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Abstract

In this paper the random walk centrality (equivalently, the accessibility index) for the states of a

time-homogenous irreducible Markov chain on a finite state space is considered. It is known that

the accessibility index for a particular state can be written in terms of the first and second moments

of the first return time to that state. Based on that observation, the problem of estimating the

random walk centrality of a state is approached by taking realizations of the Markov chain, and then

statistically estimating the first two moments of the corresponding first return time. In addition

to the estimate of the random walk centrality, this method also yields the standard error, the bias

and a confidence interval for that estimate. For the case that the directed graph of the transition

matrix for the Markov chain has a cut-point, an alternate strategy for computing the random walk

centrality is outlined that may be of use when the centrality values are of interest for only some

of the states. In order to illustrate the effectiveness of the results, estimates of the random walk

centrality arising from random walks for several directed and undirected graphs are discussed.

Keywords: Random walk centrality; Network centrality; Accessibility index; Markov chains;

Mean first passage times; Bootstrap

1. Introduction and preliminaries

Let {Xn : n ≥ 0} be a finite irreducible Markov chain on the state space Ω = {1, . . . , N} with

transition probability matrix T. Define τi(k) by

τi(k) := inf{n > 0 : Xn = k | X0 = i}, k ∈ Ω,

as the first passage time from state i to state k. For each i, k ∈ Ω, we denote the mean first passage

time from state i to state k by mi,k = E[τi(k)]. Letting w be the stationary distribution vector for

the Markov chain, it is well–known that mi,i = 1/wi for each i ∈ Ω.
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Fix a state k ∈ Ω. The accessibility index for state k, denoted by αk, is given by

αk =
N∑
i=1

wimi,k,

and measures the expected time to reach state k from a randomly chosen initial state (that is,

randomly chosen according to the stationary distribution). Thus the αks provide a centrality

measure for the states of the Markov chain – low values of αk correspond to states that are easy to

reach, while high values of αk correspond to states that are not so easy to reach. Indeed, in Noh

and Rieger (2004), the authors introduce a measure of vertex centrality for undirected graphs: they

consider the simple random walk on a connected, finite, undirected, non–bipartite graph and, for

each vertex k, introduce the so–called random walk centrality for vertex k, which we denote here

by θk. In Kirkland (2016), it is shown that in Noh and Reiger’s setting, θk = 1/αk for each vertex

in the graph. Thus the accessibility index can be seen as an extension of the notion of random walk

centrality to irreducible Markov chains.

How might one compute the αks? On the face of it, the computation might be costly and

time–consuming, as both the mean first passage times and the entries in the stationary distribution

would need to be found first. However, an observation in Kirkland (2016) suggests a statistical

approach to estimating the accessibility indices. In order to outline that approach, we need a little

more notation. Define τ(k; 0) as the time of the first visit to state k and, for j ∈ N,

τ(k; j) := inf{n > τ(k; j − 1) : Xn = k},

so that τ(k; j) is the time of the j–th return to state k. Finally, for k ∈ Ω and j ∈ N, define

Rk,j = τ(k; j)− τ(k; j − 1).

That is, Rk,j is the j–th inter-arrival time between visits to state k. Given k, the Rk,j are indepen-

dent and identically distributed random variables and are denoted, generically, as Rk. Theorem 1.1

of Kirkland (2016) shows that the accessibility index αk may be written as

αk =
1

2

(
E(R2

k)

E(Rk)
− 1

)
. (1.1)

Equation (1.1) informs our approach to estimating the αks: by taking a realization of the Markov

chain, we can produce estimates of both E(Rk) and E(R2
k) in order to estimate αk. We observe that

this strategy may offer an advantage in the situation that the state space is large but one is only

interested in the accessibility indices for a small number of states, or where explicit computation

of the stationary distribution and/or the mean first passage times is prohibitively expensive or

numerically unstable.
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Given a sequence Rk,1, . . . , Rk,M , a ratio type estimate of αk is given by

α̂k =
1

2

(∑M
j=1R

2
k,j∑M

j=1Rk,j
− 1

)
. (1.2)

For the corresponding random walk centrality measure θk = 1/αk, the plug in estimate is simply

θ̂k =
1

α̂k
.

