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ABSTRACT

Sufficient dimension reduction (SDR) using distance covariance (DCOV) was recently proposed
as an approach to dimension-reduction problems. Compared with other SDR methods, it is
model-free without estimating link function and does not require any particular distributions
on predictors. However, the DCOV-based SDR method involves optimizing a nonsmooth and
nonconvex objective function over the Stiefel manifold. To tackle the numerical challenge, the
original objective function is equivalently formulated into a DC (Difference of Convex functions)
program and an iterative algorithm based on the majorization-minimization (MM) principle is
constructed. At each step of the MM algorithm, one iteration of Riemannian Newton’s method
is taken to solve the quadratic subproblem on the Stiefel manifold inexactly. In addition, the
algorithm can also be readily extended to sufficient variable selection (SVS) using distance co-
variance. Finally, the convergence property of the proposed algorithm under some regularity
conditions is established. Simulation and real data analysis show our algorithm drastically im-
proves the computation efficiency and is robust across various settings compared with the exist-
ing method. Matlab codes implementing our methods and scripts for regenerating the numerical
results are available at https://github.com/runxiong-wu/MMRN.

1. Introduction
In regression analysis, sufficient dimension reduction (SDR) provides a useful statistical framework to analyze a

high-dimensional dataset without losing any information. It finds the fewest linear combinations of predictors that
capture a full regression relationship. Let Y be an univariate response and X = (x1,… , xp)⊤ be a p × 1 predictor
vector, SDR aims to find a p × d matrix � such that

Y X|�⊤X, (1.1)

where denotes the statistical independence. The column space of � satisfying (1.1) is called a dimension reduction
subspace. Under mild conditions (Cook, 1996; Yin, Li and Cook, 2008), the intersection of all the dimension reduction
subspaces exists and is unique. In this case, if the intersection itself is also a dimension reduction subspace, we call it
the central subspace (Cook, 1994, 1996) for the regression of Y on X and denote it by Y |X . Note that the dimension
of Y |X denoted by dim(Y |X) is usually much smaller than the original predictor’s dimension p. Thus, we reduce the
dimensionality of the predictor space. The primary interest of SDR is to find such central subspace Y |X .

Since the introduction of sliced inverse regression (SIR; Li, 1991) and sliced average variance estimation (SAVE;
Cook and Weisberg, 1991), many methods have been proposed for estimating the basis of Y |X , including inverse
regression (IR; Cook and Ni, 2005), directional regression (DR; Li and Wang, 2007), minimum average variance
estimation method (MAVE; Xia, Tong, Li and Zhu, 2002), sliced regression (SR; Wang and Xia, 2008), ensemble
approach (Yin and Li, 2011), Fouriers transform approach (Zhu and Zeng, 2006), integral transform method (Zeng
and Zhu, 2010), Kullback-Leibler distance based estimator (Yin and Cook, 2005), likelihood based method (Cook and
Forzani, 2009), and semiparametric approach (Ma and Zhu, 2012), etc.

All of the aforementioned dimension reduction methods require certain conditions on the predictors or complicated
smoothing technique. In reality, these conditions are not easy to be verified and the results of these methods may be
misleading if the conditions are violated. Recently, Sheng and Yin (2013, 2016) proposed a method using distance
covariance (DCOV; Székely, Rizzo and Bakirov, 2007; Székely and Rizzo, 2009) for estimating the central subspace
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Y |X . Distance covariance is an elegant measure that quantifies the dependence strength between two random vectors.
Consequently, the DCOV-based SDR method requires only mild conditions on the predictors and does not require
any link function or nonparametric estimation. It can be also easily extended to handle regression with multivariate
responses.

The most challenging part of the DCOV-based SDRmethods is that it involves solving a nonconvex and nonsmooth
optimization problem over the Stiefel manifold. The present work (e.g., Sheng and Yin, 2013, 2016; Chen, Sheng and
Yin, 2018) tackled the problems by using sequential quadratic programming (SQP; Gill, Murray and Wright, 1981,
chap. 6). The SQP method works well when the dimension p and the sample n is not too large, but optimization is
often computationally difficult for moderately high dimensional settings. Another method that seems to work is to
use the Matlab package manopt by Boumal, Mishra, Absil and Sepulchre (2014). This package provides iterative
Riemannian optimization techniques, including Trust-regions, BFGS, SGD, Nelder-Mead, and so on. Unfortunately,
directly applying this package to solve the DCOV-based SDR problems may often crash since it needs the analytical
first-order derivative function. Beyond above, the literature on solving this kind of problem is scarce.

In this article, we propose a new algorithm which presents three major contributions to the literature of sufficient
dimension reduction and manifold optimization. First, we novelly write the DCOV objective function of the model
as a difference of convex functions equivalently. Therefore we design a highly efficient algorithm for solving the
corresponding optimization problem based on the new objective function form. Second, we construct the convergence
property of the proposed algorithm over the Stiefel manifold. Third, we extend our method to sufficient variable
selection based on distance covariance. Simulation studies show our algorithm is ten to hundred times faster than the
methods relying on SQP algorithm.

A toy example is given to visualize what SDR does and to see the performance of our algorithm and the competi-
tor’s. In this example, we generate 800 independent copies one time from

X = �[cos(2�Y ), sin(2�Y )]⊤ + 0.1�1∕2�,

where

� =
(

1 1 … 1 1
1 −1 … 1 −1

)⊤
∈ ℝ20×2,

Y is generated from uniform distribution over interval (0, 1), Φij = 0.5|i−j| and � is a standard normal error. In the
following figure, we can see how the first two SDR components recover a circle pattern. Our algorithm (MMRN, see
details in a later chapter) is about 20 time faster than the competitor.
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Figure 1: Computational performance comparison.

