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Abstract

The complexity of X-chromosome inactivation arouses the X-linked genetic
association being overlooked in most of the genetic studies, especially for
genetic association analysis on time to event outcomes. To fill this gap,
we propose novel methods to analyze the X-linked genetic association for
competing risk failure time data based on a subdistribution hazard func-
tion. Specifically, we consider two mechanisms for a single genetic variant
on X-chromosome: (1) all the subjects in a population undergo the same in-
activation process; (2) the subjects randomly undergo different inactivation
processes. According to the assumptions, one of the proposed methods can
be used to infer the unknown biological process under scenario (1), while
another method can be used to estimate the proportion of a certain biolog-
ical process in the population under scenario (2). Both of the two methods
can infer the direction of skewness for skewed X-chromosome inactivation
and derive asymptotically unbiased estimates of the model parameters. The
asymptotic distributions for the parameter estimates and constructed score
tests with nuisance parameters only presented under the alternative hypoth-
esis are illustrated under both assumptions. Finite sample performance of
these novel methods is examined via extensive simulation studies. An ap-
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plication is illustrated with implementation on a cancer genetic study with
competing risk outcomes.

Keywords: Genetic association test, Subdistribution hazard function,
X-chromosome association, X-chromosome inactivation.

1. Introduction

The genome-wide association study (GWA study, or GWAS), also known
as the whole genome association study (WGA study, or WGAS), has provid-
ed a mass of successful approaches to identifying candidate germline genetic
variants for diagnosis. It plays an important role in pharmacogenetics to
identify prognostic genetic variants that affect overall survival, tumor re-
sponse or treatment toxicity on many other complex diseases [1]. However,
the X-chromosome, which contains almost 5% of the human genome (UC-
SC Genome Browser) [2], has been generally excluded from the majority of
GWAS analyses [3]-[5]. That is mainly because the gene expression on X-
chromosome is very complicated. [6] states that to address the imbalance
of X-linked genes between males and females, one of the two copies of the
X-chromosome genes present in each cell in females may be inactivated dur-
ing the early embryonic development, which is the so called X-chromosome
inactivation (XCI). Studies have suggested that besides XCI, skewed or non-
random XCI is also biological plausible. The skewed XCI (denoted as XCI-S)
is more common in affected women (namely women with disease) than that in
unaffected women; see [7]-[11]. Therefore, it is important to consider XCI-S
when assessing the X-chromosome genetic association on disease risk. An-
other complexity of X-linked genetic effects is the escape from XCI (denoted
as XCI-E) outside the pseudo-autosomal regions on the X-chromosome; see
[12]-[16]. This kind of gene has no-dosage compensation between males and
females and accounts for around 25% X-linked genes.

As the complex inactivation biological process is totally unobserved at
most of times, there are only a few statistical approaches, which are all fo-
cused on case-control studies, proposed to reveal the relationships between
the X-linked genetic variants and various disease risks. [17] and [18] stud-
ied the X-chromosome association analysis deeming them only undergoing
XCI-E or XCI, respectively. Both of them consider samples of unrelated in-
dividuals from a single population. [19] extended the association tests with
both single marker and haplotype to the X-chromosome on related individu-
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als. [20] proposed different test statistics to study the relationships between
X-linked genetic markers and some complex disease traits with related indi-
viduals. [21] compared various test statistics regarding genetic markers on
X-chromosome. Besides these joint tests for X-linked genetic association,
another common approach is to conduct genetic analysis on male and female
subjects separately (sex-stratified), see [22]. The limitation of this approach
is losing in power caused by partitioning of the samples [23]. [24] proposed a
unified likelihood ratio test for X-linked genes over all the potential biological
processes, which is first considering XCI-S and can deal with the model mis-
specification. [25] considered capitalizing on variance heterogeneity due to
various factors and predominately the process of X-inactivation. [26] system-
atically introduced a new software XWAS, which is designed for the X-linked
association study and included the recent developed methods. Lately, [27]
provided a Bayesian model averaging framework to account for the inherent
model uncertainty.

Unfortunately, after an exhaustive review of the literature, methodology
developed specifically for X-linked genetic association on time-to-event out-
comes is very scarce. [28] first developed a novel statistical model on single
X-linked genetic association with right censored data. To analyze the X-
linked genetic association for time to event outcomes with the actual process
unknown, they proposed a unified approach of maximizing the partial like-
lihood over all of the potential biological processes. Their proposed method
can be used to infer the true biological process and derive asymptotically
unbiased estimates of the genetic association parameters. [29] addressed a
very important issue in [28] about chi-square distribution assumption. [30]
proposed a random effect model to tackle the right censored data. However,
in complex human genetic disease research, one may need to deal with more
complicated time-to-event outcomes, such as the recurrence-free survival and
the cause-specific survival. These involve competing risk events such as death
without tumor progression or index cancer. A competing risk event can pre-
clude the event of interest from occurring. It may lose information or provide
misleading inference if we ignore this type of event.

To fill this gap, we propose a novel statistical methodology framework to
explore the X-linked genetic prognostic and predictive associations on com-
peting risk failure time data. For competing risk data, researchers usually
pay attention to the cumulative incidence functions of a specific cause of
failure [31]-[35] or the subdistribution hazard function [36]-[43], which is de-
veloped directly to model the cumulative incidence function. Thereby, our
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goal is to handle the effects of X-linked genetic data on the proportional
subdistribution hazard model. In this study, we develop both the unifor-
m XCI model (assuming that for one specific gene, all the subjects in the
population undergo the same X-chromosome inactivation biological process)
and the random XCI model (assuming that for one specific gene, the subjects
randomly go through different biological processes). For uniform XCI model,
the proposed method is a unified pseudo-partial likelihood model over all the
possible biological processes. Not only can it infer the true biological process,
it can also determine the skewed direction and estimate the magnitude of the
skewness for XCI-S. For the random XCI model, the proposed method can
estimate the proportion of XCI-E and the direction of skewness for XCI-S.
Moreover, both methods can provide consistent estimates of the X-linked
genetic effects on the time to event outcomes, which is proved to enjoy the
asymptotic normality. Further, to test whether the X-linked gene is related
to the interest event or not, novel score tests with nuisance parameters that
only present under the alternative are constructed with the true value outside
the inter point region under the null hypothesis. The asymptotic distribution
for the novel score test is derived and a resampling approach is illustrated to
derive the reject critical value.

The outline of the remainder of the paper is as follows. We first describe
the methodology framework and asymptotic properties of the model in Sec-
tion 2. Section 3 shows the results from extensive simulations and in Sec-
tion 4, our proposed methodologies are applied to analyze an X-chromosome
wide genetic association study on colorectal cancer patients with compet-
ing risk outcomes. Conclusions and discussions are given in Section 5. All
the detailed theoretical proofs are provided in the Appendix A of the Sup-
plementary Material, while some further simulation studies are given in the
Appendices B, C, and D of the Supplementary Material.