For a large integer L, let x = (x1, . . . , xL) be a realization of a random walk of length L on

{Xn : n ≥ 0} starting at an arbitrary state X0 = x0 = ω. Then, for each k ∈ Ω, we also obtain a

vector of (νk ≥ 0) realizations of Rk (say rk = (rk,1, . . . , rk,νk)). In R (R Core Team, 2016), this is

easily accomplished by the command

rk = diff(which(x == k)).

Provided that the number of visits νk to state k in x is reasonably large, a (consistent) estimate of

αk is given by

α̂k =
1

2

{∑νk
i=1 r

2
k,i∑νk

i=1 rk,i
− 1

}
.

Note that, since {Xn} is recurrent, we have νk →∞ as L→∞ for all k. Furthermore, since E(Rmk )

exists for all m ∈ N and k ∈ Ω, we have, limL→∞ ν
−1
k

∑νk
i=1R

m
k,i → E(Rmk ) > 0 almost surely and it

follows by (for example) Slutsky’s Theorem, that α̂k is consistent for αk (and that θ̂k is consistent

for θk).

The estimator α̂k suffers from two sources of bias. The first source is from the fact that α̂k is

a non-linear ratio type estimator. This bias can, at least, be estimated using either the common

jackknife or bootstrap methods (see Efron and Tibshirani, 1994, Chapters 12–14, for example). The

second source of bias is due to the fact that, by using random walks, we are essentially sampling

from a truncated distribution of Rk because inter-arrival times longer than the walk length are

impossible. Longer random walks should mitigate this bias. In practice, we perform a moderate

number, say Nw, of independent random walks, each of length L, with random starting points.

In this paper we focus on strongly connected directed and undirected graphs, with the object

of estimating the accessibility indices (equivalently, the random walk centralities) for the vertices

using the technique described above. Section 2 presents some numerical results that illustrate our

technique. In Section 3 we prove a theoretical result for graphs with a cut–point that allows one

to compute mean first passage times, stationary distribution entries and accessibility indices by

working with the corresponding quantities for Markov chains on a smaller state space. Again this

result may offer some advantage in the setting where one is only interested in these quantities for

a subset of states.
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2. Numerical Examples

To illustrate some of the results presented in this paper we make use of three commonly available

networks. In practice, identifying the most important states is of particular interest and, to this

end, for each of these networks, we performed the following steps:

Step 1: NW = 10 random walks are performed on the network, from starting points chosen

uniformly at random. Each random walk is extended in increments of 104 steps until

a given proportion (say pnodes) of the nodes (states) in the network are visited at least

nvisits times.

Step 2: For each state k that was visited at least nvisits times, the inter-arrival times were

determined as rk = (rk,1, . . . , rk,νk), where νk is the total number of inter-arrival times

for state k, and point estimates of θk were determined. The set S of the 100 nodes with

the largest values of θ̂k were identified.

Step 3: For each state k ∈ S, a bootstrap procedure with 1000 replicates was performed

to estimate θk (θ̂k) and wk (ŵk = νk/
∑νk

j=1 rk,j), along with estimates of the standard

errors, relative biases and coefficients of variation for these estimates.

In what follows, timings are reported as well as information regarding each step for each network

analyzed. Timings are for a Mac Mini with a 2.6GHz Intel Core i7 processor and 8 GB memory

using R (R Core Team, 2016) and the igraph package (Csardi and Nepusz, 2006).

2.1. The Gnutella peer-to-peer network of August 30, 2012

The Gnutella peer-to-peer network from August 30, 2012 (Gnutella30) can be found at the

Stanford Large Network Dataset Collection (SNAP) (Leskovec and Krevl, 2014). It consists of

consists of 36,682 nodes and 88,328 edges. The largest strongly connected component consists of

8490 nodes and 31706 edges and we restrict our attention to this component. Figure 2.1 shows the

matrix plot of the adjacency matrix. The tick marks denote the 20 most important states according

to the true θk, where darker ticks represent more important states (some tick marks are coincident

due to the large number of states).

Other common measures of centrality include wk = 1/E(Rk), closeness (Cs), betweenness (Cb),

in-degree (Di) and weighted in-degree (Dw), which is the column sum of the transition probability

matrix. Kendall’s correlation coefficients between the θk and these measures are

wk Cs Cb Di Dw

τ(θk, ·) 0.999 0.340 0.479 0.534 0.538
.

