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aData Management Group (DAMA - UPC)
bDepartment of Computer Architecture. Technical University of Catalonia, Barcelona,

Spain.
cDepartment of Statistics and OR. Technical University of Catalonia, Barcelona, Spain.

Abstract

Under the Zipf Distribution, the frequency of a value is a power function of

its size. Thus, when plotting frequencies versus size in log-log scale of data

following that distribution, one obtains a straight line. The Zipf has been as-

sumed to be appropriate for modeling highly skewed data from many different

areas. Nevertheless, for many real data sets, the linearity is observed only in

the tail; thus, the Zipf is fitted only for values larger than a given threshold

and, consequently, there is a loss of information. The Zipf-Poisson-stopped-sum

distribution is introduced as a more flexible alternative. It is proven that in

log-log scale allows for top-concavity, maintaining the linearity in the tail. Con-

sequently, the distribution fits properly many data sets in their entire range.

To prove the suitability of our model 16 network degree sequences describing

the interaction between members of a given platform have been fitted. The

results have been compared with the fits obtained through other bi-parametric

distributions.
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1. Introduction

The Zipf distribution (Zipf, 1949) is also known as the discrete Pareto distri-

bution and falls within the family of power law (PL) distributions. Its support

comprises all the strictly positive integers, while other PLs are defined for val-

ues greater than a given threshold. Its most popular characteristic is the linear5

behavior observed when the probabilities are plotted in log-log scale. Many

works have shown its suitability for fitting data sets corresponding to rank data

or frequencies of frequency data. For example, Newman (2005) uses the PL

distribution to fit the tail of data sets related to: the number of copies of books

sold in the US from 1895 to 1965; the populations of US cities; or earthquake10

magnitudes. Additional examples from computer science are presented in the

review by Mahanti et al. (2013), where the authors use a PL distribution to

adjust several Internet measures such as YouTube video popularity and web

access, among others. In addition, the analysis by Gomez-Lievano et al. (2012)

suggests that the total number of homicides in Colombia, Mexico and Brazil can15

be described by a PL. A more recent work by Wang et al. (2017) on user au-

thentication in cybersecurity shows that the “vulnerable portion of user-chosen

passwords” can also be adjusted by this distribution. For a PL application to

model the degree sequence of a network representation of a stock market, see Bo-

ginski et al. (2005). Other practitioners have developed mechanisms that mimic20

scenarios where the distribution appears (see Barabási & Albert, 1999; Erling

et al., 2015). In general, the PL distribution is considered appropriate when one

observes data distributed over orders of magnitudes and extreme values are not

rare, which is quite common in nature.

Most of the references cited above fit the PL distribution in the tail of the data,25

since it is not able to adjust the top-concave pattern drawn by the first values

in the support of the variable. For McKelvey et al. (2018), the PL usually

emerges for values greater than a given threshold that divide “the Gaussian and
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Paretian worlds”. This philosophy is also pointed out in Newman (2005) and

Clauset et al. (2009). The real existence of PL distributed data was analyzed in30

the recent work by Broido & Clauset (2018), where the authors conclude that

only a small amount of the analyzed data sets are appropriately fitted by a PL

distribution.

In this work, we extend the Zipf distribution by means of the concept of

Poisson-stopped-sum (PSS), in order to obtain a distribution able to properly35

fit the data in its whole range. The idea of stopped-sum was introduced by

Feller in 1943 under the term generalizations and renamed by Douglas in 1971

to stopped sum. Given two independent random variables (r.v.), N andX, where

N is Poisson distributed, the PSS is defined as the distribution of the sum of N

independently and identically distributed (i.i.d.) copies of X. Some examples40

of distributions that belong to the family of PSS are: negative binomial, Pólya-

Aeppli and Neyman Type A. PSSs distributions are widely applied in dissimilar

fields. For example, Podur et al. (2010) use PSS to model the annual area

burned by forest fires in the Canadian province of Ontario; and the work by

Low et al. (2016) compares the performance of several PSSs used to model45

citation data. For an application to insurance data, see Meng & Gao (2018).

The PSSs distributions appear naturally in many data generation processes, and

the parameter estimates provide important insights about the data generation

mechanism.

The new discrete family of probability distributions is denoted by Zipf-50

Poisson-stopped-sum (Zipf-PSS). The Zipf-PSS is a bi-parametric distribution

that depends on the α parameter of the Zipf and the λ parameter of the Poisson.

In contrast to the perfect straight line drawn by the Zipf distribution in log-log

scale, the Zipf-PSS can adjust the top-concavity pattern shown by many real

data sets. This avoids having to look for a threshold and, what more impor-55

tantly, allows consideration of all the collected data without loss of information.

It is important to comment that the Zipf-PSS includes the zero-value in its sup-

port, since it appears when N takes the zero value. Thus, in the example of

social network analysis, it will allow estimating the number of isolated nodes.
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These types of nodes could play an important role in the evolution of the net-60

work, since a change in the behavior of isolated nodes could induce considerable

changes in the network dynamics (Bak et al., 1987; McKelvey et al., 2018).

Some important properties related to the model are proved, for instance: the

linearity of the tail. The Zipf-PSS distribution is implemented in the R-package

zipfextR (Duarte-López & Pérez-Casany, 2018), which is available at CRAN.65

The proposed model is shown to be suitable through the analysis of a case study

where the Zipf-PSS distribution is used to fit several degree sequences related

to the independent annual networks of the MathOverflow community. The fit

of the Zipf-PSS is compared with those achieved by the negative binomial (NB)

and the discrete Weibull (DW) (Nakagawa & Osaki, 1975) distributions. The70

models are compared by means of the Akäıke Information Criterion (AIC).

The rest of the article is organized as follows. Section 2 introduces the

Zipf distribution and the concept of PSS, then defines the notion of regularly

varying function required to prove the tail linearity of our model. Section 3

defines the Zipf-PSS distribution and analyzes its main properties. Section 475

presents the analysis of several real degree sequences. Finally, Section 5 gives

some recommendations for using the Zipf-PSS distribution in random network

generation.

2. Preliminaries

This section reviews the Zipf model and also introduces the concept of a80

PSS distribution, both of which are used in defining the Zipf-PSS distribution.

Finally, we introduce the notion of regularly varying functions, since they are

required to prove some properties of the Zipf-PSS model.

2.1. The Zipf Distribution

The Zipf distribution (Zipf, 1949) is the discrete version of the Pareto dis-85

tribution and belongs to the family of PL distributions. It is also known as the

Zeta distribution and, as proved in Zörnig & Altmann (1995), it is a particular
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case of the Lerch distribution. The Zipf is a one-parametric distribution defined

on the strictly positive integer numbers, where the probabilities change inversely

to a power of the values. It is also a skewed distribution with a long right tail,90

which may be observed when plotting the probabilities in log-log scale. Most

applications of the Zipf distribution are related to scenarios where practitioners

deal with rank or frequencies of frequency data. Recent references to applica-

tions are, for instance: Mahanti et al. (2013) and Wang et al. (2017), who use

the Zipf distribution in computer science; Gomez-Lievano et al. (2012), for PL95

application in Sociology; and its use by Ferrer-i Cancho & Vitevitch (2018) in

linguistics.