1.1. Notation and the Stiefel Manifold
The following notations and knowledge about the Stiefel manifold discussed in Absil, Mahony and Sepulchre

(2009); Edelman, Arias and Smith (1998) will be used in our exposition. The trace of a matrix A is tr(A) and the
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Euclidean inner product of twomatricesA,B is ⟨A,B⟩ = tr(A⊤B). We use ‖⋅‖2 and ‖⋅‖F to denote the Euclidean norm
of a vector and the Frobenius norm of a matrix respectively. The notation St(d, p) =

{


 ∈ ℝp×d
|
⊤
 = Id

}

with d ≤ p
is referred to the Stiefel manifold and 
St(d, p) is the tangent space to St(d, p) at a point 
 ∈ St(d, p). According to
Edelman et al. (1998), 
St(d, p) =

{


U + 
⟂V|U ∈ Skew(d),V ∈ ℝ(p−d)×d
}

. Here 
⟂ is the orthogonal complement
of 
 and Skew(d) denotes the set of d × d skew-symmetric matrices. We use vec(W) to denote the vector formed by
stacking the column vectors of W. For a skew-symmetric matrix W ∈ Skew(d), veck(W) denotes a d(d − 1)∕2-
dimensional column vector obtained by stacking the columns of the lower triangular part ofW. For a square matrix
W, we use sym(W) =

(

W +W⊤) ∕2 and skew(W) =
(

W −W⊤) ∕2 to denote the symmetric and skew-symmetric
parts ofW respectively. Induced from the Euclidean inner product, the Riemannian metric on St(d, p)we consider here
is defined as ⟨�1, �2⟩
 = tr(�⊤1 �2), for any �1, �2 ∈ 
St(d, p). Under this metric, the orthogonal projection ofW onto
the tangent space 
St(d, p) is expressed as Proj
St(d,p)(W) =W−
sym

(


⊤W
)

. Let f be a smooth function and∇f
be the Euclidean gradient, the Riemannian gradient of point 
 ∈ St(d, p) is defined as gradf (
) = Proj
St(d,p)(∇f (
)).
Correspondingly, the Riemannian Hessian of point 
 ∈ St(d, p) acting on � ∈ 
St(d, p) is defined as Hessf (
)[�] =
Proj
St(d,p) (D(grad f )(
)[�]) and D(grad f )(
)[�] is the directional derivative of gradf (
) along the direction �. We
use Retr to denote the retraction operation. For the Stiefel manifold, the QR retraction is used in the article.

1.2. Organization
The rest of the article is organized as follows. Section 2 reviews briefly key knowledge of the DCOV-based SDR

method and illustrates our motivation. Section 3 describes the proposed algorithm for solving DCOV-based SDR
models in details and Section 4 extends the proposed algorithm to DCOV-based SVSmodels. In Section 5, we evaluate
the superior numeric performance of the proposed algorithm through various simulation studies. Finally, we draw some
concluding remarks about the article in Section 6. All proofs are given in the Appendix.

2. Background Review and Motivation
2.1. DCOV-based SDR Model

Let (X,Y) =
{

(Xi, Yi) ∶ i = 1,… , n
}

be a random sample from (X, Y ). X denotes a p×n datamatrix andY denotes
a 1 × n response data matrix. We present here an univariate response, however, the method can naturally be extended
to multivariate responses without any issue due to the nature of DCOV. The empirical solution of DCOV-based SDR
method for these n observations relies on solving the following objective function:

max
�∈ℝp×d

2n (�
⊤X,Y) ∶= 1

n2

n
∑

k,l=1
Akl(�)Bkl, s.t. �⊤�̂X� = Id , (2.1)

where �̂X is the sample covariance matrix of X, Id is a d-dimensional identity matrix and for k, l = 1,… , n,

Akl(�) = akl(�) − ak⋅(�) − a⋅l(�) + a⋅⋅(�),

akl(�) = ‖�⊤Xk − �⊤Xl‖2, ak⋅(�) =
1
n

n
∑

l=1
akl(�),

a⋅l(�) = 1
n

n
∑

k=1
akl(�), a⋅⋅(�) =

1
n2

n
∑

k,l=1
akl(�).

Similarly, define bkl = ‖Yk − Yl‖2 and Bkl = bkl − bk⋅ − b⋅l + b⋅⋅. Sheng and Yin (2013, 2016) showed that under mild
conditions, the solution of the above problem (2.1) is a

√

n-consistent estimator of a basis of Y |X .

2.2. Motivation
In the Appendix of Székely, Rizzo and Bakirov (2007), it was proved that 2n (�

⊤X,Y) has another expression, i.e.,

2n (�
⊤X,Y) = S1 + S2 − 2S3, (2.2)
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where

S1 =
1
n2

n
∑

k,l=1
akl(�)bkl,

S2 =
1
n2

n
∑

k,l=1
akl(�)

1
n2

n
∑

k,l=1
bkl =

1
n2

n
∑

k,l=1
akl(�)b⋅⋅,

S3 =
1
n3

n
∑

k=1

n
∑

l,m=1
akl(�)bkm =

1
n2

n
∑

k,l=1
akl(�)bk⋅.

(2.3)

Notice that 1
n2

n
∑

k,l=1
akl(�)bk⋅ =

1
n2

n
∑

k,l=1
akl(�)b⋅l because for any k, l = 1,… , n, akl(�)bk⋅ = alk(�)b⋅k. Then, we have

the following way to express 2S3:

2S3 =
1
n2

n
∑

k,l=1
akl(�)bk⋅ +

1
n2

n
∑

k,l=1
akl(�)b⋅l =

1
n2

n
∑

k,l=1
akl(�)

(

bk⋅ + b⋅l
)

. (2.4)

Substituting equations (2.3) and (2.4) into (2.2), we obtain

2n (�
⊤X,Y) = 1

n2

n
∑

k,l=1
akl(�)bkl +

1
n2

n
∑

k,l=1
akl(�)b⋅⋅ −

1
n2

n
∑

k,l=1
akl(�)

(

bk⋅ + b⋅l
)

,

= 1
n2

n
∑

k,l=1
akl(�)

(

bkl + b⋅⋅ − bk⋅ − b⋅l
)

,

= 1
n2

n
∑

k,l=1
akl(�)Bkl.

(2.5)

In addition, it can be verified that
∑n
k,l=1 Bkl = 0 and akl(�) is convex with respect to �. These details make us notice

that the objective function (2.5) can have a difference of convex functions decomposition (DC). Indeed, we can write
the function (2.5) into a DC formulation

2n (�
⊤X,Y) =

(

1
n2

n
∑

k,l=1
akl(�)BklI(Bkl > 0)

)

−

(

− 1
n2

n
∑

k,l=1
akl(�)BklI(Bkl < 0)

)

(2.6)

through the indicator function I(⋅). This equivalent function form (2.6) motivates us to design a highly efficient algo-
rithm from the viewpoint of difference convex algorithm (DCA; Pham Dinh and Le Thi, 1997). More details about
DCA and some of its recent developments can be found in Le Thi and Pham Dinh (2005, 2018); Pham Dinh and Le Thi
(1997, 1998, 2014).

