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Abstract

We consider a framework for determining and estimating the conditional

pairwise relationships of variables when the observed samples are contami-

nated with measurement error in high dimensional settings. Assuming the

true underlying variables follow a multivariate Gaussian distribution, if no

measurement error is present, this problem is often solved by estimating the

precision matrix under sparsity constraints. However, when measurement error

is present, not correcting for it leads to inconsistent estimates of the precision

matrix and poor identification of relationships. We propose a new Bayesian

methodology to correct for the measurement error from the observed samples.

This Bayesian procedure utilizes a recent variant of the spike-and-slab Lasso

to obtain a point estimate of the precision matrix, and corrects for the con-

tamination via the recently proposed Imputation-Regularization Optimization

procedure designed for missing data. Our method is shown to perform better

than the naive method that ignores measurement error in both identification

and estimation accuracy. To show the utility of the method, we apply the new

method to establish a conditional gene network from a microarray dataset.
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1 Introduction

A core problem in statistical inference is estimating the conditional relationship

among random variables. Naturally, a full description of the underlying connections

among the numerous random variables is valuable information across many disci-

plines, such as in biology where the relationships among hundreds of genes involved

in a metabolic process is desired to be uncovered. In fact, under the assumption that

the variables follow a multivariate Gaussian distribution, the inverse covariance ma-

trix, known as the precision matrix, characterizes conditional dependence between

two dimensions. This is accomplished by noting that if an element of the precision

matrix is 0, then the two variables are conditionally independent; see [12] for a re-

view. This setting, often referred to as a Gaussian graphical model, is where our

analysis takes place.

Estimating the precision matrix is a difficult task when the number of observations

n is often much less than the dimension of the features d. A naive approach is to

estimate the precision matrix by the inverse of the empirical covariance matrix; this

estimate, however, is known to perform poorly and is ill-posed when n < d [9]. The

common approach is to assume that the precision matrix is sparse [3]; that is, we

assume the precision matrix’s off-diagonal elements are mostly 0. As a result, most

pairs of variables are conditionally independent. The sparsity assumption has led to

different lines of research with regularized models to estimate the precision matrix.

While one approach utilizes a sparse regression technique that estimates the precision

by iteratively regressing each variable on the remaining variables, for instance [10],

we instead focus on the direct likelihood approach. The direct likelihood approach

optimizes the full likelihood function with an element-wise penalty on the precision

matrix; common examples being graphical lasso [5], CLIME [1], and TIGER [14].

We utilize a recent Bayesian optimization procedure, called BAGUS, that relies on

optimization performed by the EM-algorithm, which was shown to have desirable

theoretical properties, including consistent estimation of the precision matrix and

selection consistency of the conditional pair-wise relationships [6].

There are many practical issues associated with Gaussian graphical models, such
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as hyperparameter tuning [24], missing data [13], and repeated trials [22], which

practitioners need to adjust for a successful analysis. We address another practical

issue involved with these models, measurement error. Measurement error occurs

when the variables of interest are not observed directly; instead, the observations are

the desired variables that have been additionally perturbed with noise from some

measurement process. This happens when, for instance, an inaccurate device is used

to measure some sort of health metric. Measurement error models have been studied

extensively for classical settings such as density deconvolution and regression [2],

but, to our knowledge, have not yet been well studied in the context of Gaussian

graphical models, especially in high dimensional setting.

We propose a Bayesian methodology to correct for measurement error in estimat-

ing a sparse precision matrix; our new method extends the optimization procedure

of [6]. While directly incorporating the estimate of the uncontaminated variable is

possible, we find the incorporation of the imputation-regularization technique of [13]

to provide more desirable results. Our procedure imputes the mismeasured random

variables, then performs BAGUS on this imputation; these steps are performed for

a small number of cycles, requiring more computation but giving better results than

the naive estimator. We prove consistency of the estimated precision matrix with

the imputed procedure, and illustrate the performance in a simulation study. We

conclude with an application to a microarray data.

2 Contaminated Gaussian Graphical Models

Given a d-dimensional random vector, x = {x1, . . . , xd}, the conditional dependence

of two variables xi and xj, for any pair (i, j) with 1 ≤ i ≤ j ≤ d, given all the

remaining variables is of interest. This conditional dependence structure is usually

represented by an undirected graph G = (V,E), where V = {1, . . . , d} is the set of

nodes and E ⊆ V × V = {(1, 1), (1, 2), . . . , (d, d)} is the set of edges [12]. In this

representation, the two variables xi and xj are conditionally independent if there is

no edge between node i and node j.

If the vector x follows a multivariate normal distribution with mean 0 and co-
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variance matrix Σx, x ∼ Nd(0,Σx), every edge corresponds to a non-zero entry in

the precision matrix Ωx = Σ−1
x , see [12]. The model in this scenario is often known

as a Gaussian graphical model. In the high dimensional setting, the set of edges are

usually assumed to be sparse, meaning that only a few pairs (xi, xj) are condition-

ally dependent. In the Gaussian case, this assumption implies only a few off-diagonal

entries of Ωx are non-zero.

When measurement error is present, denote U = (u1, . . . ,un)T as measurement

errors that are independent from data X = (x1, . . . ,xn)T . For i = 1, . . . , n, the

amount of measurement error is drawn from another multivariate normal distribu-

tion with mean 0 and covariance matrix Σu, ui ∼ Nd(0,Σu). We assume Σu to be

diagonal, and hence the amount of measurement error on each variable is uncorre-

lated. We make a common assumption that Σu is known or estimable from ancillary

data, such as replicate measurements. The contaminated variables w = x + u in

general have a different conditional dependence structure from that of x. Indeed,

the covariance and precision matrix of w is given by

Σw = Σx + Σu

and

Ωw = Σ−1
w = (Σx + Σu)

−1 = Ωx −Ωx(I + ΣuΩx)
−1ΣuΩx, (1)

respectively; here, I denotes the d × d identity matrix. Equation (1) follows from

the Kailath variant formula in [17]. Furthermore, equation (1) suggests that Ωw and

Ωx are equal if the product Ωx(I + ΣuΩx)
−1ΣuΩx is equal to a zero matrix. This is

generally not the case when the matrix Σu is not zero.

