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Abstract

The primary focus is a sequential data assimilation method for count data mod-

elled by an inhomogeneous Poisson process. In particular, a quadratic approx-

imation technique similar to the extended Kalman filter is applied to develop

a sub-optimal, discrete-time, filtering algorithm, called the extended Poisson-

Kalman filter (ExPKF), where only the mean and covariance are sequentially

updated using count data via the Poisson likelihood function. The performance

of ExPKF is investigated in several synthetic experiments where the true solu-

tion is known. In numerical examples, ExPKF provides a good estimate of the

“true” posterior mean, which can be well-approximated by the particle filter

(PF) algorithm in the very large sample size limit. In addition, the experi-

ments demonstrates that the ExPKF algorithm can be conveniently used to

track parameter changes; on the other hand, a non-filtering framework such

as a maximum likelihood estimation (MLE) would require a statistical test for

change points or implement time-varying parameters. Finally, to demonstrate

the model on real-world data, the ExPKF is used to approximate the uncer-

tainty of urban crime intensity and parameters for self-exciting crime models.

The Chicago Police Department’s CLEAR (Citizen Law Enforcement Analysis

and Reporting) system data is used as a case study for both univariate and

multivariate Hawkes models. An improved goodness of fit measured by the
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Kolomogrov-Smirnov (KS) statistics is achieved by the filtered intensity. The

potential of using filtered intensity to improve police patrolling prioritisation

is also tested. By comparing with the prioritisation based on MLE-derived in-

tensity and historical frequency, the result suggests an insignificant difference

between them. While the filter is developed and tested in the context of urban

crime, it has the potential to make a contribution to data assimilation in other

application areas.

Keywords: Point Process, Count data, filtering, parameter estimation,

Hawkes process, crime data

1. Introduction

A conditional intensity process (as defined in Cox & Lewis (1966)) model

is a powerful tool for investigating and predicting count data (either in the

form of the number of events in a given time period or a time-series of occur-

rence times) commonly found in a wide variety of applications such as seismol-

ogy Ogata (1988); Ogata & Zhuang (2006), epidemic disease outbreaks Unkel

et al. (2012); Corberán (2012), and urban crime Mohler et al. (2015). In the

context of urban crime, a typical intensity process is the Hawkes process Hawkes

& Oakes (1974) where the crime rate is split into a spatially-dependent baseline

rate and a self-excitation rate. In particular, the Hawkes process allows the

past events to increase the rate according to the recency of the events. In the

short term absence of the events, the rate can eventually decline to the base-

line (a positive lower bound of the rate) which can be interpreted as the rate

of events generated by exogenous factors. The main reason the Hawkes pro-

cess is well-suited to describe urban crime is that its self-excitation feature can

be used to quantify the near-repeat victimization often carried out by certain

perpetrators, which is a concept that is well-established theory in criminology;

see for instance Johnson et al. (1997). A commonly used procedure to iden-

tify optimal parameters for the Hawkes process, especially in the application of

crime prediction, is maximum likelihood estimation (MLE) via the expectation

2



maximization (EM) algorithm Lewis & Mohler (2011); Halpin (2013); Olson

& Kathleen (2013), which employs the fact that the Hawkes process can be

considered as a branching process with immigration Hawkes & Oakes (1974).

Once the MLE parameters are obtained, the intensity at any time t can be de-

terministically computed given the history of event times up until t while the

projection of the intensity into the future must be stochastically simulated via

one of several possible techniques Ogata (1981); Dassios & Zhao (2013). In

contrast to the MLE approach, a fully Bayesian uncertainty quantification tech-

nique for parameter estimation of the Hawkes process has also been developed

in Rasmussen (2013).

Our work develops an approximate filtering algorithm – i.e., an algorithm

to recursively estimate and track unobserved state variables at time t given the

history of observations up to and including time t – for the Hawkes process or

other conditional intensity processes and investigates its application to urban

crime data analysis and prediction. Developing filtering algorithms to help track

and quantify uncertainty in real-time for intensity process models of count data

could have impacts on a range of applications such as influenza forecasting. It

also offers distinct advantages over the typical (non-filtering) MLE approach,

where a large batch of data is used all at once instead of sequentially assimilating

one observation at a time. One such advantage is the ability of a filtering

algorithm to dynamically track model parameters over time. Nonetheless, it was

shown in Lewis & Mohler (2011) that the EM algorithm can be used to track a

time-varying baseline parameter within a non-parametric approach for Hawkes

process, but, unlike filtering approach, it still has to work with a sufficiently large

amount of prior dataset. As for most filtering algorithms, Bayesian principle

lies at the core of algorithm development. Hence, the parameters have to be

treated as stochastic while the true parameters may be fixed in time. Our

algorithm, however, does not actually impose that the “true” parameter must

evolve stochastically (e.g. via a random walk process). The MLE approach

generally makes the assumption of quasi-static model parameters. However,

for real-data, the intensity process model used could be very far from perfect
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and we show in this work that the model parameters would have to adapt to

compensate for such imperfection and to provide a better goodness of fit. On

the other hand, if the intensity model happens to be the “true” model for the

given data, an effective filtering algorithm should be able to not only converge

to the true parameters in the case of static parameters but also automatically

track parameter changes if they occur. At the same time, at least in the urban

crime context, the vast amount of spatio-temporal data being collected (in the

context of Chicago Police Department’s CLEAR – Citizen Law Enforcement

Analysis and Reporting – system approximately 1.5 million records over a 4

year period are collected) also requires that any filtering algorithm be highly

computationally efficient.