Figure 2.2 illustrates the number of random walk steps (in increments of 104 steps) and the

time required to visit (at least) a given proportion of nodes in the network at least 50 times, based
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Figure 2.1: Plot of the adjacency matrix for the Gnutella30 network.
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Figure 2.2: The number of random walk steps (millions) and time (seconds) required to visit a given proportion of
states (0.1, 0.15, . . . , 0.95) at least 50 times in the Gnutella30 network.
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Table 2.1: Top 15 nodes in the Gnutella30 Network with NW = 10, pnodes = 0.5 and nvisits = 50 according to θk
with the estimated θ̂k, estimated coefficients of variation and estimated relative bias.

Node ID θk × 104 Rank(θk) θ̂k × 104 Rank(θ̂k) ĉv(θ̂k) ̂rel-bias(θ̂k)

1877 25.410 1 25.520 1 0.0091 0.0139
5383 16.087 2 15.858 2 0.0119 0.0177
876 15.396 3 15.496 3 0.0122 0.0184
9645 13.690 4 13.506 4 0.0121 0.0186
1423 13.172 5 13.217 5 0.0117 0.0182
3373 12.426 6 12.355 6 0.0141 0.0208
1504 12.370 7 12.235 7 0.0130 0.0200
6076 12.070 8 12.084 8 0.0136 0.0204
10869 11.769 9 11.846 10 0.0145 0.0211
12792 11.738 10 11.903 9 0.0125 0.0195
4714 11.724 11 11.595 11 0.0142 0.0211
2297 11.641 12 11.518 12 0.0143 0.0216
1120 11.485 13 11.456 13 0.0148 0.0221
4066 11.141 14 11.062 15 0.0135 0.0204
1474 10.995 15 11.085 14 0.0134 0.0206

on an average of 20 replicates starting at randomly chosen nodes. It can be seen that the time

required to visit a moderate proportion of nodes at least 50 times is not onerous.

An experiment was conducted with NW = 10, pnodes = 0.5 and nvisits = 50. For this network,

Step 1 required 6.1 seconds, Step 2 required 570 seconds and Step 3 required 56.6 seconds. The

average walk length for the NW = 10 walks was 899,910 steps.

Table 2.1 shows the 15 nodes in the network with the highest θk, the associated estimates θ̂k,

their ranks, estimated coefficients of variation and relative biases (as estimated by the bootstrap

procedure). The top 15 nodes were correctly identified with the top 8 nodes in their correct

ordering. The estimated coefficients of variation are relatively small and the estimated relative

biases (as measured by the bootstrap procedure) are also small. For the top 100 nodes identified

in Step 3, the Kendall’s τ correlation coefficient between θk and θ̂k was τ(θk, θ̂k) = 0.936.

Figure 2.3 shows the estimates θ̂k relative to the θk as well as the estimates ŵk relative to wk

and plots of their coefficients of variation for the top 100 θ̂k. Most of the θ̂k are within 2.5% of the

actual θk (dashed line), as are the ŵk.

This experiment was repeated with pnodes = 0.25 and nvisits = 50, where the timings (in

seconds) were 3.59, 372 and 35.8 for Steps 1, 2 and 3 respectively. The rankings of the top 15

nodes are given in Table 2.2. The top 13 nodes were identified in the correct order. As expected,

the estimated coefficients of variation and relative biases are slightly higher in this case but still

acceptable.
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Figure 2.3: Summary of the estimates and coefficients of variation for θ̂k and ŵk (relative to θk and wk) for the top 100
nodes in the Gnutella30 network. The left panels plot the parameter estimates relative to the true parameter values,
where the horizontal dashed lines represent ±2.5%. The right panels plot the estimated coefficients of variation of
the parameter estimates.
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Table 2.2: Top 15 nodes in the Gnutella30 Network with NW = 10, pnodes = 0.25 and nvisits = 50 according to θk
with the estimated θ̂k, estimated coefficients of variation and estimated relative bias.