2. Statistical Methodology

Let T be the failure time, Z be the p-vector covariates. Assume that the
failure may be aroused byK ≥ 2 distinct causes. Let C be the censoring time,
Y = min(T,C) be the observation time. ∆ = 1 denotes the event of interest
occurring, ∆ = 2 indicates all the other events happening, and ∆ = 0 denotes
the censoring happening. We use the Cox proportional hazards model to
specify the subdistribution hazard function of the event of interest:

λ(t|Z) = λ0(t) exp(β>0 Z),
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where β0 is the true parameter. From [36] and [42], the estimating equation
for parametric coefficient β is:

U(β) =
n∑
i=1

1(∆i = 1)

{
Zi −

∑n
j=1wj(Yi)Zj exp(Z>j β)∑n
j=1wj(Yi) exp(Z>j β)

}
= 0, (1)

where wj(t) = 1(Yj ≥ t,∆j 6= 2) + 1(∆j = 2)Ĝ(t)/Ĝ{min(Yj, t)}, Ĝ(t) is the
Kaplan-Meier estimator of G(t) = Pr(C ≥ t).

2.1. X-Chromosome Inactivation

For an X-linked genetic variant, such as a Single Nucleotide Polymor-
phism (SNP), with two alleles: normal allele a and risk allele A, it can be
generalized and coded as Table 1 under different biological processes. In the
table, γ is an unknown parameter representing the extent of skewness and
ranges from 0 to 1. γ less than 0.5 represents XCI-S towards to the normal
allele, while γ larger than 0.5 represents XCI-S towards deleterious allele. As
suggested by one anonymous reviewer, the coding schemes are added for a
better understanding. Table 1 means that no matter which kind of biological
process the genes go through, aa on female and a on male have the same
effect. Under the biological process of XCI and XCI-S, AA on female and
A on male have the same effect. This is reasonable since under XCI and
XCI-S, the genes on female X-chromosome will be inactivated to make the
dosage compensation between males and females. While under the scenario
of XCI-E, gene has no-dosage compensation between males and females, then
the effect of AA is double than that of A. So we code AA as 2 and A as 1.
This assumption is in accordance with that of Wang et al. (2014). The only
difference of genotype coding between ours and theirs is that they assumed
that AA on female should have the same effect while we assume that A on
male has the same effect under different biological processes. In our model,
we include the gender (Xsex) of the subjects as one factor, and the effect
of gender can not simply be interpreted as the effect of the SNP, since it
includes many aspects, such as the immunity difference aroused by gender,
which in the majority situation is not determined by the SNP we analyzed.
Let Xsnp belong to a coding value set X that is in accordance to Table 1 and
defined as:

X =
{
XF

XCI-S = {0, γ, 1}, γ ∈ [0, 1];XF
XCI = {0, 0.5, 1};

XF
XCI-E = {0, 1, 2};XM = {0, 1}

}
,
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where XF denotes the coding for female genotypes with different subscript
referring the corresponding biological processes and XM denotes the male
genotypes.

To study the relationships between the event of interest and the X-linked
genetic marker, we first extent Clayton’s methods [18] that assume all the
SNPs undergoing XCI and PLINK methods [17] that assume all the SNPs
undergoing XCI-E directly. Specifically, denote the log pseudo-partial likeli-
hood as l(β):

l(β) =
n∑
i=1

1(∆i = 1){Z>i β − log
n∑
j=1

wj(Yi) exp(Z>j β)},

where Z = (Xsnp, Xsex)
> withXsex being the gender indicator, β = (βsnp, βsex)

>

with βsnp and βsex being the SNP effect and the gender effect, respectively.
Denote β0,snp as the elements according to the SNP part. Given Xsnp as the
XCI or XCI-E coding value, respectively, the traditional pseudo-partial like-
lihood method can be used directly. Maximizing l(β) is equivalent to solving
equation (1).

Motivated by l(β), for XCI-S, to estimate the parameters, we introduce
a new function f(β, γ):

f(β, γ) =
n∑
i=1

1(∆i = 1)
(
{RiXisnp + (1−Ri)γ}βsnp +Xisexβsex

− log
n∑
j=1

wj(Yi) exp[{RjXjsnp + (1−Rj)γ}βsnp +Xjsexβsex]
)
,

where Xisnp is coded under the XCI for subject i, Ri is the genotype indicator
for subject i: if genotype is Aa, Ri = 0; otherwise, Ri = 1. Thus, we
have f(β, γ0) = l(β) for XCI-S with true value γ0. Denote (β̂>, γ̂) as a
local maximizer of f(β, γ). As the biological process is totally unobserved
at most of the time, the Akaike information criteria (AIC) is selected to
choose the true biological process. Specifically, for XCI and XCI-E, we have
AIC = −2l(β̂) + 2dim(β̂) with dim(z) being the dimension for any vector z.
For XCI-S, we have: AIC = −2f(β̂, γ̂) + 2dim(β̂>, γ̂). Such kind of method
is called the unified approach based on the pseudo-partial likelihood.

To study the properties about (β̂>, γ̂) under XCI-S, we denote the first
and second derivatives of f(β, γ) as U(β, γ) and D(β, γ), respectively. Then
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we have that U(β̂, γ̂) = 0. Denote Z̃(βsnp, γ) = (RXsnp + (1−R)γ,Xsex, (1−
R)βsnp)>, Zγ = (RXsnp + (1 − R)γ,Xsex)

>. For any vector z, define z⊗0 =
1, z⊗1 = z, z⊗2 = zz>, where 1 is the unit vector. Denote

S(k)(t, γ, β) =
1

n

n∑
j=1

wj(t) exp{Zjγ(βsnp, γ)>β}Z̃j(βsnp, γ)⊗k, k = 0, 1, 2,

S̃(k)(t, γ, β) =
1

n

n∑
j=1

w̃j(t) exp{Zjγ(βsnp, γ)>β}Z̃j(βsnp, γ)⊗k, k = 0, 1, 2,

with w̃j(t) = 1(Yj ≥ t,∆j 6= 2) + 1(∆j = 2)G(t)/[G{min(Yj, t)}]. To state
the asymptotic properties, define N(t) = 1(Y ≤ t,∆ = 1), M(t, β0) =
1(Y ≤ t,∆ = 1) −

∫ t
0
w̃(s) exp(β>0 Z)λ0(s) ds, M

c(t, β0) = 1(Y ≤ t,∆ =

0) −
∫ t
0
1(Y ≥ s)dΛc(s) with Λc(s) being the general cumulative hazard of

the censoring time C, s(k)(t, γ, β) = E{S̃(k)(t, γ, β)}, k = 0, 1, 2, e(t, γ, β) =
s(1)(t, γ, β)/s(0)(t, γ, β). Set

A =E

[∫ τ

0

{s(2)(t, γ0, β0)
s(0)(t, γ0, β0)

− e(t, γ0, β0)⊗2
}
dN(t)

]
,Σ = E{(η − φ)⊗2},

η =

∫ τ

0

{
Z̃(β0,snp, γ)− e(t, β0, γ0)

}
dM(t, β0), φ =

∫ τ

0

q(t)

E{1(Y ≥ t)}
dM c(t, β0),

q(s) =

∫ τ

0

{
Z̃(β0,snp, γ)− e(t, β0, γ0)

}
1(t ≥ s ≥ Y ) dM(t, β0).