A step in this direction was recently carried out by Santitissadeekorn San-

titissadeekorn et al. (2018) where an ensemble-based filtering algorithm for a

time-series of count data was developed and applied to assimilate crime data

into the 1D Hawkes process. This algorithm updates the conditional intensity for

each ensemble member in a way that the update is statistically consistent with

the Poisson-Gamma conjugate pair. This provides the “innovation” in terms of

intensity analogous to the innovation of observation used in the Kalman filter.

The innovation in terms of the conditional intensity is then used to regress other

relevant parameters through their sample covariance. Therefore, the above al-

gorithm does not require the computation of gradient or Hessian terms but its

extension to a general spatio-temporal model for a history-dependent intensity

process looks to be very difficult due to its use of the univariate Poisson-Gamma

pair to obtain the innovation.

In this work, we develop an approximate filtering of the Poisson intensity

process where the parameter vector is considered as a Markov process and is

allowed to vary stochastically with time. We believe that this consideration may

be more useful to some real-world data than MLE, which only estimates static

parameters. An extended Poisson-Kalman filter (ExPKF) is derived following a

similar idea of the extended Kalman filtering framework applied to the Poisson

likelihood function and requires the computation of the gradient and Hessian
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of the underlying intensity models but can be applied to multivariate intensity

models.

We demonstrate the ExPKF on synthetic experiments where the Hawkes

process is the true model and on real Chicago crime data. With the real-world

data, by allowing time-varying parameters, the filtered intensity may be tuned

to fit the data better than the model with static parameters; again, this can

happen if the model cannot simulate observed behaviour in the data well enough

when using static parameters. Nonetheless, the filtering algorithm below does

not aim to detect a change point (i.e. the time point where the parameter has

a step change). Instead, we only demonstrate below that when the parameter

undergoes a step change, the filtered parameter will be en-route to the new

parameter at some “learning rate”. For the change-point detection problem,

there are several dedicated algorithms that may be used; see for instance Caron

et al. (2012); Stephens (1994).

One of the key goals for modelling crime and analysing crime data is to

give an insight into an effective strategy of reducing crimes. Several data-driven

approaches to crime prediction have attempted to incorporate predictive polic-

ing into their patrolling strategies so that a limited number of officers can be

most efficiently allocated at the right place and time. For example, recent

randomised field-trials conducted with police departments has shown positive

results for some regions in UK and United States Mohler et al. (2015) in help-

ing patrol officers to identify “at the moment” hotspots. Here the term hotspot

roughly refers to the region in which the crime rate is relatively high compared

to its neighbours. The model used by Mohler et al. (2015) is the Epidemic

Type Aftershock Sequence (ETAS) model Mohler et al. (2015, 2011) where the

model parameters are estimated by MLE via the EM algorithm. Motivated by

this application, we also carry out an experimental study below to compare the

goodness-of-fit as well as predictive skill of the ExPKF and MLE in the context

of patrol prioritisation in a neighbourhood of Chicago.
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2. Discrete-time filtering for counting process

Consider a Poisson counting process {N j
t , t > 0}, which represents the total

number of (crime) events occurring in an interval (0, t) at the j-th location for

j = 1, . . . ,m. We assume that N j
0 = 0 a.s. and {N j

t , t > 0} is a counting process

with independent increments conditional on the intensity λjt , where {λjt , t ≥ 0}

is a non-negative function. We will assume that for all j, N j
t are conditionally

independent given λjt . Following the concept of the conditional intensity process

(or doubly stochastic process introduced in Cox & Lewis (1966)), for sufficiently

small δt, we may assume the existence of the limit

λjt := lim
δt→0

Pr(∆N j
t = 1|λjτ , t < τ < t+ δt)

δt
, (1)

where ∆N j
t := N j

t+δt −N
j
t . Furthermore, the intensity is assumed to be “mod-

ulated” by an n−vector Markov process, θt := [θ1
t , . . . , θ

n
t ]. Thus, we consider

λt(θt), where λt := [λ1
t , . . . , λ

m
t ].

We will only study the discrete time (as well as discrete space) setting. The

count data is assumed to arrive within a time interval of length δt in which the

intensity λτ , for t < τ < t+δt, is assumed to be constant for each location; hence

we also assume δt to be sufficiently small. Therefore, we consider the data in the

form of ∆Nk, the number of events observed during the time interval (tk−1, tk)

for k = 1, 2, . . .. We will use the notation λt and θt for continuous-time and

λk and θk discrete time. Given the sequence of data ∆Nk := [∆N1
k , . . . ,∆N

m
k ]

and underlying process of θk, we will approximate the evolution of the posterior

statistics of θk as well as λk by developing a real-time tracking algorithm.