It is said that r.v. X follows a Zipf distribution with parameter α > 1 if,

and only if, its probability mass function (PMF) is equal to:

P (X = x) =
x−α

ζ(α)
, x = 1, 2, ... , α > 1, (2.1)

where ζ(α) =
∑+∞
i=1 i

−α is the Riemann Zeta function. Its probability generating

function (PGF) is equal to:

GX(z) =
Liα(z)

ζ(α)
, α > 1, |z| ≤ 1, (2.2)

where Liα(z) =
∑+∞
i=1 z

i i−α is the polylogarithm function. Note that Liα(z) =

ζ(α).

Since the Riemann Zeta function converges only for α > 1, the parameter

space of the Zipf distribution is (1, +∞). Another consequence is that the

k-th moment of the Zipf, k ∈ Z+, is finite if, and only if, α > k + 1 and, in this

case, it is equal to:

E[Xk] =
ζ(α− k)

ζ(α)
. (2.3)

In particular, the first moment only exists if α > 2 and it is equal to:

E[X] =
ζ(α− 1)

ζ(α)
, α > 2. (2.4)

Since the variance depends on the second moment of the distribution, it is finite

if, and only if, α > 3 and it is equal to:

V ar[X] =
ζ(α− 2) ζ(α)− ζ(α− 1)2

ζ(α)2
, α > 3. (2.5)
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The maximum likelihood estimate (MLE) of the α parameter of the Zipf distri-100

bution is equal to the solution of the moment method which is applied to the

logarithm of the variable, that exists for any α > 1.

2.2. Poisson-stopped-sum Distributions

PSSs (Johnson et al., 2005) appear to be the distribution of an r.v. Y in

relation to a branching process, where we initially assume to have N individuals

or experimental units and that each individual gives rise to Xi new individuals in

a given period of time, whereby the total number of first-generation individuals

is equal to:

Y = X1 +X2 + ...+XN , (2.6)

where N is assumed to be a Poisson r.v. and Xi, i = 1, . . . , n, are i.i.d r.v.’s with

a given distribution that may be either continuous or discrete. It is assumed

that when N = 0, Y = 0, meaning that if there are no initial individuals, then

no new ones are generated. If Xi has a distribution with parameter vector θ

and parameter space Θ ⊆ Rn, then the distribution of Y has parameter space

{(λ, θ)|λ ∈ (0,+∞) and θ ∈ Θ}. The r.v. X is obtained when N = 1, which

takes place with probability λ e−λ, and the Poisson distribution is obtained

when Xi has a degenerate distribution at one. The distributions of N and X

are called primary and secondary distributions, respectively. Denoting by Gx(z)

the PGF of X, one has that the PGF of Y defined as in (2.6) is equal to:

GY (z) = eλ (GX(z)−1), λ > 0, (2.7)

and it is defined at least for |z| ≤ 1. Since the PGF of a PSS is the compo-

sition of the PGF of the Poisson and the PGF of the distribution of X, these105

families are also know as compound distributions. A discrete compound Poisson

distribution (DCP) is defined as a PSS with a discrete secondary distribution

(Feller, 1971; Zhang & Li, 2016). The notation for an r.v. with a DCP distri-

bution is Y ∼ DCP (α1 λ, α2 λ, . . .), with λ being the Poisson parameter and

αi = P (Xi = i). Its approximation of order r, Yr, is defined by approximating110
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the Taylor’s expansion of GX(z) at z = z0, by the first terms up to order r, and

its distribution is denoted by: DCP (α1 λ, α2 λ, . . . , αr λ).

One of the most studied approximations is the second-order approximation,

which is the Hermite distribution. Several works on the third and fourth ap-

proximations can be found in the literature under the name sttutering Poisson115

distributions (Patel, 1976) or 3 rd and 4 th order Hermite distribution (Puig &

Valero, 2007).

2.3. Regularly Varying Functions

A regularly varying function can roughly be defined as a function that per-

forms asymptotically as a power function. The formal definition below can be120

found in the book by Gulisashvili (2012, p. 201).

Definition 1. Let f be a positive measurable function on [a, +∞) with a > 0,

and let α be a real number. Then, the function f is a regularly varying function

of index α at infinity, if for any λ > 0,

lim
x→∞

f(λx)

f(x)
= λα. (2.8)

The class of all regularly varying functions with index α is denoted by Rα.

Definition 2. A slowly varying function at infinity is a function L which sat-

isfies that for all λ > 0,

lim
x→∞

L(λx)

L(x)
= 1. (2.9)

The class of slowly varying at infinity functions is denoted by R0. Observe that

f ∈ Rα if, and only if, f(x) = xα L(x), where the function L is slowly varying

at infinity.125

The work by Jessen & Mikosch (2006) outlines several properties of the

regularly varying functions and their relationship with random sums of non-

negative r.v.’s. According to the authors, the tail of Y , defined as (2.6), is

highly influenced by the tails of the primary and the secondary distributions.

Understanding that f(x) ∼ g(x), as x → +∞ is equivalent to saying that

f(x)/g(x) −−−−−→
x→+∞

1 if g(x) 6= 0, and it is equivalent to f(x) = o(1) if g(x) = 0;
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a regularly varying random variable with index α ≥ 0 is defined as r.v. X, such

that

P (X > x) ∼ px−αL(x) and P (X ≤ −x) ∼ qx−αL(x),

where p+ q = 1, and L is a slowly varying function.

Appendix A.3 establishes the relationship between the tails of r.v. X with a

regularly varying function and r.v Y defined as (2.6).

3. The Zipf-Poisson-Stopped-Sum Distribution

In this section, we define the Zipf-PSS distribution and state its main prop-130

erties. The proofs of the results presented in this section appear in Appendix A.

3.1. Definition

The Zipf-PSS model is obtained by assuming that the distribution of the

r.v.’s Xi in (2.6) is the Zipf(α) distribution. By substituting (2.2) in (2.7), the

PGF of r.v. Y with a Zipf-PSS(α, λ) distribution is set to be equal to:

GY (z) = eλ
(
Liα(z)
ζ(α)

−1
)
, λ > 0, α > 1, |z| ≤ 1. (3.1)

This family is a bi-parametric model with parameter space equal to {(α, λ) ∈

(1,+∞) × (0,+∞)}, and it pertains to the class of DCP distributions with

parameters ( λ
ζ(α) ,

λ
2α ζ(α) ,

λ
3α ζ(α) , ...).135

The probabilities of a Zipf-PSS(α, λ) distribution may be computed using the

generalization of the Panjer recursion that appears in Panjer (1981, p. 24-25)

and in Sundt & Jewell (1981, p. 38), which says that:

P (Y = 0) =


1−aP (X=0)

1−a , if a 6= 0

e−b [1−P (X=0)], if a = 0,

(3.2)

and, for x = 1, 2, ...

