estimation challenging.

We propose to estimate the conditional distributions
by adopting a novel approach, based on a hierarchical
Multinomial-Dirichlet model. This model has two main char-
acteristics. First, the prior of each conditional distribution
is constituted by a mixture of Dirichlet distributions with
parameter α; the mixing is attained by treating α as a

random variable with its own prior and posterior distribution.
By estimating from data the posterior distribution of α, we
need not to fix its value a priori. Instead we give more
weight to the values of α that are more likely given the
data. Secondly, the model is hierarchical since it assumes
that the conditional distributions within the same CPT (but
referring to different joint configurations of the parents) are
drawn from the same mixture. The hierarchical model jointly
estimates all the conditional distributions of the same CPT,
called columns of the CPT. The joint estimates generate
information flow between different columns of the CPT; thus
the hierarchical model exploits the parameters learned for
data-rich columns to improve the estimates of the parameters
of data-poor columns. This is called borrowing statistical
strength [5, Sec 6.3.3.2] and it is well-known within the
literature of hierarchical models [6]. Also the literature
of Bayesian networks acknowledges [7, Sec.17.5.4] that
introducing dependencies between columns of the same CPT
could improve the estimates, especially when dealing with
sparse data. However, as far as we known, this work is the
first practical application of joint estimation of the columns
of the same CPT.

To tackle the problem of computational complexity we
adopt a variational inference approach. Namely, we compute
a factorised approximation of the posterior distribution that
is highly efficient. Variational inference appears particularly
well suited for hierarchical models; for instance the inference
of Latent Dirichlet Allocation [8] is based on variational
Bayes. By extensive experiments, we show that our novel
approach considerably improves parameter estimation com-
pared to the traditional approaches based on Multinomial-
Dirichlet model. The experiments show large gains espe-
cially when dealing with small samples, while with large
samples the effect of the prior vanishes as expected.

The paper is organised as follows. Section II introduces
the novel hierarchical model. Section III provides an analyt-
ical study of the resulting estimator, proving that the novel
hierarchical approach provides lower estimation error than
the traditional approaches, under some mild assumptions on
the generative model. Section IV presents some simulation
studies showing that, given the same network structure,
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hierarchical estimation yields both a better fit of the joint
distribution and a consistent improvement in classification
performance, with respect to the traditional estimation under
parameter independence. Section V reports some concluding
remarks.

II. ESTIMATION UNDER
MULTINOMIAL-DIRICHLET MODEL

We want to induce a Bayesian network over the set of
random variables X = {X1, . . . ,XI}. We assume that each
variable Xi ∈X is discrete and has ri possible values in the
set Xi. The parents of Xi are denoted by Pai and they have
qi possible joint states collected in the set Pi.
We denote by θx∣pa the probability of Xi being in state
x ∈ Xi when its parent set is in state pa ∈ Pi, i.e.,
θx∣pa = p(Xi = x∣Pai = pa) > 0. We denote by θXi∣pa

the parameters of the conditional distribution of Xi given
Pai = pa. A common assumption [7, Sec.17] is that
θXi∣pa is generated from a Dirichlet distribution with known
parameters. The collection of the conditional probability
distributions θXi = (θXi∣pa1

, . . . ,θXi∣paqi
) constitutes the

conditional probability table (CPT) of Xi. Each vector of
type θXi∣pa, with pa ∈ Pi, is a column of the CPT.

The assumption of local parameter independence [7,
Sec. 17] allows to estimate each parameter vector θXi∣pa

independently of the other parameter vectors. The assumed
generative model, ∀i ∈ 1, . . . , I , is:

p(θXi∣pa) = Dir(sα) pa ∈ Pi,

p(Xi∣Pai = pa,θXi∣pa) = Cat(θXi∣pa) pa ∈ Pi,

where s ∈ R denotes the prior strength, also called equivalent
sample size, and α ∈ Rri is a parameter vector such that
∑x∈X αx = 1. The most common choice is to set αx = 1/ri
and s = 1/qi, which is called BDeu prior [7, Sec.17].

If there are no missing values in the data set D, the
posterior expected value of θx∣pa is [6]:

E[θx∣pa] =
nx,pa + sαx

npa + s
,

where nx,pa is the number of observations in D charac-
terised by Xi = x and Pai = pa, while npa = ∑x∈Xi

nx,pa.

