
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/133971                              
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions. 
 
© 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/. 
 

 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/133971
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk


Posterior Inference for Sparse Hierarchical
Non-stationary Models
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Abstract

Gaussian processes are valuable tools for non-parametric modelling, where typ-
ically an assumption of stationarity is employed. While removing this assump-
tion can improve prediction, fitting such models is challenging. In this work,
hierarchical models are constructed based on Gaussian Markov random fields
with stochastic spatially varying parameters. Importantly, this allows for non-
stationarity while also addressing the computational burden through a sparse
banded representation of the precision matrix. In this setting, efficient Markov
chain Monte Carlo (MCMC) sampling is challenging due to the strong coupling
a posteriori of the parameters and hyperparameters. We develop and compare
three adaptive MCMC schemes and make use of banded matrix operations for
faster inference. Furthermore, a novel extension to higher dimensional input
spaces is proposed through an additive structure that retains the flexibility and
scalability of the model, while also inheriting interpretability from the additive
approach. A thorough assessment of the efficiency and accuracy of the meth-
ods in nonstationary settings is presented for both simulated experiments and
a computer emulation problem.
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1. Introduction

Gaussian processes are frequently utilised in constructing powerful nonpara-
metric models, which are appealing due to their analytical properties. The
flexibility and nonparametric nature of these models make them appropriate
and useful in a wide range of applications. Gaussian process (GP) priors have
been used in geostatistics [33] under the name of Kriging. They are also com-
mon in other applications; for instance, in atmospheric sciences [2], biology [49]
and inverse problems [27]. A recent review and comparison of some available
methods employing GPs is provided by Heaton et al. [24].

A large amount of research on GPs and their applications has focused on
models where an assumption of stationarity for the process of interest is made.
Nevertheless, this assumption is rarely realistic in practice and as a conse-
quence, several approaches to introduce non-stationarity have been proposed
[e.g. 1, 22, 29, 35, 47]. Although comparative evaluations show that remov-
ing the stationary assumption improves predictive accuracy [15, 22, 38], fitting
such non-stationary models has proven to be challenging. This, combined with
the well-known computational constraints of GP models, arising from storing
covariance matrices, solving linear systems and computing determinants, poses
important questions on how to efficiently perform Bayesian inference in non-
stationary problems.

The stochastic partial differential equation (SPDE) approach introduced by
Lindgren et al. [32] employs Gaussian Markov random fields (GMRFs) to ame-
liorate the computational burden of working with GPs and incorporates a non-
stationary framework through spatially varying parameters that are modelled
as a linear combination of basis functions. Similarly, Paciorek and Schervish
[39] proposed a family of closed-form non-stationary covariance functions with
spatially varying parameters modelled by a second latent GP prior. While
recognised as a flexible construction, doing inference in a fully Bayesian frame-
work becomes impractical due to the computational demands of such models.
Moreover, standard Markov Chain Monte Carlo (MCMC) procedures require
careful parameter tuning, exhibit mixing difficulties and require long runs to
reach convergence [38, 39].

This work provides extensions of the SPDE formulation of non-stationary
GPs initially introduced by Roininen et al. [45]. Such model is analogous to
SPDE-based constructions in spatial interpolation [17, 18, 56], and to the non-
stationary framework proposed by Paciorek and Schervish [39], where the spa-
tially varying parameters are modelled as random objects. Specifically, our
work incorporates and accounts for uncertainty in the measurement noise vari-
ance and hyperprior parameters and consider two hyperpriors for the spatially
varying length-scale to account for different smoothness assumptions. Because,
the hierarchical structure of these models, that we refer to as 2-level GPs,
introduces strong dependencies and hence efficient sampling from the poste-
rior distribution is problematic, we introduce and offer a comparative evalua-
tion of three MCMC sampling schemes. The first corresponds to an adaptive
Metropolis-within-Gibbs scheme. The second employs elliptical slice sampling
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(ELL-SS) combined with re-parametrisations for decoupling the prior, hyper-
prior, and hyperparameters. The third is a marginal sampler with ELL-SS for
a re-parametrised length-scale process. More precisely, at the first level, the
SPDE formulation provides a sparse factorization of the precision matrix of the
non-stationary field. At the second level, we compare the exponential covariance
function, which leads to a sparse precision matrix for the latent parameters of
the non-stationary covariance matrix, with the squared exponential covariance
function, which while popular, leads to a dense representation.

In addition, extensions of the 2-level GPs to higher dimensional input spaces
are important and necessary in many applications. Existing approaches for two-
dimensional settings are based on heavily parametrised models using spectral
decompositions [38, 39, 43], basis function representations [28], or an isotropic
assumption [26, 45]. Instead, we propose a novel extension based on additive
GPs [12] that decomposes the function of interest in terms of low-dimensional
functions, which are modelled as separable non-stationary processes. Important
advantages include increased intrepretability and robustness to curse of dimen-
sionality, while inheriting the appealing flexibility of 2-level GPs. The additive
structure permits scalability, by taking advantage of the sparse banded precision
matrices, low-dimensional representation, and efficient Kronecker algebra for the
separable interaction terms. Moreover, it can capture long-range structures in
the data. The choice of interaction terms may be application driven, and hyper-
priors can be employed to determine their importance. In this case, the MCMC
schemes can be extended through a Gibbs sampling framework. This exten-
sion provide an efficient method for data-dense problems in low dimensions but
also enables using the construction for multidimensional (nD) problems with
relatively sparse data, similar to [53].

The 2-level models studied here naturally extend to multiple levels to con-
struct the deep GP models of Dunlop et al. [9]. Deep GPs have received in-
creased interest in literature and proposals differ in how the layers are combined
[e.g. 3, 7, 9, 25]. However, the key challenges, preventing wide-spread use of
Deep GPs, include developing interpretable constructions that lack degeneracy
[11] and efficient and scalable inference, despite the highly coupled layers and
computational expense of GPs. The hierarchical construction considered here
provides an interpretable structure for nonstationary problems, as well as a
sparse framework to address the computational burden, providing a promising
route to deeper constructions. Moreover, the developed methodology results
in a non-stationary hierarchical construction that retains the flexibility of the
model introduced by Paciorek and Schervish [39] but is computationally more
efficient.

The paper is organised as follows. We start by summarising related work in
Section 2. In Section 3, we present the sparse non-stationary hierarchical model
for one-dimensional problems and describe the proposed sampling schemes in
Section 4. Section 5 extends the model to higher dimensional input spaces,
while retaining the computational benefits and flexibility. The experiments in
Section 6 provide a complete empirical evaluation, with a study of the discreti-
sation and sample size effects and performance for different signal types, as
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well as a comparison with alternative GP models. Finally, Section 6.4 applies
the methodology to a computer emulation problem for a NASA rocket booster
vehicle.

2. Related work and background

We begin with a review of Gaussian process models, providing a connection
between the non-stationary GPs of Paciorek and Schervish [39] and the SPDE
formulation in Lindgren et al. [32] and Roininen et al. [45].

2.1. Gaussian process models

Let us denote by y ∈ Rm noisy realisations of an unknown random process
{z(x),x ∈ Rd}. A standard GP regression model assumes

yi = z(xi) + εi, (2.1)

where εi is zero-mean Gaussian noise with variance σ2
ε and z(·) a Gaussian

process. More precisely, the model can be written in a hierarchical form,

yi ∼ N (z(xi), σ
2
ε), i = 1, . . . ,m,

z(·) ∼ GP (0, Cφ(·, ·)) ,
(φ, σ2

ε) ∼ π(φ)π(σ2
ε),

(2.2)

where Cφ(·, ·) is a covariance function parametrised by φ and must define a
valid covariance matrix (symmetric and positive semi-definite). The covariance
function encodes important properties of the process, such as its variation and
smoothness. Stationary covariance functions only depend on the inputs (xi,xj)
through (xi − xj) and are most often the default choice. Typical covariance
functions include the stationary squared exponential (SE),

CS(xi,xj) = τ2 exp

(
−‖xi − xj‖2

2λ2

)
, (2.3)

and the stationary Matérn family, formulated as

CS(xi,xj) = τ2
21−ν

Γ(ν)

(
‖xi − xj‖

λ

)ν
Kν

(
‖xi − xj‖

λ

)
, (2.4)

where Γ(·) is the gamma-function, ν > 0 is the smoothness parameter, λ > 0
is the length-scale, τ2 > 0 is the magnitude or variance parameter, and Kν

denotes the modified Bessel function of the second kind of order ν.
However, the translation-invariance assumption of stationary covariance func-

tions may be inappropriate for certain applications where the process is spatially
dependent, such as, for problems in environmental, geospatial and urban sci-
ences. In these cases, a non-stationary formulation of the model is desirable.
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Paciorek and Schervish [39] introduced a family of non-stationary covariance
functions,

CNS(xi,xj) =
τ2|Σ(xi)|

1
4 |Σ(xj)|

1
4

|(Σ(xi) + Σ(xj))/2|
1
2

R
(√

Qij

)
,

where R(·) is a stationary correlation function on R; Σ(·) is a d × d spatially
varying covariance matrix, referred to as a kernel matrix, which describes local
anisotropies; and Qij = (xi − xj)

T
((Σ(xi) + Σ(xj))/2)

−1
(xi − xj) .