Theorem 1. (Asymptotic Normality) Under the regularity conditions (C1)-
(C3) in the Appendix A of the Supplementary Material, for γ0 ∈ (0, 1), we
have that

√
n{β̂>−β>0 , γ̂−γ0}> converges to a normal distribution with mean

zero and variance A−1ΣA−1.

The proof of Theorem 1 is quite similar to those of Lemma 1 and Theorem
1 of reference [28], thus omitted.

Remark 1: Theorem 1 implies that the convergence rate for both β̂ and γ̂
is n−1/2. Denote � as the asymptotic equal distribution. This theorem shows
that when n is large enough, direct calculations can yield γ̂ ∈ (0, 1), which
is very important to clinicians. In finite sample performance, to constrain γ̂

7



ranging from 0 to 1, the function nlminb in software R can be used to get
asymptotically unbiased estimates of β and γ with γ̂ in (0, 1). Actually, this
is an optimization problem:{

max f(β, γ)
with γ(γ − 1) ≤ 0.

Through the Karush-Kuhn-Tucker (KKT) conditions, the dual problem of
the optimization problem is:

U(β, γ) = (0, 0, µ(2γ − 1))>,
µγ(γ − 1) = 0,

µ ≥ 0.
(2)

Thereby, for finite sample performance, we have

√
n{β̂> − β>0 , γ̂ − γ0}> − Â−1{n−1/2(0, 0, µ̂(2γ̂ − 1))>} � N(0, Â−1Σ̂Â),

with Â being the estimate of A and Σ̂ being the estimate of Σ. This result
can be used to make a correction of β̂.

Denote

Ui(β) = 1(∆i = 1)

{
Zi −

∑n
j=1wj(Yi)Zj exp(Z>j β)∑n
j=1wj(Yi) exp(Z>j β)

}
,

Ui,βsnp(β) = 1(∆i = 1)

{
Xisnp −

∑n
j=1wj(Yi)Xjsnp exp(Z>j β)∑n

j=1wj(Yi) exp(Z>j β)

}
,

Ui,βsex(β) = 1(∆i = 1)

{
Xisex −

∑n
j=1wj(Yi)Xjsex exp(Z>j β)∑n

j=1wj(Yi) exp(Z>j β)

}
,

namely Ui,βsnp(β) and Ui,βsex(β) are the elements of Ui(β) according to the
βsnp and βsex parts. Let

β̃sex = max
βsex

l(0, βsex),

Σβsnp(0, β̃sex) and Σβsex(0, β̃sex) be the asymptotic variances of Ui,βsnp(0, β̃sex)

and Ui,βsex(0, β̃sex) respectively, Σβsnpβsex(0, β̃sex) be the asymptotic covariance

of Ui,βsnp(0, β̃sex) and Ui,βsex(0, β̃sex). To test whether βsnp = 0 or not, we can
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use the U-score test [44]. For the extension of Clayton’s method ([18]) and
the PLINK method ([17]), the U-score test statistic is defined as:

Score =
{
∑n

i=1 U
∗
i0(0, β̃sex)}2

nΣ∗0(0, β̃sex)
,

where U∗i0(0, β̃sex) = Ui,βsnp(0, β̃sex)−Σβsnpβsex(0, β̃sex)Σ
−1
βsex

(0, β̃sex)Ui,βsex(0, β̃sex),

Σ∗0(0, β̃sex) = Σβsnp(0, β̃sex)− Σβsnpβsex(0, β̃sex)Σ
−1
βsex

(0, β̃sex)Σβsnpβsex(0, β̃sex),

and Xsnp is the coding value under the XCI or the XCI-E mechanism. It
follows from the definition of the test that the “Score” is asymptotic to the
central χ2

1 distribution.
For the XCI-S model, γ is not identifiable under the null hypothesis, and

the null model is not an interior point in the alternative space. Thus, the
U-score test is defined as:

ScoreXCI-S = max
γ∈[0,1]

{
∑n

i=1 U
∗
i0,γ(0, β̃sex)}2

nΣ∗γ(0, β̃sex)
=
{
∑n

i=1 U
∗
i0,γ̂(0, β̃sex)}2

nΣ∗γ̂(0, β̃sex)
,

where U∗i0,γ(0, β̃sex) and Σ∗γ(0, β̃sex) have the same formula as U∗i0(0, β̃sex) and

Σ∗0(0, β̃sex) replacing Z with Zγ.

Theorem 2. Under the regularity conditions (C1)-(C3) in the Appendix
A of the Supplementary Material, ScoreXCI-S converges in distribution to
supγ∈[0,1] G2(γ) under βsnp = 0 as n goes to infinity, where {G(γ), γ ∈ [0, 1]}
is a zero mean Gaussian process with the covariance function

Σ(γ1, γ2) = E{U∗0,γ1(0, βsex)U
∗
0,γ2

(0, βsex)}/
√

Σ∗γ1(0, βsex)Σγ∗2
(0, βsex).

It follows from [36] that

U(β0) =
n∑
i=1

Ũi(β0) + op(n
1/2),

with Ũi(β0) = η̃i(β0) − φ̃i(β0), η̃(β0) =
∫ τ
0

{
Z − ẽ(t, β0)

}
dM(t, β0), φ̃ =∫ τ

0
q̃(t)/E{1(Y ≥ t)} dM c(t, β0), q̃(s)(β0) =

∫ τ
0

{
Z − ẽ(t, β0)

}
1(t ≥ s ≥

Y ) dM(t, β0), ẽ(t, β0)(β0) = E{w̃(t) exp(Z>β0)Z}/E{w̃(t) exp(Z>β0)}.
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Since the biological process is totally unobserved, we propose the test
statistic as:

ScoreUMP = max(ScoreXCI-E, ScoreXCI-S).

The empirical reject region can be obtained through the resampling approach.
Specifically, the resampling approach is by generating a large of Score∗UMP,
where Score∗UMP = max(Score∗XCI-S, Score∗XCI-E). Here

Score∗XCI-E =
{
∑n

i=1 εiŨ
∗
i0(0, β̃sex)}2

nΣ∗0(0, β̃sex)
,

where εi, i = 1, 2, . . . , n are i.i.d standard normal random variables indepen-
dent of the data, and

Ũ∗i0(0, β̃sex) = Ũi,βsnp(0, β̃sex)− Σβsnpβsex(0, β̃sex)Σ
−1
βsex

(0, β̃sex)Ũi,βsex(0, β̃sex).