Node ID θk × 104 Rank(θk) θ̂k × 104 Rank(θ̂k) ĉv(θ̂k) ̂rel-bias(θ̂k)

1877 25.410 1 25.525 1 0.0155 0.0241
5383 16.087 2 15.643 2 0.0194 0.0295
876 15.396 3 15.464 3 0.0201 0.0304
9645 13.690 4 13.537 4 0.0202 0.0312
1423 13.172 5 13.033 5 0.0194 0.0303
3373 12.426 6 12.345 6 0.0241 0.0350
1504 12.370 7 12.186 7 0.0221 0.0346
6076 12.070 8 12.087 8 0.0247 0.0361
10869 11.769 9 11.970 9 0.0207 0.0320
12792 11.738 10 11.867 10 0.0220 0.0342
4714 11.724 11 11.495 11 0.0251 0.0365
2297 11.641 12 11.401 12 0.0246 0.0359
1120 11.485 13 11.347 13 0.0236 0.0357
4066 11.141 14 10.764 21 0.0248 0.0378
1474 10.995 15 11.172 14 0.0218 0.0343
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Figure 2.4: Adjacency matrix plot for the HEP-TH network.

2.2. High-energy physics theory citation Network

The arXiv (arXiv.org) high-energy physics theory citation network (HEP-TH) consists of 27,770

nodes and 352,807 edges covering papers in the period from January 1993 to April 2003 (Leskovec

and Krevl, 2014). The largest strongly connected component consists of 7,464 nodes and 116,268

edges and we restrict our attention to this component. Figure 2.4 plots the adjacency matrix

for this network. The tick marks denote the 20 most important states according to the true θk,

where darker ticks represent more important states (some tick marks are coincident due to the large

number of states) This network is difficult to search via random walks due to the temporal nature of

citations and the length of walks required to visit a moderate number of nodes a moderate number

of times can exhaust computer memory. For this network we performed NW = 10 random walks

such that each walk visited at least 1,000 nodes (pnodes = 1000/7464) at least twice (nvisits = 2).

Step 1 took 6.57 seconds, Step 2 took 781 seconds and Step 3 took 473 seconds so that the entire

analysis took approximately 21 minutes. The mean walk length required for Step 1 was 762,924.

The Kendall’s correlation coefficients between the θk and other centrality measures for this network
are

wk Cs Cb Di Dw

τ(θk, ·) 0.999 0.208 0.183 0.462 0.441
.
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Figure 2.5: Summary of the estimates and coefficients of variation for θ̂k and ŵk (relative to θk and wk) for the top
100 nodes in the HEP-TH network. The left panels plot the parameter estimates relative to the true parameter values,
where the horizontal dashed lines represent ±2.5%. The right panels plot the estimated coefficients of variation of
the parameter estimates.

Figure 2.5 shows the estimates θ̂k relative to the θk as well as the estimates ŵk relative to wk

and plots of their coefficients of variation for the top 100 θ̂k. Most of the θ̂k are within 2.5% of the

actual θk (dashed line), as are the ŵk.

Table 2.3 shows the 15 most important nodes in the HEP-TH network, ranked according to the

θk. It also shows the estimates θ̂k for these nodes as well as the estimated coefficients of variation

and relative bias. Each of the nodes in this table were visited over 100,000 times. It can be seen

that the estimates θ̂k, in this case, correctly identified these top nodes in the correct order. The

coefficients of variation and the relative biases of these estimates are quite small.
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Table 2.3: Top 15 nodes in the HEP-TH Network with NW = 10, pnodes = 1000/7464 and nvisits = 2 with the estimated
θ̂k, estimated coefficients of variation and estimated relative bias.

Node ID θk × 104 Rank(θk) θ̂k × 104 Rank(θ̂k) ĉv(θ̂k) ̂rel-bias(θ̂k)

9509140 1351.832 1 1352.155 1 0.0003 0.0007
9605009 1105.776 2 1104.918 2 0.0008 0.0013
9703196 1040.768 3 1040.206 3 0.0009 0.0013
9611132 1036.664 4 1036.153 4 0.0009 0.0014
9612215 1036.238 5 1035.754 5 0.0009 0.0013
9701025 717.530 6 718.407 6 0.0015 0.0022
9601023 478.574 7 477.234 7 0.0023 0.0034
9907085 471.740 8 473.616 8 0.0023 0.0034
9912210 456.933 9 455.225 9 0.0023 0.0035
9702163 295.403 10 295.037 10 0.0030 0.0044
9701125 235.248 11 235.780 11 0.0033 0.0049
9701151 186.426 12 185.268 12 0.0037 0.0055
9702101 184.217 13 183.602 13 0.0037 0.0055
9711200 172.097 14 170.676 14 0.0041 0.0061
9703040 150.900 15 150.274 15 0.0042 0.0063
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Table 2.4: Result summary for top 15 identified nodes in the FacebookNO network with NW = 10, pnodes = 2000/59691
and nvisits = 100 with the estimated θ̂k, estimated coefficients of variation and estimated relative bias.