The non-stationary version of the Matérn covariance function is therefore,

CNS(xi,xj) =
τ221−ν |Σ(xi)|

1
4 |Σ(xj)|

1
4

Γ(ν)|(Σ(xi) + Σ(xj))/2|
1
2

(√
Qij

)ν
Kν

(√
Qij

)
, (2.5)

with hyperparameters φ = {Σ(·), ν, τ2}. When employing this type of non-
stationary covariance function in equation (2.2), we are required to infer the
kernel matrices at every location where the process was observed. Paciorek
and Schervish [39] modelled the kernel matrices as a continuous-parameter ran-
dom process by utilising its spectral decomposition. Nonetheless, this approach
results in computationally expensive inference [39, Section 5.1] even for one-
dimensional problems. As a consequence, alternative approaches to model the
spatially varying parameters have been proposed [31, 38, 42].

The closed-form kernel in equation (2.5) have given rise to different schemes
in the literature to model non-stationary datasets. Firstly, Stein [50] extended
the results from Paciorek and Schervish [39] and the work of Pintore and Holmes
[40] to obtain an extremely flexible kernel, which corresponds to a generalisation
of the non-stationary Matérn where all parameters are allowed to vary in space;
however, he also pointed out that, even for a fixed ν, spatially varying τ2 and
Σ(·) leads to problems of consistent estimation in the parameters. Later, Kleiber
and Nychka [30] developed further the work of Stein [50] by extending the kernel
to multivariate settings, and more recently, Risser [42] derived a class of non-
stationary kernels that enable the use of covariate information to drive non-
stationarity. Here, we focus on the non-stationary family of kernels derived
by Paciorek and Schervish [39], where the non-stationarity is introduced by
allowing only one of the parameters, namely Σ(·), to vary in space. We note
that for one-dimensional problems, the kernel matrices, Σ(·) in equation (2.5),
are reduced to scalars, which we denote as `(·). In this setting, when modelling
the spatially varying length-scale with a GP, the hierarchical formulation of the
model is

yi ∼ N (z(xi), σ
2
ε), i = 1, . . . ,m,

z(·) ∼ GP
(
0, CNS

φ (·, ·)
)
,

log `(·) ∼ GP
(
µ`, C

S

ϕ(·, ·)
)
,

(τ2,ϕ, σ2
ε , µ`) ∼ π(τ2)π(ϕ)π(σ2

ε)π(µ`),

(2.6)

where CNS

φ (·, ·) is as in equation (2.5) and CS
ϕ(·, ·) is a stationary covariance

function with parameters ϕ. We note that the prior for the spatially varying
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length-scale is assigned over a transformed parameter, defined as u(·) := log `(·),
with µ` representing the a priori constant mean of the log length-scale process.

Efficient sampling from the posterior is challenging and the computational
burden introduced by the spatially varying parameter is noticeable even in one-
dimensional problems [26, 39]. These difficulties arise from different sources.
First, the computational complexity inherited from dense covariance matrices
makes the model unsuitable for large datasets. Second, the latent processes and
hyperparameters tend to be strongly coupled, leaving vanilla MCMC schemes
inefficient. Finally, as in a stationary formulation, the model is sensitive to the
choice of hyperparameters, ϕ, and therefore these must be inferred [38].

2.2. SPDE formulation of Matérn fields

Lindgren et al. [32] showed that Gaussian Markov random fields can be
presented equivalently as stochastic partial differential equations. By fixing
ν = 2 − d/2, a GP with stationary Matérn covariance (2.4) and a Markov
property can be defined through(

1− λ2∆
)
z = τ

√
λdw, (2.7)

where ∆ :=
∑d
k=1 ∂

2/∂x2k is the Laplace operator, w is white noise on Rd, and
Var(w) = Γ(ν + d/2)(4π)d/2/Γ(ν).

Analogous to the construction of Paciorek and Schervish [39] for non-stationary
covariance functions with spatially varying length-scales, Roininen et al. [45] de-
rive an SPDE formulation for non-stationary Matérn fields,(

1− `(·)2∆
)
z = τ

√
`(·)dw, (2.8)

where `(·) is a spatially varying length-scale, that is modelled as a log-transformed
continuous-parameter GP in the hyperprior in equation (2.6). An alternative
formulation was proposed by Lindgren et al. [32, Section 3.2], where spatially
varying parameters were modelled through a basis function representation. Such
a choice gives computational advantages, through a lower dimensional parame-
ter space. However, this requires selecting the number of basis functions, and
the ability to flexibly recover changes in the length-scale strongly depends on
this choice.

A finite-dimensional approximation of our continuous-parameter model (2.8)
can be written in vector-matrix format as L(`)z = w, where L(`) is a sparse
matrix depending on `j := `(jh), with h denoting the discretisation step in
a chosen finite difference approximation. This model is constructed in such
a way that the finite-dimensional approximation converges to the continuous-
parameter model (2.8) in the discretisation limit h→ 0 (for proofs, see Roininen
et al. [45]). This property guarantees that irrespective of the choice of h, the
posteriors, and hence also the estimators, on different meshes, that are dense
enough, are essentially the same.
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We note that employing a GP to model `(·) results in a similar construction
to that discussed in Section 2.1 and can be rephrased through

y = Az + ε ≈ Az + ε, (2.9)

where A represents a linear mapping from some function space to a finite-
dimensional space Rm and ε ∈ Rm is assumed to be zero-mean Gaussian noise
with variance σ2

εIm, which is independent of z. For computational reasons, we
discretise this equation, such that Az ≈ Az, obtaining the right hand side of
equation (2.9), where A ∈ Rm×n is a known matrix and z ∈ Rn with z ∼
N (0, CNS

φ ). In this case, through the matrix A, we are able to define the grid
resolution of the latent fields. In particular, for more rough processes, we may
be interested in finer resolutions, while for smooth functions, a sparse grid may
be sufficient to obtain an accurate representation.

In the next sections, we extend the work of Roininen et al. [45], which was
limited, with respect to the statistical model, to a simpler model that did not
consider inference of the measurement noise variance and the length-scale hyper-
parameter. Also, their sampling was based on Metropolis-within-Gibbs, which,
as we will show, is unsuitable for deep hierarchical models and bigger datasets.
In this paper, specifically, we explore different hyperprior models, discusse and
compare MCMC algorithms to do inference with these types of models, and
present a novel efficient way to extend the model to higher dimensions.

3. Sparse non-stationary hierarchical models

Our aim is to decompose the inverse covariance matrix (CNS
u )−1 := Qu =

L(u)
T
L(u), where L(u) is a sparse matrix that depends on the log length-scale

parameters u = log(`). The required decomposition can be achieved employing
the SPDE approach from Section 2.2. An explicit hierarchical formulation of
the model is

y | z, σ2
ε ∼ N (Az, σ2

εIm),

z | u ∼ N
(
0, Q−1u

)
,

u | λ ∼ N (µ`, Cλ) ,

(σ2
ε , λ) ∼ π(σ2

ε)π(λ),

(3.1)

where µ` denotes the n-dimensional vector with all elements equal to µ`. As
both the length-scale and magnitude parameters cannot be estimated consis-
tently [57], we use the observe data to set the magnitude and mean of both
the stationary and non-stationary processes to improve identifiability, with full
details provided in the Supplementary Material. The key component of the
model is Qu, the inverse covariance of the GMRF employed to represent the
non-stationary GP. This precision matrix depends on u, which is assumed to be
a constant-mean GP that describes the spatially varying log length-scale, and
λ denotes the length-scale parameter of the covariance function that describes
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y: observed data

σ2
ε : noise variance

z: non-stationary process

τ2: variance of z

u: log length-scale process

µ`: mean of u

τ2` : variance of u

u′: log length-scale
process

µ`′ : mean of u′

τ`′ : variance of u′

λ: length-scale

Figure 1: Plate diagram for a non-stationary hierarchical model.

the properties of the log length-scale process. A plate diagram of this model is
given in Figure 3 (left).

We highlight that the SPDE formulation employed (2.7) considers periodic
boundary conditions, which can lead to undesirable effects in the edges of the
estimators. In order to correct a possible boundary effect, one can add points
around the boundary. This domain extension offers also a possible benefit in the
sparse structure of L(`). By construction, the matrix L(`) is a cyclic tridiagonal
matrix, and while Sherman-Morrison formula can be applied to solve this type
of systems efficiently (e.g. Seiler and Seiler [48]), we can simply neglect the
matrix elements in the corners once we have applied domain extension and take
advantage of the resulting tridiagonal structure.

In the following, we are interested on exploring the properties and behaviour
of the model and algorithms under two extreme smoothness assumptions of the
length-scale process. To do this, we analyse the methods under two different
types of hyperpriors for u. On the one hand, we introduce strong prior smooth-
ness assumptions by using a squared exponential covariance. On the other hand,
we explore rough hyperpriors, thorough an autoregressive AR(1) model.