III. HIERARCHICAL MODEL

The proposed hierarchical model estimates the conditional
probability tables by removing the local independence as-
sumption. In order to simplify the notation we present the
model on a node X with a single parent Y . X has r states
in the set X , while Y has q states in the set Y . Lastly, we
denote by nxy the number of observations with X = x and
Y = y and by ny = ∑x∈X nxy the number of observations
with Y = y, where x ∈ X and y ∈ Y .

As described in Section II, θXi∣pa, for i = 1, . . . , I and
pa ∈ Pi, are usually assumed to be independently drawn
from a Dirichlet distribution, with known parameter α. On

the contrary, the hierarchical model treats α as a hidden
random vector, thus making different columns of the CPT
dependent. Specifically, we assume α to be drawn from a
higher-level Dirichlet distribution with hyper-parameter α0.

We assume that (xk, yk) for k = 1, . . . , n are n i.i.d.
observations from the hierarchical Multinomial-Dirichlet
model:

p(α∣α0) = Dirichlet(α0)

p(θX ∣y ∣s,α) = Dirichlet(sα) y ∈ Y (1)
p(X ∣Y = y,θX ∣y) = Cat(θX ∣y) y ∈ Y

where s ∈ R is the equivalent sample size, and α0 ∈ Rr is a
vector of hyper-parameters.

A. Posterior moments for θX ∣y
We now study the hierarchical model, deriving an analyti-

cal expression for the posterior average of θx∣y , which is the
element x of vector θX ∣y , and for the posterior covariance
between θx∣y and θx′∣y′ . To keep notation simple, in the
following we will not write explicitly the conditioning with
respect to the fixed parameters s and α0. We introduce the
notation ED [⋅] = E [ ⋅∣D] to represent the posterior average
and CovD(⋅, ⋅) = Cov(⋅, ⋅∣D) to represent the posterior
covariance.

Definition 1. We define the pointwise estimator θ̂x∣y for the
parameter θx∣y as its posterior average, i.e., θ̂x∣y = ED [θx∣y],
and the pointwise estimator α̂x for the element x of the pa-
rameter vector α as its posterior average, i.e., α̂x = ED [αx] .

Theorem 1. Under model (1), the posterior average of θx∣y
is

θ̂x∣y = ED [θx∣y] =
nxy + sα̂x

ny + s
, (2)

while the posterior covariance between θx∣y and θx′∣y′ is

CovD(θx∣y,θx′∣y′)=δyy′
θ̂x∣yδxx′−θ̂x∣y θ̂x′∣y

ny + s + 1
+
s2CovD(αx,αx′)

Cyy′
,

where Cyy′ is defined as

Cyy′ = {
(ny + s)(ny′ + s) if y ≠ y′

(ny + s)(ny + s + 1) if y = y′.

The posterior average and posterior covariance of α
cannot be computed analytically. Some results concerning
their expression and numerical computation, together with
the complete proof of Theorem 1, are detailed in Appendix.

Notice that the pointwise estimator θ̂x∣y is a mixture
of traditional Bayesian estimators obtained under (non-
hierarchical) Multinomial-Dirichlet models with α fixed, i.e,
nxy+sαx

ny+s
. Indeed, thanks to the linearity in αx, we obtain

θ̂x∣y =
nxy + sα̂x

ny + s
= ∫

nxy + sαx

ny + s
p(α∣D)dα.

This mixture gives more weight to the values of α that are
more likely given the observations.



B. Properties of the estimator θ̂X ∣y
We study now the mean-squared error (MSE) of θ̂x∣y and

we compare it to the MSE of other traditional estimators.
In order to study the MSE of θ̂x∣y we need to assume the
generative model

p(θX ∣y ∣s, α̃) = Dirichlet(sα̃) y ∈ Y,

p(X ∣Y = y,θX ∣y) = Cat(θX ∣y) y ∈ Y, (3)

where s and α̃ are the true underlying parameters. Moreover,
since θX ∣y is a random vector, we define the MSE for an
estimator θ̄x∣y of the single component θx∣y as

MSE (θ̄x∣y) = Eθ [En [(θ̄x∣y − θx∣y)
2
]] , (4)

where Eθ [⋅] and En [⋅] represent respectively the expected
value with respect to θx∣y and nxy , and the MSE for
the estimator θ̄X ∣y of the vector θX ∣y as MSE (θ̄X ∣y) =

∑x∈X MSE (θ̄x∣y) .
Notice that the generative model (3) is the traditional,

thus non-hierarchical, Multinomial-Dirichlet model, which
implies parameter independence. Hence, the traditional
Bayesian estimator satisfies exactly the assumptions of this
model. The Bayesian estimator is usually adopted by as-
suming α̃ to be fixed to the values of a uniform distribution
on X , i.e., αB = 1/r ⋅ 11×r, see e.g. [6]. However, since
in general α̃ ≠ 1/r ⋅ 11×r, the traditional Bayesian approach
generates biased estimates in small samples. On the contrary,
the novel hierarchical approach estimates the unknown pa-
rameter vector α̃ basing on its posterior distribution. For this
reason the proposed approach can provide estimates that are
closer to the true underlying parameters, with a particular
advantage in small samples, with respect to other traditional
approaches.