Suppose the data consist of iid observations w1, . . . ,wn, where wi = xi+ui, i =

1, . . . , n with xi ∼ Nd(0,Σx) and ui ∼ Nd(0,Σu). Here, wi = (w1
i , . . . , w

d
i ), with

the subscript and superscript denoting the observation and components respectively.

Denote W as the n × d matrix of observed data. The model is equivalent to the

following hierarchical representation. First, the latent random variables xi are gen-

erated from a Nd(0,Σx) distribution, and when conditioned on xi and Σu, we have

wi|xi,Σu ∼ Nd(xi,Σu) for each i = 1, . . . , n. This forms an intuitive generative
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process, where first x is realized, then contaminated by measurement error u, and

observed finally as w. The problem of interest is to estimate the precision matrix

Ωx in the high dimensional setting n < d.

When no measurement error is present, i.e the xi are directly observed, the sample

covariance matrix S = n−1
∑n

i=1(xi − x̄)(xi − x̄)>, with x̄ being the sample mean,

is a consistent estimator for Σx. However it has the rank of at most n < d, so it is

not invertible to estimate Ωx. When measurement error is present, we assume the

covariance matrix of measurement error Σu is known or estimable from replicates.

A naive approach is first to estimate Σx by Σ̃x = Sw − Σu, where Sw denotes the

sample covariance from contaminated data W , and then to invert Σ̃x to estimate

Ωx. The main issue with this approach is that Σ̃x is generally not positively definite.

This implies its inverse is also not positively definite, which is necessary to find a

consistent estimate Ωx. Hence, a correction procedure to estimate Ωx need not rely

upon the sample covariance matrix Σ̃x directly. Furthermore, the procedure is also

able to incorporate sparsity constraints to recover the graphical model structure.

These requirements are addressed by the procedure described in the next section.

3 The IRO-BAGUS Algorithm

In a recent work, [13] develop a methodology to efficiently handle high dimension

problems with missing data. Their solution is an EM-algorithm variant which alter-

nates between two steps, the imputation step and regularized optimization step; we

refer to their algorithm as the IRO algorithm. Denote the missing data as Y , and ob-

served data as X. Also denote the desired parameter to be estimated by θ, and begin

with some initial guess θ(0). During the tth iteration, the IRO algorithm generates

Y from the distribution given by the current estimate of θ, i.e. Y ∼ π(Y |X, θ(t−1)).

Then, using X and Y , maximizes θ, under regulation, using the full likelihood. [13]

show that this procedure results in a consistent estimate of θ(t), and results in a

Markov chain with stationary distribution.

We make use of this framework for our current problem pertaining to mismea-

sured observations instead of missing values. The problems are naturally related in
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the sense that both are generating values of the true process from some estimated

underlying distribution. We return to the hierarchical structure of the problem, i.e.

w ∼ Nd(x,Σu) and x ∼ Nd(0,Σx). The IRO algorithm proceeds iteratively between

the two following steps:

• Imputation step: At iteration t, draw X(t) = (x
(t)
1 , . . . ,x

(t)
d ) from the posterior

full conditional of X, using the current estimate of Ω
(t−1)
x . Specifically, for

i = 1, . . . , n, draw x
(t)
i |w,Ω

(t−1)
x ∼ Nd(Λ

−1Ωuwi,Λ
−1) where Λ = (Ω

(t−1)
x +

Ωu). Note that the posterior distribution of xi depends only on wi due to

independence. This allows for easy generation of data from the true underlying

distribution.

• Regularization Step: Apply a regularization to the generated X(t) and obtain

a new MAP estimate of Ω
(t)
x .

In this work, the regularization step is carried out based on a recent Bayesian

methodology, called BAGUS. Hence, the whole algorithm is referred to as the IRO-

BAGUS algorithm. The next subsections 3.1-3.3 outline prior specifications, the full

model, and variable selection for BAGUS. After that, section 3.4 discusses consis-

tency of the IRO-BAGUS estimate.

3.1 The Spike-and-Slab Lasso Prior Specification

Denote the elements Ωx to be ωij. Recently, a non-convex, continuous relaxation

penalty for the spike-and-slab prior was created for the standard lasso problem [20].

This prior was extended to the case of graphical models by [6], and is given by

π(ωij) =
η

2v1

exp

{
−|ωij|

v1

}
+

1− η
2v0

exp

{
−|ωij|

v0

}
(2)

for the off diagonal elements (i 6= j), where 0 < v0 < v1 and 0 < η < 1. This prior

can be interpreted as a mixture of the spike-and-slab prior. The first component

of the mixture has prior probability η, and is associated with the slab component,
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i.e. ωij 6= 0. Conversely, with prior probability 1 − η the element is from the spike

component, suggesting ωij = 0.

Traditionally, the spike-and-slab prior has a point mass component at 0 and some

other continuous distribution for the slab component. This is to represent setting

unwanted terms exactly to 0. Here, both the spike and the slab components are

distributed according to a Laplace distribution; both are centered at 0, but the spike

is more tightly centered by a smaller variance term than the slab. This relaxation

of the spike-and-slab prior allows for efficient gradient based algorithms, while still

being theoretically sound as shown in [19].

Shrinkage is not desired on the diagonal elements, so a weakly informative expo-

nential prior is given instead, π(ωii) = τ exp {−τωii} . Another consideration for the

prior of Ωx is to ensure the whole matrix to be positive definite, denoting as Ωx � 0.