The latter representation adds further computational gains to the model.
In addition, notice that we are free to assign an inhomogeneous Matérn field
for the log length-scale process, introducing more flexibility to the model. A
graphical representation of this type of 3-level construction is given to the right
of Figure 3. For simplicity, we focus on the 2-level case, when the parameters of
the log length-scale process are restricted to be constant along the input space.
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AR(1) hyperprior. A hyperprior with sample paths smoother than white noise is
needed, otherwise different discretisations of z may affect the posterior estimates
[45]. One such process is the Ornstein-Uhlenbeck, a member of the stationary
Matérn family (equation (2.4)), with exponential covariance function obtained
by setting ν = 1/2. The Ornstein-Uhlenbeck has non-differentiable sample
paths, allowing quick changes in the behaviour of the log length-scale process.
It is the continuous-time counterpart of the first-order autoregressive model
AR(1) given by uj = βuj−1 + ej and ej ∼ N (0, σ2), where uj is on an uniform
lattice tj := jh, j ∈ Z with discretisation step h. Without a proof, we note that
the AR(1) has an exponential autocovariance for all β > 0 except for β = 1
which corresponds to Gaussian random walk, i.e. Brownian motion. While the
stable AR(1) requires that β < 1, this is not a necessary condition here, as
our goal is in forming covariance matrices. Let us denote by a0 := 1/σ and
a1 := β/σ. Then, we can construct the inverse of the exponential covariance
matrix (CS

λ)−1 := Qλ = L(λ)
T
L(λ), where L(λ) is a sparse matrix that depends

on λ and τ`. More precisely, L(λ) is a banded matrix, with nonzero elements
only on the main diagonal given by (a0, . . . , a0, 1) and the first diagonal above
this given by (a1, . . . , a1). The coefficients are defined as

a0 = (
√
h/λ+

√
h/λ+ 4λ/h)/τ`

√
8 and a1 = (

√
h/λ−

√
h/λ+ 4λ/h)/τ`

√
8.

Hence, we have a sparse representation for the hyperprior precision matrix, and
the banded structure in L(λ) offers important computational advantages when
evaluating N (u | µ`, Q−1λ ), as the required determinant computations, matrix
multiplications, and system of equations can be significantly simplified. We
emphasise that higher-order autoregressive priors can be incorporated to the
model by modify the smoothness prior assumption of the length-scale process.
For a general AR(k) prior the bandwidth of L(λ) will be k + 1 and therefore,
the computational complexity will increase accordingly.

SE hyperprior. In contrast to the AR(1) hyperprior, we have the squared ex-
ponential hyperprior (equation (2.3)) for Cλ. This covariance function, also
referred to as the radial basis function (RBF), is recovered when ν → ∞ in
the stationary Matérn covariance of equation (2.4). Sample paths from a SE
are infinitely differentiable and consequently very smooth. Therefore, when em-
ploying a SE hyperprior for the length-scale process, we introduce strong prior
smoothness assumptions on how the correlation of the non-stationary process
changes with distance. We note that for the SE hyperprior, the precision matrix
is dense and therefore, comes at an increased computational cost.

4. Inference for one-dimensional input spaces

In order to efficiently draw samples from the posterior distributions of inter-
est, we explore three MCMC sampling approaches. The first draws samples from
the multidimensional vector u through an adaptive Metropolis-within-Gibbs al-
gorithm. The second employs ancillary augmentation [55] over z and u and
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uses elliptical slice sampling [ELL-SS, 37] over the re-parametrised log length-
scale process. The third integrates out the non-stationary process, resulting in a
marginal sampler that draws from u by combining ancillary augmentation and
ELL-SS to break the correlation between u and λ.

4.1. Metropolis-within-Gibbs (MWG)

This sampling scheme resembles the algorithm proposed in Roininen et al.
[45] with extensions to infer other model parameters and for other length-scale
hyperpriors. More precisely, we include adaptive random walks [44] for the
noise variance, length-scale hyperparameter and log length-scale process in order
to obtain an scheme that is free of parameter tuning. Moreover, we discuss
in detail the computational complexity of the algorithm, which is useful for
comparison with the other algorithms and methods. The procedure is detailed
in Supplementary Algorithm S.1.

The MWG framework updates the log length-scale process at each location
individually and, regardless of the hyperprior employed, offers computational
gains due to the fact that when proposing a single element of the log length-
scale process u∗k, for k = 1, . . . , n, the log-ratio of the prior density of z used in
the acceptance probability simplifies to

log

(
N (z | 0, Q−1u∗ )

N (z | 0, Q−1u )

)
= log det(L(u∗)L(u)−1)

− 1

2
zT (L(u∗)TL(u∗)− L(u)TL(u)) z.

Here u∗ is the proposed log length-scale vector, obtained by updating the kth
element of u to u∗k, and combined with pentadiagonal form of the precision
matrix, derived from multiplication of tridiagonal matrices Qu = L(u)TL(u),
results in a reduced computational complexity of the quadratic term in the
log-ratio from O(n2) to O(1). Moreover, the log-determinant can be computed
through numerically stable and inexpensive operations; for details, see Roininen
et al. [45, Section 6]. Similarly, the log-ratio of the prior density of u simplifies
to

log

(
N (u∗ | µ`, Cλ)

N (u | µ`, Cλ)

)
= −1

2

[(u∗k)2 − u2k]Qλ k,k +
∑
j 6=k

[u∗k − uk]ujQλ k,j

 ,

where Qλ k,j denotes the (k, j) element of the matrix Qλ. Further computational
gains are possible when we utilise the AR(1) hyperprior, as the tridiagonal form
Qλ = L(λ)TL(λ), resulting from the sparse AR(1) construction of L(λ), reduces
this operation from O(n) to O(1).

Additionally, when proposing a new hyperparameter λ∗, we must evaluate

log

(
N (u | µ`, Cλ∗)
N (u | µ`, Cλ)

)
=

1

2
log det(Qλ∗Q

−1
λ )− 1

2
(u− µ`)T(Qλ −Qλ∗)(u− µ`).
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For the SE hyperprior, this requires the inversion of a dense n×n matrix, while
the tridiagonal form of Qλ for the AR(1) hyperprior makes this considerably
cheaper by reducing the computational complexity of this log-ratio term from
O(n3) to O(n). In addition, our simulation studies show that this algorithm
does not perform well when the hyperprior for u(·) has strong smoothness as-
sumptions, such as those induced by employing a SE covariance function. This
flaw motives us to explore alternative algorithms.

4.2. Whitened elliptical slice sampling (w-ELL-SS)

Elliptical slice sampling is a state-of-the-art MCMC algorithm for latent
Gaussian models [37]. Here, we combine this sampling algorithm with ancillary
augmentation or whitening [55], which represents a computationally cheap and
effective strategy to break the correlation between the prior and its correspond-
ing hyperparameters [14, 36].

We can equivalently define the unknown function as z = L(u)−1ξ with
ξ ∼ N (0, In) and the log length-scale vector as u = Rλζ+µ` with ζ ∼ N (0, In).
For the AR(1) hyperprior, Rλ := L(λ)−1; whereas, for the SE hyperprior, we
define Rλ to be the lower-triangular Cholesky factor of Cλ. Re-parametrising
in terms of the whitened parameters ξ and ζ, results in the joint posterior

π(ζ, ξ, λ, σ2
ε | y)

∝ N (y | AL(Rλζ + µ`)
−1
ξ, σ2

εIm)N (ξ | 0, In)N (ζ | 0, In)π(λ)π(σ2
ε).

The sampling method is described in Supplementary Algorithm S.2. As opposed
to the MWG, the log length scales u are updated jointly through the whitened
parameter ζ. In this case, the likelihood can be evaluated as a product of
univariate Gaussian distributions, after computing u = Rλζ + µ` and solving
L(u)z = ξ. Regardless of the hyperprior employed, the latter system of equa-
tions L(u)z = ξ can be solved in O(n) operations by taking advantage of the
tridiagonal structure of L(u) [46]. The former system of equations u = Rλζ+µ`
requires matrix multiplication, resulting in O(n2) operations; however, for the
AR(1) hyperprior, we can equivalently solve L(λ)(u−µ`) = ζ and make use of
the banded form of L(λ) to reduce this to O(n) operations.

Thus, while MWG requires looping over the elements of the n-dimensional
log length-scale vector, with each operation costing O(1) operations for the
AR(1) hyperprior and O(n) operations for the SE hyperprior, the w-ELL-SS
instead updates this vector jointly through O(n) for the AR(1) hyperprior and
O(n2) operations for the SE hyperprior. However, as ELL-SS is a rejection
free sampling method, each iteration may require several likelihood evaluations,
mitigating any gain in computation time of this scheme.

4.3. Marginal elliptical slice sampling (m-ELL-SS)

In simulation studies, we found that integrating out the unknown function
z significantly improves the mixing of u and its hyperparameters. The log
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marginal likelihood of the data corresponds to

log π(y | u, λ, σ2
ε) = −m

2
log(2π)− 1

2
log det(Ψ)− 1

2
yTΨ−1y, (4.1)

where Ψ = AQ−1u AT + σ2
εIm. Again, we use whitening to decouple u and λ,

with the re-parametrisation ζ = R−1λ (u− µ`) and Rλ = L(λ)−1 for the AR(1)
hyperprior or Rλ = chol(Cλ) for the SE hyperprior. The posterior is

π(ζ, λ, σ2
ε | y) ∝ N (y | 0, AQ−1Rλζ+µ`A

T + σ2
εIn)N (ζ | 0, Im)π(λ)π(σ2

ε).