In order to study the MSE of different estimators, we first
consider an ideal shrinkage estimator

θ∗X ∣y = ω̃yθ
ML
X ∣y + (1 − ω̃y)α̃, (5)

where ω̃y ∈ (0,1) and θML
x∣y =

nxy

ny
is the maximum-likelihood

(ML) estimator, obtained estimating from the observations
each vector θX ∣y independently of other vectors. This convex
combination shrinks the ML estimator towards the true un-
derlying parameter α̃. Setting ω̃y =

ny

ny+s
, the ideal estimator

corresponds to a Bayesian estimator with known parameter
α̃, i.e., θ∗x∣y =

nxy+α̃x

ny+s
. However, since α̃ represents the

true underlying parameter that is usually unknown, the ideal
estimator (5) is unfeasible. Yet it is useful as it allows to
study the MSE.

The main result concerns the comparison, in terms of
MSE, of the ideal estimator with respect to the traditional
(non hierarchical) Bayesian estimator, which estimates α̃x
by means of the uniform distribution 1/r, i.e., θB

x∣y =
nxy+s/r

ny+s
,

see e.g. [6]. The traditional Bayesian estimator can be
written as

θB
X ∣y = ωyθ

ML
X ∣y + (1 − ωy)

1

r
, (6)

where ωy =
ny

ny+s
.

Theorem 2. Under the assumption that the true generative
model is (3), the MSE for the ideal estimator is

MSE (θ∗x∣y) = (ω̃2
y

s

ny
+ (1 − ω̃y)

2
)
α̃x − α̃

2
x

s + 1
,

while the MSE for the traditional Bayesian estimator is

MSE (θB
x∣y) = MSE (θ∗x∣y) + (1 − ω2

y) (α̃x −
1

r
)

2

.

If ω̃y = ωy , MSE (θ∗X ∣y) ≤ MSE (θB
X ∣y).

The proof is reported in Appendix.
Since in general α̃x ≠ 1

r
, the second term in (2) is positive

and the ideal estimator achieves smaller MSE with respect to
traditional Bayesian estimator. To improve the estimates of
the traditional Bayesian model in terms of MSE, we propose
to act exactly on the second term of (2). Specifically, we can
achieve this purpose by estimating the parameter vector α̃
from data, instead of considering it fixed.

The proposed hierarchical estimator defined in (2) has the
same structure of the ideal estimator (5):

θ̂X ∣y = ωyθ
ML
X ∣y + (1 − ωy)α̂,

where ωy =
ny

ny+s
. This convex combination of θML

X ∣y and α̂
shrinks the ML estimator towards the posterior average of
α, with a strength that is inversely proportional to ny .

Contrary to the traditional Bayesian estimator (6), the hi-
erarchical estimator provides an estimate of α̃ that converges
to the true underlying parameter as n increases. Indeed, it is
well known that the posterior average ED [α] converges to
the true underlying parameter α̃ as n goes to infinity, i.e.,
α̂ → α̃ as n → +∞, [6]. As a consequence, θ̂x∣y converges
to θ∗x∣y and the MSE of θ̂x∣y converges to the MSE of θ∗x∣y ,
i.e., MSE (θ̂x∣y) →MSE(θ∗x∣y) as n→ +∞.

In the finite sample assumption MSE (θ̂x∣y) differs from
MSE(θ∗x∣y), since θ̂x∣y includes an estimator of α. Since
in the hierarchical model we cannot compute this quantity
analytically, we verify by simulation that the hierarchical
estimator provides good performances in terms of MSE with
respect to the traditional Bayesian estimators.

In conclusion, as we will show in the numerical experi-
ments, the hierarchical model can achieve a smaller MSE
than the traditional Bayesian estimators, in spite of the
unfavourable conditions of the generative model (3). This
gain is obtained thanks to the estimation of the parameter
α̃, rather than considering it fixed as in the traditional
approaches. In more general conditions with respect to
(3), the true generating model could not satisfy parameter
independence and the MSE gain of the hierarchical approach
would further increase.