Node ID θ̂k × 104 ĉv(θ̂k) ̂rel-bias(θ̂k)

2146 6.613 0.0145 0.0220
430 5.975 0.0149 0.0227
508 5.554 0.0166 0.0254
2136 4.913 0.0180 0.0267
22 4.774 0.0177 0.0269
411 4.768 0.0172 0.0258
9162 4.598 0.0169 0.0262
1338 3.801 0.0205 0.0311
3627 3.794 0.0211 0.0310
2174 3.651 0.0210 0.0315
1751 3.501 0.0210 0.0310
79 3.445 0.0192 0.0294
257 3.435 0.0197 0.0304
1002 3.409 0.0214 0.0330
4695 3.393 0.0205 0.0317

2.3. Facebook New Orleans Network

The Facebook New Orleans Network (FacebookNO) (Viswanath et al., 2009) has 63,731 nodes

and 1,545,686 edges (available at http://socialnetworks.mpi-sws.org/data-wosn2009.html).

The largest strongly connected component has 59,691 and 1,456,818 edges and we restrict our

attention to this component. As in Viswanath et al. (2009), we treat the network as directed even

though it is undirected. Due to the large number of nodes in this network, calculation of the true

θk and wk was not possible. Using pnodes = 2000/59691 and nvisits = 100, so that, in each walk, at

least 2,000 states are visited at least 100 times, the timings were 22.6, 188.4 and 27.313 seconds for

steps 1, 2 and 3 respectively. The average walk length for this example was 1,282,872 steps. The

15 nodes with the largest θ̂k are given in Table 2.4 along with the estimated coefficients of variation

and relative biases, which are small.

The above experiment was repeated using pnodes = 0.75 and nvisits = 50. The average walk

length was 21,772,822. The timings for this experiment were 332, 5258 and 389 seconds for steps

1, 2 and 3 respectively (approx 99 minutes total). The results for the top 15 nodes as determined

by θ̂k, are given in Table 2.5. The top 15 identified nodes in Tables 2.4 and 2.5 are the same but

the order has changed in the smaller experiment.

Repeating this experiment again with a different random number seed identified the same top 15

nodes in the same order. Since the maximum absolute differences between the θ̂k’s is 8.8×10−6 and

the maximum absolute differences between the coefficients of variation is 7.7×10−4, we can be fairly

confident that we have identified the important nodes in this network. The smaller experiment in

Table 2.4 illustrates the inherent problems with shorter random walks (and sample sizes) in terms
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Table 2.5: Result summary for top 15 identified nodes in the FacebookNO network with NW = 10, pnodes = 0.75 and
nvisits = 50 with the estimated θ̂k, estimated coefficients of variation and estimated relative bias.

Node ID θ̂k × 104 ĉv(θ̂k) ̂rel-bias(θ̂k)

2146 6.676 0.0037 0.0055
430 5.679 0.0040 0.0059
508 5.522 0.0041 0.0063
2136 4.924 0.0046 0.0069
411 4.689 0.0044 0.0067
22 4.670 0.0044 0.0066

9162 4.549 0.0047 0.0070
1338 3.785 0.0048 0.0072
3627 3.756 0.0050 0.0074
2174 3.720 0.0049 0.0075
1751 3.505 0.0054 0.0081
79 3.448 0.0051 0.0076

1002 3.403 0.0054 0.0081
4695 3.387 0.0052 0.0078
257 3.383 0.0051 0.0076

of variation and relative bias.

3. Random walk centrality in the presence of a cut-point

Suppose that we have a strongly connected directed graph D on nodes labelled 1, . . . , N. Fix

a node j = 1, . . . , N, and let D \ {j} denote the directed graph formed by deleting node j and all

edges incident with it. We say that node j is a cut–point if D \ {j} has k ≥ 2 strongly connected

components such that there are no paths between nodes in different strongly connected components.