P (Y = x) =
1

1− aP (Y = 0)

x∑
s=1

(
a+

b s

x

)
P (X = s)P (Y = x− s), (3.3)
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for given constants a and b. The work of Panjer (1981) also shows that if N has

a Poisson distribution, then a = 0 and b = λ.

Thus, if X ∼ Zipf(α) and Y ∼ Zipf-PSS(α, λ), from (3.2) one has that

P (Y = 0) = e−λ, (3.4)

and from (3.3) that

P (Y = x) =
λ

ζ(α)x

x∑
s=1

s1−α P (Y = x− s), x ≥ 1. (3.5)

Fig. 1 shows the probabilities of the Zipf-PSS distribution for different values

of α and λ. In (A) and (C), the plots are in normal scale while (B) and (D)

are shown in log-log scale. The probabilities obtained for α = 2.3 and differ-140

ent values of λ can be observed in (A) and (B), while (C) and (D) contain the

probabilities for λ = 5 and different values of α. We observe that the highest

probabilities are obtained at the initial values when α and λ are small. Addi-

tionally, looking at (B), it is possible to compare the behavior of the Zipf-PSS

probabilities with those achieved by a Zipf distribution with the same α param-145

eter. Note that even though it looks like a straight line for smaller λ values,

the probabilities obtained are different from those of the Zipf. In comparison,

the larger the value of λ becomes, more curvature is shown by the PMF. This

brings us to consider the λ parameter as a measure of departure from the Zipf

distribution.150

3.2. Moments and Index of Dispersion

It appears that in Satterthwaite (1942) and Johnson et al. (2005) the mo-

ments of any PSS are functions of the moments of the underlying secondary

distribution, which in our case is the Zipf distribution. These results give rise

to the following propositions.155

Proposition 1. The k-th moment of the Zipf-PSS(α, λ) distribution is finite if,

and only if, α > k + 1.

In what follows, we obtain the exact values for the mean and the variance.
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Fig 1. PMF of the Zipf-PSS(α, λ) distribution. For α = 2.3 and λ = 0.1, 0.5, 1, 2.5 and 10,

(A) in normal scale and (B) in log-log scale. For λ = 5 and α = 1.5, 2.5, 3, 5, 7, (C) in normal

scale and (D) in log-log scale. In normal scale x = 0, . . . , 100, and x = 1, . . . , 100 in log-log

scale.

Proposition 2. The mean and the variance of a Zipf-PSS(α, λ) distribution

are respectively equal to:

E[Y ] = λE[X] = λ
ζ(α− 1)

ζ(α)
, α > 2, (3.6)

and

V ar[Y ] = λ
ζ(α− 2)

ζ(α)
, α > 3, (3.7)

Taking into account (3.6), (3.7) and that ζ(α) is a decreasing function of α,

one has that if α > 2, then

ID =
V ar[Y ]

E[Y ]
=
ζ(α− 2)

ζ(α− 1)
> 1.

Consequently, the Zipf-PSS is over-dispersed compared to a Poisson distribution

with the same mean, which is consistent with the relationship between the ID160

of Y and the ID of X and N , pointed out in Johnson et al. (2005, p. 386).

Fig. 2 shows the behavior of the mean of the Zipf-PSS distribution as a

function of α, for λ = 0.5, 1, 2.5 and 3 (A); and, as a function of λ, for α =
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2.5, 3, 5 and 10 (B). Observe that the expected value of a Zipf-PSS is a decreasing

function of α for any value of λ. This makes sense, since E[Y ] = λE[X] and165

the mean of a Zipf distribution is a decreasing function of α because increasing

α leads to the probability concentrating in the first values. In (B), one can

observe that the mean is an increasing function of λ for any α. This is a

consequence of the fact that increasing λ increases the number of terms in (2.6)

and, consequently, the value of Y .
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Fig 2. Expected values of a Zipf-PSS(α, λ) distribution as a function of α, for λ = 0.5, 1, 2.5

and 3 (A); and, as a function of λ, for α = 2.5, 3, 5 and 10 (B).

170

A similar plot is presented in Fig. 3 in regard to the variance of the Zipf-PSS

distribution as a function of α for several values of λ (A) and as a function of

λ for several values of α (B). The variance of the distribution behaves quite

similar to the mean. The variance is clearly a decreasing function of α, and it

decreases faster as the λ value becomes smaller. From Proposition 2, the mean175

and the variance are linear functions of λ with a slope that decreases when α

increases, which is observed in Fig. 2 (B) and Fig. 3 (B), respectively.

In what follows, we provide a condition under which the variance of the Zipf-PSS

is larger than the variance of a Zipf distribution with the same α parameter.

Proposition 3. Let Y ∼ Zipf-PSS(α, λ) and X ∼ Zipf(α). If α > 3, then one

has that V ar[Y ] ≥ V ar[X] if, and only if,

λ ≥ 1− ζ2(α− 1)

ζ(α− 2) ζ(α)
.
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Fig 3. Variance values of a Zipf-PSS(α, λ) distribution as a function of α, for

λ = 0.5, 1.4, 2.5 and 3 (A); and as a function of λ for α = 3.5, 5, 7.5 and 20 (B).

3.3. Other Important Properties180

This subsection first shows the relationship between the parameters of the

distribution and its modality. Later, we compare the ratio of two consecutive

probabilities of a Zipf-PSS(α, λ) with the one obtained from a Zipf distribution

with the same α parameter.

Proposition 4. If Y ∼ Zipf-PSS(α, λ) and denoting by λ0 = 2ζ(α)(1 − 2−α),185

one has that:

i) if λ ∈ (0, ζ(α)], then the distribution of Y is unimodal with a pseudo-mode

at zero, and it is also log-concave;

ii) if λ ∈ (ζ(α), λ0], then the distribution of Y has a mode at one;

iii) if λ ∈ (λ0,+∞), then the distribution of Y has a mode equal to or larger190

than two.

Given that, ζ(α) → +∞ when α → 1, and that it tends to 1 when α → +∞,

one has that when α → 1, then λ0 → +∞ and thus the parameter λ must be

larger in order to have a mode larger than one. Also, when α → +∞, λ0 → 2,

and thus the distribution has a mode larger than one for any λ ∈ (2,+∞).195

The next proposition establishes the relationship between the ratio of two

consecutive probabilities of the Zipf-PSS(α, λ) and the Zipf(α) distributions.
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Proposition 5. The ratio of two consecutive probabilities of r.v. Y with a

Zipf-PSS(α, λ) distribution is related to the same ratio of r.v. X with a Zipf(α)

distribution by means of:

P (Y = x+ 1)

P (Y = x)
=
P (X = x+ 1)

P (X = x)

(
x

x+ 1

)1−α

h(x;α, λ),

where h(x;α, λ) is a ratio of two linear combinations of the probabilities P (Y =

i) for i = 0, . . . , x.