IV. EXPERIMENTS
In the experiments we compute the proposed hierarchical

estimator using variational Bayes inference in R by means
of the rstan package [9]. The variational Bayes estimates
are practically equivalent to those yielded by Markov Chain
Monte Carlo (MCMC), though being the variational infer-
ence much more efficient than MCMC (less than a second
for estimating a CPT compared to a couple of minutes for
the MCMC method). In the following we report the results
obtained via variational inference. The code is available at
http://ipg.idsia.ch/software.php?id=139.

A. MSE analysis

In the first study we assess the performances of the
hierarchical estimator in terms of MSE. We consider two
different settings, in which we generate observations from
model (3), where α̃ is fixed. In the first setting (test 1) we
sample α̃ from a Dirichlet distribution with parameter 11×r,
while in the second setting (test 2) we sample it from a
Dirichlet distribution with parameter 106 ⋅11×r. Under test 2
the parameters of the sampling distribution for α̃ are very
large and equal to each other, implying α̃x ≃ 1/r, ∀x ∈ X .
For this reason, test 2 is the ideal setting for the traditional
Bayesian estimator, while test 1 is the ideal setting for the
hierarchical estimator.

In both test 1 and test 2 we consider all the possible
combinations of r (the number of states of X) and q
(the number of conditioning states), with r ∈ {2,4,6,8}
and q ∈ {2,4,6,8}. For each combination of r and q, for
both test 1 and test 2, we generate data sets with size
n ∈ {20,40,80,160,320,640}. We repeat the data sampling
and the estimation procedure 10 times for each combination
of r, q and n. Then we compare the estimates yielded by the
hierarchical estimator, with s = r and α0 = 11×r, and by the
traditional Bayesian estimator assuming parameter indepen-
dence, with s = r. We compare the performance of different
estimators by computing the difference in terms of average
MSE, defined as MSE(θ̄X ∣Y ) = ∑y∈Y ∑x∈X MSE(θ̄x∣y)/rq
for an estimator θ̄X ∣Y . In every repetition of the experiment
{1, . . . ,10}, we then compute MSE(θB

X ∣Y ) − MSE(θ̂X ∣Y )

and we represent it in Figure 1.
The results show that the hierarchical estimator mostly

provides better or equivalent results in comparison to θB
X ∣Y ,

especially for small n and/or large q. In a Bayesian network
it is usual to have large values of q, since q represents the
cardinality of the parents’ joint states set. In test 1 (light
blue boxplots) the advantage of the hierarchical estimator
over the Bayesian one is generally large, as expected. The
advantage of the hierarchical model steadily increases as q
increases, becoming relevant for q = 6 or q = 8. For large
n the gap between the two estimators vanishes, although it
is more persistent when dealing with large q. Interestingly,
in test 2 (green boxplots), the traditional Bayesian estimator
is just slightly better than the hierarchical one, even though

the former is derived exactly from the true generative model.
The traditional estimator has a small advantage only for q =
4 and small values of n, and this advantage quickly decreases
if either q or n increase.

B. Joint distribution fitting

In the second study we assess the performance of the
hierarchical estimator in the recovery of the joint distribution
of a given Bayesian network.

We consider 5 data sets from UCI Machine Learning
Repository: Adult, Letter Recognition, Nursery, Pen-Based
Recognition of Handwritten Digits and Spambase. We dis-
cretise all numerical variables into five equal-frequency bins
and we consider only instances without missing values. For
each dataset we first learn, from all the available data, the
associated directed acyclic graph (DAG) by means of a
hill-climbing greedy search, as implemented in the bnlearn
package [10]. We then keep such structure as fixed for all the
experiments referring to the same data set, since our focus is
not structural learning. Then, for each data set and for each
n ∈ {20,40,80,160, 320,640,1280} we repeat 10 times the
procedure of 1) sampling n observations from the data set
and 2) estimating the CPTs. We perform estimation using the
proposed hierarchical approach, with s = r and α0 = 11×r,
and the traditional BDeu prior (Bayesian estimation under
parameter independence) with s = 1 and s = 10. The choice
of s = 1 is the most commonly adopted in practice, while
s = 10 is the default value proposed by the bnlearn package.
Conversely, we did not offer any choice to the hierarchical
model. Indeed, we set the smoothing factor s in the proposed
model to the number of states of the child variable, which
has the same order of magnitude of the smoothing factors
used in the traditional Bayesian approach. In spite of the
more limited choice for the parameter s, the hierarchical
estimator consistently outperforms the traditional Bayesian
estimator, regardless whether the latter adopts a smoothing
factor 1 or 10.