While it is certainly not the case that every connected graph contains a cut-point, graphs with cut-

points certainly arise in applied settings. For instance there is an interest in the existence and

location of cut-points in wireless networks, and there are a number of algorithms for identifying

cut-points in such networks (see, for example Dagdeviren and Akram, 2014; Stojmenovic et al.,

2011; Xiong and Li, 2010). Similarly, connected scale-free networks contain large numbers of low

degree vertices, and are likely to have many vertices of degree 1, which are necessarily adjacent

to cut-points. For a graph that contains a cut-point, the following algorithm shows how we can

decouple the graph into a number of graphs of smaller order so as to compute the random walk

centralities of the corresponding vertices.

If we have an N × N irreducible stochastic matrix T whose directed graph has node N (say)
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as a cut–point, then we may write T in the following form:

T =


T1,1 0 0 . . . 0 T1,k+1

0 T2,2 0 . . . 0 T2,k+1
...

. . .
...

...
0 0 . . . 0 Tk,k Tk,k+1

Tk+1,1 Tk+1,2 . . . Tk+1,k tk+1,k+1

 , (3.1)

where, for each j = 1, . . . , k,Tj,j is a square stochastic matrix of order mj whose largest eigenvalue

is real and less than 1 and Tj,k+1 and Tk+1,j are column and row vectors (respectively) of order

mj . Note that tk+1,k+1 is a scalar, while 0 represents a zero matrix whose dimensions are clear

from the context.

Let w denote the stationary distribution vector for T, partitioned conformally with (3.1) as

wᵀ =
[
wᵀ

1 wᵀ
2 . . . wᵀ

k wk+1

]
. (3.2)

For each j = 1, . . . , k, let rj =
wk+1

1−wᵀ
je
, where e is an all–ones vector of the appropriate order, and

define T(j) by

T(j) =

[
Tj,j Tj,k+1

rjTk+1,j 1− rjTk+1,je

]
. (3.3)

We find readily that each T(j) is irreducible, stochastic, (mj + 1) × (mj + 1) and has stationary

vector given by

vᵀ
j =

[
wᵀ
j 1−wᵀ

je
]
. (3.4)

Define MT to be the matrix of mean first passage times associated with T, where we take the

convention that the diagonal entries of MT are zero; define MT(j)
analogously, for each j = 1, . . . , k.

Partition each MT(j)
conformally with (3.3) as

MT(j)
=

[
Aj aj
bᵀ
j 0

]
. (3.5)

Then according to Theorem 6.4.12 in Kirkland and Neumann (2013), we can write MT, partitioned

conformally with (3.1) as follows:

MT =


A1 a1e

ᵀ + ebᵀ
2 a1e

ᵀ + ebᵀ
3 . . . a1e

ᵀ + ebᵀ
k a1

a2e
ᵀ + ebᵀ

1 A2 a2e
ᵀ + ebᵀ

3 . . . a2e
ᵀ + ebᵀ

k a2
...

. . .
...

...
ake

ᵀ + ebᵀ
1 ake

ᵀ + ebᵀ
2 . . . ake

ᵀ + ebᵀ
k−1 Ak ak

bᵀ
1 bᵀ

2 . . . bᵀ
k 0

 . (3.6)
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From (3.4) and (3.5), we find that

vᵀ
jMT(j)

=
[
wᵀ
jAj + (1−wᵀ

je)bᵀ
j wᵀ

jaj
]
. (3.7)

Similarly, we find from (3.2) and (3.6) that the subvector of wᵀMT corresponding to the j–th

subset in the partitioning is given by

wᵀ
jAj + (1−wᵀ

je)bᵀ
j + (

∑
l=1,...,k,l 6=j

wlal)e
ᵀ, (3.8)

while the last entry of wᵀMT, namely wᵀMTeN , is given by

wᵀMTeN =
∑

l=1,...,k

wlal. (3.9)

The observations above lead to a straightforward “divide and conquer” approach to finding the

vector of accessibility indices for an irreducible stochastic matrix whose directed graph contains a

cut–point. Without loss of generality we take the transition matrix to have the form (3.1). We

may proceed as follows:

1. Compute the stationary vector w.

2. For each j = 1, . . . , k, compute rj =
wk+1

1−wᵀ
je
.