Here Ũi,βsnp(0, β̃sex),and Ũi,βsex(0, β̃sex) are the elements of Ũi(0, β̃sex) according

to the βsnp and βsex parts, while Ũi,βsnp(0, β̃sex), Σβsnpβsex(0, β̃sex), Σβsex(0, β̃sex)

and Ũi,βsex(0, β̃sex) derived under the XCI-E mechanism. For

Score∗XCI-S = max
γ∈[0,1]

{
∑n

i=1 εiŨ
∗
i0,γ(0, β̃sex)}2

nΣ∗γ(0, β̃sex)
,

Ũ∗i0,γ(0, β̃sex) has the same formula as Ũ∗i0(0, β̃sex) with replacing Z as Zγ,
Score∗XCI-S and Score∗XCI-E share the same εi. By generating a large of Score∗UMP,
such as 1000 times, we can get the upper αth quantile of the empirical dis-
tribution, denoted as Cα,UMP. The α-level test reject region is {ScoreUMP >
Cα,UMP}.

2.2. Random X-chromosome Inactivation

The biological process of X-chromosome inactivation is quite complex
and sometimes it is inherently subject specific. For a specific gene, it may go
through different biological processes in different subjects [45]. We introduce
ρ as the indictor: ρ = 1 when the gene goes through XCI; ρ = 2 when it goes
through XCI-E; ρ = 0 when it goes through XCI-S. The log pseudo-partial
likelihood is: lp(β) =

∑n
i=1 li(β), where

li(β) = 1(∆i = 1)
2∑

k=0

1(ρi = k)
{
Zk
i

>
β − log[

n∑
j=1

2∑
m=0

1(ρj = m)wj(Yi) exp(Zm
j
>β)]

}
,
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Zm is the coding for SNPs under the m(m = 0, 1, 2) biological process. The
estimating function is

Up(β) =
n∑
i=1

1(∆i = 1)
2∑

k=0

1(ρi = k)

×
{
Zk
i −

∑n
j=1

∑2
m=0 1(ρj = m)wj(Yi) exp(Zm

j
>β)Zm

j∑n
j=1

∑2
m=0 1(ρj = m)wj(Yi) exp(Zm

j
>β)

}
= 0.

We call it an oracle model as every biological process is known. However,
the biological process of X-chromosome inactivation is complex and the true
subject-level biological process is totally unobserved. If we assume P (ρ =
m) = pm,m = 0, 1, 2, we can get the mean coding value of genotypes Aa
and AA, denoted as u1 and u2, respectively. It follows from u2 = 1 + p2
that, if u2 > 1, it means some subjects are undergoing XCI-E. Further, it
follows from u1 = p0γ + 0.5p1 + p2 that with p2 < 1, (u1 − p2)/(1 − p2) can
indicate the direction of skewness. Specifically, (u1−p2)/(1−p2) < 0.5 shows
that the skewness direction is normal allele, while (u1 − p2)/(1 − p2) > 0.5
indicates that it skews towards the deleterious allele. Denote o = 1 being the
genotype of Aa, o = 2 being the genotype of AA and o = 0 being the other
genotypes. Denote Zu(u1, u2) = ((o = 0)Xsnp+(o = 1)u1+(o = 2)u2, Xsex)

>,
Z̃u(βsnp, u1, u2) = ((o = 0)Xsnp+(o = 1)u1+(o = 2)u2, Xsex, (o = 1)βsnp, (o =
2)βsnp)>, where Xsnp is coded under the XCI,

S(k)
u (t, β, u1, u2) =

1

n

n∑
j=1

wj(t) exp{Zju(u1, u2)>β}Z̃ju(βsnp, u1, u2)⊗k, k = 0, 1, 2,

S̃(k)
u (t, β, u1, u2) =

1

n

n∑
j=1

w̃j(t) exp{Zju(u1, u2)>β}Z̃ju(βsnp, u1, u2)⊗k, k = 0, 1, 2.

Then the estimating function is

eUp(β, u1, u2) =
n∑
i=1

1(∆i = 1)
{
Z̃iu(βsnp, u1, u2)−

S
(1)
u (Yi, β, u1, u2)

S
(0)
u (Yi, β, u1, u2)

}
= 0.

Define β̂, û1, û2 as the solution of eUp(β̂, û1, û2) = 0. To state the asymptotic

properties, we define s
(k)
u (t, β, u1, u2) = E{S̃(k)

u (t, β, u1, u2)} for k = 0, 1, 2,

11



eu(t, β, u1, u2) = s
(1)
u (t, β, u1, u2)/s

(0)
u (t, β, u1, u2),

Au = E

[∫ τ

0

{s(2)u (t, β0, u10, u20)

s
(0)
u (t, β0, u10, u20)

− eu(t, β0, u10, u20)⊗2
}
dN(t)

]
,

Σu = E{(ηu − φu)⊗2},

ηu =

∫ τ

0

{
Z̃(β0,snp, u1, u2)− e(0)u (t, β0, u10, u20)

}
dM(t, β0),

φu =

∫ τ

0

q(t)u
E{1(Y ≥ t)}

dM c(t, β0),

q(s)u =

∫ τ

0

{
Z̃(β0,snp, u1, u2)− e(0)u (t, β0, u10, u20)

}
1(t ≥ s ≥ Y ) dM(t, β0).

Theorem 3. (Asymptotic Normality) Under the regularity conditions (C1)−
(C2) and (C3′) in the Appendix A of the Supplementary Material, we have
that
√
n{β̂>−β>0 , û1−u10, û2−u20}> converges to a normal distribution with

mean zero and variance A−1u ΣuA
−1
u .

Remark 2: Theorem 3 implies that the convergence rate for the estimates
of β, u1 and u2 is n−1/2. Besides, through the Karush-Kuhn-Tucker (KKT)
conditions, the estimating equation is:

eUp(β, u1, u2) = (0, 0, µ1(2u1 − 1), µ2(2u2 − 3))>,
µ1u1(u1 − 1) = 0,

µ2(u2 − 1)(u2 − 2) = 0,
µi ≥ 0, i = 1, 2.

(3)

For finite sample performance, it satisfies that
√
n{β̂>−β>0 , û1−u10, û2−u20}>−Â−1u {n−1/2(0, 0, µ1(2û1−1), µ2(2û2−3))>} � Â−1u Σ̂uÂu,

with Âu being the estimate of Au.
To test whether βsnp = 0 or not, we can use the U-score test. As u1, u2

are not identifiable, the null model is not an interior point in the alternative
space. Thus, the U-score test is defined as:

ScoreRMP = max
u1∈[0,1],u2∈[1,2]

{
∑n

i=1 U
∗
i0,u1,u2

(0, β̃sex)}2

Σ∗u1,u2(0, β̃sex)
=
{
∑n

i=1 U
∗
i0,û1,û2

(0, β̃sex)}2

Σ∗û1,û2(0, β̃sex)
,

where U∗i0,u1,u2(0, β̃sex) and Σ∗u1,u2(0, β̃sex) have the same formula as U∗i0(0, β̃sex)

and Σ∗0(0, β̃sex) replacing Z with Z(u1,u2).
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Theorem 4. Under the regularity conditions (C1) − (C2) and (C3′) in the
Appendix A of the supplementary material, ScoreRMP converges in distribu-
tion to supu1∈[0,1],u2∈[1,2] G

2(u1, u2) under βsnp = 0 as n goes to infinity, where
{G(u1, u2), u1 ∈ [0, 1], u2 ∈ [1, 2]} is a mean zero Gaussian process with the
covariance function

Σ(u1,u2) = E{U∗0,u1
(0, βsex)U

∗
0,u2

(0, βsex)}/
√

Σ∗u1
(0, βsex)Σ∗u2

(0, βsex),

where ui = (ui1, ui2)
>, i = 1, 2.