Thus, the objective function (2.1) of the DCOV-based SDR model can be equivalently transformed to

max
�∈ℝp×d

2n (�
⊤X,Y) ∶= 1

n2

n
∑

k,l=1
akl(�)Bkl, s.t. �⊤�̂X� = Id . (2.7)

Let 
 = �̂
1
2
X� and Z = �̂

− 12
X X, the above function (2.7) can be rewritten as

max



2n (

⊤Z,Y) ∶= 1

n2

n
∑

k,l=1
akl(
)Bkl, s.t. 
 ∈ St(d, p), (2.8)

where akl(
) = ‖
⊤Zk−
⊤Zl‖2. In later sections, we will make full use of the equivalent form (2.8) rather than (2.7).

R. Wu and X. Chen.: Preprint submitted to Elsevier Page 4 of 20
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3. Methodology
3.1. Preliminaries

In fact, DCA is based on MM algorithm which is a principle of designing algorithms. The idea of designing a MM
algorithm for finding x̂ = argmax

x∈X
f (x) where X is the constraint region is as follows. At each iterate x(t), we need to

construct a surrogate function g(x|x(t)) satisfying

f (x(t)) = g(x(t)|x(t))

f (x) ≥ g(x|x(t)), for any x ∈ X .

Then, MM algorithm updates the estimation with

x(t+1) = argmax
x∈X

g(x|x(t)).

Because

f (x(t+1)) ≥ g(x(t+1)|x(t)) ≥ g(x(t)|x(t)) = f (x(t)),

the iterate estimates generated by MM algorithm drive the objective function uphill. Under mild conditions, MM
algorithm generally converges to a stationary point of the objective function.

The most important component of designing a MM algorithm is to find an appropriate surrogate function g(x|x(t)).
In general, many surrogate functions may be derived from various inequalities stemming from convexity or concavity,
see, e.g., Lange, Hunter and Yang (2000) or Hunter and Lange (2004). One of the most used inequalities to construct a
surrogate function is the supporting hyperplane inequality. Suppose f (x) is convexwith gradient∇f (x), the supporting
hyperplane inequality is

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩. (3.1)

Our derivation of the MM algorithm for the DCOV-based SDR model hinges on the convexity of the two functions
mentioned in the next lemma.

Lemma 1. (a) The scalar function f (x) = x
1
2 − � log

(

1 + x
1
2

�

)

is concave and differentiable in x > 0 where � > 0

is a constant. (b) The matrix function f (A) = ‖Ac‖2 − � log
(

1 +
‖Ac‖2
�

)

is convex and differentiable in the n × p

matrix A where c ∈ ℝp is a constant vector and � > 0 is a constant scalar.

3.2. MM Algorithm
It is often challenging to directly optimize the objective function (2.8) due to the non-smoothness. One way to

tackle the difficulty is to perturb objective function slightly to render it differentiable, then to optimize this differentiable
function using a MM algorithm (Hunter and Li, 2005; Yu, Won, Lee, Lim and Yoon, 2015). Motivated by this idea,
we introduce a perturbed version 2n,�(


⊤Z,Y) of the objective function (2.8) for the DCOV-based SDR model:

2n,�(

⊤Z,Y) = 1

n2

n
∑

k,l=1

{

akl(
) − � log
(

1 +
akl(
)
�

)}

Bkl,

= 1
n2

n
∑

k,l=1

{

‖
⊤(Zk −Zl)‖2 − � log
(

1 +
‖
⊤(Zk −Zl)‖2

�

)}

Bkl.

(3.2)

Below we conclude some properties of the perturbed objective function 2n,�(

⊤Z,Y).

R. Wu and X. Chen.: Preprint submitted to Elsevier Page 5 of 20
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Proposition 1. For � > 0, (i) 2n,�(

⊤Z,Y) is a continuous and differentiable DC function and a DC decomposition

of it is

2n,�(

⊤Z,Y) =

(

1
n2

n
∑

k,l=1

{

akl(
) − � log
(

1 +
akl(
)
�

)}

BklI(Bkl > 0)

)

−

(

− 1
n2

n
∑

k,l=1

{

akl(
) − � log
(

1 +
akl(
)
�

)}

BklI(Bkl < 0)

)

,

(3.3)

where I(⋅) is an indicator function, (ii) 2n,�(

⊤Z,Y) converges to 2n (


⊤Z,Y) uniformly on the Stiefel manifold 
 ∈
St(d, p) as � approaches to zero.

Now let 
(t) denote the current estimate, we plan to construct the minorization g�(
|
(t)) for the perturbed ob-
jective function 2n,�(


⊤Z,Y) based on the DC decomposition (3.3). The convexity of the function A ↦ ‖Ac‖2 −

� log
(

1 +
‖Ac‖2
�

)

implies that

akl(
) − � log
(

1 +
akl(
)
�

)

= ‖
⊤(Zk −Zl)‖2 − � log
(

1 +
‖
⊤(Zk −Zl)‖2

�

)

≥ ‖
(t)⊤(Zk −Zl)‖2 − � log

(

1 +
‖
(t)⊤(Zk −Zl)‖2

�

)

+
⟨ (Zk −Zl)(Zk −Zl)⊤
(t)

‖
(t)⊤(Zk −Zl)‖2 + �
, 
 − 
(t)

⟩

.

Multiplying both sides by a nonnegative termBklI(Bkl > 0) and averaging over all pairs (k, l) leads to the minorization

1
n2

n
∑

k,l=1

{

akl(
) − � log
(

1 +
akl(
)
�

)}

BklI(Bkl > 0)

≥ 1
n2

n
∑

k,l=1

{

akl(
(t)) − � log
(

1 +
akl(
(t))

�

)}

BklI(Bkl > 0)

+ 1
n2

n
∑

k,l=1

⟨ (Zk −Zl)(Zk −Zl)⊤
(t)

‖
(t)⊤(Zk −Zl)‖2 + �
, 
 − 
(t)

⟩

BklI(Bkl > 0).

(3.4)

Next focusing on the term akl(
)−� log
(

1 +
akl(
)
�

)

BklI(Bkl < 0), we use the fact that f (x) = x
1
2−� log

(

1 + x
1
2

�

)

is concave in x > 0 to show

x
1
2 − � log

(

1 + x
1
2

�

)

≤ x(t)
1
2 − � log

(

1 + x(t)
1
2

�

)

+ x − x(t)

2
(

x(t)
1
2 + �

) .

Then, we take x = ‖
⊤(Zk −Zl)‖22 and x
(t) = ‖
(t)⊤(Zk −Zl)‖22, the above inequality becomes

‖
⊤(Zk −Zl)‖2 − � log
(

1 +
‖
⊤(Zk −Zl)‖2

�

)

≤ ‖
(t)⊤(Zk −Zl)‖2 − � log

(

1 +
‖
(t)⊤(Zk −Zl)‖2

�

)

+
‖
⊤(Zk −Zl)‖22 − ‖
(t)⊤(Zk −Zl)‖22

2
(

‖
(t)⊤(Zk −Zl)‖2 + �
) .