3. For each j = 1, . . . , k, form T(j) as in (3.3).

4. For each j = 1, . . . , k, compute the vector of accessibility indices corresponding to T(j).

5. From step 4, we now have the vectors wᵀ
jAj + (1 − wᵀ

je)bᵀ
j , j = 1, . . . , k, and the scalars

wᵀ
jaj , j = 1, . . . , k. We can now assemble the vector of accessibility indices corresponding to

T from (3.8) and (3.9).

We note in passing that once w has been found in step 1, steps 2–4 may be computed independently

and in parallel. We observe further that the vector of accessibility indices corresponding to vᵀ
jMT(j)

is, up to the addition of a scalar multiple of the all–ones vector, the same as the subvector of wᵀMT

that corresponds to the j–th subset in the partitioning along with state N . In particular, if we are

only interested in the ordering of the accessibility indices in that subvector, it suffices to compute

vᵀ
jMT(j)

.

For an irreducible stochastic matrix T of the form (3.1), there is an approach to step 1 that can

also be implemented in a distributed fashion by considering several stochastic matrices of smaller

order. For each j = 1, . . . , k, consider the irreducible stochastic matrix Sj given by

Sj =

[
Tj,j Tj,k+1

Tk+1,j 1−Tk+1,je

]
. (3.10)
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Figure 3.1: Order 3 neighbourhood of the nodes with the 10 largest θk (in red) along with the two cut nodes (white
with red border) in the ego-Facebook Network.

It is readily verified that Sj is the stochastic complement (Meyer, 1989) arising from T by keeping

the rows and columns corresponding to the j–th subset of the partition as well as row and column

N , and censoring the remaining rows and columns. Write the stationary vector of Sj in partitioned

form as yᵀ
j =

[
uᵀ
j 1− uᵀ

je
]
. A result in Meyer (1989) now shows that the subvector of w

corresponding to the j–th subset of the partition as well as state N is a scalar multiple of yj .

Letting

w̃ =
[

( 1
1−uᵀ

1e
)uᵀ

1 ( 1
1−uᵀ

2e
)uᵀ

2 . . . ( 1
1−uᵀ

ke
)uᵀ

k 1
]
,

we find readily that w = 1
w̃ᵀew̃. Thus we can compute the stationary vector of T by computing

the stationary distributions of the lower order matrices S1, . . . ,Sk.

3.1. Facebook Ego Network

The undirected ego-Facebook network (Leskovec and Krevl, 2014) consists of a single strongly

connected component with 4039 nodes and 88234 edges. It also contains two cut-points such that,

when all edges are removed from these nodes, the network becomes separated into 9 strongly

connected components of sizes 3782, 192, 59 plus 6 singletons. For each node k in this network, we

calculated αk, θk and wk. Figure 3.1 shows the order-3 neighbourhood of the nodes with the 10

largest θk (in red) along with the two cut nodes (white with red border). The three largest groups

are depicted in yellow, green and blue respectively and the singletons are grey. The nodes are sized

according to the θk.

To illustrate the results of Section 3, we made use of the cut-node that divided the network into

components of sizes 193 (including the cut node), which is T(j), and the remaining 4039 − 193 =
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3846. Let us denote the resulting accessibility indices calculated on T(j) as α′j . As expected,

numerical results provide an exact correspondence in the ordering of the accessibility indices α′j

and αj using the entire network and using the methods of Section 3 respectively. One may also

approximate the rj for this component using r̂j = ŵk+1(1 − ŵᵀ
je)−1, where the ŵk are estimated

as in Section 2, and then forming

T̂(j) =

[
Tj,j Tj,k+1

r̂jTk+1,j 1− r̂jTk+1,je

]
. (3.11)

Since this network has two cut-nodes, we could decompose the network recursively and obtain

results for each component. We leave this to the reader to explore further.

4. Concluding Remarks

In this paper we examined the Markov chain accessibility index for strongly connected (un)directed

networks and its connection to the so-called random walk centrality measure. We showed how these

could be estimated using simple random walks and that standard errors and biases can be estimated

using basic resampling methods. Results showed that identifying the “most important” nodes in

the network (according to the θk) can be accomplished with relative ease and with fairly high

confidence. This sets the accessibility indices (random walk centralities) apart from many other

centrality measures which are far more complex to calculate and do not lend themselves to easy

estimation. Other advantages to this approach are the facts that most of the procedures are easy

to do in parallel or in a distributed fashion and data can be collected incrementally over time for

networks that are relatively static.
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