To get critical values for ScoreRMP, we use the following resampling ap-
proach similar as ScoreUMP. Specifically, define

Score∗RMP = max
u1∈[0,1],u2∈[1,2]

{
∑n

i=1 εiŨ
∗
i0,u1,u2

(0, β̃sex)}2

nΣ∗u1,u2(0, β̃sex)
,

where Ũ∗i0,u1,u2(0, β̃sex) has the same formula as Ũ∗i0(0, β̃sex) with replacing Z
as Zu1,u2 , and εi, i = 1, 2, . . . , n are i.i.d standard normal random variables
independent of the data. By generating a large of Score∗RMP, such as 1000
times, we can get the upper αth quantile of the empirical distribution, de-
noted as Cα,RMP. The α-level test reject region is {ScoreRMP > Cα,RMP}.

3. Simulation Studies

In this section, we assess the finite sample performance of the proposed
methods by using simulations. For brevity, we refer the unified approach
of maximizing the pseudo-partial likelihood as UMP and the random X-
chromosome inactivation with the unified approach of maximizing the pseudo-
partial likelihood as RMP, the extension of Clayton’s method as CL and the
extension of the PLINK method as PL, the method with the true biologi-
cal process is denoted as oracle. Comparisons are conducted across different
methods. The survival function of the censoring time is estimated by the
Kaplan-Meier method.

In each simulation setting, the sample size is n = 250 or 500 and the
replication times are N = 1000. Further, to assess the Type I error and
the statistical power at 0.05 significance level, the score test is conducted.
Besides, to get the empirical critical value for the UMP and the RMP ap-
proaches, we resample 1000 times. The computation times for resampling
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1000 times for the UMP and the RMP methods are 347.90 seconds and
570.54 seconds, respectively. Suppose the censoring time follows a uniform
distribution unif(0, c), with c chosen to yield 20% censoring rate. The minor
allele frequency (MAF) is set at 0.4, the female and male rate is 1 : 1. Let
“Bias” be the sample mean of the estimate minus the true value, “SSE” de-
note the sampling standard error of the estimates, “ESE” denote the sample
mean of the estimated standard error. To save space, we mostly demon-
strate the results with sample size n = 250, and the results with sample size
n = 500 are in the Appendix B of the Supplementary Material. Besides, as
suggested by one anonymous reviewer, we added the simulation results for
40% censoring rate in the Appendix C of the Supplementary Material, and
the female: male=3:1 in the Appendix D of the Supplementary Material.

Scenario 1. Under this scenario, we assume all the SNPs in the population
following from the same kind of X-chromosome inactivation. To compare the
RMP, the UMP, the CL, and the PL approaches, we consider three biological
processes: XCI-E, XCI and XCI-S. For the XCI-S model, the value for γ is
set at 0.9 as a population level parameter. A proportional subdistribution
hazard model can be obtained by defining the subdistribution for the event
of interest as:

F (t,Xsnp, Xsex) = 1− [1− q0{1− exp(−t)}]exp(c1+Xsnpβsnp+βsexXsex). (4)

Then we can get the desired subdistribution hazard model as:

λ(t|X) = λ0(t) exp(Xsnpβsnp + βsexXsex).

For the competing event, it is generated from the following model:

λcom(t|X) = λcom,0(t) exp(Xsnpβcom,snp + βcom,sexXsex), (5)

where Xsnp represents the SNP genotype, and Xsex represents the gender
covariate. Specifically, denote Xsex = 0 as female and Xsex = 1 as male.
βsex = −0.5 and βsnp = 1. Set βcom,sex = 0.5 and βcom,snp = 0, 0.5. q0 = 0.2,
c1 and λcom,0(t) are chosen to yield 20% competing event rate. We will use
S1 to denote the situation with βcom,snp = 0 and S2 to denote that with
βcom,snp = 0.5 in the following tables.

Table 2 displays the Bias, SSE and ESE of the estimate of β and the
percentage of different selected biological models (Sel Mod). The results
indicate that the UMP method has a robust performance in selecting true

14



biological models through AIC. Besides, the UMP and the RMP methods
provide an asymptotically unbiased estimate of β, while both the CL and
the PL method are biased with model mis-specification. Furthermore, ESE
is very close to SSE, which means the variance estimation is reasonable.
Tables 2 and 3 indicate that the estimate of p2 is very close to the UMP
selection percentage of XCI-E, and the estimate of (u1 − p2)/(1 − p2) can
show the skewness direction. This result suggests that the UMP and the
RMP can provide similar conclusion about the biological mechanism.

To demonstrate the power of test statistics, we do some simulations with
βsnp = 0, 0.2, 0.4, 0.6, 0.8. From the estimated Type I error and power results
with different biological models in Table 4, we conclude that the UMP
and the RMP are comparable to each other. If the underline models are
misspecified, the CL and the PL are generally less powerful than the UMP
and the RMP. Moreover, as expected, the UMP method is generally powerful
in detecting the significant genetic association under the XCI-S; under the
XCI process, the CL has better performance than the PL; while the PL
outperforms the CL under the XCI-E process.

Scenario 2. This scenario is for random inactivation. Under this scenario,
20% SNPs follow from XCI-S with γ = 0.1 or γ = 0.9, 60% of SNPs undergo
XCI while the remaining SNPs undergo XCI-E. Other settings are exactly
the same as Scenario 1. Through direct calculations, we get p2 = 0.2 and
(u1 − p2)/(1 − p2) = 0.4 with γ = 0.1 and (u1 − p2)/(1 − p2) = 0.6 with
γ = 0.9. We denote γ = 0.9 as Case 1 while γ = 0.1 as Case 2. Table 5
shows that under the scenario of random inactivation, the RMP method can
provide an asymptotically unbiased estimate for β. Besides, the ESE is very
close to the SSE, which implies that Theorem 3 is valid. Further, Table 6
are the estimates of p2 and (u1 − p2)/(1− p2). The asymptotically unbiased
estimation results indicate that our proposed RMP method can infer the
true biological inactivation mechanism. Table 7 displays the estimated Type
I error and power under the significance level of 5%. The results imply
that, the RMP method is comparable to the UMP while they two are more
powerful than the CL and the PL. The CL approach is more powerful than
the PL method under this scenario since the XCI occupies 60% while the
XCI-E only occupies 20%. Furthermore, Scenarios 1 and 2 indicate that the
UMP is generally as powerful as the RMP but it cost less time than the
RMP, so we suggest to use the UMP to select the significant genes first. If
the XCI-E or the XCI-S is the selected biological process of the identified
significant gene, we prefer to use the RMP to reestimate the parameters.
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Scenario 3. This scenario focuses on parameter estimation. The subdis-
tribution hazard is:

λ(t|X) = λ0(t) exp(Xsnp1βsnp1 +Xsnp2βsnp2 + βsexXsex + βc1Xc1 + βc2Xc2),

where βsnp1 = 1.0, βsnp2 = −1.0, βsex = 0.5, βc1 = −0.5, βc2 = 0.5, Xci, i = 1, 2
follow the standard normal distribution. For SNP1, the MAF=0.4, 20% SNPs
follow XCI-S with γ = 0.9, 60% of SNPs undergo XCI while the remaining
SNPs are undergoing XCI-E. For SNP2, the MAF=0.25 and 20% SNPs follow
XCI-S with γ = 0.1, 50% of SNPs undergo XCI while the remaining SNPs are
undergoing XCI-E. For SNP1, we have p2 = 0.2 and (u1−p2)/(1−p2) = 0.6.
For SNP2, we derive p22 = 0.3 and (u21 − p22)/(1 − p22) = 0.3857. Other
settings are exactly the same as Scenario 1.