The sampling scheme is detailed in Supplementary Algorithm S.3. Again, the
log length scales u are updated jointly through the whitened parameter ζ. This
requires first computing u = Rλζ + µ`, an O(n) operation for the AR(1) hy-
perprior and O(n2) operation for the SE hyperprior. However, in comparison
with the w-ELL-SS, which proceeds by solving L(u)z = ξ and simply taking
the product of univariate Gaussians in O(n) operations, we must evaluate the
marginal likelihood in (4.1).

When computing the marginal likelihood, we emphasise that the required
calculations for Ψ can be computed employing the Woodbury identity;

Ψ−1 = σ−2ε

(
Im − σ−2ε A

(
L(u)

T
L(u) + σ−2ε ATA

)−1
AT

)
.

While this identity also requires a matrix inversion, note that L(u)
T
L(u) +

σ−2ε ATA is also banded and therefore computations are considerably cheaper.
Indeed, the quadratic term in the marginal likelihood (4.1) is

σ−2ε

(
yTy − σ−2ε yTA

(
L(u)

T
L(u) + σ−2ε ATA

)−1
ATy

)
,

with the most expensive operation of order O(n). Specifically, the first term yTy
can be computed in O(m) operations, while the second term can be efficiently
computed by breaking it into three separate operations. First, we set ς = ATy,
with computational complexity reduced from O(nm) to O(n) through sparsity
in A. Next, we solve (L(u)

T
L(u)+σ−2ε ATA)% = ς in O(n) operations due to the

banded form of the matrix. Finally, we compute ςT%, with a cost of O(n) oper-
ations. Computing the determinant, on the other hand, is more expensive with
the dominant term costing O(m3) or O(nm), whichever is greater. Specifically,
we must first solve (L(u)

T
L(u) + σ−2ε ATA)B = AT, with complexity O(nm),

and then compute AB, with reduced complexity O(nm) due to sparsity in A.
Finally, the determinant of the m×m matrix Ψ−1 is computed.

In addition, when proposing new values for the noise variance σ2
ε or the

length scale λ, we must recompute the marginal likelihood (4.1), as opposed
to evaluating the product of m univariate Gaussians for the w-ELL-SS scheme,
increasing the cost of these steps as well. However, in the marginal scheme,
in contrast to both MWG and w-ELL-SS, sampling of z is no longer required.
We also note the computational gains of the AR(1) over the SE hyperprior
deteriorate when the determinant evaluation dominates this computation, i.e.
when m3 > n2.
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The increased computational cost of the marginal scheme comes with im-
proved mixing, and this trade-off is examined in the simulation studies of Section
6.3. In contrast to MWG, this scheme performs well regardless of the hyper-
prior employed. Differently from Paciorek and Schervish [39], who also integrate
out the non-stationary process and utilise a Metropolis-Hastings step to sample
what they called the eigenprocess, we use elliptical slice sampling. This last
difference is key in the performance of the proposed algorithm.

5. Extensions for d-dimensional input spaces

To extend the model from Section 3 to higher dimensional input spaces, while
maintaining its computational benefits, a novel construction is proposed utilising
additive Gaussian process models [AGP, 12]. First, the model is presented,
followed by a description of the extended inference procedure.

5.1. Sparse non-stationary additive models

Additive regression models decompose the regression function into main ef-
fects and interactions. Linear regression is a classic example, and nonparametric
additive models [16, 4] provide increased flexibility, while retaining interpretabil-
ity and robustness to the input dimension, when compared with general nonpa-
rameteric surfaces. The additive GP formulation results from considering the
sum and product of covariance functions, two operations for constructing valid
covariance functions in d-dimensions. This provides a flexible and interpretable
model for the unknown function to include main first-order terms up to d-order
interaction terms, assumed to be separable across dimensions.

In the additive GP, the choice between low-order and high-order terms rep-
resents a trade-off between between interpretability and accuracy. On one hand,
by including only first-order terms, the model can capture long-range structures
and has increased intrepretability. On the other, including only a d-order sepa-
rable function increases flexibility and complexity. Duvenaud et al. [12] include
all interaction terms and develop a maximum marginal likelihood approach to
determine the importance of each term. Additionally, they develop an efficient
algorithm, despite the exponential number of terms, through parametrisations
that limit the number of hyperparameters. Interestingly, their experiments show
that typically only a few orders of interactions are important. Alternatively, the
choice of terms in the additive GP may be application driven; more recently,
this is the approach taken in Cheng et al. [6] for longitudinal biomedical data.
Another interesting direction in Gilboa et al. [19] constructs projected additive
GPs through first-order functions of linear projections of the inputs.

For notational simplicity, in the following, we focus on the 2-dimensional
input setting, including both the main and interaction terms for generality. The
model construction and inference can be applied to d-dimensional input settings,
through appropriate choice of the terms to include in the additive formulation.
In two-dimensional input problems, the discretisation is based on a complete
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n1 × n2 grid, with the noisy realisations modelled through

y = A1z1 +A2z2 +A3z3 + ε,

where A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and A3 ∈ Rm×(n1n2) are known matrices.
We assume z1(·) and z2(·) are independent one-dimensional non-stationary pro-
cesses, while z3(·) is a two-dimensional, separable non-stationary process. Thus,
zr ∈ Rnr denotes the vector formed by the first-order non-stationary processes
at the nr locations in dimension r = 1, 2, while z3 ∈ Rn1n2 collects the second-
order non-stationary process at all locations on the complete n1 × n2 grid.

The hierarchical structure of the model (depicted in Figure 3) is

y | {zr}3r=1, σ
2
ε ∼ N (A1z1 +A2z2 +A3z3, σ

2
εIm),

zr | ur ∼ N
(
0, CNS

ur

)
, r = 1, 2,

z3 | u3,u4 ∼ N
(
0, CNS

u3,u4

)
,

us | λs ∼ N
(
µ`s , C

S

λs

)
, s = 1, 2, 3, 4,

(σ2
ε ,λ) ∼ π(σ2

ε)π(λ1)π(λ2)π(λ3)π(λ4),

(5.1)

with λ = (λ1, . . . , λ4). In equation (5.1), we have four one-dimensional length-
scale processes: two describing the correlation changes in each direction inde-
pendently and two incorporating that information in a two-dimensional process,
through a separable assumption CNS

u3,u4
(xi,xj) = CNS

u3
(xi,1, xj,1)CNS

u4
(xi,2, xj,2).

A visualisation of the non-stationary additive covariance function is provided in
Figure 2.
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Figure 2: The non-stationary additive covariance function in 2-d with main effects and an
interaction is the sum of the three terms: CNS=CNS

u1
+CNS

u2
+CNS

u3,u4
. At each location

the covariance function will make use the data contained within the shaded region in each
of the plots. The 1st-order terms can pool together data across dimensions for long-range
correlations, while the 2nd-order terms can capture local behavior in both dimensions.

Because the AGP is based on one-dimensional kernels, we can directly apply
the methodology discussed in Section 3 for any of the hyperpriors studied. In-
stead, a direct extension of the SPDE model to two-dimensional input settings
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(λ1, λ2, λ3, λ4): length-scales

Figure 3: Plate diagram for a non-stationary 2-level additive GP model.

will not allow us to employ the AR(1) hyperprior and benefit from its compu-
tational advantages. This is because a two-dimensional exponential covariance
does not have a valid Markov representation. Additionally, The SPDE (2.8)
depends on the input dimensions, specifically it is assumed that ν = 2 − d/2,
this means that for a 3-dimensional process we will recover the non-stationary
exponential covariance, which for most real-world applications will be too rough
to be a realistic assumption. Finally, the additive and hierarchical structure of
the model in equation (5.1) favours interpretability about the behaviour of the
correlation in each dimension.