For a sufficiently small δt, the Bernoulli probability in (1) is well-approximated

by the Poisson probability. Therefore, under the conditional independence as-

sumption, the probability of observing ∆Nk is given by

Pr(∆Nk|λk) ∝
m∏
j=1

(λjkδt)
∆Nj

k exp(−λjkδt). (2)

Suppose that the prior distribution of θk is modelled by a multivariate nor-

mal distribution with mean θ̄k|k−1 and covariance Pk|k−1, denoted by θk ∼
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N (θ̄k|k−1,Pk|k−1). Following the Bayes rule and omitting the terms irrelevant

to θk, the posterior distribution is proportional to

p(θk|∆N1:k) ∝
m∏
j=1

(λjkδt)
∆Nj

k exp(−λjkδt)×exp

(
−1

2
(θk−θ̄k|k−1)TP−1

k|k−1(θk−θ̄k|k−1)

)
,

(3)

where ∆N1:k := [∆N1, . . . ,∆Nk]. In order to have a recursive formula, we

decide to make a normal approximation to the posterior distribution. In other

words, we require the posterior distribution to have the form:

p(θk|∆N1:k) ∝ exp

(
−1

2
(θk − θ̄k)TP−1

k (θk − θ̄k)

)
. (4)

To this end, we expand the likelihood function (2) up to the second-order term,

which will lead to a normal posterior distribution after combining with the

normal prior distribution. Taking log of both side of (3) gives

−1

2
(θTk P−1

k θk − 2θTk P−1
k θ̄k) =

m∑
j=1

[
∆N j

k log(λjkδt)− λ
j
kδt

]
− 1

2
(θk − θ̄k|k−1)TP−1

k|k−1(θk − θ̄k|k−1) + C,

(5)

where C is a constant collecting all term irrelevant to θk. Now we carry out a

Taylor expansion around θ̄k|k−1 to the right-hand side of (5) up to the quadratic

term so that we may compare both sides term by term. It is straightforward to

check that the quadratic term is given by:

1

2
θTk

(
−P−1

k|k−1−
m∑
j=1

[(
∂ log λjk
∂θk

)T(
∂ log λjk
∂θk

)
λjkδt−(∆N j

k−λkδt)
∂2 log λjk
∂θ2
k

])
θk.

(6)

The linear term is given by:

θTk

(
P−1
k|k−1θ̄k|k−1 +

m∑
j=1

[(
∂ log λjk
∂θk

)T
(∆N j

k − λ
j
kδt)

])
. (7)

By comparing (6) to the first term on the left-hand side of (5) and likewise (7)

to the second term, we obtain the mean and covariance update equation (8).
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The posterior mean θ̄k and covariance Pk at time tk are given by:

P−1
k = P−1

k|k−1 +

m∑
j=1

[(
∂ log λjk
∂θk

)T(
∂ log λjk
∂θk

)
λjkδt− (∆N j

k − λkδt)
∂2 log λjk
∂θ2
k

]

θ̄k = θ̄k|k−1 + Pk

m∑
j=1

[(
∂ log λjk
∂θk

)T
(∆N j

k − λ
j
kδt)

]
,

(8)

where all derivatives are evaluated at θk = θ̄k|k−1. The update equation (8) will

be referred to as the extended Poisson-Kalman filter (ExPKF). In the case that

we have ∆N j
k = 0 for all j, the covariance update equation is greatly reduced

to Pk = Pk|k−1. Also, if we have that(
∂ log λjk
∂θk

)T(
∂ log λjk
∂θk

)
= −

∂2 log λjk
∂θ2
k

, (9)

an efficient computation of the covariance matrix in (8) can be achieved without

a matrix inversion by the rank-1 update algorithm. To be more specific, we can

rewrite the covariance update equation in (8) to

P−1
k = P−1

k|k−1 +

m∑
j=1

hjh
T
j , (10)

where hj =
√

∆N j
k

(
∂ log λj

k

∂θk

)T
. Recall that if B = A + hhT , where B and A

are matrices and h is a vector, then we can find B−1 based on A−1 by

B−1 = A−1 − A−1hhTA−1

1 + hTA−1h
. (11)

Therefore, by setting H0 = P−1
k|k−1,H1 = H0+h1h

T
1 ,H2 = H1+h2h

T
2 , . . . ,Hm =

P−1
k , we can efficiently compute Pk by recursively applying (11) to (10).

As mentioned earlier, δt should be small enough to ensure that λ is approx-

imately constant within the interval. Thus, if δt is fixed while the occurrence of

events is rare (i.e. ∆N j
k = 0 for most of j and k), the computational cost of the

filtering algorithm can be inefficient in general. Nevertheless, if the covariance

update is reduced to just a rank-one update, having a small δt does not signifi-

cantly add computational cost since only the mean requires the update but the

covariance is unchanged. If the rank-one update is not the case, a very small

8



δt can significantly increase the computational cost, especially if one wants to

compare with that of MLE. It is not easy, however, to compare computational

cost between a (non-filtering) MLE and filtering algorithm since they are oper-

ating in different ways of incorporating the data, each of which has their own

advantages and disadvantage in different situations.

3. Numerical Experiment: Toy model

Consider a toy model for an inhomogeneous Poisson process in which the

conditional intensity function is given by

λ(t) = α exp(−βt), (12)

where α and β are unknown parameters. In this case, we have m = 1, n = 2

and θk := [αk, βk]. We assume that θk evolves by a random walk process

θk+1 = θk + η where η ∼ N (0,Q); hence, normality is preserved under this

linear dynamic. In particular, θ̄k|k−1 = θ̄k−1 and Pk|k−1 = Pk−1 + Q. The

ExPKF equation (8) becomes

P−1
k = P−1

k|k−1 +

 0 −t exp(−βt)

−t exp(−βt) t2α exp(−βt)

 δt+

−1/α2 0

0 0

∆Nk

θ̄k = θ̄k|k−1 + Pk · [α−1 − t]T (∆Nk − αk exp(−βkt)δt).
(13)

In the experiment, the covariance matrix Q is a diagonal matrix Q =
(

0.04 0
0 10−6

)
.