Fig. 4 shows the behavior of this ratio for α = 2.3 and two different values of the200

λ parameter. For comparison to the Zipf distribution, the ratio of the Zipf(α)

probabilities is also included. When the λ value is close to zero, the ratio of the

two consecutive probabilities of the Zipf-PSS(α, λ) quickly converges to the ratio

of the same two consecutive Zipf probabilities. Otherwise, if the λ parameter

is large, the ratio of the probabilities also converges to that of the Zipf, but205

the convergence takes longer. Moreover, both ratios tend to one when x tends

to infinity. This implies that h(x;α, λ) also tends to one when x increases. In

addition, this is another manner of observing the flexibility of the Zipf-PSS

distribution, especially in the first integer values. Observe that increasing the

value of x (i.e., considering those values in the tail of the distribution) leads to210

similar behavior as in the Zipf distribution, which is proved by Theorem 1 in

the next subsection.
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Fig 4. Ratio of two consecutive Zipf-PSS probabilities for α = 2.3 and λ = 0.8 and 3.

Jointly with the same ratio of probabilities of the Zipf for α = 2.3.
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3.4. Linear Tail Behavior

Section 2.3 introduces the concept of a regularly varying function, which is

an essential tool for analyzing the tail behavior of the Zipf-PSS distribution.215

Particularly, we use Lemma 1, in Appendix A.3, to understand how the tails

of the Poisson and the Zipf distributions influence the tail of the Zipf-PSS. To

that aim, Lemmas 2, 3 and 4 of the same appendix are required.

The following theorem states that the tail of the Zipf-PSS is linear.

Theorem 1. The tail of r.v. Y with a Zipf-PSS(α, λ) distribution is asymptot-220

ically equivalent to λ times the tail of r.v. X with a Zipf(α) distribution.

Fig. 5 illustrates the result stated in Theorem 1. Observe that the larger the λ

value becomes, the larger the x value must be to obtain the equivalence of the

tails.
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Fig 5. Probabilities of the Zipf and the Zipf-PSS distributions with the same α parameter

for α = 3.1 and λ = 0.5 (A); and for α = 2.3 and λ = 3 (B).

3.5. A Limit Distribution and Approximations225

This subsection establishes the conditions under which the Zipf-PSS con-

verges in distribution to the Poisson. It also studies their DCPs of order r

approximations for some r values.

Proposition 6. Let Yn ∼ Zipf-PSS(αn, λ), for n ≥ 1, and Yi is independent of

Yj. Also let N ∼ Po(λ), Yi be independent of N ∀i. Then, if αn → +∞ when
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n→ +∞,

Yn
D−−−−−→

n→+∞
N.

In Subsection 3.1, we have introduced the approximation of order r of a

DCP distribution. In what follows, we compute several approximations for the230

particular case of the Zipf-PSS.

Proposition 7. The Zipf-PSS(α, λ) distribution has as:

a) first order approximation, a Poisson distribution, with parameter λ/ζ(α);

b) second order approximation, a Hermite distribution, with parameters a1 =

λ/ζ(α) and a2 = a1/2
α;235

c) third order approximation, a 3rd order Hermite distribution, with param-

eters a1 = λ/ζ(α), a2 = a1/2
α and a3 = a1/3

α;

d) fourth order approximation, a 4th order Hermite distribution, with param-

eters a1 = λ/ζ(α), a2 = a1/2
α, a3 = a1/3

α and a4 = a1/4
α.

Fig. 6 shows the behavior of the first four approximations. Observe that for small240

α values, a large λ value is required to properly approximate the distributions

by a lower order approximation. In contrast, when α increases, the distribution

is properly approximated by the first order approximation independently of

the value of λ. Thus, the first order approximation is acceptable if α is large

enough. For small values of α, it is better to consider the second or higher order245

approximations.

4. Application Examples

This section demonstrates the suitability of the Zipf-PSS distribution for

fitting real data. We analyze the MathOverflow data set, which appears in a

recent paper by Paranjape et al. (2017). This data set is available through the250

SNAP repository (Leskovec & Krevl, 2014) and contains interactions among

the members of the MathOverflow platform, which was developed in 2009 by a
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Fig 6. Behavior of the PGF of the higher order approximations of the Zipf-PSS for

α = 2.1, λ = 7.5 (A), α = 2.6, λ = 8.5 (B), α = 3.6, λ = 5.5 (C) and α = 4.5, λ = 3.5 (D).

group of PhD students and post-docs from Berkeley University. It is an on-line

question-and-answer (Q&A) forum for research mathematicians on the Stack

Overflow network (Keller, 2010).255

We have compared the performance of the Zipf-PSS to that of the NB (John-

son et al., 2005, p. 209) and the DW (Nakagawa & Osaki, 1975) distributions.

In addition, we also compared it with the PL fitted using the methodology de-

scribed by Clauset et al. (2009). The NB was used because it is also a PSS

distribution, with the log-series(q) as primary distribution, and a Poisson with260

λ = −k log(1 − q) as the secondary distribution. It is also the classical over-

dispersed two-parameter Poisson alternative. The DW was used since it is

proposed to model the failure time when life is measured by means of cycles,

blows or revolutions. Given that it makes sense to assume that a person is alive

while it is active and creating new connections, and dead otherwise; the DW265

seems to be a good alternative to use. The work by Koziol et al. (2013) uses

the DW in similar scenarios. To compare the models, we chose the AIC as the

goodness-of-fit criteria.
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In the repository, the synergy among users is divided into three categories:

answers to questions, comments to questions and comments to answers. For270

testing our model, we used the category, answers to questions, where an edge is

created between users u and v when user u answers a question by user v. This

gives rise to a directed network, since the origin and final nodes play different

roles. The network comprises a total of 21688 nodes and 107581 edges collected

from September 9, 2009 to March 6, 2016. As a consequence of including the275

component time during edge formation, it is possible to have multi-edges be-

tween different pairs of nodes. Moreover, due to the fact that a user can answer

their own question, loops are also possible in the network.

Each annual network was extracted from the global data set. Because these are

directed networks, the degree sequence was split into three sequences: the in-280

degree, the out-degree and the total-degree. The in-degree sequence corresponds

to situations in which the node user’s question receives a reply. The out-degree

corresponds to situations where the node user answers a question. Finally, the

total-degree corresponds to the sum of the in- and out-degrees, and it explains

the total activity of a user. In this work, we analyze, for each one of the285

independent annual networks, the in- and out-degree sequences.