We then measure the log-likelihood of all the instances in-
cluded in the test set, where the test contains all the instances
not present in training set. We report in the top panels of
Figure 2 the difference between the log-likelihood of the
hierarchical approach and the log-likelihood of Bayesian
estimation under local parameter independence, i.e., the
log-likelihood ratio. The log-likelihood ratio approximates
the ratio between the Kullback-Leibler (KL) divergences of
the two models. The KL of a given model measures the
distance between the estimated and the true underlying joint
distribution.

The log-likelihood ratios obtained in the experiments are
extremely large on small sample sizes, being larger than one
thousand on all data sets (Figure 2, top panels). This shows
the huge gain delivered by the hierarchical approach when
dealing with small data sets. This happens regardless of the
equivalent sample size used to perform Bayesian estimation

http://ipg.idsia.ch/software.php?id=139
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Figure 1: Boxplots of MSE difference between the Bayesian (s = r) and the hierarchical estimator in test 1 (light blue) and
test 2 (green) with different dimension of the conditioning set (q = 2,4,6,8). Positive values favour the hierarchical model.

under parameter independence: we note however that in
general s = 10 yields better results than s = 1. The lowest
gains are obtained on the data set Nursery; the reason is that
the DAG of Nursery has the lowest number of parents per
node (0.9 on average, compared to about twice as much for
the other DAGs). Thus, this data set is the less challenging
from the parameter estimation viewpoint, with respect to
the others. We point out that significant likelihood ratios
are obtained in general even for large samples, even though
they are not apparent from the figure due to the scale. For
instance, for n = 320 the log-likelihood ratios range from 50
(Nursery) to 85000 (Letter).

C. Classification

In the third study we assess the performance of the
hierarchical estimator in terms of classification. We consider
the same datasets of the previous experiment, discretised in
the same way.

For each dataset we first learn the Tree-Augmented Naive
Bayes (TAN) structure by means of the bnlearn package.
The networks are estimated on the basis of all the available
samples and are kept fixed for all the experiments referring
to the same data set, since our focus is not structural learn-
ing. Then, for each dataset and for each n ∈ {20,40,80,160,
320,640,1280}, we sample n observations. We then esti-
mate the CPTs of the Bayesian network from the sampled
data by means of the hierarchical estimator (s = r and
α0 = 11×r) and the traditional Bayesian estimators obtained
under a BDeu prior (s = 1 and s = 10). We repeat the
sampling and the estimating steps 10 times for each value
of n and each data set. We then classify each instance of the
test set, which contains 1000 instances sampled uniformly
from all the instances not included in the training set. We
assess the classification performance by measuring accuracy
and area under the ROC (ROC AUC) of the classifiers.
In the central panels of Figure 2 we report the difference
in accuracy between the hierarchical estimator and the
traditional Bayesian ones, while in the bottom panels of the
same figure we report the difference in ROC AUC between
the same classifiers.

The area under the ROC is a more sensitive indicator
for the correctness of the estimated posterior probabilities

with respect to accuracy. According to Figure 2 (bottom
panels), the hierarchical approach yields consistently higher
ROC AUC than both the BDeu classifiers. The increase of
ROC AUC in small samples (n = 20, n = 40) ranges between
2 and 20 points compared to both the BDeu priors. As n
increases this gain in ROC AUC tends to vanish. However,
for n > 320 the gain in ROC AUC for the datasets Adult
and Letter ranges between 1 and 5 points.

Figure 2 (central panels) shows also improvements in
accuracy, even if this indicator is less sensitive to the
estimated posterior probability than the area under ROC.
Indeed, in computing the accuracy, the most probable class is
compared to the actual class, without paying further attention
to its posterior probability. In small samples (n = 20, n = 40)
there is an average increase of accuracy of about 5 points
compared to the BDeu prior with s = 10 and of about 10
points compared to the BDeu prior with s = 1. The accuracy
improvements tends to decrease as n increases; yet on both
Adult and Letter data sets an accuracy improvement of about
1-2 points is shown also for n = 1280.