5.2. Inference for additive non-stationary models

The posterior for the additive non-stationary model in equation (5.1) is

π({zr}3r=1, {us, λs}4s=1, σ
2
ε | y) ∝ N (y | A1z1 +A2z2 +A3z3, σ

2
εIm)

N (z1 | 0, Q−1u1
)N (z2 | 0, Q−1u2

)N (z3 | 0, Q−1u3,u4
)

N (u1 | µ`1 , Cλ1) · · · N (u4 | µ`4 , Cλ4)π(λ1) · · ·π(λ4)π(σ2
ε),

with Q−1u3,u4
being a separable covariance matrix, defined as Q−1u3,4

:= Q−1u3
⊗Q−1u4

,
where ⊗ denotes the Kronecker product. The three inference schemes described
in Section 4 can be appropriately extended through a blocked Gibbs sam-
pler, that updates the three blocks of parameters (z1,u1, λ1); (z2,u2, λ2); and
(z3,u3,u4, λ3, λ4) from their full conditional distributions. Following from the
one-dimensional synthetic experiments of Section 6.1, we focus on the marginal
sampler of Section 4.3. We will refer to it as the block marginal elliptical slice
sampler (Block-m-ELL-SS); in this case, although we are not integrating out
the processes {zr}3r=1, we use the marginal likelihood to sample the length-scale
process and corresponding length-scale hyperparameters in each block. For in-
stance, when sampling the block (z1,u1, λ1), the full conditional factorises as

π(z1, ζ1, λ1 | y, σ2
ε , z2, z3) = π(ζ1, λ1 | y, σ2

ε , z2, z3)π(z1 | ζ1, λ1,y, σ2
ε , z2, z3),
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with ζ1 = R−1λ1
(u1 − µ`1) denoting the whitened parameter. Thus, we first

sample from the block marginal π(ζ1, λ1 | y, σ2
ε , z2, z3) utilising the steps de-

scribed in Section 4.3, with the marginal likelihood replaced by N (y − A2z2 −
A3z3|0, A1Q

−1
u1
AT

1 + σ2
εIm). The algorithm is detailed in Supplementary Algo-

rithm S.4. For efficiency in evaluating the block marginal likelihood obtained
from integration of zr, r = 1, 2, the matrix determinant lemma [23] must be
employed to avoid computing the determinant of an m×m matrix and instead
evaluate the determinant of three small matrices.

We note that for a d-dimensional problem with nk data points in dimen-
sion k = 1, 2, . . . , d and where only first-order terms are included in the model,
the algorithm requires O(

∑d
k=1 nkm) operations per marginal likelihood eval-

uation in order to sample the reparametrised length-scale process and its cor-
responding length-scale hyperparameters. In addition, due to whitening one
needs O(

∑d
k=1 nk) operations for the AR hyperprior compared to O(

∑d
k=1 n

2
k)

under the SE hypermodel.
When an interaction term is employed in the model, the algorithm re-

quires samples from the posterior of z3, which is a Gaussian distribution with
mean µz3 = σ−2ε Σz3A

T
3 (y − A1z1 − A2z2) and variance Σz3 = (Qu3 ⊗ Qu4 +

σ−2ε AT
3A3)−1. These posterior moment computations need the inversion of an

n1n2 × n1n2 matrix and cannot exploit the Kronecker structure because of the
second summand in Σz3 . To overcome this, we utilise the efficient method of
Gilboa et al. [19, Section 2.2], based on eigendecompositions and matrix-vector
multiplications for Kronecker matrices. This procedure applies to the case when
AT

3A3 = In1n2
; this constraint requires the data to be observed on the complete

grid (not necessarily equidistant), but can easily be relaxed for incomplete grids
and domain extensions with an additional Gibbs step to sample the missing
observations. Specifically, we make use of the identity

Σz3 =
(
Qu3 ⊗Qu4 + σ−2ε In1n2

)−1
= E3 ⊗ E4(Λ3 ⊗ Λ4 + σ−2ε In1n2

)−1ET

3 ⊗ ET

4 ,
(5.2)

where Qu3
= E3Λ3E

T
3 and Qu4

= E4Λ4E
T
4 , with E3 and E4 denoting the eigen-

vectors matrices and Λ3 and Λ4 denoting the diagonal matrices of eigenvalues
of Qu3

and Qu4
, respectively. Exploiting the sparse structure in the precision

matrices permits to reduce the cubically computatitional complexity of the re-
quired eigen-decompositions in this step. The second key identity is

(E3 ⊗ E4)α = vec[(E3[E4 reshape(α, n2, n1)]T)T], (5.3)

where the operator reshape(b, p, q) returns a p × q matrix whose elements are
taken from the vector b, and vec(M) denotes the vectorisation of a matrix M .
Importantly, (5.2) and (5.3) permit to reduce the number of operatios from
O((n1n2)3) to O(n1n2).
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Thus, to efficiently compute the posterior mean, µz3 , we follow three steps:

α = vec
[
(ET

3 [ET

4 reshape(ỹ, n2, n1)]T)
T
]
,

α = (Λ3 ⊗ Λ4 + σ−2ε In1n2)−1α,

µz3 = σ−2ε vec
[
(E3[E4 reshape(α, n2, n1)]T)

T
]
,

where ỹ := y − A1z1 − A2z2. Note that (Λ3 ⊗ Λ4 + σ−2ε In1n2
) is diagonal and

therefore easy to invert. A posterior sample of z3 is then obtained by sampling
η ∼ N (0, In1n2) and setting z3 = µz3 + E3 ⊗ E4(Λ3 ⊗ Λ4 + σ−2ε In1n2)−1/2η,
where for the latter operation, we again make use of the second identity (5.3)
and the diagonal form of (Λ3⊗Λ4 +σ−2ε In1n2

). The last critical computation is
the evaluation of the block marginal likelihood N (ỹ | 0, Q−1u3

⊗Q−1u4
+ σ2

εIn1n2
),

which is required to sample (ζ3, ζ4) and the corresponding hyperparameters,
λ3 and λ4. First, the quadratic term can be calculated efficiently following
the approach employed for the posterior mean. Next, for the log determinant
computation, one can use again the eigendecomposition; namely,

log det
(
Q−1u3

⊗Q−1u4
+ σ2

εIn1n2

)−1
= log det

(
E3 ⊗ E4(Λ−13 ⊗ Λ−14 + σ2

εIn1n2)−1ET

3 ⊗ ET

4

)
= − log det

(
Λ−13 ⊗ Λ−14 + σ2

εIn1n2

)
,

where Λ−13 ⊗ Λ−14 + σ2
εIn1n2

is a diagonal matrix, whose log determinant is
straightforward to calculate, reducing the computational completity of the log
determinant computation from O((n1n2)3) to O(n1n2). We emphasize that
the required terms can also be efficiently computed for higher-order interactions
through d-dimensional versions of the two key identities (5.2) and (5.3) in Gilboa
et al. [19]. Consequently, the computational cost of including d-order interaction

terms is O(
∏d
k=1 nk).

6. Experiments

We apply the sparse non-stationary hierarchical methodology to three sim-
ulated one-dimensional interpolation experiments and a two-dimensional syn-
thetic example. First, the one-dimensional experiments study the effects of the
discretisation and sample size on the efficiency of the algorithms presented in
Section 4 under two extreme hyperpriors. In addition, the experiments show
that our model can recover different signal types, while also providing informa-
tion on the correlation structure. Second, a two-dimensional synthetic experi-
ment demonstrates how the model can be extended to higher dimensional input
spaces utilising an AGP model. Finally, in Section 6.3, we present a comparative
evaluation on the performance of 2-level GP models against two other methods:
a stationary GP model and a Bayesian treed GP [TGP, 20] model, a popular
approach for dealing with non-stationarity.
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6.1. One-dimensional synthetic data

We consider three simulated datasets with different signal types. The first
example (Supplementary Figure S.1a) is a function with smooth parts and edges
and is also piecewise constant. The second synthetic dataset (Supplementary
Figure S.1b) is a damped sine wave function with smooth decaying oscilla-
tions. The third example corresponds to the Bumps (Supplementary Figure
S.1c) function employed by Donoho and Johnstone [8], which depicts a signal
with pronounced spikes and constant parts. In the first dataset, we investigate,
empirically, posterior consistency of the estimates with respect to the discretisa-
tion scheme. The second experiment explores the performance of the sampling
schemes for increased sample size and measurement noise. The last example
examines emphasises the importance of the prior choice.

Experiment 1: Smooth-piecewise constant function

For all experiments, we use the same initialisation and run the chains for T =
200, 000 iterations. The burn-in period is algorithm specific, selected according
to preliminary runs based on Raftery and Lewis’s diagnostic [41] for the second
level length-scale. Numerical discretisation-invariance is studied by varying n
in the experiments, with n = 85, 169, 253. The mean and variance of the prior
length-scale process is set at zero and one, respectively. For the second level
length-scale, we use a broad prior, log λ ∼ N (0, 3).

We start by presenting the results obtained with the MWG algorithm. Fig-
ure 4 shows estimates of the spatially varying length-scales and the unknown
function under both hyperpriors. For the AR(1) hyperprior, an inspection of
traceplots and cumulative averages of the estimates (not shown) suggest con-
vergence of the chains for all discretisation schemes. In addition, the varying
length-scale estimates exhibit the expected behaviour (i.e. decaying when the
function has a sharp jump and increasing when the function is constant), and
the interpolated estimates indicate a reasonable fit to the unknown function for
all three discretisations schemes (Figure 4(a)-(f)). However, this is not the case
for the SE hyperprior. Figure 4(g)-(l) illustrates the results obtained with this
hyperprior for the same sampling algorithm. Under this setting, the effect of
discretisation scheme is evident. As we increase n, the method fails to recover
the unknown function. The strong correlation between the elements of u in-
duced by the SE hyperprior makes the algorithm converge rather slowly to the
target distribution.