Moreover, in line with [6], we require the spectral norm to be bounded above by

some value B, ||Ωx|| ≤ B. This assumption will be important going forward. The

full prior distribution for Ωx is then given by

π(Ωx) =
∏
i<j

π(ωij)
∏
i

π(ωii)I(Ωx � 0)I(||Ωx|| ≤ B). (3)

3.2 The Full Model

Without measurement error, the posterior distribution is specified as

π(Ωx|X) ∝
n∏
i=1

π(xi|Ωx)π(Ωx). (4)

The full conditionals can be derived for (4), but, to avoid costly MCMC sampling for

this large dimensional problem, [6] opted to instead find the mode of the the posterior

distribution, often referred to as the MAP. The MAP can be found by minimizing
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the uncontaminated (UC) objective

LUC(Ωx) = log π(Ωx|X) =
n

2

(
tr(XTΩxX)− logdet(Ωx)

)
+
∑
i<j

π(ωij)+
∑
i

π(ωii)+K

(5)

with respect to Ωx, whereK is the normalizing constant in (4). To this end, [6] proved

the local convexity of (4) when ||Ωx|| ≤ B <∞, which allows an easy optimization

procedure that converges asymptotically to the correct precision matrix.

3.3 Variable Selection

Many practictioners use Gaussian graphical models for the purpose of identifying

non-zero entries of Ωx, which signify conditional dependencies among the two dif-

ferent variables. The spike-and-slab lasso formulation allows for this quite easily

by viewing the optimization as an instance of the EM-algorithm and defining the

hierarchical prior ωij|rij = 0 ∼ Laplace(0, v0)

ωij|rij = 1 ∼ Laplace(0, v1)
. (6)

Here, rij is the random indicator that the element of the precision matrix follows from

the spike or the slab component, where rij ∼ Bern(η). A further hierarchical level

can be added by treating η as random instead of a fixed hyperparameter. Recent

work from [4] illustrates this and is line with the spike-and-slab Lasso setting of [20].

Given our purpose is to study the effect of the measurement error, we choose to treat

it as a fixed.

The conditional posterior distribution for rij is also Bernoulli, with probability

of success

pij =
v1

v0

1− η
η

exp

{
|ωij|

(
1

v1

− 1

v0

)}
. (7)

We will use the MAP estimate of ωij in (7) as the approximate probability of inclu-

sion. With the inclusion probability a hard threshold will be specified to determine

the final inclusion for the purpose of simulation and model selection. Denote R and

P to be the matrix of indicators and conditional posterior probability of inclusion
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for each element of Ωx. We note that for final inference it may be better to forego

this inclusion threshold, and instead rank-order the pij for purposes of downstream

investigation; however, this will depend on the application at hand.

3.4 Consistency of the IRO-BAGUS algorithm

The entire data generation process for the contaminated sample is summarized below:

wi|xi,Ωx ∼ Nd(xi,Σu), i = 1, . . . , n

xi|Ωx ∼ Nd(0,Ω
−1
x ), i = 1, . . . , n

ωij|rij = 0, v0 ∼ Laplace(0, v0), i 6= j, i, j = 1, . . . , n

ωij|rij = 1, v1 ∼ Laplace(0, v1), i 6= j, i, j = 1, . . . , n

ωii ∼ Exp(τ), i = 1, . . . , n

rij|η ∼ Bern(η), i 6= j, !i, j = 1, . . . , n.

Instead of approximating the posterior distribution of all the parameters, the IRO-

BAGUS algorithm iteratively generates realizations of uncontaminated data,X, then

optimizes Ωx with these generated values. Under some technical conditions, the IRO

algorithm is shown to produce a consistent estimate after each iteration in the context

of missing data when the regularization step results in a consistent estimate [13]. We

show that these conditions are also held in the case of contaminated data, so the

IRO-BAGUS algorithm results in a consistent estimate. Theorem 1 is the analogue

statement of consistency as in the missing data case. The proof is given in the

appendix.

Theorem 1. Assuming ||Ωx|| ≤ B, then the estimate Ω
(t)
x is uniformly consistent

to Ωx when log(t) = O(n).

It can be seen that the nature of the IRO algorithm is similar to that of MCMC.

Under a few more conditions, [13] note that the IRO results in a Markov chain

with a stationary distribution, and hence the average of the maximization steps

are consistent estimates of the underlying parameters. Our final estimates are the
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averaged regularized optimization steps given by BAGUS from the imputed data

at each iteration, removing a small number of the beginning iterations as burn-in.

By averaging instead of taking only the final iteration, we make the analysis less

variable. In this sense, the relationships that the correction procedure identifies are

more likely to be true relationships, cutting down on the number of false positives.

4 Computation for the IRO-BAGUS algorithm

4.1 Finding MAP estimate for Ωx

Here we consider some computational aspects of our proposed methodology. First,

we focus to the optimization of Ωx. In our procedure, once X is generated, the

objective function to be optimized is Luc, as was shown in Equation (7); we note this

is due to the conditional independence of W and Ωx in the hierarchical structure

of the contamination process. Optimizing Luc is difficult to do directly; therefore,

the latent factors rij from Section 3.3 are introduced into the process as in [6]. This

allows an E-step similar to the spike-and-slab Lasso and an M-step similar to the

Graphical Lasso.

The optimization seeks to find the MAP of the posterior proportional to

|Ωx|
1
2 exp

{
−1

2
XTΩxX

}∏
i<j

π(ωij|rij)π(rij|η)
∏
i

π(ωii|τ)I(Ωx � 0)I(||Ωx|| ≤ B).

(8)

The E-step takes the conditional expectation of rij in the proportional posterior.

Each rij is conditionally Bernoulli with probability as given in Equation (7), which

allows for easy calculation of the desired conditional expectations. Then, the desired

Q function to maximize in the M-step is given by

Q(Ωx|Ω(t)
x ) = E

R|Ω(t)
x

log π(Ωx,X|W ,Σu), (9)

where the expectation is taken element wise for R by assumed independence of

inclusion. Maximizing Q is done by a block coordinate descent algorithm. The
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algorithm cycles between column-wise updates of Ωx. We put the details of this

procedure in the Appendix.

4.2 Other Computation Considerations

4.2.1 Estimating Σu

We have assumed the covariance matrix of measurement error Σu to be known before

applying the IRO-BAGUS algorithm. In practice, the matrix Σu is often estimated

from ancillary data, such as replicate observations. Assuming measurement error

between variables to be independent is reasonable for many problems and often used

in the literature [21]. In that case, only the diagonal of Σu only needs to be estimated.