The ExPKF equations (8) can be readily implemented for this problem. Note

that too large a value of Q can result in too large noise that can greatly divert

the estimate from the true value, while too small a value of Q would make the

estimate evolve too slowly and probably fail to track any parameter switch. We

choose Q by trial and error and find similar results for other values of Q in the

same orders of magnitude.

We consider two cases: (1) fixed parameters and (2) step change in a pa-

rameter. In the first case, the true parameters are θk = [200, 0.4] for all k and

the data is generated in the time interval [0, 25] with δt = 0.0005; hence, 50,000
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data assimilation steps are carried out. A value δt = 0.0005 is chosen to be small

enough so that the true intensity is approximately constant over the interval.

In the second case, we use θk = [200, 0.4] during the time interval [0, 12.5], after

which it is changed to θk = [200, 0.2] in the interval (12.5, 25]. In order to vali-

date the inference quality of the ExPKF, we will compare the results with the

particle filter (PF), which is known to converge to the true posterior distribu-

tion in a large sample size limit Crisan & Doucet (2002). In addition, we also

compare the result with MLE, which is run at every δt step as done in ExPKF

and PF, but the MLE algorithm uses all historical data up to the current time

while ExPKF and PF use only the current data. The computational cost for

PF is in general prohibitive since it suffers from the curse of dimensionality, but

for this two-dimensional inference problem the sample size can be taken large

enough to ensure convergence to the true parameters; we use 50000 particles

since the result does not significantly change for larger numbers of particles. As

for MLE, under some regularity conditions and assumption of fixed parameters,

it is known to converge to the true parameter of the model as the number of

data points becomes sufficiently large.

The results for case (1) are shown in Figure 1. We first investigate the

likelihood function of this problem and find that while it concentrates around

the true β, it is very flat for α. The initial prior for θ at t = 0 is a normal

distribution with mean θ̄ = [160, 1] and covariance matrix P0 =
(

400 0
0 0.01

)
. It

is clear that the mean estimate of β for all algorithms are nearly the same and

converges to the true parameter. However, the mean estimate of α is clearly

affected by the flat likelihood in α. The MLE for α is closer to the true parameter

than the PF and ExPKF, which is expected since the initial prior is relatively

small compared to the spread of the likelihood function; hence, the estimate is

pulled toward the initial guess. Thus, when the initial covariance is changed

to P0 =
(

4000 0
0 0.1

)
, which is more diffusive than before, the estimates obtained

from MLE and ExPKF become very close. This is a common feature of Bayesian

inference, in which the mean estimate tends toward the MLE for a very diffusive

prior. We also investigate the Bayesian quality of the ExPKF by comparing the
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sample distribution of the gold-standard PF with the posterior statistics at the

final time step. It is clear that the PF-based sample mean agrees very well

with the normal posterior mean of ExPKF. However, the sample spread in the

direction of β is much greater than ExPKF and contains a positive correlation

between α and β while the normal posterior of ExPKF is nearly zero.
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Figure 1: [Leftmost] Likelihood function of α and β for the case of fixed parameters. The

MLE using all data is shown in a circle mark. [Second, top] The slices along the direction

of α emphasize the fact that the likelihood is very “flat” for α. [Second, bottom] Comparing

the evolution of the mean of λ for different algorithms, all of which agree well. [Third, top]

Comparison of the evolution of the mean of α for different algorithms and prior statistics.

Notice the change of ExPKF toward MLE as the prior becomes more diffusive. [Third,

bottom] Comparison of the evolution of the mean of β for different algorithms and prior

statistics. [Rightmost] PF-based sample distribution and posterior statistics after assimilating

all the data.

For the second case where there is a step change for β at t = 12.5, the

results are shown in Figure 2. For both ExPKF and PF, we use a diffusive prior

statistics P0 =
(

4000 0
0 0.1

)
for θ. The three methods agree well until the step

change of β. Both PF and ExPKF can quickly track the step change of β but
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MLE is unable to do so at a fast enough speed. The evolution of the ExPKF

mean of α is also similar to that of PF even after the step change. However,

the MLE drops quickly from the region near the true α. Most importantly,

unlike ExPKF and PF, MLE fails to create a jump of the intensity rate λ at

the change point. As for the uncertainty analysis, the sample distribution of

PF presents more spreading in the direction of β than the normal posterior

distribution of ExPKF. However, it is worth pointing out that the MLE can

actually be implemented for a pre-specified sliding window and combined with

an online change-point detection Caron et al. (2012); Stephens (1994) to tests

statistically for an abrupt parameter change in a real-time manner, which will

provide a more suitable implementation of MLE for an online algorithm. In

the above comparison, only the standard (non-sequential) version of MLE is

concerned.