In contrast to the results obtained with MWG, both w-ELL-SS and m-ELL-
SS demonstrate convergence for both hyperpriors and invariance to the discreti-
sation (see Supplementary Figures S.2 and S.3 for a complete analysis). Figure 5
summarises succinctly important differences in mixing across the algorithms by
showing traceplots with cumulative averages for a subset of parameters. The
results are shown for the most challenging scenario, SE hyperprior at the high-
est resolution, n = 253. Figure 5(a)(d) emphasises the lack of convergence for
MWG. Figure 5(b)(e) demonstrates the high autocorrelation of the chains and
the slow convergence produced by w-ELL-SS. Finally, Figure 5(c)(f) highlights
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Figure 4: Results for Experiment 1 with MWG. (a)-(c): Estimated ` process with 95% credible
intervals for AR(1) hyperprior on different grids. (d)-(f): Estimated z process with 95%
credible intervals for AR(1) hyperprior on different grids with observed data in red. (g)-(i):
Estimated ` process with 95% credible intervals for SE hyperprior on different grids. (j)-(l):
Estimated z process with 95% credible intervals for SE hyperprior on different grids with
observed data in red.

the improvement offered by m-ELL-SS, fast convergence to the stationary dis-
tribution and low autocorrelation of the chains.

In order to evaluate the performance of the algorithms, we show in Table 1
an overall efficiency score (OES) of the chains [51]. This measure considers
both the CPU time (Supplementary Table S.2) required to run the chains and
the effective sample size (ESS) (Supplementary Table S.3). The score is com-
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Figure 5: Traceplots with cumulative averages of the chains for SE hyperprior with n = 253.
(Top row:) element of u with the lowest ESS. (Bottom row:) the hyperparameter.

puted as OES = ESS/CPUtime2. For both multidimensional vectors, z and
u, we report the OES computed with the minimum ESS across all dimensions.
The results indicate that while MWG with the AR(1) hyperprior shows high
efficiency for some parameters when n = 85, its performance deteriorates as n
increases. This suggests that this sampling scheme will not perform efficiently
for bigger datasets even when m = n (this is explored in Experiment 2). Fur-
thermore, despite the fact that MWG reports the lowest CPU time under the
AR(1) hyperprior (Supplementary Table S.2), its overall efficiency scores are
outperformed by those obtained with m-ELL-SS; this is due to the low auto-
correlation of the chains achieved by the marginal sampler (see Supplementary
Table S.3). In contrast, chains of the parameters for w-ELL-SS result in the
worse OES. Notice also that the scores reported for MWG with the SE hyper-
prior are not informative as the chains show convergence problems. Table 1 also
reports mean absolute error (MAE) to evaluate the fit to the unknown func-
tion and the empirical coverage of the 95% credible intervals (EC) to evaluate
accuracy in uncertainty quantification. For the SE hyperprior, w-ELL-SS and
m-ELL-SS report equivalent errors and EC, while MWG yields worse values.

Experiment 2: Damped sine wave

This example explores the effect of increasing the sample size and measure-
ment noise. Due to robustness of the estimates with respect to the discretisation
in the first example, we only present experiments for the discretisation scheme
when m = n. The chains are run for T = 100, 000 iterations with a burn-in
period that is algorithm and prior specific. In addition, we extend the domain
with 40 points on each side of the interval, such that n = 430 and m = 350.
The prior distributions for u and log λ are as in Experiment 1.

2All experiments were run in an Intel Core i7-6700 CPU (3.40GHz, 16 GB of RAM).
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MWG w-ELL-SS m-ELL-SS

n = 85 n = 169 n = 253 n = 85 n = 169 n = 253 n = 85 n = 169 n = 253

AR(1)

σ2
ε 622.76 173.12 65.99 380.89 102.38 38.91 661.20 257.81 116.35
`min 635.36 114.02 41.05 30.90 8.99 2.94 287.16 114.36 59.71
zmin 203.80 42.10 13.91 9.12 2.34 0.86 129.75 52.16 22.30
λ 89.84 15.66 6.00 22.77 5.26 2.36 111.80 45.54 21.53

MAE 0.041 0.051 0.054 0.041 0.051 0.054 0.041 0.051 0.053
EC 0.988 0.975 0.971 0.988 0.975 0.975 0.988 0.975 0.975

SE

σ2
ε 11.19 4.88 7.49 246.24 77.72 8.89 856.15 253.91 125.97
`min 1.22 0.73 0.64 21.69 10.22 2.79 244.91 122.57 55.82
z 0.06 0.01 0.01 4.71 1.37 0.24 76.80 24.11 9.87
λ 0.59 0.75 0.31 2.31 0.29 0.01 16.59 4.15 2.21

MAE 0.078 0.100 0.133 0.040 0.050 0.054 0.039 0.049 0.052
EC 0.889 0.826 0.763 0.988 0.975 0.971 0.988 0.975 0.979

Table 1: Experiment 1: OES with both hyperpriors under various discretisation schemes
(n = 86, 169, 253) and three different algorithms. `min and zmin report OES for the minimum
ESS across all dimensions. Highest values in boldface.
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Figure 6: Results for Experiment 2. Top row: estimated ` process with 95% credible interval
for SE hyperprior with (a) MWG, (b) w-ELL-SS and (c) m-ELL-SS. Second row: estimated
z process with 95% credible interval for SE hyperprior with (d) MWG, (e) w-ELL-SS and (f)
m-ELL-SS.

While the results with the AR(1) hyperprior appear satisfactory under the
three sampling schemes (Supplementary Figure S.4), once again, SE hyperprior
(Figure 6) with MWG is not able to explore the posterior of u, resulting in poor
estimates and hence, the highest MAE and poor EC (see Table 2). Analysing
the efficiency of the samplers, first, for the AR hyperprior, we observe that while
MWG is faster (Table S.4), its ESS is consistently smaller (Supplementary Table
S.6), hence reducing its OES (Table 2). In contrast to the findings in Experiment
1, w-ELL-SS reports better OES compared to MWG due to better mixing in
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AR(1) SE

MWG w-ELL-SS m-ELL-SS MWG w-ELL-SS m-ELL-SS

σ2
ε 12.73 27.54 14.21 0.27 32.29 15.27
`min 0.06 0.14 0.65 0.00 0.40 1.04
zmin 0.13 0.13 0.75 0.01 0.55 1.41
λ 0.19 0.36 0.95 0.02 0.05 0.25

MAE 0.038 0.039 0.039 0.089 0.038 0.038
EC 0.920 0.934 0.934 0.863 0.940 0.934

Table 2: Experiment 2: OES with AR(1) and SE hyperprior employing three different al-
gorithms. `min and zmin report OES for the minimum ESS across all dimensions. Highest
values in boldface.

the chains. We believe this is due to the noise level, which favours a whitened
parametrisation. Finally, despite the fact that the marginal sampler reports
larger CPU times, the low correlation of its chains (Supplementary Table S.6)
favours its OES. Second, when using the SE hyperprior, the marginal sampler
appears to be significantly faster and consistently reports the best OES. This,
together with the negligible differences in MAE and EC, suggests that m-ELL-
SS offers a good compromise between computational cost and efficiency, with
the benefit of working well under highly correlated priors.

Experiment 3: Bumps

The data is generated employing the Bumps function in Donoho and John-
stone [8] and scaled to have zero mean and unit variance. Following Vannucci
and Corradi [52], we generate m = 512 points in the interval [0,1] and use a
signal-to-noise ratio equal to 5, such that σ2

ε = .04. To avoid a boundary prob-
lem, we extend the domain with 30 points on each side of the interval, such
that n = 572. Chains are run for T = 100, 000 iterations with algorithm and
prior specific burn-in periods. We use empirical priors for the log length-scale
process and log length-scale hyperparameter; namely, µ` = −3.06, τ2` = 2.62,
and log λ ∼ N (−3.06, 2.62) (see Supplementary Section 4.3.1 for more details
on prior elicitation).

This example highlights important differences between the two hyperpriors
and the proposed MCMC algorithms. First, under the AR(1) hyperprior, the
three sampling schemes show differences in the posterior length-scale process
(Figure 7(a)-(c)). While MWG results in a smooth process, m-ELL-SS and
w-ELL-SS appear to be more sensitive to the prior, with rougher estimates.
Second, for the SE hyperprior, once more, MWG did not reach convergence.
Also, the performance of w-ELL-SS has become impaired; the posterior length-
scale process does not reflect the changes in the correlation structure, and the
length-scale hyperparameter did not reach the stationary distribution. The pos-
terior length-scale process obtained with m-ELL-SS appears more appropriate,
although, still shows a prior effect.

The findings discussed above are also evidenced in the OES shown in Table 3,
where MWG exhibits the highest scores and the lowest MAE under AR(1). In
contrast, the m-ELL-SS scheme outperforms MWG and w-ELL-SS for a SE
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Figure 7: Results for Experiment 3. Top row: estimated ` process with 95% credible interval
for AR(1) hyperprior with (a) MWG, (b) w-ELL-SS and (c) m-ELL-SS. Second row: estimated
z process with 95% credible interval for AR(1) hyperprior with (d) MWG, (e) w-ELL-SS and
(f) m-ELL-SS. Third row: estimated ` process with 95% credible interval for SE hyperprior
with (g) MWG, (h) w-ELL-SS and (i) m-ELL-SS. Bottom row: estimated z process with 95%
credible interval for SE hyperprior with (j) MWG, (k) w-ELL-SS and (l) m-ELL-SS.

hyperprior. We believe the differences illustrated in this experiment are a result
of a key challenge of elliptical slice sampling. When the likelihood is strong, the
sampler can result in poor mixing and, in extreme cases, can get stuck [13]. In
addition, when sampling kernel parameters in strong likelihood settings, one can
expect a non-centred parametrisation (avoiding whitening) to be more efficient
(see Section 3 in Murray and Adams [36]).