For the data analysis application we provide in Section 6, we estimated them with

the method described in [23], assuming homogeneity of measurement error between

observations. After that, we performed the IRO-BAGUS algorithm as previously

described.

4.2.2 Starting Values

The starting value plays a significant role in the speed of optimization at each step.

To begin, we perform a naive analysis on the raw contaminated data, W , giving

estimate Ω
(0)
x . This value is then used to start the IRO procedure by generating X.

Each optimization has a warm start from the previous iteration’s estimated precision

matrix.

4.2.3 Addressing the constraint, ||Ωx|| ≤ B

The constaint that ||Ωx|| ≤ B needs to be addressed. [6] suggest using a threshold on

the largest absolute value of the elements of the column being updated in the block

coordinate descent. We use the same threshold, and find no performance issues when

used with the IRO algorithm.
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4.2.4 Positive-Definiteness of Ωx

Many procedures to estimate a sparse precision can not guarantee postive-definiteness,

however [6] show that the output of BAGUS from the EM algorithm is always sym-

metric and positive definite. It is easy to show that the imputation step, with final

results averaged, also results in this nice property.

Theorem 2. The estimated precision matrix Ω̂x = T−1
∑T

t=1 Ω
(t)
x is symmetric and

positive definite if the initial value of Ωx for BAGUS at each iteration t was also

positive definite.

Proof. By Theorem 5 in [6], if the initial value to optimize BAGUS is positive definite,

then Ω
(t)
x is also positive definite. The set of positive definite matrices form a cone,

and hence the average will also be in this cone.

4.2.5 Parameter Tuning

There are four hyperparameters in BAGUS, η, τ, v0, and v1. As with [6], we always

set η = 0.5 and τ = v0, which leaves two hyperparameters to tune. Again, we

follow [6], who suggest a BIC-like criteria to select the best model from a grid of

hyperparameters. This criteria is

BIC = n(tr(SΩ̂x)− logdet(Ω̂x)) + log(n)× q,

where Ω̂x is the estimated precision matrix and q is the number of non-zero elements

of the estimated in the upper diagonal of the precision matrix. We use this in similar

fashion for the IRO procedure, but instead we use the averaged Ω
(t)
x in the BIC

calculation.
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5 Simulation

5.1 Simulation Setup

We investigate the performance of our methodology under several different settings.

For each setting we generate xi following a d-variate Gaussian distribution with mean

0 and precision matrix Ωx according to some graph structure; we refer to this as the

true data. Then, the contaminated observation wi was generated from wi = xi +ui,

where ui ∼ Nd(0,Σu), i = 1, . . . , n. The measurement error covariance matrix Σu is

assumed to be a diagonal matrix, with element [Σu]ii = γ [Σx]ii, where [Σx]ii is the

variance of the dimension xi. In other words, the constant γ controls the noise-to-

signal ratio on each variable. For the purposes of simulation, we assume the amount

of measurement error to be known.

To generate the true data we use the huge package [25]. We inspect two different

types of graphs, referred to as hub and random; we expand on these below where ωij

denotes the (i, j) element of Ωx.

1. Hub: For d/20 groups, ωij = ωji = 1 if in the same group. ωij = 0 otherwise.

2. Random: For 1 ≤ i < j ≤ d, ωij = 1 with probability 3
d
, 0 otherwise.

We illustrate the stuctures in Figure 1.

Each model was generated with n = 100 observations. We inspect each model

for d = {100, 200} and γ = {0.1, 0.25, 0.5}. The amount of correction-imputations

was set to be 50, with the first 20% discarded as burn-in; we note that we inspected

25 and 100 imputations with the same percentage of burn-in samples with minimal

differences in output. Each setting was replicated 50 times, and the final results are

the average of these replicates. Hyperparameter tuning was done as described in

Section 4.2. Because measurement error is often ignored in the context of GGMs,

our simulations also provide perspective onto the negative effect that measurement

error can impose into the model performance.

To inspect model performance, we examine both the estimated precision matrix

and the ability to do variable selection of BAGUS on the true data (true), BAGUS
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Figure 1: Graphical representation for d = 100 of the hub (left) and random (right) struc-
ture, respectively. Note that the random graph is subject to change due to the randomness.

on the contaminated data (naive), and our IRO-BAGUS methodology on the con-

taminated data (corrected). For each estimated precision matrix Ω̂x, estimation

error is measured by ||Ω̂x − Ωx||F , and variable selection is evaluated by different

metrics involving the true positives (TP), false positives (FP), true negatives (TN),

and false negatives (FN) are reported: specificity (SPE), sensitivity (SEN), precision

(PRE), accuracy (ACC), and Matthews correlation coefficient (MCC); these values

are defined as

SPE =
TN

TN + FP
, SEN =

TP

TP + FN
,

PRE =
TP

TP + FP
, ACC =

TP + TN

TP + FP + TN + FN

MCC =
TP× TN− FP× FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

Additionally, we also report the area under the ROC curve (AUC), which gives

insight into the amount of seperation of the classification. These different metrics

give insight into the tradeoffs and gains of each setting.
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γ d Model SEN SPE PRE ACC MCC FROB AUC

0.1

100
True 1.00 0.65 0.85 0.99 0.73 5.11 0.95
Naive 1.00 0.50 0.76 0.99 0.61 6.81 0.93
Corrected 1.00 0.51 0.78 0.99 0.62 6.17 0.97

200
True 1.00 0.67 0.77 0.99 0.71 7.36 0.94
Naive 1.00 0.51 0.69 0.99 0.59 9.63 0.92
Corrected 1.00 0.51 0.71 0.99 0.60 8.68 0.96

0.25

100
True 1.00 0.66 0.84 0.99 0.74 5.09 0.95
Naive 0.99 0.38 0.60 0.98 0.47 8.54 0.90
Corrected 1.00 0.36 0.68 0.98 0.49 7.71 0.94

200
True 1.00 0.67 0.78 1.00 0.72 7.29 0.94
Naive 1.00 0.40 0.52 0.99 0.45 12.10 0.90
Corrected 1.00 0.37 0.62 0.99 0.48 10.68 0.95

0.5

100
True 1.00 0.66 0.85 0.99 0.74 5.03 0.95
Naive 1.00 0.20 0.50 0.98 0.31 9.67 0.84
Corrected 1.00 0.20 0.70 0.98 0.37 8.74 0.89

200
True 1.00 0.68 0.77 0.99 0.72 7.36 0.94
Naive 1.00 0.20 0.37 0.99 0.27 13.70 0.83
Corrected 1.00 0.17 0.59 0.99 0.31 12.53 0.89

Table 1: Simulation results for the hub graph structure, as specified in Section 5.1. For
each signal-to-noise ratio and d, the true, naive, and corrected models are shown for metrics
defined in Section 5.1.