R. Wu and X. Chen.: Preprint submitted to Elsevier Page 6 of 20
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Multiplying both sides by a nonpositive term BklI(Bkl < 0) and averaging over all pairs (k, l), we obtain the minoriza-
tion

1
n2

n
∑

k,l=1

{

akl(
) − � log
(

1 +
akl(
)
�

)}

BklI(Bkl < 0)

≥ 1
n2

n
∑

k,l=1

{

akl(
(t)) − � log
(

1 +
akl(
(t))

�

)}

BklI(Bkl < 0)

+ 1
n2

n
∑

k,l=1

‖
⊤(Zk −Zl)‖22 − ‖
(t)⊤(Zk −Zl)‖22
2
(

‖
(t)⊤(Zk −Zl)‖2 + �
) BklI(Bkl < 0).

(3.5)

Combination of the minorizations (3.4) and (3.5) gives the overall minorization

g�(
|
(t)) =
1
n2

n
∑

k,l=1

BklI(Bkl < 0)

2
(

‖
(t)⊤(Zk −Zl)‖2 + �
)‖
⊤(Zk −Zl)‖22

+ 1
n2

n
∑

k,l=1

⟨ (Zk −Zl)(Zk −Zl)⊤
(t)

‖
(t)⊤(Zk −Zl)‖2 + �
, 


⟩

BklI(Bkl > 0) + c(t),

(3.6)

where c(t) is an irrelevant constant.
To make clear of the surrogate function, we write it in a matrix form. Let C be a n × n matrix with every entry

Ckl =
BklI(Bkl < 0)

‖
(t)⊤(Zk −Zl)‖2 + �
and D be a n × n matrix with every entry Dkl =

BklI(Bkl > 0)

‖
(t)⊤(Zk −Zl)‖2 + �
, then the

surrogate function (3.6) becomes

g�(
|
(t)) =
1
n2

n
∑

k,l=1

Ckl
2

‖
⊤(Zk −Zl)‖22

+ 1
n2

n
∑

k,l=1

⟨

Dkl(Zk −Zl)(Zk −Zl)⊤
(t), 

⟩

+ c(t).

After some algebraic manipulation, we have

g�(
|
(t)) =
1
2
tr
(


⊤Z
2(diag(C1n) − C)

n2
Z⊤


)

+ tr
(


(t)⊤Z
2(diag(D1n) − D)

n2
Z⊤


)

+ c(t),

where 1n is a n × 1 column vector having all n elements equal to one and diag(a) is the n × n diagonal matrix whose

entries are the n elements of the vector a. Let Q = Z
2(diag(C1n) − C)

n2
Z⊤ and L = Z

2(diag(D1n) − D)
n2

Z⊤
(t), the

surrogate function g�(
|
(t)) finally has the form

g�(
|
(t)) =
1
2
tr
(


⊤Q

)

+ tr
(


⊤L
)

, (3.7)

subject to 
 ∈ St(d, p).
Maximizing the surrogate function g�(
|
(t)) under the constraint drives the loss function uphill. However, due

to the existence of the manifold constraint, it is still difficult to accurately solve the subproblem (3.7) although the
objective function is only a quadratic function. In fact, the validity of the ascent property depends only on increasing
g�(
|
(t)) over the Stiefel manifold St(d, p), not on maximizing g�(
|
(t)). Similar to Lange (1995) and Xu, Chi, Yang
and Lange (2018), we propose inexactly maximizing the surrogate function g�(
|
(t)) by taking a single Newton’s step

R. Wu and X. Chen.: Preprint submitted to Elsevier Page 7 of 20



R. Wu and X. Chen/Preprint

but over the Stiefel manifold St(d, p). At each iterate 
(t), we need to solve the following Newton’s equation of the
problem (3.7)

Hess g�(
(t))[�] = −grad g�(
(t)), (3.8)

subject to � ∈ 
(t)St(d, p). After obtaining the Newton’s direction � at the current estimate 
(t), we can update estimate
by


(t+1) = Retr
(t) (�) = qf(
(t) + �),

where qf(⋅) denotes the Q factor of the QR decomposition of the matrix. To safeguard the MM algorithm preserving
the ascent property, we can take step-having strategy at every iterate. We call this MM algorithm for soving the
DCOV-based SDRmodel MMRN algorithm and the following Algorithm (1) summarizes the MMRN algorithm using
step-halving based on satisfying the Armijo condition.

Algorithm 1: MMRN Algorithm for (2.7)
Input: X ∈ ℝp×n, Y ∈ ℝ1×n, perturbation constant �

1 Initialize 
(0) ∈ St(d, p), � ∈ (0, 1), � ∈ (0, 1), t = 0

2 Precompute �̂
1
2
X , B =

(

Bkl
)

, Z = �̂
− 12
X X

3 repeat

4 Ckl ←
BklI(Bkl < 0)

‖
(t)⊤(Zk −Zl)‖2 + �
, Dkl ←

BklI(Bkl > 0)

‖
(t)⊤(Zk −Zl)‖2 + �
, for any k, l = 1,… , n

5 Q ← Z
2(diag(C1n) − C)

n2
Z⊤, L ← Z

2(diag(D1n) − D)
n2

Z⊤
(t)

6 Solve the Newton’s equation

Hess g�(
(t))[�] = −grad g�(
(t)),

for unknown � ∈ 
(t)St(d, p)
7 s← 1
8 repeat
9 s← �s

10 until 2n,�(Retr
(t) (s�)
⊤Z,Y) ≥ 2n,�(


(t)⊤Z,Y) + �s‖�‖2F;
11 
(t+1) ← Retr
(t) (s�)
12 t ← t + 1
13 until objective value converges;

Output: 
̂� = 
(t+1), �̂� = �̂
− 12
X 
̂�

3.3. Solving the Riemannian Newton’s equation (3.8)
The MM algorithm is a well-applicable and simple algorithmic framework for solving DC problems. The key

challenge in making the proposed algorithm efficient numerically lies in solving the equation (3.8). Aihara and Sato
(2017) and Sato (2017) recently proposed an effective way of solving Newton’s equation on the Stiefel manifold. The
idea of the method is to rewrite original Newton’s equation expressed by a system of matrix equations into a standard
linear system through the Kronecker product and the vec and veck operators. The resultant linear system can be
effectively solved while reducing the dimension of the equation to that of the Stiefel manifold.