V. CONCLUSIONS

We have presented a novel approach for estimating the
conditional probability tables by relaxing the local indepen-
dence assumption. Given the same network structure, the
novel approach yields a consistently better fit to the joint
distribution than the traditional Bayesian estimation under
parameter independence; it also improves classification per-
formance. Moreover, the introduction of variational infer-
ence makes the proposed method competitive in terms of
computational cost with respect to the traditional Bayesian
estimation.

APPENDIX

In order to prove Theorem 1, we first need to derive some
results concerning the posterior moments for the vector α,
whose general element αx is associated to state x ∈ X for the
variable X . Given a dataset D, the k-th posterior moment
for the element αx is

E [αkx∣D] = ∫ αkxp(α∣D)dα.
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Figure 2: Boxplots of the logarithm of the likelihood ratio (top panels), accuracy gain (central panels) and area under the
ROC gain (bottom panels) obtained comparing the hierarchical method with respect to BDeu (s = 1 in orange and s = 10 in
red) for the five machine learning datasets analysed. Positive values favour the hierarchical model.

The following proposition states a general result for comput-
ing any posterior moment of α, whose general expression
is E [∏x∈X α

kx
x ∣D], where kx ∈ N represents the power of

element αx.

Lemma 1. Under the assumptions of model (2), the poste-
rior average of the quantity ∏x∈X α

kx
x , with kx ∈ N ∀x ∈ X ,

is

ED [∏
x∈X

αkxx ]=γ∫ ∏
x∈X

∏
y∈Y

s.t. nxy>0

nxy

∏
ν=1

(sαx + ν − 1)αk̃xx dα, (7)

where k̃x = α0,x +kx −1 and γ is a proportionality constant
such that

γ−1 = ∫ ∏
x∈X

∏
y∈Y

s.t. nxy>0

nxy

∏
ν=1

(sαx + ν − 1)αα0,x−1
x dα. (8)

The element x′ of the posterior average vector ED [α] is

α̂x′ =γ∫ ∏
x∈X

∏
y∈Y

s.t. nxy>0

nxy

∏
ν=1

(sαx + ν − 1)α
δx,x′

x dα, (9)

where δx,x′ is a Kronecker delta.
The element (x′, x′′) of the posterior covariance matrix
CovD(α) is

CovD(αx′ , αx′′) = ED [αx′αx′′] − α̂x′ α̂x′′ , (10)

where

ED[αx′αx′′]=γ∫ ∏
x∈X

∏
y∈Y

s.t. nxy>0

nxy

∏
ν=1

(sαx + ν − 1)α
δx,x′+δx,x′′

x dα.

Both integrals in (7) and (8) are multiple integrals com-
puted with respect to the r elements of vector α, such that
∑x∈X αx = 1. The space of integration is thus the standard
r-simplex.

Proof of Lemma 1: Under the assumptions of model
(2), the joint posterior density of α,θX ∣y1 , . . . ,θX ∣yq is

p(α,θX ∣y1 , . . . ,θX ∣yq ∣D)

∝
Γ (s)

∏x∈X Γ (sαx)
∏
y∈Y

∏
x∈X

(θx∣y)
nxy+sαx−1αα0,x−1

x .

Marginalising p(α,θX ∣y1 , . . . ,θX ∣yq ∣D) with respect to
θX ∣y1 , . . . ,θX ∣yq , we obtain the marginal posterior density
for α, i.e.,

p(α∣D)∝
Γ (s)

∏x∈XΓ (sαx)
∏
y∈Y

∏x∈XΓ (sαx+nxy)

Γ (s + ny)
∏
x∈X

αα0,x−1
x .

(11)

Thanks to the well-known property of the Gamma function

Γ(α +m) =
m

∏
ν=1

(α + ν − 1) ⋅ Γ(α), for m ≥ 1



we can write the posterior marginal density (11) as

p(α∣D) ∝ ∏
x∈X

∏
y∈Y

s.t. nxy>0

nxy

∏
ν=1

(sαx + ν − 1)αα0,x−1
x . (12)

The proportionality constant of the posterior marginal den-
sity is obtained by integrating the right term in (12) with
respect to the r elements of α, such that ∑x∈X αx = 1. The
resulting proportionality constant is thus

γ =

⎛
⎜
⎜
⎝
∫ ∏

x∈X

∏
y∈Y

s.t. nxy>0

nxy

∏
ν=1

(sαx + ν − 1)αα0,x−1
x dα

⎞
⎟
⎟
⎠

−1

.