5.2 Simulation Results

Table 1 and Table 2 present the results for the hub and random structure, respec-

tively. To begin, we note the effect of the increasing measurement error. This can

be observed by examining the growing difference in the performance of the true and

naive model when holding d fixed and increasing the amount of contamination. Fo-

cusing on the hub structure, a decrease in the quality of selection and estimation

can be observed for each setting, which grows worse with more contamination. The

selection accuracy metrics with respect to the prespecified 0.5 cut-off show drops in

performance of around 50%. The estimated precision matrix from the naive grows

worse with measurement error, and is also about 50% worse when the signal-to-noise

is 0.5.

15



Amt. ME d Model SEN SPE PRE ACC MCC FROB AUC

0.1

100
True 1.00 0.42 0.84 0.98 0.59 4.61 0.89
Naive 1.00 0.32 0.80 0.98 0.50 5.34 0.88
Corrected 1.00 0.32 0.80 0.98 0.50 5.04 0.91

200
True 1.00 0.36 0.76 0.99 0.52 6.72 0.86
Naive 1.00 0.30 0.66 0.99 0.44 7.61 0.85
Corrected 1.00 0.28 0.68 0.99 0.43 7.25 0.90

0.25

100
True 1.00 0.45 0.86 0.98 0.61 4.66 0.90
Naive 1.00 0.27 0.70 0.97 0.42 6.68 0.85
Corrected 1.00 0.23 0.75 0.97 0.40 5.72 0.88

200
True 1.00 0.37 0.75 0.99 0.52 6.77 0.86
Naive 1.00 0.23 0.52 0.99 0.34 9.04 0.82
Corrected 1.00 0.18 0.60 0.99 0.32 7.95 0.86

0.5

100
True 1.00 0.43 0.85 0.98 0.59 4.65 0.89
Naive 1.00 0.14 0.55 0.97 0.26 7.71 0.79
Corrected 1.00 0.09 0.67 0.97 0.24 6.49 0.79

200
True 1.00 0.37 0.76 0.99 0.53 6.74 0.86
Naive 1.00 0.12 0.39 0.98 0.21 10.42 0.77
Corrected 1.00 0.06 0.56 0.99 0.18 8.92 0.78

Table 2: Simulation results for the random graph structure, as specified in Section 5.1.
For each signal-to-noise ratio and d, the true, naive, and corrected models are shown for
metrics defined in Section 5.1.

We now turn attention to the performance of the correction step. First, take note

of the first five metrics which are based on the confusion matrix for the 0.5 cutoff

threshold. Averaging across the IRO iterations was expected to result in an analysis

that favored identifying relationships that were more certain, which can be observed

by inspection of the precision (PRE). The gains from the precision are most notable

as d grows larger, and more pair-wise relationships exist; when d = 200, we note

nearly 10% and 50% performance gains in the precision for signal-to-noise ratios of

0.25 and 0.5, respectively. In both the hub and random structure the naive and

corrected models perform similarly in terms of the sensitivity, specificity, accuracy,

and MCC.

It seems at first glance that the selection performance, ignoring the precision,
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of the correction procedure is comparable to the naive, but these discrepencies can

be attributed to the prespecified inclusion cut-off on the P matrix. In practice it

can often be more reasonable to rank order the inclusion probabilities to identify

relationships to further investigate in future experiments. With this in mind, we

turn to the performance with respect to the AUC where consistent improvements

can be seen for the hub and random structure in most all settings. The AUC helps

understand the amount of seperation found in the model across all thresholds, which

helps justify that the correction step is making improvements in seperating the classes

for the true relationships as AUC improvements are seen in all but the random graph

with d = 200 and signal-to-noise ratio of 0.5.

We note two items in regard to the AUC. First, the AUC of the corrected model

sometimes outperforms the true model, too. In particular, this happens in the hub

structure when the amount of measurement error is 0.1. This can be attributed to

the measurement error in models that are easily identified. Second, in the random

structure with the amount of measurement error being 0.5, the corrected model does

not make substantial improvements in results over the naive model. We note the

difficulty of this setting, as the random structure often performs worse than other

structures in identification, and now we add more noise via the contamination. With

a relatively small sample size, this noise is difficult to overcome.

Finally, we note the quality of the estimated precision matrix, as measured by

Frobenious norm of the difference. In every setting for both the hub and random

matrices, the corrected model outperforms the naive model’s estimate of the precision

matrix. In the hub structure this improvement is often of the order of 15-20% better,

while in the random structure a 10% improvement is generally observed. If the intent

of the analysis is to use the estimated precision matrix in downstream analysis, this

can result in more refined results.

6 Data Analysis

A common source of noise in analysis involving gene expression datasets is measure-

ment error [18]. Gaussian graphical models are often used to inspect the relationship
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of different genes in varying experiments [11]. We illustrate our methodology using an

Affymetrix microarray dataset containing 144 subjects of favorable histology Wilms

tumors hybridized to the Affymetrix Human Genome U133A Array [8]. The data

is publicly available on the GEO website, dataset GSE10320 uploaded 1/30/2009.

A feature of Affymetrix data, and many other gene expression measurement plat-

forms, is the use of multiple probes for each gene for each patient, giving replicate

measurements for each patient’s gene measurement. The replicates for each patient

enable an estimate of the measurement error, where we again assume the amount of

contamination is independent across genes.