Table 8 implies that under the scenario of random inactivation, the RMP
method can provide an asymptotically unbiased estimate for β while the
CL and the PL approach are biased. Besides, the ESE is very close to the
SSE, which is in accordance to Theorem 3. Further, Table 9 displays the
estimates of (p2, (u1− p2)/(1− p2)) for SNP1 and (p22, (u21− p22)/(1− p22))
for SNP2. The estimates are asymptotically unbiased and this demonstrates
that our proposed RMP method can indicate the right biological inactivation
mechanism.

4. Application

In this section, we apply our proposed methods to analyze several X-linked
genes on the recurrence-free survival (RFS) of colorectal cancer patients with
metastatic disease (mCRC), which is the second most diagnosed cancer for
both males and females ([28]). The main event of interest is recurrence, death
without recurrence is treated as the competing risk event. There are a total
of 502 mCRC patients in this study, 242 among them were given Brivanib
and Cetuximab treatment (TmT=1), while the remaining were given placebo
and Cetuximab treatment (TmT=2). The genetic data was genotyped using
Chip HumanOmniExpressExome-8v1.2. The Principal Component Analysis
(PCA) was conducted by using Eigensoft 5.0.2 on autosomal SNPs. Among
the total of 502 patients, the median RFS time is 5.06 (95% CI: 3.71, 5.36)
months. In the real data analysis, there exist 169 female subjects (Xsex = 0)
and 333 male subjects (Xsex = 1).

We apply the proposed UMP and RMP methods to assess the genetic
association on each X-linked SNP. To get the empirical p-value, we use the
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permutation method with 10,000 permutations. The CL and the PL methods
are also applied. Besides the gender information, there are three covariates
that are included in the genetic association models such as treatment (TmT),
PC1 and PC2. The PC1 and PC2 are the two major principal components
estimated from the autosomal SNPs.

To save space, we just provide the detailed analysis information for two
significant X-linked SNPs in Table 10. From the table, we can find that,
for both SNPs, the UMP and the RMP methods have identified the same
biological process that may be overlooked by the CL or the PL method
with wrong model specification. The table indicates that both the RMP
and the UMP methods suggest that “rs1997625” goes through XCI-E while
“ rs7059265” goes through XCI-S with skewness direction towards normal
allele. The conclusion is in accordance to the simulation results, namely,
the RMP can derive very similar results to the UMP. Besides, Table 10
shows that the coefficient of the SNP of “rs1997625” is negative while that
of “ rs7059265” is positive. This indicates subjects with allele A survive
longer than that with allele a for the SNP “rs1997625”. But for the SNP “
rs7059265”, the subjects with allele A survive shorter than that with allele a.
Furthermore, the coefficient of treatment βTmT being positive shows that the
Brivanib and Cetuximab treatment (TmT=1) works better than placebo and
Cetuximab treatment (TmT=2). To give an intuitive and clear impression,
we have added the estimate of the survival function for the subjects based on
our RMP (or UMP) method, see Figures 1 and 2. Specifically, we plot the
survival function for the subjects with different genotypes and treatments for
PC1 = PC2 = 0.

5. Discussion

In this paper, we have proposed four X-chromosome analysis methods on
competing risk outcomes. The proposed UMP and RMP methods can detect
the genetic association of genetic variants on the X-chromosome and infer
the undergoing biological process. The obvious advantage of the UMP and
the RMP methods is that they can derive asymptotically unbiased estimates
for the association effect and indicate the correct inactivation direction and
magnitude. In general, compared to the CL and the PL, the UMP and the
RMP are generally more powerful. For the X-chromosome wide genome scan,
as the CL and the PL are computationally effective and straightforward to
implement, we suggest to use them for preliminary screening and identify-
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ing potential genetic association signals, and apply the UMP and the RMP
for further assessment including parameter estimation and biological process
specification.

The proposed pharmacogenomics methods aim to understand how X-
linked genetic variants influence treatment efficacy. Such studies can reveal
how genetic variation across individuals affects a drug’s pharmacokinetics
and pharmacodynamics. If the associations of genotypes with drug-related
phenotypes are reproducible and have large effect sizes, clinical use of genetic
information can be implemented for patients’ benefit. This is particularly
important in oncology research because cancer is a leading cause of morbidity
and mortality in industrialized nations, and failed treatment is often life-
threatening. To predict how a cancer patient will respond to a particular
treatment regimen is our next goal of personalized oncology.

Score tests with nuisance parameters present only under the alternatives
are proposed, and the empirical rejective region is provided. However, this
will result in some computation burden especially in handling the whole X-
chromosome genes. Thereby, to provide an exact or sharper bound for the
maxima stochastic process is put on the agenda. However, it’s a pity that
as pointed out in [46], any exact computations about the distribution about
P (maxs∈S{G2(s)} ≥ t) is almost impossible with S being a topology space,
and [47] gives the asymptotic distribution under some regularity conditions.
Combing the results and the definition of the upcrossing, the asymptotic
shaper bound for the probability of P (maxs∈S{G2(s)} ≥ t) can be derived
at some specific points, which is asymptotic equivalent to that given by [48]
with S = [0, 1].