Table 1 summarizes the main statistics calculated for each network. It con-

tains the number of nodes (N), edges (E), loops (L) and multi-edges (M), and –

after splitting the degree sequence – the number of isolated nodes (I), the mean

(Mean), the variance (Var) and the skewness (Skew) of the in- and out-degree290

sequences. Observe that a greater number of zeros occurs in the out-degree se-

quences, with the exception of the first year, which is when the community was

created and only contains information covering approximately 4 months. One

of the reasons for this may be that many people do not answer any questions

while a few people answer many questions, which turns out to be an in-degree295

sequence with fewer nodes that have zero degrees. Observe that the mean val-

ues of the in- and out-degree sequences are equal for all years. This is because

each edge involves a connection from the in- and the out-degree sequences, re-

spectively. Moreover, this is one of the conditions of a graphical sequence, as
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Table 1: For each of the considered degree sequences: Year of the sequence; number of

nodes (N ); number of edges (E); number of loops (L); number of multiple-edges (M ); type

of the sequence; number of isolated nodes (I ) and its percentage; (Mean), variance (Var)

and skewness (Skew) values.

Year N E L M Type I (%) Mean Var Skew

2009 1278 7115 1363 188
in 526 (41.16) 5.57 297.69 9.39

out 333 (26.06) 5.57 227.21 6.81

2010 4648 24799 3120 547
in 1468 (31.58) 5.34 224.15 8.69

out 1839 (39.57) 5.34 335.19 8.10

2011 5358 18468 1712 529
in 1566 (29.23) 3.45 70.08 9.05

out 2502 (46.7) 3.45 164.94 11.65

2012 5687 15954 1485 484
in 1530 (26.9) 2.81 46.55 13.98

out 2910 (51.17) 2.81 141.50 13.00

2013 6101 14779 1245 500
in 1455 (23.85) 2.42 27.24 10.64

out 3459 (56.7) 2.42 92.14 9.98

2014 5556 12574 1074 537
in 1376 (24.77) 2.26 25.45 15.11

out 3121 (56.17) 2.26 75.74 10.17

2015 5409 11833 1166 566
in 1336 (24.7) 2.19 33.44 18.93

out 2986 (55.2) 2.19 76.09 13.35

2016 1654 2059 83 92
in 548 (33.13) 1.24 3.27 5.17

out 860 (52) 1.24 9.06 6.71

stated in the Fulkerson-Ryser’s theorem (Kim et al., 2012). The mean values300

of the first (incomplete) and second year are clearly larger than the other years

(the last year is also incomplete). This provides evidence indicating that the

community was very active when it was created and the activity stabilized as

the year passed. The variance is large for the out-degree sequences, meaning

that some users are quite active in answering while others answer only few or305

no questions. The higher skewness value associated with each sequence leads us

to assume that all the degree sequences will show a pronounced right tail.

Fitting these data with the Zipf-PSS and the NB distributions allows insights

into the network’s data generation mechanism as a direct consequence of the
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fact that both are PSS. Thus, in both cases, Ê[N ] is interpreted as the average310

number of times that a user is active on the network. Each time that a user is

active, she or he receives (in-degree) or answers (out-degree) an expected Ê[Xi]

number of questions. In contrast, the DW has no straightforward parameter

interpretation.

The total number of degree sequences fitted is 16, which is obtained by315

multiplying 8 (years) by 2 (type of sequences). Parameter estimates for the

Zipf-PSS are computed by means of the MLE using the R-package zipfextR

(Duarte-López & Pérez-Casany, 2018). Since the MLE of the Zipf-PSS model

needs to be found numerically, initial values for each of the parameters are

required. These values are computed as follows:320

1) The initial value for α is set to be equal to the α estimate obtained for

the Zipf distribution proposed by Güney et al. (2017).

2) The initial value for λ is set to be equal to 1, because when the mean is

λ = 1, we have just one term in the summation (2.6).

Tables 2 and 3, in Appendix B, summarize the results obtained for the periods325

2009-2012 and 2013-2016, respectively. The main conclusions are:

a) In 93.75% of the sequences (15 out of 16), the Zipf-PSS gives the best fit.

In the remaining case, the DW is the best model.

b) The behavior of the NB and the DW is quite similar, independently of the

type of sequence, but the DW is always the best of the two.330

c) The values of λ̂ for the out-degree sequences are always smaller than one,

while they are slightly larger than one for the in-degree sequences. It is

expected that, over the course of one year, less than one person is activated

to answer the question of a given node, while the node is active more than

once over the same period to answer someone else’s question(s).335

Fig. 7 shows the behavior of the parameter estimates over time. Since the data

set contains only partial information related to the years 2009 and 2016, these
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Fig 7. Evolution of the α̂ (A) and the λ̂ (B), MLE of the parameters of the Zipf-PSS

distribution over the period 2010-2015 for the in-degree (in) and the out-degree (out)

sequences.

years have been excluded from the figure. In Fig. 7 (A), we can observe the

evolution of the system in terms of the α̂, which increases significantly in the

in-degree sequence and slightly in that of the out-degree. The work of McKelvey340

et al. (2018), states that exponents of the PL that are lower than 2 appear in

nascent systems, which agrees with our in-degree results, since a value smaller

than two occurs only for the year 2010. The differences between the in- and out-

degree sequence of the Q&A network are shown. While the α̂ of the in-degree

sequences quickly departs from the threshold established in the literature, the345

α̂ for the out-degree stabilized at around 2.0, and thus time does not change the

number of questions answered by a member of the community each time that

she or he is active. With respect to the λ̂ behavior (see, Fig. 7 (B)), it seems to

remain constant for the in-degree from nearly the beginning while it takes more

time to stabilize for the out-degree. From this, it seems that, in all the years350

analyzed, the users are active in the networks approximately the same number

of times.

Fig. 8 shows the fits obtained by the models studied using the network’s

degree sequences for the year 2015. The plots also incorporate the fit obtained

from the PL distribution by using the methodology proposed by Clauset et al.355

(2009), which initially determines a value xmin (cut-off), from which the PL is

fitted. Establishing a cut-off point equal to 6 in the in-degree sequence generates
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Fig 8. In-degree (A) and out-degree (B) of the 2015 network, jointly with the fit obtained

by each of the considered models. It also includes the estimate of the PL and the cut-off

point achieved using the methodology proposed by Clauset et al. (2009).

a loss in observations of 92.3 %. In the case of the out-degree sequence, the cut-

off is taken to be equal to 2, which implies that those users with less than two

replies are not considered in the analysis, which accounts for 79.4% of the nodes360

in the sequence for the year 2015. The Zipf-PSS, the NB and the DW, avoid lost

information by covering the whole range of the degree sequence. Note that the

Zipf-PSS is the only bi-parametric one that can maintain linearity in the tail.

Comparing the fits of the considered models shows that the NB and DW have a

more pronounced curvature than the Zipf-PSS; which, together with the earlier365

decay of their probabilities, demonstrates a clear deviation from the pattern

shown by the data.