We follow the preprocessing steps taken in [21] and [15], which used this study in

the context of measurement error in variable selection for linear models. The process

begins by processing the raw data with the Bayesian Gene Expression (BGX) package

[23]. BGX creates a posterior distribution for the log-scale expression level of each

gene in each sample. The study recorded measurements for 22283 different genes.

To remove unnecessary computational burden, we reduced the number of genes by

applying four different filters in the following order. The first filter removes expression

values that do not have a corresponding Entrez gene ID in the NCBI database [16].

The second filter removes expression values with low variability by requiring at least

25% of samples to have intensities above 100 fluorescence units. The third filter

removes expression values with low variability by requiring the interquartile range to

be at least 0.6 on the log scale. The last filter removes expression values that have

have an error to signal to noise ratio greater than 0.5, which we discuss in more depth

below. After filtering, there were 273 expression values remaining for the analysis.

Now, we discuss how we estimate the measurement error of each gene. We assume

that the measurement error variance is constant across patients for a given gene. We

also assume that the measurement error is independent for each gene, and need not

be equal for each gene. Let µ̂ = (µ̂1j, . . . , µ̂nj)
T denote the estimated vector of

the patient’s gene expression levels for gene j. Further, let µ̄ = n−1
∑n

j=1 µ̂ij and

σ̂2
j = n−1

∑
j=1(µ̂ij−µ̄j)2 denote the mean and variance of each gene, respectively. For

patient i, standardized measurements are given by Wi = (Wi1, . . . ,Wip), calculated

as Wij = σ̂−1
j (µ̂ij − µ̄j) for each j = 1, . . . , 273.
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Let var(µ̂ij) denote the posterior variance of the estimated distribution of patient

i’s gene j. These estimates are then combined as σ̂2
u,j = n−1

∑n
i=1 var(µ̂ij). The

measurement error covariance matrix of the standardized data W is then estimated

by diagonal matrix Σ̂u, where (Σ̂u)j,j = σ̂2
u,j/σ̂

2
j for j = 1, . . . , p and off-diagonal

elements are 0. The fourth filter can be now formalized, where genes are removed if

σ̂2
u,j ≥ 0.5σ̂2

j ; i.e. only genes with a noise-to-signal ratio less than 1 are kept for the

analysis.

The original BAGUS algorithm and the corrected BAGUS algorithm were run

for the remaining genes found after filtering. As with the simulations, the corrected

BAGUS found fewer conditional pair-wise relationships; for this data set, the original

BAGUS and corrected BAGUS found 1045 and 552 conditional pair-wise relation-

ships, respectively. Of the 1045 naive pair-wise relationships, 42% were also found in

the corrected pair-wise relationships; similarly, of the 552 corrected conditional pair-

wise relationships, 80% were found in the naive model. The large percentage overlap

of relationships in the corrected model with relationships in the naive model suggests

that most relationships in the corrected model are true relationships. Conversely, the

small percentage overlap of relationships in the naive model with those in the correct

model suggests that the naive model is finding many false positive relationships. We

illustrate the conditional pair-wise dependencies of the genes in Figure 2. The naive

analysis is shown on the left and the corrected on the right, where the green edges

signify relationships found by both procedures and purple edges signify procedure

specific relationships.

7 Conclusion

We proposed a correction methodology for Gaussian graphical models when contam-

inated with additive measurement error. The core solution to the problem involves

using the imputation-regularization algorithm to generate the true values of under-

lying process with a consistent estimate of the precision matrix. This provides a

consistent, positive-definite estimate of the true precision matrix, which, as simu-

lations illustrate, remove many false positive pair-wise relationships. Additionally,
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Figure 2: The conditional pair-wise relationships for each of the 273 genes remaining after
filtering from the Wilms tumor study. Each edge represents a conditional pair-wise depen-
dency between two nodes. The left shows the naive analysis, not correcting for measurement
error, and the right shows the corrected analysis, correcting for measurement error. Green
edges signify edges found on both graphs, and purple signifies analysis specific edges.
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we show marked improvements in the AUC of the threshold matrix, indicating bet-

ter separation of the underlying relationships. From a practitioner point of view,

this allows for more reliable downstream analysis and further investigations to be

undergone.

To our knowledge, the novel imputation-regularization algorithm has yet to be

used for problems pertaining to contaminated data. This provides an avenue of future

research for more a practical issue in high-dimensional problems, measurement error,

which is starting to gain attention. Moreover, many practical issues still remain in

the Gaussian graphical model context, such as the tuning of hyperparameters and

the interpretation of the output from the Gibbs sampler-like IRO algorithm. Another

potiental avenue of research to pursue is when the amount of measurement error is

unknown and not assumed independent. In this case, sparsity would need to be im-

posed on Ωu in conjunction with Ωx, posing a challenging, but useful, computational

procedure.

8 Appendix

8.1 Proofs

The proof for Theorem 1 in Section 3 is established here. Work done for the IRO al-

gorithm laid the foundation for certain conditions to be met to establish consistency,

see the appendix of [13]. We follow closely with their development, and prove the

necessary conditions to establish consistency in our context of contaminated GGMs.

These conditions include two main parts: (1) the consistency of the regularization

step, specifically the BAGUS procedure in our context, and (2) some technical condi-

tions regarding the log-likelihood π(X,W ). To that end, Assumptions 1 and 2 below

ensures the consistency of the BAGUS procedure, while Assumption 3 ensures the

metric entropy of the log likelihood not to grow too fast. Discussion of Assumptions

1 and 2 can be found in [6], while Assumption 3 has been commonly used in the

literature of high-dimensional statistics, see the Remark 1 in the appendix of [13].

Assumption 1. λmax(Ωx) ≤ 1/k1 ≤ ∞, where λmax(Ωx) is the largest eigenvalue of
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Ωx and k1 is a constant such that k1 > 0.

For the following assumption we need to define the following values. Let the

column sparsity for Ωx be denoted b = maxi=1,...,d

∑d
j=1 1(ωij 6= 0). For a m × q

matrix A let |||A|||∞ = max1≤j≤q
∑d

i=1 |aij| be the maximum absolute row sum.