The computational time required for this experiment is reported in Supple-
mentary Table S.9. Given the same initial values, the marginal sampler con-
verges to the stationary distribution faster; indeed, m-ELL-SS reports, across
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AR(1) SE

MWG w-ELL-SS m-ELL-SS MWG w-ELL-SS m-ELL-SS

σ2
ε 23.42 5.73 5.70 2.06 5.48 15.36
`min 0.01 0.01 0.13 0.00 0.01 0.15
zmin 2.43 0.10 0.24 0.56 0.07 0.85
λ 0.65 0.03 0.13 0.07 0.00 0.03

MAE 0.060 0.061 0.062 0.461 0.069 0.060
EC 0.955 0.950 0.959 0.385 0.961 0.967

Table 3: Experiment 3: OES with AR(1) and SE hyperprior employing three different al-
gorithms. `min and zmin report OES for the minimum ESS across all dimensions. Highest
values in boldface.

experiments, the smallest time spent in burn-in period. Finally, to highlight how
the model can benefit from using a more powerful computer, we ran this exper-
iment in an Intel Xeon E5-260V3 2.4GHz (Haswell), 8-core processors with 32
GB of RAM, and we found that the inference procedure is sped up by a factor of
≈ 2.1 for m-ELL-SS and w-ELL-SS (see Supplementary Table S.10). However,
for MWG, the speed up factor was only ≈ 1.2.

6.2. d-dimensional synthetic datasets

We demonstrate the performance of our approach on two synthetic datasets
with d = 2 and 3. Firstly, for the 2-d dataset (Experiment 4) we generate
m = 20, 449 noisy observations in an expanded grid of n1 = n2 = 143 equally
spaced points in

[
0, 10

]
, employing z(x1, x2) = z(x1) + z(x2), where both z(x1)

and z(x2) correspond to the function used in Experiment 1. The noise variance
is set to σ2

ε = 0.06 and we use the same prior distributions of Experiment 1
for each of the length-scale processes and corresponding hyperparameters. Sec-
ondly, Experiment 5 corresponds to a 3-d dataset with m = 592, 704 data points
generated in an equally spaced 3 dimensional grid in

[
0, 10

]
with z(x1, x2, x3) =

z(x1) + z(x2) + z(x3), where z(x1) uses the function of Experiment 1, z(x2) =
sin(x2/2), and z3 = − exp(−3(x3−2.5)2)1x3<5 +exp(−3(x3−7.5)2)1x3≥5. The
noise variance is set to 0.02 and we use empirical priors for the length-scale
processes and its hyperparameters. In both cases, the samplers were run for
T = 50, 000 iterations, with a burn-in of 10, 000.

Figure 8 shows the results for the 2-d example, the figure depicts the true
surface versus the posterior mean obtained from a 2-level AGP model (without
interaction term), employing the Block-m-ELL-SS algorithm. Our model is able
to capture the smooth areas and edges of the surface. In addition, it provides
information about the correlation structure along each axis (Figure 8(b)). The 2-
level AGP correctly learns the varying correlation along the surface; for instance,
the true function in the region [5, 6]× [5, 6] is constant, and in the same region,
the 1-d length-scale processes depict strong correlation. The required total
computational time for this experiment was 99.26 minutes (19.67 in burn-in
and 79.59 in non-burned).

Figure 9 illustrates the results for our 3-dimensional synthetic example. Fig-
ures 9(a)-(c) show posterior estimates of the one-dimensional non-stationary
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Figure 8: Results for 2-dimensional synthetic data. (a): True surface. (b): Posterior mean
surface and one-dimensional length-scale processes with 95% credible intervals.
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Figure 9: Results for 3-dimensional synthetic data. (a)-(c): Posterior mean for the one-
dimensional non-stationary processes with 95% credible intervals (d)-(e): Posterior estimate
for the stationary length-scales processes with 95% credible intervals.

processes showing that the method is able to recover the true generating func-
tions. Figures 9(d)-(f) exhibit the posterior length-scale processes in each dimen-
sion, illustrating that our approach permits to learn differences in the correlation
structure. In this case, the inference proceedure took 927.6 minutes.

6.3. Comparative evaluation

We offer a comparative evaluation of our model for the synthetic examples
from Section 6.1 and 6.2. We compare against: 1) stationary Mátern Gaussian
process (STAT) with ν = 1.5, 2) Bayesian treed Gaussian process (TGP) [20],
3) local approximate Gaussian process (LAGP) [21], and 4) generalized additive
models (GAM) [54].

25



For the stationary model, the length scale and noise variance are inferred via
MCMC, employing a marginal sampler with adaptive random walks. The GP
prior mean and magnitude are fixed at 0 and 1, respectively, as in the 2-level GP
model. For the TGP, we consider a stationary Matern kernel with ν = 1.5 and
a constant mean function. The magnitude is also inferred, in contrast to the
stationary and the 2-level model. In order to make use of the default prior dis-
tributions, we rescale the response and inputs, as recommended by the authors.
For LAGP we do a grid search over the parameters and report the results with
the lowest MAE. Similarly, for GAM we use cubic penalized regression splines
and run a grid search for the free parameters in the model. Results of the
grid search for LAGP and GAM are available in the Supplementary material,
Section 5.2 and 5.3, respectively.

For STAT, TGP and 2-level GP, the chains for all the experiments are run for
the same number of iterations (100, 000), with the same burnin period (20, 000).
In addition, for STAT and 2-level GP the chains are initialised with the same
values. For our d-dimensional simulated dataset (Experiment 4 and 5), it is
computationally unfeasible to run STAT and TGP models due to the size of the
datasets. Instead, to offer a comparison, we consider a subset of the original
2-dimensional dataset, reducing the data size from 20, 449 to 441 observations
(Experiment 4 subset).

Figure 10 shows the posterior mean estimates of the unknown under the three
models for the three different 1-d synthetic datasets, and Figure 11 illustrates
the posterior mean surface for the subset of data in Experiment 4. Note that
the grey areas depict the 95% credible intervals of the unknown function for
STAT and 2-level GP but, instead, depict the 95% credible intervals of the noisy
observations for TGP. This is because storing region-specific traces is memory
intensive, and the storage is not supported in the tgp package without doing
predictions. In addition, Table 4 and 5 report MAE and EC of the experiments,
where we report EC of the noisy process for TGP.

Experiment 1 Experiment 2 Experiment 3
(m = 81) (m = 350) (m = 512)

STAT
MAE 0.076 0.047 0.094
EC 0.914 0.946 0.947

TGP
MAE 0.056 0.043 0.079
EC 0.963 0.934 0.963

LAGP
MAE 0.072 0.091 0.111
EC NA NA NA

GAM
MAE 0.083 0.048 0.089
EC NA NA NA

2 LEVEL MAE 0.041/0.039 0.039/0.038 0.062/0.060
(AR/SE) EC 0.988/0.988 0.934/0.940 0.959/0.967

Table 4: Comparative evaluation on 1-dimensional synthetic datasets. For Experiments 1-3
with 2-level GP model, we employ m-ELL-SS algorithm for both hyperpriors. Best values in
boldface.

First, the results make clear the downside of applying a stationary model
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Figure 10: Comparative evaluation for 1-d experiments. Each column shows one of the sim-
ulated experiments. Red dots depict observed data, dotted lines show the true signal, solid
lines show the posterior mean, and grey areas depict 95% credible intervals. (a)-(c): Station-
ary GP (d)-(f): TGP, with blue dotted lines depicting MAP cut-off points. (g)-(i): LAGP
with lowest MAE, (j)-(l): GAM with lowest MAE, and (m)-(o): 2-level GP with m-ELL-SS
algorithm and the hyperprior with lowest MAE.

to non-stationary data in all four compared experiments. In Experiment 1,
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Figure 11: Comparative evaluation for 2-d experiment. Posterior mean surface for (a):
anisotropic stationary model, (b): TGP, (c): LAGP with lowest MAE, (d): GAM with first
order terms and lowest MAE, and (e): 2-level AGP with first order terms.

Experiment 4-subset Experiment 4
(m = 441) (m = 20, 449)

STAT
MAE 0.195 NA
EC 0.501 NA

TGP
MAE 0.122 NA
EC 0.980 NA

LAGP
MAE 0.213 0.091
EC NA NA

GAM
MAE 0.071 0.030
EC NA NA

2 LEVEL MAE 0.072 0.020
(AR) EC 0.963 0.959

Table 5: Comparative evaluation on the 2-dimensional synthetic datasets. Experiment 4 on
the full dataset is computationally unfeasible for STAT and TGP. For Experiment 4 with
m = 20, 449 LAGP and GAM report results based on the grid search obtained with the
subset. The 2-level AGP model uses block-m-ELL-SS with AR hyperprior. EC? for TGP is
reported for the noisy process. Best values in boldface.