4. Numerical Experiment: mutivariate Hawkes process

In this section, we consider a crime model on a discrete space represented

by m lattice nodes. Assuming that the crime intensity is constant within a

given small time step δt, a discrete-time crime intensity rate λj(k) at a node

j ∈ {1, . . . ,m} at a time step k (i.e. within the time interval [kδt, (k + 1)δt))

follows a linear dynamical system:

λk+1
j = µj + (1− βjδt)(λkj − µj) + αj∆N

k
j +

∑
j′∈N (j)

αj,j′∆N
k
j′ , (14)

where λ0
j = µj , N

0
j = 0 for all j, and N (j) is the set of all nodes that are

neighbors of node j. The above model assumes that at each location j, the

intensity rate decays to the baseline µj ≥ 0 at the rate given by the parameter

βj > 0 and is self-excited by the number of events at the step k based on

parameter αj > 0 as well as “cross-node” excitation induced by the number of

events in the neighborhood of j, ∆Nk
j′ , based on the parameter αj,j′ > 0. Thus

the above 2D model is nothing but a discrete-time version of the multivariate

Hawkes process.
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For simplicity, we will assume that αj,j′ = αc for all (j, j′) and βj = β for

all j. The integrated form of the above dynamic is then given by

λkj = µj +

k−1∑
`=1

γk−`−1αj∆N
k
j +

k−1∑
`=1

∑
j′∈N (j)

γk−`−1αc∆N
k
j′ , (15)

where γ ≡ (1 − βδt). To test the ExPKF for the above intensity process, we

generate a synthetic data according to (14) for m = 5 nodes, with αc = 0.25,

all µj = 1, and all αj = 1, except that µ3 and α4 jump to 2 and 1.5, respec-

tively, at the midpoint of the simulation. The neighborhood of a node is given by

N (1) = 2, N (j) = {j−1, j+1} for j = 2, 3, 4, and N (5) = 4. The decay param-

eter β = 2 is assumed to be known; hence θ = [µ1, . . . , µ5, α1, . . . , α5, αc] ∈ R11

in (8). Under this assumption the condition (9) for the rank-1 update is satis-

fied and computational cost to find Pk is greatly reduced. We use δt = 0.01,

P0 = 0.01I11 and Q = 10−6I11 (i.e. the parameters are evolved in time by

a random walk). The result obtained from ExPKF is shown in Figure 3. It

is clear that the ExPKF algorithm is able to converge to the vicinity of the

true parameters and adapt to the step change. However, while the estimate of

α quickly adapts to the step change, the estimate of µ takes a longer time to

adapt to the change. The errors in the tracked intensity due to incorrect initial

parameters is also reduced and becomes stable, but we notice a slight increase in

this error due to the step change at the middle of the time window. In order to

gain some understanding for how the algorithm adapts to the parameter jump,

we also investigate the convergence of the covariance. The result shows that the

analysed covariance eventually becomes stable and is quite robust to the change

of initial covariance P0, see Figure 4. The structure of the covariance highlights

the negative correlation between µ and α, especially at the intermediary nodes,

and shows only negligible parameter correlation among the nodes. Thus, if α is

increased during a data assimilation step, the algorithm will tend to decrease µ

at the next DA step.

We now assume that the parameter β is incorrectly identified. In particular,

we assume β = 3 and repeat the above experiment. The result in Figure 5
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Figure 3: Estimation of parameters for the model (15) given that β = 2 is known.
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shows that the step change can still be detected and since β = 3 is larger than

the true value, the parameter estimate compensates for this misidentification by

decreasing both µ and α in a way that a reduction of intensity error over time

is still achieved. In fact, a numerical investigation of LA gang violence data

in Santitissadeekorn et al. (2018) showed, in the setting of maximum likelihood

method, that a wide range of β actually gives a large likelihood close to the

maximum while the optimal value of the other parameters slightly change within

this range; in particular, the hypersurface of parameters with the P-value of

Kolomogrov Smirnov statistics above 0.2 contains a range of β varying from 0.5

to 16, which is shrunk to β ∈ (0.5, 8) for the threshold P-value of 0.1. For this

experiment, the relative errors (i.e. the absolute error normalized by the true

value) averaged over time and all cells are reported in Table 1 using the same

initial setting for all values of β. Nevertheless, if the estimation of β is highly

desired, the Hessian term for (14) as required in (8) can still be analytically

derived. So, the main computation cost at each iteration is the matrix inversion,

which costs o(n3) for n unknown parameters, while the rank-one update would

cost only o(n2) due mainly to matrix multiplication without β.
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Figure 5: Estimation of parameters for the model (15) given that β is misidentified as β = 3.
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β 1 2 3 4 8 12 16 20

Error 0.12 0.05 0.07 0.11 0.19 0.24 0.26 0.28

Table 1: The mean relative error when using a misspecified value of β. The true value is

β = 2.