Before applying their method to solve the Newton’s equation of our subproblem (3.8) formally, we introduce some
useful properties of Kronecker, vec, and veck operators.

1. For any A ∈ ℝm×p, X ∈ ℝp×q , and B ∈ ℝq×n, we have

vec(AXB) =
(

B⊤ ⊗ A
)

vec(X).
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2. For any matrix U ∈ Skew(d), we have

vec(U) = Ddveck(U),

and

veck(U) = 1
2
D⊤d vec(U).

Here Dd is a d2 × d(d − 1)∕2 matrix defined by

Dd =
∑

d≥i>j≥1

(

E(d
2×d(d−1)∕2)

d(j−1)+i, j(d−(j+1)∕2)−d+i − E
(d2×d(d−1)∕2)
d(i−1)+j, j(d−(j+1)∕2)−d+i

)

,

where E(p×q)i, j denotes the p× q matrix that has the (i, j)-component equal to 1 and all other components equal to
0.

3. There exists an n2 × n2 permutation matrix Tn such that

vec(W⊤) = Tnvec(W), W ∈ ℝn×n,

where Tn =
∑n
i,j=1 E

(n×n)
ij ⊗ E(n×n)ji .

From the above properties, we can easily derive that

vec(skew(W)) = 1
2
(In2 − Tn)vec(W), for anyW ∈ ℝn×n.

After these preparations, we begin to solve the Newton’s equation (3.8). For a given 
̃ ∈ St(d, p), the Newton’s
equation (3.8) is equivalent to

Hess g�(
̃)[�] = −grad g�(
̃), (3.9)

subject to � ∈ 
̃St(d, p). Specifically, the gradient of g� at a point 
̃ ∈ St(d, p) is expressed as

grad g�(
̃) = Q
̃ + L − 
̃S, (3.10)

and the Hessian acts on � ∈ 
̃St(d, p) as

Hess g�(
̃)[�] = Q� − �S − 
̃sym
(


̃⊤Q� − 
̃⊤�S
)

, (3.11)

where S = sym(
̃⊤Q
̃ + 
̃⊤L). � ∈ 
̃St(d, p) can be expressed as

� = 
̃U + 
̃⟂V, U ∈ Skew(d),V ∈ ℝ(p−d)×d . (3.12)

Hess g�(
̃)[�] ∈ 
̃St(d, p) can also be written as

Hess g�(
̃)[�] = 
̃UH + 
̃⟂VH , UH ∈ Skew(d),VH ∈ ℝ(p−d)×d . (3.13)

Substituting the equation (3.12) into the equation (3.11) and combining the resultant equation with the equation (3.13),
we can obtain a relationship between UH ,VH and U,V. The following proposition gives the relationship.

Proposition 2. Let 
̃ ∈ St(d, p) and 
̃⟂ be its orthonormal complement. If a tangent vector � ∈ 
̃St(d, p) is expressed
as (3.12), then the Hessian Hess g�(
̃)[�] of the function (3.7) acts on � as Hess g�(
̃)[�] = 
̃UH + 
̃⟂VH with

UH = skew
(


̃⊤Q
̃U + 
̃⊤Q
̃⟂V − US
)

, (3.14)

and

VH = 
̃⊤⟂Q
̃U + 
̃⊤⟂Q
̃⟂V − VS. (3.15)
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From Equation (3.14) and (3.15), we know the Hessian Hess g�(
̃) at 
̃ ∈ St(d, p) is a linear transformation H
on ℝK that transforms a K-dimensional vector

(

veck(U)⊤, vec(V)⊤
)⊤ into

(

veck(UH )⊤, vec(VH )⊤
)⊤. A goal of the

method is to obtain the linear transformation H.

Proposition 3. Let K = dim(St(d, p)) = d(d − 1)∕2 + (p − d)d, there exists a linear transformation H on ℝK such
that

H
(

veck(U)
vec(V)

)

=
(

veck(UH )
vec(VH )

)

,

and the linear transformation H is given by

H =
(

H11 H12
H21 H22

)

,

where

H11 = 1
4
D⊤d

[

Id ⊗ (
̃⊤Q
̃ − S) + (
̃⊤Q
̃ − S)⊗ Id
]

Dd ,

H12 = 1
4
D⊤d (Id2 − Td)

(

Id ⊗ 
̃⊤Q
̃⟂
)

,

H21 = (Id ⊗ 
̃⊤⟂Q
̃)Dd ,
H22 = Id ⊗ 
̃⊤⟂Q
̃⟂ − S⊗ Id .

From the Newton’s equation (3.9) together with Equation (3.13), we have
{

UH = −
̃⊤grad g�(
̃),
VH = −
̃⊤⟂grad g�(
̃).

(3.16)

Applying the veck and vec operators to the equations (3.16) respectively and using equation (3.10), we immediately
obtain

{

veck(UH ) = −veck
(

skew(
̃⊤Q
̃ + 
̃⊤L)
)

,
vec(VH ) = −vec(
̃⊤⟂Q
̃ + 
̃⊤⟂L).

By Proposition 3, we have a standard linear system

H
(

veck(U)
vec(V)

)

= −
(

veck
(

skew(
̃⊤Q
̃ + 
̃⊤L)
)

vec(
̃⊤⟂Q
̃ + 
̃⊤⟂L)

)

.

If H is invertible, we can solve the above linear equation as
(

veck(U)
vec(V)

)

= −H−1
(

veck
(

skew(
̃⊤Q
̃ + 
̃⊤L)
)

vec(
̃⊤⟂Q
̃ + 
̃⊤⟂L)

)

.

In our numerical studies, we have not noticed the case H is not invertible. After veck(U) and vec(V) are obtained, we
can easily reshape U ∈ Skew(d) and V ∈ ℝ(p−d)×d . Therefore, we can calculate the solution of Newton’s equation
(3.9) by � = 
̃U + 
̃⟂V. Detailed information can be seen in Algorithm (2).