STAT is oversmoothing and unable to capture the edges in the function (see
Figure 10(a)). Example 2 and 3 (Figures 10(b)(c)) illustrate how a stationary
model tends to overfit when the function is constant, as a result of the different
characteristics of the unknown. The same behaviour is repeated in the two-
dimensional synthetic example (Figure 11(a)).

Second, while TGP offers an improvement, compared with a stationary set-
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ting, the model still oversmooths where the function possesses an edge. For
instance, in Figure 10(d), the partition found around 6.2 is misplaced, and a
third partition should be included around 9 to capture correctly the edges. In
Experiment 2 (Figure 10(e)), the partition is also misplaced; this is however
more reasonable (compared to Experiment 1) due to the smooth change in the
behaviour. In Experiment 3, despite the fact that TGP fit is good when the
function is constant (Figure 10(f)), the main limitation appears to be in finding
some of the partitions that are required to ameliorate the issues resulting from
fitting piecewise stationary models. Note that we ran TGP with a different num-
ber of iterations (100, 000; 200, 000 and 500, 000) to verify the results shown in
Figure 10 and 11 (see Supplementary Section 5 for the results). In Experiment
3, while increasing the number of iterations has a positive effect on the partitions
found (and therefore on MAE), it was not enough to outperform the 2-level GP
model. Also, this was not the case for the other experiments, where increasing
the number of iterations either did not affect the fit or worsened it. Moreover,
without knowing the ground truth, it would be hard to know beforehand if the
algorithm has been run for long enough to find the appropriate partitions.

Third, LAGP appear to overfit in all three one-dimensional datasets (Fig-
ure 10(g)-(i)) and in the subset of Experiment 4 (Figure 11(c)). We believe this
is due to the small data size of these experiments that do not permit smooth
transitions. Note that when we use the full dataset in Experiment 4, the MAE
considerably drops (see Table 5) compared to the results obtained when using
a subset of the data. This issue is further discuss in Gramacy [21, Section 3.3].

Finally, for our one-dimensional experiments, GAM shows the same limita-
tions than the stationary GP, as it considerably oversmooths in the edges and
overfits when the function is constant (see Figure 10(j)-(l)). As illustrated in
Figure 11(d) GAM seems competitive in the subset of our 2-dimensional dataset,
producing very similar results to those obtain with 2-level AGP (Figure 11(e)).
However, when we increase the datasize in Experiment 4 the performance of
GAM deteriorates (see Table 5).

In summary, the 2-level GP is an alternative model for non-stationary data
that resolves the issues discussed above. It does not overfit or oversmooth, works
well in small and big dataset, and it appears to be more efficient in dealing with
different types of non-stationarities, such as, edges, smooth changes or sharp
peaks. Moreover, the 2-level GP clearly benefits from the additive structure,
making the model scalable, while retaining flexibility. Notice that evaluating
the methods solely on running time can be misleading, as STAT and 2-level GP
are implemented in R using standard libraries, while TGP uses R as front end
to call C and C++ optimised code, and LAGP permits parallelisation in several
manners.

6.4. Real data: NASA rocket booster vehicle

The analysed dataset in this experiment comes from a computer simulator
of a NASA rocket booster vehicle, the Langley Glide-Back Booster [22]. NASA
scientists are interested in understanding the behaviour of the rocket when it
re-enters the atmosphere. To do so, the computer experiment considers six
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Figure 12: Results for NASA rocket booster vehicle. (a): Posterior mean of the non-stationary
process, (b): Posterior mean of the two one-dimensional processes with 95% credible intervals,
(c): Heatmap of the posterior mean depicted in (a), (d): Covariance structure for the 2nd-
order term.

different variables; lift, drag, pitch, side force, yaw, and roll; all forces that keep
the rocket up. Here, we focus on how the lift force is affected as a function of
the speed (mach) and the angle of attack (alpha) for a particular value of the
slide-slip angle (beta=0). The data is, by nature, non-stationary, with different
levels of smoothness along the surface and with a ridge showing the change from
subsonic to supersonic flow at mach=1 and large alpha.

The data consists on 861 observations on a 34 × 33 grid where the speed
ranges from [0.2, 6] and the angle of attack from [−5, 30]. The data is more
dense for mach values around one. Thus, the data is available on an incomplete,
non-equally spaced, rectangular grid. We consider the 2-level AGP model with
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interaction term, employing the Block-m-ELL-SS algorithm for inference. In
order to deal with missing values, we use the model to impute them at each
iteration of the MCMC. The chain is run for 50,000 iterations with a burn-in
period of 10,000.

Figure 12(a) shows the posterior mean obtained. The model is able to cap-
ture the expected ridge around mach=1 and a sharp peak in the boundary
around alpha=25, where the latter seems to be an error in the convergence of
the simulator [22]. Furthermore, Figure 12(b) illustrates the posterior mean of
each of the one-dimensional processes. The results suggest that fitting a sta-
tionary process for the angle of attack (alpha) may be enough. Importantly,
Figure 12(d) illustrates how the 2nd-order term can capture local behavior of
the process in both dimensions. Depictions of the posterior mean of the second-
order interaction term and all length-scale processes are provided in the Sup-
plementary Material. The required computational time for this experiment was
5.78 hours in a high performance cluster.

Because in this case we do not have the true function, to provide a compari-
son with TGP, we split the available data at random, usingm = 461 observations
for the training set and m∗ = 200 as test set. In this case, the performance in
terms of computational time and predicitve errors of both methods is similar.
Nevertheless, we expect to see greater benefits for larger dataset. Specifically,
our model reports a lower error in terms of MSE = 0.001 compared to TGP
with a MSE = 0.002; however, in terms of MAE, TGP appear to do better
with a MAE = 0.021, in contrast to a MAE = 0.030 for our model. This differ-
ence, higlights that when abrupt changes are important our 2-level GP model is
more efficient. Supplementary Figure S.13 provides scatter plots of true versus
predicted under the two models.

7. Discussion

We constructed non-stationary hierarchical models based on stochastic pa-
rameters and Gaussian Markov random fields, ameliorating the computational
constraints of doing exact inference in 2-level GP models through sparsity in the
finite-dimensional approximation of the inverse covariance matrix of the non-
stationary field. Different hyperpriors were also explored for the spatially vary-
ing length-scale, from strong prior smoothness assumptions through a squared
exponential covariance to rough hyperpriors of an autoregressive AR(1) model,
with the latter benefiting from further computational gains. Strong dependence
between the model layers makes efficient inference challenging, and to address
this, we introduced and investigated the performance of three different MCMC
algorithms. First, we found that the Metropolis-within-Gibbs scheme performs
poorly for highly correlated hyperpriors and exhibits deteriorating efficiency as
the number of observations or discretisation size increase. Second, the whitened
elliptical slice sampler performs well for weak likelihoods, regardless the hyper-
prior employed, at the price of highly correlated chains. Finally, the marginal
elliptical slice sampler appears to be an efficient strategy to break the correla-
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tion between latent process and hyperparameters and offers a good compromise
between computational complexity and efficiency of the chains.

We also proposed a novel extension to d-dimensional settings by combining
additive Gaussian process models with 2-level GPs. The additive structure and
use of Kronecker algebra for the interaction term result in an inference proce-
dure that is tractable and scalable. Our experiments show that the additive
structure retains the flexibility of the 2-level GP and favours its interpretability.
Moreover, while we focus on the two-dimensional setting, the additive 2-level
model and inference scheme naturally extend to higher dimensions. Overall, the
comparative evaluation highlights the benefits of our approach, over stationary
and popular non-stationary GP models, to recover edges, peaks and smooth
variations in the data in both one-dimensional and two-dimensional settings. In
addition, the methodology may benefit greatly from using powerful computa-
tional resources.

The experiments presented here suggest that the algorithms based on ellip-
tical slice sampling do not deteriorate as the resolution becomes finer or the
sample size increases, similar to the schemes discussed by Chen et al. [5]. How-
ever, it is important to emphasise that elliptical slice sampling is known to per-
form well for weak data likelihoods; therefore, care must be taken in the small
noise limit. Furthermore, it would be interesting to explore the performance
of the auxiliary gradient-based sampling scheme recently proposed by Titsias
and Papaspiliopoulos [51]; however, notice that this scheme requires derivatives,
which for our model are expensive and not straightforward to compute. We also
highlight the recent work of Durrande et al. [10], implementing banded matrix
operators in TensorFlow, which, combined with GPflow [34], could provide a
promising direction for automatic differentiation for our model.

While this work exemplifies the methodology on a computer simulation prob-
lem, the approach here discussed is applicable for a range of data. In addition,
a natural extension of this work is to the 3-level GP model or, more generally,
the deep GP models studied in Dunlop et al. [9]. Other interesting directions for
future research include exploring higher-order autoregressive hyperpriors; more
general kernels; and alternative likelihoods for problems beyond regression, such
as the classification and inverse problems discussed in Chen et al. [5].
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Appendix A. Supplementary Material

Supplementary Material associated with this article can be found online : http:
//www.some-url-address.com, and code will be made publicly available.
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