For the parameterizations of genetic effects on marker genotypes, [49]
mainly focused on coding genotypes for genetic markers with multiple alleles
on autosome. As suggested by one anonymous reviewer, the model can be
extended to model genetic variants on X-chromosome.
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Table 1: Coding for the genotypes on the X-chromosome

Female genotypes Male genotypes
Biologicl Process aa Aa AA a A

XCI-E 0 1 2 0 1
XCI 0 0.5 1 0 1

XCI-S 0 γ 1 0 1
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Table 2: Estimation results of parameters for Scenario 1 with censoring rate being 20%
and n = 250

Bio Mod1 Methods Sel Mod2 βsnp = 1 βsex = 0.5 per3

Bias ESE SSE Bias ESE SSE
S1 XCI-E UMP XCI-E 0.0104 0.1334 0.1415 0.0027 0.1672 0.1711 88.7

XCI 0.4356 0.1975 0.2069 -0.4825 0.1668 0.1486 8.2
XCI-S 0.4792 0.2053 0.2511 -0.3575 0.2005 0.3062 3.1

RMP 0.0114 0.2497 0.2530 0.0045 0.2691 0.2614
CL 0.3891 0.2027 0.2093 -0.4785 0.1703 0.1700
PL 0.0050 0.1335 0.1411 0.0017 0.1675 0.1684

XCI UMP XCI-E -0.3010 0.1297 0.1351 0.3255 0.1661 0.1710 17.3
XCI 0.0140 0.1876 0.1911 0.0034 0.1577 0.1587 67.3

XCI-S 0.0361 0.1880 0.1980 0.0058 0.1912 0.2655 15.4
RMP 0.0139 0.2354 0.2426 0.0018 0.2574 0.2531
CL 0.0074 0.1877 0.1912 0.0031 0.1581 0.1599
PL -0.3504 0.1305 0.1342 0.3099 0.1697 0.1710

XCI-S UMP XCI-E -0.2746 0.1285 0.1344 0.1205 0.1658 0.1604 13.0
XCI 0.0634 0.1896 0.1978 -0.1855 0.1605 0.1606 22.6

XCI-S 0.0014 0.1939 0.1987 0.0577 0.1960 0.1807 66.4
RMP 0.0130 0.2435 0.2483 0.0025 0.2656 0.2561
CL 0.0357 0.1887 0.192 -0.1956 0.1618 0.1588
PL -0.3436 0.1289 0.1342 0.1198 0.1687 0.1679

S2 XCI-E UMP XCI-E 0.0104 0.1331 0.1418 0.0022 0.1665 0.1698 89.2
XCI 0.4252 0.1962 0.2119 -0.4776 0.1661 0.1467 7.9

XCI-S 0.4694 0.2045 0.2162 -0.3465 0.200 0.2994 2.9
RMP 0.0089 0.2485 0.2509 0.0054 0.2680 0.2584
CL 0.3868 0.2019 0.2088 -0.4777 0.1697 0.1689
PL 0.0044 0.1330 0.1411 0.00124 0.1668 0.1672

XCI UMP XCI-E -0.3065 0.1300 0.1361 0.3223 0.1670 0.1718 17.5
XCI 0.0141 0.1885 0.1925 0.0044 0.1585 0.1592 67.7

XCI-S 0.0388 0.1886 0.1932 0.0058 0.1918 0.2694 14.8
RMP 0.0120 0.2365 0.2431 0.0031 0.2594 0.2538
CL 0.0064 0.1885 0.1914 0.0032 0.1589 0.1598
PL -0.3509 0.1311 0.1343 0.3106 0.1706 0.1716

XCI-S UMP XCI-E -0.2700 0.1279 0.1392 0.1259 0.1652 0.1708 12.8
XCI 0.0613 0.1883 0.1974 -0.1824 0.1596 0.1567 22.1

XCI-S -0.0004 0.1926 0.1954 0.05459 0.1949 0.1799 65.1
RMP 0.0101 0.2417 0.2461 0.0043 0.2638 0.254
CL 0.0350 0.1875 0.191 -0.1951 0.1608 0.1581
PL -0.3432 0.1283 0.1336 0.1198 0.1677 0.1676

1: The true biological models; 2: The selected biological models;
3: the percentage of selected biological models.
S1: βcom,snp = 0; S2: βcom,snp = 0.5.
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Table 3: Estimation of
(
p2, (u1 − p2)/(1 − p2)

)
for Scenario 2 with censoring rate being

20%

n Bio Mod1 n=250 u1−p2

1−p2
p2 n=500 u1−p2

1−p2
p2

S1 XCI-E 0.4061 0.7681 0.3405 0.8444
XCI 0.4856 0.1806 0.4802 0.1343

XCI-S 0.8900 0.1148 0.8992 0.0875
S2 XCI-E 0.4027 0.7704 0.3402 0.8450

XCI 0.4862 0.1822 0.4811 0.1340
XCI-S 0.8902 0.1154 0.8987 0.0879

1: The true biological models.
S1: βcom,snp = 0; S2: βcom,snp = 0.5.

Table 4: Estimated size and power for Scenario 1 with censoring rate being 20% and
n = 250

Bio Mod1 Methods βsnp = 0 βsnp = 0.2 βsnp = 0.4 βsnp = 0.6 βsnp = 0.8
S1 XCI-E UMP 0.066 0.361 0.875 0.992 1.000

RMP 0.064 0.356 0.869 0.994 1.000
CL 0.057 0.320 0.856 0.992 1.000
PL 0.052 0.356 0.876 0.996 1.000

XCI UMP 0.066 0.205 0.597 0.902 0.993
RMP 0.064 0.207 0.581 0.898 0.990
CL 0.057 0.191 0.592 0.894 0.992
PL 0.052 0.186 0.542 0.869 0.984

XCI-S UMP 0.066 0.221 0.672 0.939 0.996
RMP 0.064 0.211 0.641 0.927 0.995
CL 0.057 0.206 0.642 0.916 0.996
PL 0.052 0.203 0.598 0.906 0.992

S2 XCI-E UMP 0.066 0.362 0.871 0.992 1.000
RMP 0.062 0.354 0.867 0.994 1.000
CL 0.059 0.323 0.854 0.991 1.000
PL 0.067 0.356 0.879 0.996 1.000

XCI UMP 0.066 0.211 0.607 0.908 0.993
RMP 0.065 0.200 0.581 0.894 0.990
CL 0.060 0.192 0.589 0.899 0.993
PL 0.065 0.181 0.529 0.864 0.983

XCI-S UMP 0.066 0.224 0.670 0.939 0.997
RMP 0.065 0.212 0.636 0.922 0.996
CL 0.060 0.209 0.646 0.918 0.996
PL 0.065 0.208 0.597 0.903 0.992

1: The true biological models.
S1: βcom,snp = 0; S2: βcom,snp = 0.5.
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Table 5: Estimation results of parameters for Scenario 2 with censoring rate being 20%
and n = 250

Bio Mod1 Methods Sel Mod2 βsnp = 1 βsex = 0.5 per3

Bias ESE SSE Bias ESE SSE
S1 Case 1 UMP XCI-E -0.2506 0.1349 0.1392 0.2203 0.1710 0.1673 15.0

XCI 0.0846 0.1943 0.2034 -0.1235 0.1642 0.1703 56.3
XCI-S 0.0911 0.1985 0.2053 0.0278 0.2012 0.2335 28.7

RMP 0.0176 0.2450 0.2488 -0.0060 0.2695 0.2731
CL 0.0768 0.1947 0.2005 -0.1284 0.1649 0.1659
PL -0.2959 0.1348 0.1408 0.2171 0.1727 0.1703

oracle 0.0187 0.1652 0.1712 -0.0070 0.1624 0.1624
Case 2 UMP XCI-E -0.2548 0.1356 0.1395 0.3053 0.1714 0.1646 26.9