5. Chicago crime data

We apply ExPKF to estimate the dynamic of crime intensity for a crime

dataset for Chicago extracted from the Chicago data portal1. The dataset

consists of robberies, burglaries, criminal damages and thefts from 1 January

2012 till 31 December 2017. We project the data on a regular grid with grid

cells of dimension 400m×400m. We restrict our analysis to the 10×10 subgrid

displayed in Figure 6 where the dataset shows a stationary hot spot, with the end

result being a subset of the data in m = 100 uniform rectangular cells. We use

δt = 0.1 day for the computational time step. We first consider the univariate

Hawkes process, which is (14) without the cross-excitation in the last term,

and use MLE to determine all three parameters for each cell in isolation. The

results in Figure 7 shows that the variation of the likelihood is quite insensitive

to the decay rate parameter βj . For example, Figure 7 shows the result for cell

j = 22 and the 99% MLE volume (i.e. those with the likelihood no less than

99% of the maximum likelihood) sliced for different values of β22, where the

high-likelihood regions on each slice slowly expands as the decay rate increases,

but their “core” regions vary only slightly. With this observation in mind, it is

reasonable to fix the parameter βj and use ExPKF to track only the baseline

µj and the self-excitation parameter αj ; hence we can use the rank-1 update.

Figure 7 also shows the parameters tracked by ExPKF for a fixed value of βj

on each slice, which converge to the high likelihood region on the slice.

We evaluate the goodness-of-fit of the intensity estimated by filtering and

non-filtering schemes. The first 800 days of the data (from 01/01/2012 00:00

1https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present-Map/c4ep-ee5m
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to 21/03/2014 00:00) is used by MLE to estimate all three parameters for all

cells. The MLE-fitted intensity is then computed based on the MLE parameters

over the whole period of 1827 days. For the filtering scheme, the MLE-based

parameters are used only as the initial mean for ExPKF but we allow the algo-

rithm to track µj and αj for all j = 1, . . . ,m. Hence, we obtain filtered intensity

λj(t+1) simulated from the filtered parameters µj(t) and αj(t). The one-sample

Kolomogrov-Smirnov (KS) statistic is used to test the goodness-of-fit between

MLE-based and ExPKF-based intensities for the period of day 801-1827. In

particular, a variable transformation

zi = 1− exp(−
∫ ti

ti−1

λ(t)dt),

where ti is the time of the i−th event, is used to compare against the uniform

distribution under the KS test; hence, if the estimated intensity λ(t) is a good

fit, a uniform quantile plot of zi would lie close to the the 45 degree line. The

scatter plot in Figure 9 compares the p-values (under the null hypothesis that zi

comes from a uniform distribution) between MLE and ExPKF. It is clear that

the goodness of fit is noticeably improved in most of the cells when using ExPKF

compared to MLE. We also observe that there are 16 cells where MLE has the

null hypothesis rejected at the 1% significant level but accepted for ExPKF; on

the other hand, there are only 3 cells in reverse. In Figure 9, we also show two

examples of those 16 cells and find that the variation of the baseline parameter

does agree with the variation of average number of events, which highlights the

tracking ability of ExPKF.

To demonstrate the potential of ExPKF in dealing with a large number of

parameters, we consider the multivariate Hawkes process (15). The 2D neigh-

borhood centered at the cell j is assumed to be the 3× 3 adjacent cells (or the

relevant subset of this near the boundaries). Again, we use ExPKF to track

only µj , αj and αc in (15) and assume that the decay rate is fixed to the MLE

parameter obtained from the univariate case. The comparison of the intensity

dynamics between univariate and multivariate cases are shown in Figure 8 at

three different spatial resolutions; m = 100, 196 and 441 cells ( m = 196 and

18



m = 441 correspond to projections on 300m × 300m and 200m × 200m grids,

respectively), again showing the Cell 22. The smoothing effect of the cross-self

excitation in the model (15) can be clearly seen.

Figure 6: The Chicago area for the data analysis in this work is shown along with the grid

cell number.

5.1. Patrolling prioritisation

In this section we demonstrate an application of ExPKF to Chicago crime

data in the context of patrolling efficiency. We assume that the forecast system

will prioritise the top K% of the cells where the event is most likely to occur

within a pre-specified time horizon, which is typically less than 1 day for a

practical patrolling application. We test three different approaches for the fore-

cast system: (1) “Climatology” system, which uses an average of long-run his-

torical record to determine a time-independent prioritisation, (2) Non-filtering

approach, where the parameters of the univariate Hawkes process are fitted

using a historical record based on MLE and the model is used to update the
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Figure 7: The MLE region with likelihood greater than 99% of the maximum likelihood at

different slices of β22. The trajectories of tracked parameters for µ22 and α22 in each plot is

obtained from ExPKF.
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crime intensity with fixed MLE parameters and (3) Filtering approach, where

the parameters of the Hawkes process will be adaptively tuned at every data

assimilation time step. In this experiment, we apply ExPKF to both univariate

and multivariate Hawkes processs as described in the preceding section. The

tracked crime intensity at the forecast time is then used to rank the cells.

According to the data, some cells (at around 4−6%) are consistently “hotspots”,

meaning that these cells are always present in the set of prioritised cells for the

values of K used here. However, the top 20% coverage varies and the prediction

is more challenging. The climatology system is used as a baseline performance

against which we expect the filtering and non-filtering systems to perform at

least as well. To construct this baseline, we simply rank the cells in terms of

the total amount of crime each contained within the first 800 days, and use

that ranking for the entire prediction period. If the Hawkes process accurately

represents the dynamic of real-world crime intensity, the non-filtering scheme is

appropriate since all one has to do is identify the constant parameters, which in

the most extreme scenario may in fact result in intensities that are stationary in

time, yielding the climate prediction. On the other hand, if the Hawkes process

fails to accurately simulate the real-world crime dynamic, the filtering scheme

would attempt to recursively adjust the model parameters so that the predicted

crime intensity statistically agrees with the latest data.