The posterior average for the quantity ∏x∈X α
kx
x can be

derived directly from the posterior marginal density of α as

ED [∏
x∈X

αkxx ] = γ∫ ∏
x∈X

∏
y∈Y

s.t. nxy>0

nxy

∏
ν=1

(sαx + ν − 1)αk̃xx dα,

where k̃x = α0,x + kx − 1. In the special case of α0,x = 1,
∀x ∈ X , we have k̃x = kx.

The posterior average for αx′ is obtained directly from
(7), by choosing kx = δx=x′ , i.e., kx = 1 for x = x′ and
kx = 0 for ∀x ≠ x′, while the posterior average for the
product of αx′ and αx′′ is obtained directly from (7), by
choosing kx = δx=x′ +δx=x′′ , i.e., kx = 1 for x ∈ {x′, x′′} and
kx = 0 for ∀x ∉ {x′, x′′}.

Proof of Theorem 1: Given α, the marginal posterior
density for θX ∣y is a Dirichlet distribution with parameters
sα + ny , where ny = (nx1y, . . . , nxry)

′. It is thus easy to
compute

E [θx∣y ∣α,D] = Eα,D [θx∣y] =
nxy + sαx

ny + s
,

where x ∈ X , y ∈ Y , and Eα,D [⋅] = E [⋅ ∣α,D ].
The posterior average of θx∣y can thus be computed by

means of the law of total expectation as

ED [θx∣y] = ED [Eα,D [θx∣y]] =
nxy + sED [αx]

ny + s
.

The posterior average of αx is obtained directly from
Lemma 1.

In order to compute the posterior covariance between θx∣y
and θx′∣y′ we can use the law of total covariance, i.e.,

CovD(θx∣y, θx′∣y′) = CovD (Eα,D [θx∣y] ,Eα,D [θx′∣y′])+

+Es,D [Covα,D (θx∣y, θx′∣y′)] .

The first quantity is:

CovD (Eα,D [θx∣y] ,Eα,D [θx′∣y′])

= CovD (
nxy + sαx

ny + s
,
nx′y′ + sαx′

ny′ + s
) =

s2CovD (αx, αx′)

(ny + s) (ny′ + s)
.

If y′ = y, the second quantity is:

ED [Covα,D (θx∣y, θx′∣y)]

= ED [
(nxy + sαx)((ny + s)δxx′ − (nx′y + sαx′))

(ny + s)2(ny + s + 1)
]

=
(nxy + sED [αx])δxx′

(ny + s)(ny + s + 1)
−
ED [(nxy + sαx)(nx′y + sαx′)]

(ny + s)2(ny + s + 1)

=
θ̂x∣yδxx′ − θ̂x∣y θ̂x′∣y′

ny + s + 1
−
s2(ED[αxαx′]−ED[αx]ED[αx′])

(ny + s)2(ny + s + 1)

=
θ̂x∣yδxx′ − θ̂x∣y θ̂x′∣y′

ny + s + 1
−

s2CovD (αx, αx′)

(ny + s)2(ny + s + 1)
.

Otherwise, if y′ ≠ y, ED [Covα,D
(θx∣y, θx′∣y′)] = 0, since

θX ∣y ⊥⊥ θX ∣y′ given α.
Exploiting the law of total covariance, we obtain

CovD(θx∣y, θx∣y′) =
s2CovD (αx, αx′)

(ny + s) (ny′ + s)
+

+ δyy′
⎛

⎝

θ̂x∣yδxx′ − θ̂x∣y θ̂x′∣y

ny + s + 1
−

s2CovD (αx, αx′)

(ny + s)2(ny + s + 1)

⎞

⎠
.

The posterior covariance between αx and αx′ is obtained
directly from Lemma 1.

Proof of Theorem 2: Exploiting the linearity of the
ideal estimator we obtain that

θ∗x∣y − θx∣y = ω̃y (θ
ML
x∣y − θx∣y) + (1 − ω̃y) (α̃x − θx∣y) .

The MSE of θ∗x∣y is thus

MSE (θ∗x∣y) = ω̃
2
yMSE (θML

x∣y) + (1 − ω̃y)
2MSE (α̃x)+

+ ω̃y(1 − ω̃y)Eθ [En [(θML
x∣y − θx∣y) (α̃x − θx∣y)]] .