XCI 0.0688 0.1938 0.2027 -0.0351 0.1630 0.1659 63.0
XCI-S 0.1018 0.1962 0.1907 -0.1956 0.1990 0.2567 10.1

RMP 0.0141 0.2421 0.2464 -0.004 0.2663 0.2712
CL 0.0578 0.1945 0.1993 -0.0419 0.1638 0.1644
PL -0.3024 0.1360 0.1410 0.2980 0.1737 0.1705

oracle 0.0162 0.1634 0.1704 -0.0068 0.1619 0.1626
S2 Case 1 UMP XCI-E -0.2512 0.1349 0.1390 0.2211 0.1711 0.1682 14.9

XCI 0.0851 0.1942 0.2032 -0.1243 0.1640 0.1699 56.2
XCI-S 0.0907 0.1983 0.2050 0.0276 0.2011 0.2341 28.9

RMP 0.0174 0.2449 0.2483 -0.0060 0.2695 0.2731
CL 0.0767 0.1946 0.2002 -0.1285 0.1648 0.1657
PL -0.2959 0.1347 0.1406 0.2170 0.1726 0.1703

oracle 0.0186 0.1651 0.1710 -0.0070 0.1623 0.1622
Case 2 UMP XCI-E -0.2542 0.1357 0.1403 0.3068 0.1714 0.1661 10.4

XCI 0.0687 0.1937 0.2026 -0.0360 0.1630 0.1655 62.9
XCI-S 0.1015 0.1960 0.1880 -0.1886 0.1988 0.2566 26.7

RMP 0.0141 0.2419 0.2461 -0.0036 0.2663 0.2712
CL 0.0579 0.1944 0.1992 -0.0419 0.1637 0.1643
PL -0.3023 0.1359 0.1409 0.2980 0.1736 0.1702

oracle 0.0163 0.1634 0.1703 -0.0069 0.1618 0.1625
1: The true biological models; 2: The selected biological models;
3: the percentage of selected biological models.
S1: βcom,snp = 0; S2: βcom,snp = 0.5.
Case 1: γ = 0.9; Case 2: γ = 0.1.
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Table 6: Estimation of
(
p2, (u1 − p2)/(1 − p2)

)
for Scenario 2 with censoring rate being

20%

n Methods u1−p2

1−p2
= 0.6 p2 = 0.2 u1−p2

1−p2
= 0.4 p2 = 0.2

n=250 S1 RMP 0.6166 0.2542 0.4004 0.2753
n=500 RMP 0.6018 0.2122 0.3962 0.2206
n=250 S2 RMP 0.6165 0.2542 0.4004 0.2753
n=500 RMP 0.6020 0.2119 0.3965 0.2203
S1: βcom,snp = 0; S2: βcom,snp = 0.5.
Case 1: γ = 0.9; Case 2: γ = 0.1.

Table 7: Estimated size and power for Scenario 2 with censoring rate being 20%, n = 250

Bio Mod1 Methods βsnp = 0 βsnp = 0.2 βsnp = 0.4 βsnp = 0.6 βsnp = 0.8
S1 Case 1 UMP 0.047 0.244 0.666 0.940 0.990

RMP 0.052 0.240 0.664 0.937 0.991
CL 0.045 0.226 0.662 0.940 0.991
PL 0.048 0.210 0.643 0.918 0.991

oracle 0.047 0.252 0.733 0.964 0.997
Case 2 UMP 0.047 0.240 0.643 0.927 0.990

RMP 0.052 0.242 0.655 0.925 0.991
CL 0.045 0.216 0.642 0.931 0.987
PL 0.048 0.199 0.608 0.897 0.984

oracle 0.047 0.264 0.724 0.965 0.998
S2 Case 1 UMP 0.051 0.240 0.664 0.930 0.991

RMP 0.056 0.251 0.667 0.927 0.991
CL 0.048 0.223 0.661 0.929 0.992
PL 0.055 0.213 0.644 0.908 0.989

oracle 0.051 0.258 0.729 0.957 0.997
Case 2 UMP 0.050 0.259 0.672 0.933 0.991

RMP 0.061 0.269 0.669 0.930 0.992
CL 0.044 0.213 0.640 0.929 0.985
PL 0.047 0.201 0.610 0.903 0.985

oracle 0.046 0.253 0.728 0.961 0.998
1: The true biological models.
S1: βcom,snp = 0; S2: βcom,snp = 0.5.
Case 1: γ = 0.9; Case 2: γ = 0.1.
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Table 9: Estimation of
(
p2, (u1−p2)/(1−p2)

)
and

(
p22, (u21−p22)/(1−p22)

)
for Scenario

3 with censoring rate being 20%

n Methods u1−p2

1−p2
= 0.6 p2 = 0.2 u21−p22

1−p22
= 0.3857 p22 = 0.3

n=250 S1 RMP 0.5903 0.2790 0.3618 0.3818
n=500 RMP 0.6122 0.2260 0.3761 0.3520
n=250 S2 RMP 0.5905 0.2790 0.3609 0.3822
n=500 RMP 0.6120 0.2259 0.3762 0.3521
S1: βcom,snp = 0; S2: βcom,snp = 0.5.

Table 10: The analysis information of top two X-linked SNPs

SNP MAF model p-value γ u1 u2 βsnp βsex βPC1 βPC2 βTmT

rs1997625 0.212 RMP 0.00040 NA 1 2 -0.3695 -0.4866 -1.3486 1.0471 0.2724
UMP(XCI-E) 0.00030 NA NA NA -0.3695 -0.4865 -1.3490 1.0480 0.2722

PL 0.00010 NA NA NA -0.3695 -0.4865 -1.3490 1.0480 0.2722
CL 0.00060 0.5 NA NA -0.4019 -0.3304 -1.2250 1.0280 0.2698

rs7059265 0.405 RMP 0.00090 NA 0 1 0.4362 -0.3725 -0.5831 0.5951 0.2811
UMP(XCI-S) 0.00050 0 NA NA 0.4362 -0.3725 -0.5831 0.5951 0.2811

PL 0.01577 0 NA NA 0.2252 -0.2422 -0.7132 0.5599 0.2803
CL 0.00050 0.5 NA NA 0.3868 -0.2964 -0.6405 0.5025 0.2844
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Figure 1: Survival function estimate for SNP rs1997625 with different genotypes and
treatments: the blue color stands for treatment 2 while the red color stands for treatment
1. The number of patients in each genotypic group with the treatment 1 in females and
males separately: 24 for “aa”, 35 for “Aa”, 14 for “AA”; 102 for “a”, 66 for “A”. The
number of patients in each genotypic group with the treatment 2 in females and males
separately: 33 for “aa”, 46 for “Aa”, 16 for “AA”; 101 for “a”, 64 for “A”.
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Figure 2: Survival function estimate for SNP rs7059265 with different genotypes and
treatments: the blue color stands for treatment 2 while the red color stands for treatment
1. The number of patients in each genotypic group with the treatment 1 in females and
males separately: 73 for “aa” & “Aa”, 1 for “AA”; 132 for “a”, 35 for “A”. The number
of patients in each genotypic group with the treatment 2 in females and males separately:
90 for “aa” &“Aa”, 5 for “AA”; 123 for “a”, 42 for “A”.
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