Define MΣx = |||Σ|||∞ and MΓ = |||Γ−1
s,s |||∞ where Γ = Σx ⊗ Σx and Γs,s denotes

the subset of Γ by indices s = {(i, j) : Ωx 6= 0}. Let a1 > 0 and a2 > 0 be any

predefined constant value. Also, let a3 and k2 be defined such that log(d)
n

< a3 <
1
4

and E(etx
(j)2

) ≤ k2 for all |t| ≤ a3 and j = 1, . . . , d. We define a4 = a1(2+a2 +a−1
3 k2

2),

a5 = (a4 + 2M2
Σx

(a1 +a4)MΓ + 6(a1 +a4)bM2
ΓM

3
Σ/M . Finally, define constants ε0 > 0

and ε1 > 0, where ε1 is small.

Assumption 2. For the previously defined constants, the following three statements

hold:

1. The hyperparameters v0, v1, η, and τ satisfy

(a)
1

nv1

= a1

√
log(d)

n
(1− ε0),

(b)
1

nv0

> a5

√
log(d)

n
,

(c)
v2

1(1− η)

v2
0η

≤ dε1 ,

(d) τ ≤ a1
n

2

√
log(d)

n
.

2. For the bound ||Ωx|| < B, we have that B satisfies

1

k1

+ 2b(a1 + a4)MΓ

√
log(d)

n
< B <

√
2nv0.

3. For M = max{2b(a1 + a4)MΓ max{3MΣ, 3MΓM
3
Σ,

2
k21
}, 2a1ε0

k21
}, we have

√
n ≥

M
√

log(p).
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Assumption 3. The parameter space of Ωx, or an L1-ball containing the space of

Ωx, grows at a rate of O(nα) for some 0 ≤ α ≤ 1
2
.

Under these assumptions, we show that the developed procedure to correct for

measurement errors satisfy the general conditions for the consistency of the IRO

estimate. We state each condition and prove it to hold with our procedure.

Condition 1. log π(X,W |Ωx) is a continuous function of Ωx for each x,w ∈ Rd

and a measurable function of (X,W ) for each Ωx.

Proof. We have the expansion

log π(X,W |Ωx) = log π(X|Ωx) + log π(W |X,Ωu).

Hence, the log posterior is continuous for symmetric positive-definite Ωx since x ∼
N(0d,Ω

−1
x ). The log posterior is also measurable for (X,W ) due to properties of

the Gaussian distribution.

Condition 2. Three conditions for the Glivenko-Cantelli theorem to hold.

1. There exists a function mn(X,W ) such that supΩx,X | log π(X,W |Ωx)| ≤
mn(X,W ).

2. There exists m∗n(W ), such that:

(a) 0 ≤
∫
mn(X,W )π(X|W ,Ω

(t)
x )dX ≤ m∗n(W ) for all Ω

(t)
x ,

(b) E[m∗n(W )] <∞ ,

(c) supn∈Z+ E[m∗n(W )I(m∗n(W ) ≥ ξ)]→ 0 as ξ →∞.

Also, as ξ →∞,

sup
n≥1

sup
X,Ωx

|
∫
mn(X,W )I(mn(X,W ) > ξ)π(X|W ,Ωx)| → 0.

3. Define Fn = {
∫

log π(X,W |Ωx)π(X|W ,Ω
(t)
x )dX} and Gn,M = {q1{m∗n(W ) ≤

M}|q ∈ Fn}. Suppose that, for every ε and M > 0, the metric entropy
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log(N(ε,Gn,M , L1(Pn))) = O(n), where Pn is the emprical measure of W and

N(ε,Gn,M , L1(Pn)) is the covering number with respect to the L1(P)-norm.

Proof. We begin with part (1). Note that

log π(X,W |Ωx) =
n∑
i=1

[log π(wi|xi,Ωu) + log π(xi|Ωx)]

= −1

2

n∑
i=1

[
(wi − xi)TΩu(wi − xi) + xTi Ωxxi

]
+

1

2
log det(Ωx) + C,

where C contains constants not related to (X,W ,Ωx). Hence,

| log π(X,W |Ωx)| ≤
1

2

n∑
i=1

[
(wi − xi)TΩu(wi − xi) +K1x

T
i xi
]

+K2

=
n∑
i=1

m(xi,wi) = m(X,W ),

where K1 and K2 are constants depending on upper bound B.

To prove part (2) note

m̃(W ,Ω(t)
x ) =

∫
m(X,W )π(X|W ,Ω(t)

x )dX

=

∫ n∑
i=1

m(xi,wi)

[
n∏
j=1

π(xi|wi,Ω
(t)
x )

]
dx1, . . . , dxn

=
n∑
i=1

∫
m(xi,wi)π(xi|wi,Ω

(t)
x )dxi,

where the last equality follows from conditional independence of each xi. Let Λ(t) =

(Ω
(t)
x + Ωu)

−1, and notice this the sum of expectations of m(xi,wi) with respect to

Gaussian random variables following N(Λ(t)Ωuwi,Λ
(t)) for each i = 1, . . . , n. Now,

E
xi|wi,Ω

(t)
x

[m(xi,wi)] =
1

2
wT
i Ωuwi +

1

2
tr((Ωu +K1Id)Λ

(t))−wT
i ΩuΛ

(t)Ωuwi︸ ︷︷ ︸
≥0

,
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which, since ||Λ(t)|| ≤ K3, implies

m̃(W ,Ω(t)
x ≤

1

2

n∑
i=1

wT
i Ωuwi +K3 = m∗(W ).

Marginally wi ∼ N(0d,Σx,Σu), and hence m∗(W ) is the sum of scaled chi-square

distributions. Conditions (b) and (c) easily follow from the properties of the chi-

square distribution.

To prove part (3), we make use of Remark 1 found in the Appendix of [13].

Since all elements in ∪n≥1Fn are uniformly Lipschitz, see [7], the metric entropy

can be measured on the basis of the parameter space of Ωx. The functions in Gn,M
are bounded and the parameter space can be contained by the L1 ball due to the

continuity of log π(X,W |Ωx). By Assumption 3, then log(N(ε,Gn,M , L1(Pn))) =

O(n2α log(d)).