Using the definition of MSE (4) and the assumptions
of model (3), i.e., En [nxy] = nyθx∣y , Eθ [θx∣y] = α̃x and

Varθ (θx∣y) =
α̃x−α̃

2
x

s+1
, we obtain

MSE (θML
x∣y) = Eθ

⎡
⎢
⎢
⎢
⎢
⎣

En
⎡
⎢
⎢
⎢
⎢
⎣

(
nxy

ny
− θx∣y)

2⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

= Eθ [
1

n2y
Varn (nxy)] =

ny

n2y
Eθ [θx∣y (1 − θx∣y)]

=
1

ny
(Eθ [θx∣y] −Eθ [θx∣y]

2
−Varθ (θx∣y))

=
1

ny
(α̃x − α̃

2
x −

α̃x − α̃
2
x

s + 1
) =

s

ny

α̃x − α̃
2
x

s + 1
. (13)

This quantity corresponds to the first term of MSE(θ∗x∣y).
The second term is obtained as

MSE (α̃x) = Eθ [En [(α̃x − θx∣y)
2
]] = Eθ [(α̃x − θx∣y)

2
]

= Varθ (θx∣y) =
α̃x − α̃

2
x

s + 1
,



since α̃x − θx∣y is independent of nxy and Eθ [θx∣y] = α̃x.
The last term Eθ[En[(θML

x∣y − θx∣y)(α̃x − θx∣y)]] = 0, since
α̃x − θx∣y is independent of nxy and Eθ[θML

x∣y] = θx∣y .
The MSE for the ideal estimator is thus

MSE (θ∗x∣y) = ω̃
2
y

s

ny

α̃x − α̃
2
x

s + 1
+ (1 − ω̃y)

2 α̃x − α̃
2
x

s + 1

= (ω̃2
y

s

ny
+ (1 − ω̃y)

2
)
α̃x − α̃

2
x

s + 1
.

If ω̃y =
ny

ny+s
and s > 0, ∀x ∈ X ,

MSE (θ∗x∣y) = (
n2y

(ny + s)2
s

ny
+

s2

(ny + s)2
)
α̃x − α̃

2
x

s + 1

=
s

ny + s

α̃x − α̃
2
x

s + 1
<
s

ny

α̃x − α̃
2
x

s + 1
= MSE (θML

x∣y) .

Thus, ∑x∈X MSE(θ∗x∣y) < ∑x∈X MSE(θML
x∣y).

The MSE for the Bayesian estimator (6) is:

MSE (θB
x∣y) = ω

2
yMSE (θML

x∣y) + (1 − ω2
y)MSE(

1

r
)+

+ ωy(1 − ωy)Eθ [En [(θML
x∣y − θx∣y)(

1

r
− θx∣y)]] .

The first term is derived in (13).
The second term corresponds to

MSE(
1

r
) = Eθ [(

1

r
− α̃x)

2

] +Eθ [(α̃x − θx∣y)
2
]

= (α̃x −
1

r
)

2

+Varθ (θx∣y) = (α̃x −
1

r
)

2

+
α̃x − α̃

2
x

s + 1
,

since 1
r
− θx∣y is independent of nxy and Eθ [θx∣y] = α̃x.

The last term Eθ [En [(θML
x∣y − θx∣y) ( 1

r
− θx∣y)]] = 0, since

1
r
− θx∣y is independent of nxy and Eθ [θML

x∣y] = θx∣y .
The MSE for the Bayesian estimator is thus

MSE (θB
x∣y) = (ω2

y

s

ny
+ (1 − ωy)

2
)
α̃x − α̃

2
x

s + 1
+

+ (1 − ωy)
2
(α̃x −

1

r
)

2

= MSE (θ∗x∣y)+(1 − ωy)
2
(α̃x −

1

r
)

2

,

if ω̃y = ωy . Thus, MSE(θ∗x∣y) ≤ MSE(θB
x∣y), ∀x ∈ X .

The two estimators have the same MSE in the special
case of α̃x = 1

r
. As a consequence, ∑x∈X MSE(θ∗x∣y) ≤

∑x∈X MSE(θB
x∣y), with equality if α̃ = 1

r
⋅ 11×r.

In the finite sample assumption MSE (θ̂x∣y) differs from
MSE(θ∗x∣y), since θ̂x∣y includes an estimator of α. In par-
ticular,

MSE (θ̂x∣y) = MSE (θ∗x∣y) + (1 − ωy)
2MSE (α̂x)+

+ ωy(1 − ωy)Eθ [En [(θML
x∣y − θx∣y) (α̂x − α̃x)]] . (14)

The second and third term in (14) cannot be computed
analytically and should be computed numerically.
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