3.4. Convergence Analysis
In this section, we construct the convergence property of the proposed algorithm for solving the DCOV-based SDR

model. We first show that the sequence
{


̂(t)�
}

t≥0
generated by the MMRN algorithm converge to a stationary point

of the perturbed function (3.2). Then, we show that a maximizer 
̂� of the perturbed objective function (3.2) exhibits
a minimal difference from a maximizer 
̂ of the true objective (2.8) for sufficiently small �.
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Algorithm 2: Solving the Riemannian Newton’s equation (3.8)

Input: Q ∈ ℝp×p, L ∈ ℝp×d , 
(t) ∈ ℝp×d , Dd ∈ ℝd2× d(d−1)2 , and Td ∈ ℝd2×d2

1 Compute 
(t)⟂ such that 
(t)⊤
(t)⟂ = 0 and 
(t)⟂
⊤

(t)⟂ = Ip−d

2 Compute S = sym(
(t)⊤Q
(t) + 
(t)⊤L)
3 Compute the linear transformation H ∈ ℝK×K by

H =
(

H11 H12
H21 H22

)

,

where

H11 = 1
4
D⊤d

[

Id ⊗ (
(t)⊤Q
(t) − S) + (
(t)⊤Q
(t) − S)⊗ Id
]

Dd ,

H12 = 1
4
D⊤d (Id2 − Td)

(

Id ⊗ 
(t)⊤Q
(t)⟂
)

,

H21 = (Id ⊗ 
(t)⊤⟂Q

(t))Dd ,

H22 = Id ⊗ 
(t)⟂
⊤
Q
(t)⟂ − S⊗ Id .

4 Compute veck(U) and vec(V) using

(

veck(U)
vec(V)

)

= −H−1
(

veck
(

skew(
(t)⊤Q
(t) + 
(t)⊤L)
)

vec(
(t)⊤⟂Q

(t) + 
(t)⊤⟂L)

)

.

5 Construct U ∈ Skew(d) and V ∈ ℝ(p−d)×d from veck(U) and vec(V)
6 Compute � = 
(t)U + 
(t)⟂ V

Output: � ∈ 
(t)St(d, p)

Proposition 4. Let 
 ∈ St(d, p), � ∈ (0, 1), and � ∈ (0, 1), there exists an integer t > 0 such that

2n,�(Retr
(�
t�)⊤Z,Y) ≥ 2n,�(


⊤Z,Y) + ��t‖�‖2F,

where � is a solution of Hess g�(
)[�] = −grad g�(
).

We now prove the convergence of our perturbed MM algorithm safeguarded by the Armijo step-halving strategy.

Proposition 5. For any � > 0, the limit point 
̂� generated by the Algorithm 1 is a stationary point of 2n,�(

⊤Z,Y),

that is grad2n,�(
̂
⊤
� Z,Y) = 0.

Proposition 6. Consider an arbitrary decreasing sequence
{

�m
}∞
m=1 that converges to 0. Then, any limit point of 
̂�m

is a maximizer of 2n (

⊤Z,Y) over the Stiefel manifold, provided that

{


|2n (

⊤Z,Y) = 2n (
̂

⊤Z,Y) and 
⊤
 = Id
}

is nonempty.

Combining Proposition 5 and 6, it is straightforward to see that theMM algorithm generates solutions that converge
to a stationary point of 2n (


⊤Z,Y) as � decreases to zero.

Theorem 1. The sequence of the solutions
{


̂(t)�
}

t≥0
generated by the proposed perturbed MM algorithm converges

to a maximizer of 2n (

⊤Z,Y) over the Stiefel manifold. Moreover, the sequence of functionals

{

2n,�(
̂
(t)⊤
� Z,Y)

}

t≥0
converges to the maximum value of 2n (


⊤Z,Y).
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4. Extension
In this section, we will extend the above proposed method to solve sufficient variable selection (SVS) using distance

covariance. The DCOV-based SVS method is developed by Chen, Sheng and Yin (2018) through combining DCOV-
based SDR with penalty terms, such as LASSO type penalty terms (Tibshirani, 1996; Yuan and Lin, 2006; Chen, Zou
and Cook, 2010) or adaptive LASSO (Zou, 2006), to achieve a sparse solution. Specifically, the model is to solve the
following problem

maximize
�

2n (�
⊤X,Y) − �

p
∑

i=1
�i‖�i‖2, (4.1)

subject to �⊤�̂X� = Id , where �i denotes the i-th row vector of �, �i ≥ 0 serves as the i-th penalty weight and � > 0

is a tunning parameter. Plugging 
 = �̂
1
2
X� and Z = �̂

− 12
X X into the equation (4.1) together with using equivalent

expression (2.5) for 2n (�
⊤X,Y), we can transform the objective function (4.1) to

��(
) =
1
n2

n
∑

k,l=1
akl(
)Bkl − �

p
∑

i=1
�i�i(
), (4.2)

subject to 
 ∈ St(d, p), where �i(
) = ‖e⊤i �̂
− 12
X 
‖2 and ei denotes a column vector with one in the i-th position and

zero in the others. Correspondingly, a perturbed version ��,�(
) of the objective function (4.2) is given by

��,�(
) =
1
n2

n
∑

k,l=1

{

akl(
) − � log
(

1 +
akl(
)
�

)}

Bkl − �
p
∑

i=1
�i

{

�i(
) − � log
(

1 +
�i(
)
�

)}

,

= 1
n2

n
∑

k,l=1

{

‖
⊤(Zk −Zl)‖2 − � log
(

1 +
‖
⊤(Zk −Zl)‖2

�

)}

Bkl

− �
p
∑

i=1
�i

⎧

⎪

⎨

⎪

⎩

‖e⊤i �̂
− 12
X 
‖2 − � log

⎛

⎜

⎜

⎜

⎝

1 +
‖e⊤i �̂

− 12
X 
‖2
�

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

.

(4.3)

Due to the minorization (3.7) for the first term, it only needs to minorize the penalty function in the equation (4.3) to

obtain a surrogate function of ��,�(
). The supporting hyperplane minorization for −��i

{

x
1
2 − � log

(

1 + x
1
2

�

)}

is

−��i

{

x
1
2 − � log

(

1 + x
1
2

�

)}

≥ −��i

{

x(t)
1
2 − � log

(

1 + x(t)
1
2

�

)}

+
−��i(x − x(t))

2
(

x(t)
1
2 + �

) . (4.4)

Taking x = ‖e⊤i �̂
− 12
X 
‖22 and x

(t) = ‖e⊤i �̂
− 12
X 
(t)‖22, and summing over i = 1,… , p give the minorization for penalty

function −�
∑p
i=1 �i�i(
), i.e.,

−�
p
∑

i=1
�i�i(
) ≥

p
∑

i=1

−��i‖e⊤i �̂
− 12
X 
‖22

2(‖e⊤i �̂
− 12
X 
(t)‖2 + �)

+ c, (4.5)

where c is an irrelevant constant. After some algebraic manipulation, we have

p
∑

i=1

−��i‖e⊤i �̂
− 12
X 
‖22

2(‖e⊤i �̂
− 12
X 
(t)‖2 + �)

= 1
2
tr
(


⊤�̂
− 12
X diag(Λ)�̂

− 12
X 


)

, (4.6)
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where Λ =
⎛

⎜

⎜

⎜

⎝

−��1

‖e⊤1 �̂
− 12
X 
(t)‖2 + �

,… ,
−��p

‖e⊤p �̂
− 12
X 
(t)‖2 + �

⎞

⎟

⎟

⎟

⎠

⊤

is a p×1 column vector. Combining the minorizations (3.7)

and (4.6) gives the overall minorization

g�,�(
|
(t)) =
1
2
tr
(


⊤
[

Q + �̂
− 12
X diag(Λ)�̂

− 12
X

]



)

+ tr(
⊤L). (4.7)

Note that the form of surrogate function (4.7) for the DCOV-based SVS model is the same as the surrogate function
(3.7) for the DCOV-based SDR model. Thus, we can use the same method for solving the DCOV-based SVS model.