For MLE, the first 800 days in the data is used to fit all three parameters of

the Hawkes process for each cell in isolation. The MLE parameters are then used

to simulate the time-dependent intensity. The ExPKF is applied as done in the

preceding section to generate intensity. To measure the forecast performance in

the context of patrolling efficiency, we use the Prediction Efficiency Index (PEI),

which is the ratio of the number of crime events occurring in the actual predicted

cells to the highest possible number of crime events that could have occurred

in prediction cells under K% coverage. We calculate the PEI for K = 10%

and K = 20% coverage for the prediction time horizons of 0.2, 0.5, and 1 day;

see Figure 10. The result shows that PEI is roughly the same for all forecast

methods in our study. That PEI has an increasing trend for a large forecast
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horizon can be explained by the existence of several persistent hotspots, which

renders the (true) ranking less random as the forecast time horizon increases.
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Figure 10: The PEI is computed for three different forecast horizons (0.2, 0.5, and 1 day) at

two different area coverages (10% in the first row and 20% in the second row) using Chicago

data during the period of t = 801− 1827 days. The histograms show the frequency of PEI for

these cases. In the parentheses, we report the total number of successfully predicted crimes

over all prediction periods divided by the total possible number of crimes that could have

been predicted over all of these periods.

6. Conclusion

We adopt the idea of the extended Kalman filter to develop the extended

Poisson-Kalman filter (ExPKF), which is an approximated algorithm to filter

a history-dependent Poisson likelihood process. We demonstrate the validity of

this algorithm based on toy examples for which the true parameters can be used

to measure the accuracy of the filter. As can be seen from our experiments, Ex-

PKF is able to converge to the true value in the case of static parameters as well

as to track step changes of parameters, but the learning rate for which the filter

progresses from the old parameter to the new one could be better in some cases.
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Note that the filter is not aimed to detect the change point of the parameter,

but rather to track the change of the parameter’s value. We also point out that

the computational cost of ExPKF can be greatly reduced if the Hessian term

has the outer-product form. For our focused application of data assimilation

for the Hawkes process, this computational reduction can be achieved by fixing

the decay rate parameter (i.e. estimating only the baseline and self-excitation

parameters). However, robustness to mis-specification of the pre-specified decay

rate may not be guaranteed in general cases. An investigation of likelihood func-

tion will shed light on the parameter regimes where the decay rate of Hawkes

model is relatively insensitive. This has been experimentally investigated to

some extent in Santitissadeekorn et al. (2018). In future work, we aim to de-

velop a fast approximation technique to update the covariance matrix when the

outer-product approximation is unavailable. Apart from the computational load

to update the covariance matrix, the application of ExPKF is obviously limited

to problems where the gradient or Hessian terms are simple to obtain either

analytically or numerically. Our recent work Santitissadeekorn et al. (2018) ad-

dressed this issue by developing an ensemble-based filtering method, which does

not require the computation of gradient or Hessian terms, but its extension to

high-dimensional problems is still waiting for pragmatic algorithm designs.

This work also investigates the application of ExPKF to real-world crime

data, using data from Chicago over the years 2012-2017. In particular, we

demonstrate that using a filtering scheme to keep track on the baseline and self-

excitation parameters can provide estimated intensity with a better goodness

of fit than those obtained using fixed MLE parameters. Significant changes in

the baseline parameter in some regions are also identified by the tracking skill

of ExPKF. These changes found by the algorithm (e.g. cell 20) could be a

result of the Chicago Alternative Police Strategy (CAPS) started in July 2014.

The evaluation of the CAPS started in 2014 has not been studied but the same

program that was run during 1998-2002 demonstrated a decrease in crime in

24% of regions received the CAPS, while those without CAPS intervention saw

increases in crime Young & Skogan (2003). We believe that the ability of the
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filtering scheme to automatically follow the parameter change in crime models

may have practical advantages such as being able to track and assess policing

strategies in real-time.

We also investigate the potential of data assimilation for improving efficient

police patrolling. We investigate the Chicago data 2012-2017 as a case study,

which displays both persistent and evolving hotspots. Our results based on

PEI analysis demonstrate that all the prediction systems (including MLE-based,

ExPKF-based, and historical frequency) provide more or less the same predictive

skills of prioritising the crime-prone areas over a given forecast time horizon.

It should be noted that our results do not necessarily contradict the outcomes

found in the study of Mohler et al. (2015), where the prioritisation based on

ETAS model showed a significant improvement over those of “crime analysts”,

who were responsible for placing the prediction boxes in specified time windows.

Lacking the information from crime analysts in this case, we compared our

results with the historical frequency as described above. We also note that in

practice the police can not simply implement a policy of only patrolling the same

locations every day. In addition, it has to be kept in mind that the PEI does

not give credit to the neighborhood aspect of the prediction, in the sense that

predicting a no-event cell adjacent to high-crime cells receives the same PEI as

predicting another no-event cell far way from it. In practice, one of the ways to

improve patrolling efficiency is by reducing the dispatch time of officers to crime

locations; hence, having patrol officers near the high-crime cells can actually be

helpful, even if the cells they are in do not themselves contain any crimes.