Since the Zipf-PSS and the NB are PSS, their estimated parameters capture

some insights into the behavior of the community members. For instance, for

2015 and the in-degree sequence, the parameter estimates of the Zipf-PSS and370

the NB are equal to: α̂ = 2.6118, λ̂ = 1.1825 and k̂ = 0.8251, q̂ = 0.7262 (see,

Table 3) respectively. From this, one has that the expected number of active

users answering someone’s questions is approximately equal to one (E[N ] =

λ̂ = 1.1828 for the Zipf-PSS and E[N ] = −k̂ log(1 − q̂) = 1.0689 for the NB).

Moreover, given that according to (2.4) E[X] = 1.732 for the Zipf-PSS, and375

E[X] = −q̂/(log(1 − q̂)(1 − q̂)) = 2.05 for the NB, the expected number of

answers provided by the active user is around 2.
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On the other hand, for 2015 and the out-degree sequence, the parameter

estimates of the Zipf-PSS and the NB are equal to: α̂ = 2.0214, λ̂ = 0.5688

and k̂ = 0.223, q̂ = 0.9075 respectively. Thus, the expected number of times380

that a particular user is active for answering questions is approximately 0.5

(E[N ] = 0.5686 for the Zipf-PSS and E[N ] = 0.5309 for the NB). Once the user

becomes active, the expected number of answered questions is E[X] = 28.844

for the Zipf-PSS and E[X] = 4.12 for the NB.

Note that the models agree in their estimates for the in-degree activity, but385

they provide quite different results for the number of answers in the out-degree.

However, even though the Zipf-PSS is the model that gives the best fit to the

data, the estimated number of a user’s answers (out-degree) may be highly influ-

enced by the large variability observed in the sample variance of the out-degree,

which is larger than that obtained for the in-degree sequence. In addition, that390

result might also be a consequence of using the Riemann zeta function with

a parameter close to the lower boundary of its parameter space; according to

(2.4), its numerator is ζ(α̂ − 1) = ζ(1.0214), which may lead to a less robust

result.

5. The Zipf-PSS in Synthetic Data Generation395

Many researchers these days must face the problem of generating synthetic

networks that mimic the characteristics of the real ones. This is because, for

either economic or privacy reasons, the desired number of real networks is not

available for a given particular type.

Given that one of the main characteristics of the networks is the degree sequence,400

we propose several steps for using a synthetic network generator to produce

networks with a degree sequence similar to a given real one. The algorithms

used for this purpose are conditioned to different inputs. However, a degree

sequence close to the one observed in the real network is essential for several of

them, such as, for instance, in Seshadhri et al. (2012) and Erling et al. (2015).405

Assuming that the degree sequence observed in the real network follows
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the Zipf-PSS distribution, the next steps will generate networks with a degree

sequence with that has the same distribution as the real one. If n networks

must be generated,

1. Estimate the parameters of the Zipf-PSS by means of maximum likelihood,410

denoted by (α̂, λ̂), from the degree sequence of the real network.

2. Generate n random samples from a Zipf-PSS(α̂, λ̂) using the R-package zipfextR.

3. For each sample, check if it is a graphic degree sequence (Sierksma & Hoogeveen,

1991). If it is not, suppress this sample and generate a new one.

4. For each sample, generate the random network using the chosen random415

network generator.

An application of this procedure can be found in the work of Duarte-López et al.

(2015), where the authors use the Marshal-Olkin Extended Zipf (Pérez-Casany

& Casellas, 2013) distribution for generating random copies of real networks.
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Appendix A. Lemmas and Proofs425

Appendix A.1. Proofs of Subsection 3.2

Proof of Proposition 1: Let M(t), t ∈ R be the moment generating function

(MGF) of the Zipf-PSS distribution. According to equation (3.1), it is equal to:

M(t) = GY (et) = eλ
(
Liα(et)
ζ(α)

−1
)
. (A.1)

In general E[Y k] = M (k)(t)|t=0, which depends only on the derivatives of the

PGF of the secondary distribution. Satterthwaite (1942) establishes the rela-

tionship between the moments of any PSS distribution and those of the under-

lying secondary distribution. Since the existence of Zipf-PSS moments depends430
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on the existence of Zipf moments, the moment of order k of the Zipf-PSS exists

if, and only if, α > 1.

Proof of Proposition 2: The expectation of the Zipf-PSS, as well as its variance

expression, can be derived either by means of the derivatives of the moment

function or, what is more straightforward, from the Law of Total Expectation

and the Law of Total Variance, which state that:

E[Y ] = E[N ]E[X], and

V ar[Y ] = E[N ]V ar[X] + E2[X]V ar[N ]. (A.2)

Let us take into account that if N is Poisson distributed, E[N ] = V ar[N ] = λ,

and that E[X] and V ar[X] appear in (2.4) and (2.5), respectively. Then, in a

simple substitution, we have:

V ar[Y ] = λ
ζ(α− 2) ζ(α)− ζ(α− 1)2

ζ(α)2
+

(
ζ(α− 1)

ζ(α)

)2

λ = λ
ζ(α− 2)

ζ(α)
.

Proof of Proposition 3: From (A.2), and given that E[N ] = V ar[N ] = λ, one

has that:

V ar[Y ] = λ (V ar[X] + E2[X]).

Thus,

V ar[Y ] ≥ V ar[X]⇔ λ (V ar[X] + E2[X]) ≥ V ar[X]

⇔ λ ≥ V ar[X]

V ar[X] + E2[X]
=

1

1 + E2[X]
V ar[X]

.

Taking into account (2.4) and (2.5),

1 +
E2[X]

V ar[X]
=

ζ(α− 2) ζ(α)

ζ(α− 2) ζ(α)− ζ2(α− 1)
,

and thus,

V ar[Y ] ≥ V ar[X]⇔ λ ≥ ζ(α− 2) ζ(α)− ζ2(α− 1)

ζ(α− 2) ζ(α)
= 1− ζ2(α− 1)

ζ(α− 2) ζ(α)
.

Given that the Riemann Zeta function is always positive, then: if λ is larger

than one (which is usually the case when fitting real data), the condition is

always satisfied and the Zipf-PSS has a larger variance than the corresponding435

Zipf distribution.
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Appendix A.2. Proof of Subsection 3.3

Proof of Proposition 4: i) It is necessary to see that P (Y = 0) ≥ P (Y = 1)

P (Y = 0) ≥ P (Y = 1)⇔ e−λ ≥ λ e−λ

ζ(α)
⇔ ζ(α) ≥ λ.

Hence, point i) holds when λ ∈ (0, ζ(α)].

ii) Applying (3.5) for x = 1 and x = 2, one has that:

P (Y = 2) ≥ P (Y = 1)⇔ λ e−λ

2 ζ(α)

⌈
λ

ζ(α)
+ 21−α

⌉
≥ λ e−λ

ζ(α)
(A.3)

⇔ 1

2

(
λ

ζ(α)
+ 21−α

)
≥ 1⇔ λ ≥ 2 ζ(α) (1− 2−α).