5. Numerical Studies
We compare our proposed unified algorithm for solving both DCOV-based SDR and DCOV-based SVS to their

corresponding existing algorithms, focusing on computational cost. Since the method in Chen, Sheng and Yin (2018)
solving DCOV-based SVS combines SQP and local quadratic approximation (LQA; Fan and Li, 2001), we denote
it to SQP+LQA for convenience. SQP and SQP+LQA in all of the simulation studies use the default setups in the
original work to guarantee accuracy. In the MMRN, we set the stepsize multiplicative factor � = 0.5 and perturbation
constant � = 10−10 to avoid machine precision error. Besides, we set � = 10−20 to lead fewer number of line search
steps. The MMRN algorithm terminates at the t-th step when the relative error of the objective function at the t-th step
computed by |f (
(t))−f (
(t−1))|∕|f (
(t−1))| becomes smaller than 10−7 or the iteration number t exceeds 1000. Here
the function f denotes the objective functions in DCOV-based SDR and SVS. All algorithms use the solutions from
existing dimension reduction methods such as SIR or DR as the initial value. All codes are implemented in Matlab
and run on a standard PC (Intel Core i9-8950HK CPU (2.90 GHz) and 32 GB RAM). For specific details about the
implementation of our proposal, please refer to https://github.com/runxiong-wu/MMRN.

5.1. Simulation for DCOV-based SDR
We use the same simulation settings as in Sheng and Yin (2016) to illustrate the performance comparison of the

MMRN algorithm and the SQP algorithm in solving DCOV-based SDR models. There are three different models
and two sample size configurations (n, p) = (100, 6) and (500, 20). Let �, �1, and �2 be independent standard normal
random variables, the three models are:

(A) Y = (�⊤1 X)
2 + (�⊤2 X) + 0.1�,

(B) Y = sign
(

2�⊤1 X + �1
)

× log ||
|

2�⊤2 X + 4 + �2
|

|

|

,
(C) Y = exp(�⊤3 X)�,

where �1, �2, and �3 are p-dimensional vectors with their first six components being (1, 0, 0, 0, 0, 0)⊤, (0, 1, 0, 0, 0, 0)⊤,
and (1, 0.5, 1, 0, 0, 0)⊤ and the last p − 6 components being 0 if p > 6. Each model has three different kinds of
X = (x1,… , xp)⊤: Part (1), standard normal predictors X ∼ N(0, Ip); Part (2), nonnormal predictors; and Part (3),
discrete predictors. Specific predictors setups for Part (2) and Part (3) in each model are summarized in Table 1.

Table 1
Setups for Part (2) and Part (3). Here iid means independent identically distributed.

Part (2) Part (3)

Model A
{

xi + 2
5

}p

i=1

iid∼ Beta(0.75, 1)
{

xi
}p
i=1

iid∼ Poisson(1)

Model B
{

xi
}p
i=1

iid∼ Uniform(−2, 2)
{

xi
}p
i=1

iid∼ Binomial(10, 0.1)

Model C
{

xi + 1
2

}p

i=1

iid∼ Beta(1.5, 1)
{

xi
}

i≠6
iid∼ Poisson(1) and x6 ∼ Binomial(10, 0.3)

Each simulation scenario repeats 100 times. At each time, we use the following distance to measure the accuracy
of the estimator �̂

Δm(P�̂ , P� ) = ‖P�̂ − P�‖,
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where � is a basis of the true central subspace, P�̂ and P� are the respective projections of �̂ and �, and ‖ ⋅ ‖ is the
maximum singular value of a matrix. The smaller the Δm is, the more accuracy the estimator is. We report the mean
and the standard error ofΔm’s and CPU times in Table 2. We can observe that both the SQP algorithm and the MMRN
algorithm have satisfactory performance in terms of estimation accuracy, but theMMRN algorithm takes less time than
the SQP algorithm. For part (3) of model A at n = 500 and p = 20, the MMRN algorithm takes about 2 seconds on
average while the SQP algorithm averages more than 50 seconds. It is approximately 25 times faster. Also, the MMRN
algorithm is more stable than the SQP algorithm since the standard deviation of the running time is less. Overall, the
MMRN algorithm has almost the same performance as the SQP algorithm across various models, but with less time.

Table 2
Simulation results under the same settings as in Sheng and Yin (2016). The mean (standard error), averaged over 100
datasets, are reported.

(n, p) Model Part SQP MMRN

Δ̄m Time (sec) Δ̄m Time (sec)

n = 100, p = 6 A (1) 0.19(0.06) 0.52(0.16) 0.19(0.06) 0.08(0.03)
(2) 0.19(0.06) 0.55(0.09) 0.19(0.06) 0.07(0.02)
(3) 0.00(0.01) 1.18(0.26) 0.00(0.01) 0.12(0.08)

B (1) 0.29(0.10) 0.49(0.20) 0.29(0.10) 0.18(0.09)
(2) 0.22(0.07) 0.44(0.08) 0.22(0.07) 0.10(0.03)
(3) 0.28(0.18) 0.48(0.17) 0.27(0.18) 0.13(0.10)

C (1) 0.20(0.07) 0.38(0.19) 0.20(0.07) 0.16(0.06)
(2) 0.31(0.12) 0.33(0.08) 0.30(0.10) 0.25(0.13)
(3) 0.22(0.10) 0.39(0.11) 0.22(0.10) 0.11(0.05)

n = 500, p = 20 A (1) 0.16(0.02) 11.41(1.84) 0.16(0.02) 1.27(0.12)
(2) 0.17(0.03) 13.47(1.96) 0.17(0.03) 1.31(0.14)
(3) 0.00(0.00) 53.61(4.84) 0.00(0.00) 2.02(0.58)