Condition 3. Define Zt,i = log π(xi,wi|Ωx)−
∫

log π(xi,wi|Ωx)π(X|wi,Ω
(t)
x ). Zt,i

are subexponential random variables.

Proof. First, we note that

log π(xi,wi|Ωx) = −1

2
(wi − xi)TΩu(wi − xi)−

1

2
xiΩxxi

= −1

2
xTi (Ωx + Ωu)xi + xTi Ωuwi + C1,

where C1 is a constant free of X. Also note log π(wi,X|Ωx) = log π(wi,xi|Ωx) +
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log π(X−i|Ωx). The integral can then be shown to be∫
log π(xi,wi|Ωx)π(X|wi,Ω

(t)
x )

=

∫ [
log π(wi,xi|Ωx) + log π(X−i|Ωx)

]
π(xi|wi,Ω

(t)
x )π(X−i|Ω(t)

x )dxidX−i

=

∫
log π(wi,xi|Ωx)π(xi|wi,Ω

(t)
x )dxi︸ ︷︷ ︸

=A

∫
π(X−i|Ω(t)

x )dX−i︸ ︷︷ ︸
=1

+

∫
log π(X−i|Ωxπ(X−i|Ω(t)

x )dX−i︸ ︷︷ ︸
=C2

∫
π(xi|wi,Ω

(t)
x )dxi︸ ︷︷ ︸

=1

.

The value of A is the expectation of log π(wi,xi|Ωx) with respect to the full con-

ditional of X at iteration t, xi|wi,Ω
(t)
x ∼ Nd(Λ

−1,(t)Ωuwi,Λ
−1,(t)) where Λ(t) =

(Ω
(t)
x + Ωu). This expectation is composed of two parts,

Exi|wi,Ωx(xi(Ωx + Ωu)xi) = tr((Ωx + Ωu)Λ
−1,(t)) +wiΩuΛ

(t)(Ωx + Ωu)Λ
(t)Ωuwi

and

Exi|wi,Ωx(xTi Ωuwi) = wT
i ΩuΛ

(t)Ωuwi.

Hence, Zt,i is

−1

2
xTi (Ωx+Ωu)xi+x

T
i Ωuwi−

1

2
wT
i ΩuΛ

(t)(Ωx+Ωu)Λ
(t)Ωuwi+w

T
i ΩuΛ

(t)Ωuwi+C,

where C = C1 + C2 is free of xi and wi, which is the sum of scaled chi-squared

distributions and thus is subexponential.

Condition 4. For t = 1, . . . , T , Q(Ωx|Ω(t)
x ) has a unique maximum at Ω̃

(t)
x ; for any

ε > 0, supΩx\Bt(ε) Q(Ωx|Ω(t)
x ) exists, where Bt(ε) = {Ωx : |Ωx − Ω̃

(t)
x | < ε}.

Proof. As noted in [13], this is satisfied if Ωx is restricted to a compact set. So, since

BAGUS is strictly convex when restricted by the condition that ||Ωx|| ≤ B, then the

condition is satisfied.
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Condition 5. The penalty function is non-negative, ensures the existence of Ω
(t+1)
x

for t = 2, . . . , T , and converges to 0 uniformly as n→∞.

Proof. BAGUS is a non-negative penalty that exists for any X, and, due to the

adaptive nature of the penalty, converges to 0 as n → ∞. To see the penalty

converges to 0, note Assumption 2.1a implies

v1 =
1

a1(1− ε0)
√
n log(d)

→ 0

as n → ∞, which, with a similar argument for v0, results in the penalty being 0 as

n→∞.

8.2 Computing BAGUS with the EM-Algorithm

Here we review the optimization of the uncontaminated objective distribution. The

direct optimization of LUC in (5) is not easy due to the sum inside the logarithm.

[6] use the EM-algorithm to get around this issue by introducing the latent factors

rij from section 3.3. This allows an E-step similar to the spike-and-slab Lasso and

an M-step similar to the Graphical Lasso. In this section, if not specified, Σ and Ω

refer to x’s covariance and precision matrix, respectively.

The optimization seeks to find the MAP of the posterior proportional to

|Ωx|
1
2 exp

{
−1

2
XTΩxX

}∏
i<j

π(ωij|rij)π(rij|η)
∏
i

π(ωii|τ)I(Ωx � 0)I(||Ωx|| ≤ B),

where the latent indicator rij, as defined in Section 3.3, is incorporated into the

off-diagonal elements in the prior specification. The E-step takes the conditional

expectation of rij in the proportional posterior. Each rij is conditionally Bernoulli

with probability

pij =
v1

v0

1− η
η

exp

{
|ω(t)
ij |
(

1

v1

− 1

v0

)}
,

allowing for easy calculation of the conditional expectation. Then, the desired Q
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function to maximize in the M-step is given by

Q(Ωx|Ω(t)
x ) = E

R|Ω(t)
x

log π(Ωx,X|W ,Σu),

where the expectation is taken element wise for R by assumed independence of

inclusion.

The M-step optimizes each column of Q seperately with coordinate descent. The

last column’s update is now explained, with the other columns following in the same

pattern. Partition the covariance matrix as

Σx =

[
Σ11 σ12

σT12 σ22

]
,

and let similar partitions be available for Ωx,P ,R, and S. Also note that[
Σ11 σ12

· σ22

]
=

[
Ω−1
x + c−1Ω−1

11 ω12ω
T
12Ω

−1
11 −c−1Ω−1

11 ω12

· c−1

]
,

where c = ω22 − ωT12Ω
−1
11 ω12. The update for the last column of Σx is the solution

from setting subgradient of Q with respect to [σ12 σ22]T to 0. The update for σ22

can is easily attained from the setting the subgradient of ω22 to 0,

ω22 =
1

σ22

+ ωT12Ω
−1
11 ω12.

We note that each column update requires the matrix Ω−1
11 . This can be computed

as Σ11 − σ12σ
T
12/σ22.
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