(A.4)

To prove point ii), it is only necessary to see that for λ ∈ (ζ(α), 2 ζ(α) (1−2−α)),

P (Y = 1) ≥ P (Y = 0) and P (Y = 1) ≤ P (Y = 2). Taking into account that:

P (Y = 0) ≤ P (Y = 1)⇔ e−λ ≤ λ e−λ

ζ(α)
⇔ ζ(α) ≥ λ, (A.5)

and based on (A.3), one has that, if λ ∈ (ζ(α), 2 ζ(α) (1−2−α)), there is a mode

at one.440

iii) This is a straightforward consequence of points i) and ii).

Proof of Proposition 5: From (3.5) one has that for x = 1, 2, ...

P (Y = x+ 1) =
λ

ζ(α) (x+ 1)

x+1∑
s=1

s1−α P (Y = x+ 1− s).

Dividing this expression by P (Y = x), as in (3.5), one has that:

P (Y = x+ 1)

P (Y = x)
=

1
x+1
1
x

∑x+1
s=1 s

1−α P (Y = x+ 1− s)∑x
s=1 s

1−α P (Y = x− s)
. (A.6)

Thus, denoting by h(x;α, λ) the second ratio on the right hand side of the

equation one has that:

P (Y = x+ 1)

P (Y = x)
=

x

x+ 1
h(x;α, λ). (A.7)

Taking into account that the ratio of two consecutive probabilities of the Zipf(α)

distribution is equal to ( x
x+1 )α, (A.7) is equivalent to:

P (Y = x+ 1)

P (Y = x)
=
P (X = x+ 1)

P (X = x)

(
x

x+ 1

)1−α

h(x;α, λ).
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Appendix A.3. Proofs of Subsection 3.4

From Jessen & Mikosch (2006, p. 177), the following results are obtained:

Lemma 1. Assuming that X is a regularly varying r.v. with index α > 0, that

E[N ] < +∞ and that P (N > x) = o(P (X > x)), then, as x→ +∞

P (Y > x) ∼ E[N ]P (X > x). (A.8)

The next lemmas are required, since they prove that the hypothesis for Lemma

1 is satisfied.445

Lemma 2. An r.v. X with a Zipf distribution is a regularly varying r.v.

Proof. According to Gulisashvili (2012, p. 220), Pareto-type distributions (i.e.,

the Zipf distribution) are camouflaged versions of regularly varying functions.

Basically, a function f belongs to the class of Pareto-type distribution if it is

asymptotically equivalent to a regularly varying function. This implies that f450

is also a regularly varying function.

Lemma 3. Let f(x) be defined as f(x) = λx xα

x! , then it verifies that: a) it is a

decreasing function of x for x large enough; and b) limx→+∞ f(x) = 0.

Proof. Given that,

f(x+ 1)

f(x)
=
λ(x+1) (x+ 1)α

(x+ 1)!

x!

λx xα
=

λ

(x+ 1)

(
1 +

1

x

)α
,

one has that limx→+∞ f(x+ 1)/f(x) = 0 and, thus for large values of x, f(x+

1) ≤ f(x), which proves a).455

Taking into account that the Poisson distribution has moments of any order,

and denoting by xαy the integer part of α, we have that for any α ∈ R, and

α > 1,

0 ≤
+∞∑
x=0

λx xα

x!
≤

+∞∑
x=0

λx xxαy+1

x!
< +∞,

and consequently, limx→+∞ f(x) = 0.

Lemma 4. Let N ∼ Po(λ) and X ∼ Zipf(α), N and X being independent

r.v.’s. Then

P (N > x) = o(P (X > x)).
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Proof. We need to prove that P (N > x)/P (X > x) has limit zero at infinity.

However, taking into account point a) of Lemma 3, one has that for x large

enough,

0 ≤ P (N > x)

P (X > x)
=

∑+∞
i=x+1

e−λ λi

i!∑+∞
i=x+1

i−α

ζ(α)

= e−λ ζ(α)

∑+∞
i=x+1

λi iα i−α

i!∑+∞
i=x+1 i

−α

≤ e−λζ(α)
λxxα

x!

∑+∞
i=x+1 i

−α∑+∞
i=x+1 i

−α
≤ e−λ ζ(α)

λx xα

x!
.

Taking limits in the inequality, and as a consequence of point b) of Lemma 3,

one has that:

0 ≤ lim
x→+∞

P (N > x)

P (X > x)
≤ e−λ ζ(α) lim

x→+∞

λx xα

x!
= 0,

which proves the proposition.

Proof of Theorem 1: The proof is a consequence of Lemma 1, whereX ∼Zipf(α)

and N ∼Po(λ), and X and N are independent r.v.’s Thus, we have that

P (Y > x) ∼ E[N ]P (X > x), and given that

P (Y = x) = P (Y > x− 1)− P (Y > x),

one has that

P (Y = x) ∼ λ [P (X > x− 1)− P (X > x)]⇔ P (Y = x) ∼ λP (X = x).

Appendix A.4. Proof of Subsection 3.5

Proof of Proposition 6: Given that, when α→ +∞, the Zipf distribution tends

towards the degenerate distribution at one, we have that, for large values of α,460

the Zipf-PSS(α, λ) is equal to the sum of N ones, which is equal to N . These

results can be observed in the top right-hand side of Figure 1, where for α = 2.3

and λ = 10, the PMF of the Zipf-PSS looks like the PMF of a Poisson.

Proof of Proposition 7: Taking into account that,

Liα(z)− ζ(α)

ζ(α)
=

1

ζ(α)

[+∞∑
k=1

zk

kα
−

+∞∑
k=1

1

kα

]
=

1

ζ(α)

+∞∑
k=1

(zk − 1)

kα

=
(z − 1)

ζ(α)
+

(z2 − 1)

2α ζ(α)
+

(z3 − 1)

3α ζ(α)
+ . . . ,
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from (3.1), the first to fourth order approximations of the PGF of r.v. Y with

a Zipf-PSS(α, λ) distribution are those mentioned in points a) to d).465

Appendix B. Tables Associated with the Fitted Degree Sequences

Table 2: For each of the degree sequences, one has: in the first column, the names of the

models fitted; from the second to the fourth columns, the maximum likelihood parameter

estimates together with their corresponding confidence intervals (CI); and the values of the

AIC in the last column.