Further research to develop a new score taking into account the neighborhood

aspect of the predictions will certainly be useful for the assessment of crime

prediction methods in the future.

A future direction of research that has potential to improve efficiency of pa-

trolling allocation (better than what is done in this work) is the joint estimation

of parameters and hidden “network” structure in the crime data. A recent study

has shown that a complex structure of street network has a significant impact

on how crime events would occur and how police would patrol Rosser et al.
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(2017). To our best knowledge, incorporating such a complex street network

into a Hawkes process has not been reported. Also, a non-parametric approach

in Flaxman et al. (2019) has shown that the grid or cell structure is the key

element needed to obtain a significant improvement in crime prediction. Other

types of non-physical networks can also be considered as well. For example,

the network could be defined by the excitation rate in which an event at one

cell excites the conditional intensities in other cells. This type of excitation

network can be readily incorporated into the Hawkes model (14) but leading

to an estimation of N2 excitation parameters if no prior knowledge of the net-

work is assumed. A follow-up investigation that incorporates such an excitation

network structure may yield a major improvement in the predictive skill of the

algorithms. A similar application of a point-process on an email network has

recently been investigated in Fox et al. (2016) where the email network data

is used to infer the leadership. Since ExPKF also approximates the variance-

covariance structure of the parameters, it may be used for an extended study

in which an uncertainty of leadership can be quantified. The ExPKF algorithm

also has a potential for other applications related to a spatial effect of count

data. For example, it may be applied to estimate the disease-specific overall

risk and the spatial effect in the relative risk across both areas and diseases

for a model similar to the multivariate spatial disease model used in Corberán

(2012). In particular, the the disease-specific risk and spatial effect can be mod-

elled by the baseline term and cross-cells excitation terms in Hawkes model (14),

respectively.

Acknowledgment

NS gratefully acknowledges the support of the UK Engineering and Physical

Sciences Research Council for programme grant EP/P030882/1. MBS gratefully

acknowledges the support of the US National Science Foundation grant DMS-

1737925. The authors confirm that data underlying the findings are available

without restriction, which are available from the Mendeley Data repository.

27



The code and models are also available, along with a user guide, for download

at https:// feps-web.eps.surrey.ac.uk/gitlab/st0028/EFNC/tree/master.

Appendix

The Appendix provides a brief description of the MATLAB codes (version

R2018a) used for Section 3,4 and 5 in this work as well as the (anonymised)

data. The step-by-step explanation can be found in the scripts that run these

codes.

1. These are codes that implement ExPKF for (13) in Section 3.

• run_ExPKF_toy1.m is the main script that generates the test data,

runs ExPKF, and plot the filtered estimate of parameters. It provides

an example and description of how to call the function ExPKF_toy1.m.

• ExPKF_toy1.m is a function that is called by run_ExPKF_toy1.m to

obtain the filtered estimate of parameters.

• MLE_toy1.m is a script that call likelihood_toy1.m to runs MLE

for a given data.

• likelihood_toy1.m is function that computes the likelihood of the

data for a given model parameter value.

• run_PF_toy1.m is a script that runs the particle filtering (PF) for

the same data.

• PF_toy1.m is a function that is called by run_PF_toy1.m to imple-

ment PF.

• ResampSimp.m is a function that implement the re-sampling step in

PF

2. These are codes that implement ExPKF for the multiple-cell Hawkes pro-

cess (14).
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• run_NHP_hawkes5nodes.m is the main script for the experiment in

Section 4. It provides an example and description of how to call the

function ExPKF_hawkes5node_muk.m to produced the filtered param-

eters for the above experiment.

• NHP_hawkes5nodes.m is the function that simulates a test data for

the experiment

• ExPKF_hawkes5node_muk.m is the function that run ExPKF for (14)

with 5 nodes cell.

• R1update_Hawkes5nodes.m is the function that implements the rank-

1 update for (14) with 5 nodes cell and it is called by ExPKF_hawkes5node_muk.m.

3. These are codes and Chicago crime data used for Section 5.

• Run_MLE_Chicago1DHawke.m is a script to run MLE for Chicago

crime data.

• run_Chicago_hawkes_Knodes.m is a script to run ExPKF for Chicago

crime data.

• ExPKF_hawkes_Knodes.m is a function to implement ExPKF for Chicago

crime data based on the model (14).

• R1update_Hawkes_Knodes.m is a function that runs the rank-1 up-

date for Chicago crime data based on the model (14). It is called by

ExPKF_hawkes_Knodes.m

• ts_subgrid.mat, ts_subgrid200.m, ts_subgrid300.m are the (anonymized)

crime data at the scales of each cell at 100-by-100, 200-by-200 and

300-by-300 cells, respectively.

• incidence_mat_subgrid.mat,inc_mat_200.mat,inc_mat_300.mat

are the incidence matrix indicating the neighbor of each cells for the

data ts_subgrid.mat,ts_subgrid200.m,ts_subgrid300.m, respec-

tively. ts_subgrid300.m, respectively.
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• KSTEST_1DHawkes.m is a script that computes the Kolomogrov-Smirnov

(KS) test from the output of either MLE or ExPKF.

• PEI_ExPKF.m is a script that computes PEI for filtered intensity ob-

tained from ExPKF.

• PEI_mle.m is a script that computes PEI for the MLE-fitted intensity.
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