Year Type Model param1 CIparam1 param2 CIparam2 AIC

2009

in

Zipf-PSS α̂ = 1.7636 (1.7111, 1.816) λ̂ = 0.9752 (0.906, 1.0444) 6216.0239

NB k̂ = 0.2734 (0.2484, 0.2984) q̂ = 0.9532 (0.9469, 0.9595) 6241.2867

DW q̂ = 0.5717 (0.5465, 0.597) β̂ = 0.5239 (0.4967, 0.5511) 6170.7334

out

Zipf-PSS α̂ = 1.9202 (1.8633, 1.977) λ̂ = 1.1738 (1.1009, 1.2467) 6246.7526

NB k̂ = 0.3761 (0.3448, 0.4074) q̂ = 0.9367 (0.9294, 0.9441) 6567.5277

DW q̂ = 0.6386 (0.6157, 0.6616) β̂ = 0.6112 (0.5841, 0.6383) 6479.5210

2010

in

Zipf-PSS α̂ = 1.9048 (1.8744, 1.9352) λ̂ = 1.2202 (1.179, 1.2614) 23120.8875

NB k̂ = 0.3736 (0.3564, 0.3908) q̂ = 0.9346 (0.9305, 0.9387) 23707.2106

DW q̂ = 0.6361 (0.6238, 0.6485) β̂ = 0.6118 (0.5968, 0.6267) 23397.4229

out

Zipf-PSS α̂ = 1.8503 (1.8194, 1.8813) λ̂ = 0.8625 (0.8311, 0.894) 20353.4265

NB k̂ = 0.2493 (0.2378, 0.2608) q̂ = 0.9553 (0.9522, 0.9585) 21433.7524

DW q̂ = 0.5340 (0.521, 0.547) β̂ = 0.5066 (0.4936, 0.5197) 21040.4257

2011

in

Zipf-PSS α̂ = 2.1226 (2.0864, 2.1588) λ̂ = 1.2067 (1.17, 1.2434) 23703.7434

NB k̂ = 0.5101 (0.4867, 0.5336) q̂ = 0.8711 (0.8642, 0.8779) 24555.5682

DW q̂ = 0.6393 (0.628, 0.6507) β̂ = 0.7229 (0.7069, 0.7388) 24322.7655

out

Zipf-PSS α̂ = 1.9400 (1.9051, 1.975) λ̂ = 0.7191 (0.6931, 0.7451) 20165.4236

NB k̂ = 0.2407 (0.2294, 0.2521) q̂ = 0.9347 (0.9302, 0.9392) 21277.6210

DW q̂ = 0.4753 (0.463, 0.4876) β̂ = 0.5180 (0.5048, 0.5313) 20869.6246

2012

in

Zipf-PSS α̂ = 2.3127 (2.2705, 2.355) λ̂ = 1.2328 (1.1976, 1.2681) 23527.8020

NB k̂ = 0.6456 (0.6151, 0.6761) q̂ = 0.8130 (0.804, 0.822) 24603.2748

DW q̂ = 0.6473 (0.6366, 0.6581) β̂ = 0.8046 (0.788, 0.8211) 24415.4935

out

Zipf-PSS α̂ = 1.9926 (1.9545, 2.0306) λ̂ = 0.6330 (0.6098, 0.6563) 19413.6498

NB k̂ = 0.2244 (0.2136, 0.2352) q̂ = 0.9259 (0.9208, 0.9311) 20617.3471

DW q̂ = 0.4352 (0.4233, 0.4472) β̂ = 0.5146 (0.5014, 0.5278) 20159.4326
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Table 3: For each of the degree sequences, one has: in the first column, the names of the

models fitted; from the second to the fourth columns, the maximum likelihood parameter

estimates together with their corresponding confidence intervals (CI); and the values of the

AIC in the last column.

Year Type Model param1 CIparam1 param2 CIparam2 AIC

2013

in

Zipf-PSS α̂ = 2.4882 (2.4412, 2.5353) λ̂ = 1.2234 (1.1905, 1.2562) 23726.1601

NB k̂ = 0.7861 (0.7487, 0.8235) q̂ = 0.7548 (0.7442, 0.7655) 25134.4768

DW q̂ = 0.6520 (0.6418, 0.6622) β̂ = 0.8721 (0.8553, 0.8888) 25011.8353

out

Zipf-PSS α̂ = 1.9572 (1.9196, 1.9949) λ̂ = 0.5484 (0.5277, 0.5691) 19446.4311

NB k̂ = 0.1977 (0.188, 0.2075) q̂ = 0.9245 (0.9192, 0.9299) 20389.9913

DW q̂ = 0.3951 (0.3835, 0.4066) β̂ = 0.4896 (0.4765, 0.5028) 20006.2583

2014

in

Zipf-PSS α̂ = 2.5422 (2.4898, 2.5947) λ̂ = 1.2115 (1.1772, 1.2458) 21150.4685

NB k̂ = 0.8385 (0.7949, 0.8821) q̂ = 0.7297 (0.7175, 0.7419) 22304.9266

DW q̂ = 0.6485 (0.6378, 0.6592) β̂ = 0.8943 (0.8763, 0.9123) 22217.8324

out

Zipf-PSS α̂ = 1.9792 (1.9391, 2.0194) λ̂ = 0.5551 (0.5333, 0.577) 17633.8811

NB k̂ = 0.2108 (0.1998, 0.2218) q̂ = 0.9148 (0.9086, 0.921) 18450.5365

DW q̂ = 0.4000 (0.3879, 0.4121) β̂ = 0.5064 (0.4923, 0.5206) 18127.9951

2015

in

Zipf-PSS α̂ = 2.6118 (2.5554, 2.6683) λ̂ = 1.1825 (1.1487, 1.2164) 20006.8297

NB k̂ = 0.8251 (0.782, 0.8683) q̂ = 0.7262 (0.7137, 0.7386) 21403.2895

DW q̂ = 0.6352 (0.6244, 0.6461) β̂ = 0.8830 (0.8655, 0.9004) 21282.5344

out

Zipf-PSS α̂ = 2.0214 (1.9791, 2.0637) λ̂ = 0.5688 (0.5464, 0.5912) 17084.7695

NB k̂ = 0.2230 (0.2112, 0.2348) q̂ = 0.9075 (0.9008, 0.9142) 17969.2179

DW q̂ = 0.4058 (0.3936, 0.4181) β̂ = 0.5222 (0.5077, 0.5367) 17633.6200

2016

in

Zipf-PSS α̂ = 3.3093 (3.1162, 3.5024) λ̂ = 0.9708 (0.9178, 1.0238) 4897.3457

NB k̂ = 1.7500 (1.4651, 2.0348) q̂ = 0.4156 (0.3738, 0.4575) 5053.1047

DW q̂ = 0.5992 (0.5782, 0.6203) β̂ = 1.1396 (1.094, 1.1852) 5070.1318

out

Zipf-PSS α̂ = 2.3938 (2.2856, 2.502) λ̂ = 0.6210 (0.5787, 0.6633) 4760.6672

NB k̂ = 0.4404 (0.3903, 0.4905) q̂ = 0.7387 (0.7113, 0.766) 4921.4060

DW q̂ = 0.4397 (0.4173, 0.4621) β̂ = 0.7250 (0.6896, 0.7604) 4888.3861
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