B (1) 0.24(0.04) 10.26(1.63) 0.24(0.04) 3.03(0.37)
(2) 0.19(0.03) 10.56(2.40) 0.19(0.03) 1.92(0.20)
(3) 0.18(0.07) 14.72(3.64) 0.18(0.07) 2.24(0.47)

C (1) 0.15(0.03) 9.64(0.96) 0.15(0.03) 4.13(0.67)
(2) 0.24(0.04) 11.20(1.16) 0.24(0.04) 10.59(3.16)
(3) 0.14(0.03) 12.29(1.37) 0.14(0.03) 3.34(0.55)

To test the performance of our proposed MMRN algorithm in large datasets, we use four different levels for sample
size configuration, (n, p): (500, 50), (1000, 100), (2000, 200), and (3000, 300). Here, we only consider the cases with
the standard predictors and generate 20 datasets for each study. Figure 2 displays a graph of the average runtime for each
algorithm under the different problem sizes considered. We can see that our proposed algorithm can outperform the
SQP algorithm even in large datasets. Note that we did not run the SQP algorithm on sample size (n, p) = (3000, 300)
for model C with standard predictors since it will take much time (> 7 hours once) to solve the problem.

5.2. Simulation for DCOV-based SVS
This part compares the performance of our proposed MMRN algorithm and the SQP+LQA algorithm in solving

DCOV-based SVS models. We consider two sample size configurations (n, p) = (60, 24) and (120, 24) and generate
100 datasets for each simulation. To assess how well the algorithms select variables, we define the true positive rate
TPR as the proportion of correctly identified active predictors, and the false positive rate FPR as the proportion of
irrelevant predictors that are incorrectly identified to be active. When computing the TPR and FPR in practice, the
estimate obtained by the MMRN algorithm is truncated by zeroing out its entries whose magnitude is smaller than
10−7. In addition, we use the Bayesian information criterion (BIC) to select the tuning parameters, see., Chen, Sheng
and Yin (2018).

We conduct the following simulation studies with the same model settings as the scenarios n > p in Chen, Sheng
and Yin (2018).
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Figure 2: Computational performance comparison on large problem size for three different models with standard normal
predictors. The mean of the CPU time averaged over 20 datasets are reported. There was no significant difference of the
two methods in the estimation accuracy. Therefore, estimation accuracy is not displayed the graph.

Study 1. A nonlinear regression model with four active predictors:

Y = (�⊤1 X + 0.5)2 + 0.5�,

where � ∼ N(0, 1) and X ∼ N(0,�) with Σij = 0.5|i−j| for 1 ≤ i, j ≤ 24. The central subspace is
spanned by the vectors �1 = (0.5, 0.5, 0.5, 0.5, 0p−4)⊤.

Study 2. A nonlinear regression model with two active predictors:

Y =
�⊤1 X

0.5 + (�⊤2 X + 1.5)2
+ 0.2�,

where � ∼ N(0, 1) and X ∼ N(0,�) with Σij = 0.5|i−j| for 1 ≤ i, j ≤ 24. The central subspace is
spanned by the vectors �1 = (1, 0, 0p−2)⊤ and �2 = (0, 1, 0p−2)⊤.
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Study 3. A nonlinear regression model with four active predictors:

Y = (�⊤1 X)
2 + |�⊤2 X| + 0.5�,

where � ∼ N(0, 1). The predictor X = (x1,… , x24)⊤ is defined as follows: the last 23 components
(x2,… , x24)⊤ ∼ N(0,�)withΣij = 0.5|i−j| for 1 ≤ i, j ≤ 23 and the first component x1 = |x2+x3|+�,
where � ∼ N(0, 1). The central subspace is spanned by the vectors �1 = (0.5, 0.5, 0.5, 0.5, 0p−4)⊤ and
�2 = (0.5,−0.5, 0.5,−0.5, 0p−4)⊤.

Study 4. A multivariate response model with four active predictors:
{

Y1 = �⊤1 X + �1,

Y2 = (�⊤2 X + 0.5)2 + �2,

where �1, �2
iid∼ N(0, 1) and X ∼ N(0,Σ) with Σij = 0.5|i−j| for 1 ≤ i, j ≤ 24. The central subspace is

spanned by the vectors �1 = (0.5, 0.5, 0.5, 0.5, 0p−4)⊤ and �2 = (0.5,−0.5, 0.5,−0.5, 0p−4)⊤.

Table 3 gives the simulation results. The MMRN algorithm is much less time-consuming than the SQP+LQA algo-
rithm to achieve the same or even slightly better effect in terms of TPR and FPR. Especially in Study 2 and Study 4,
we can observe that the performance of MMRN algorithm in TPR and FPR is better than SQP + LQA, but its speed
is nearly 100 times faster.

Table 3
Simulation results under the same settings as in Chen, Sheng and Yin (2018). The mean, averaged over 100
datasets, are reported.

SQP+LQA MMRN

TPR FPR Time (sec) TPR FPR Time (sec)

Study 1 n = 60 0.695 0.063 385.5 0.685 0.077 12.1
n = 120 0.990 0.004 532.9 0.988 0.002 27.6

Study 2 n = 60 0.770 0.031 1051.2 0.870 0.016 5.4
n = 120 0.930 0.010 1518.3 0.975 0.004 9.4

Study 3 n = 60 0.715 0.010 1122.4 0.725 0.002 11.9
n = 120 0.785 0.002 1746.3 0.785 0.001 26.8

Study 4 n = 60 0.655 0.029 1293.8 0.700 0.011 12.9
n = 120 0.905 0.009 1778.4 0.930 0.007 30.0

5.3. Real Data Analysis
In this part, we revisit the Boston housing data from Harrison and Rubinfeld (1978); Zhou and He (2008); and

Chen et al. (2018) to compare our proposed MMRN algorithm with the SQP+LQA algorithm. Following the previous
studies, we remove those observations with crime rate greater than 3.2. The trimmed Boston housing data contains 374
observations with the response variable Y being the median value of owner-occupied homes in each of the 374 census
tracts in the Boston Standard Metropolitan Statistical Areas. There are 13 predictors, which correspond to per capita
crime rate by town; proportion of residential land zoned for lots over 25, 000 sq.ft; proportion of nonretail business
acres per town; Charles River dummy variable; nitric oxides concentration; average number of rooms per dwelling;
proportion of owner-occupied units built prior to 1940; weighted distances to five Boston employment centers; index
of accessibility to radial high- ways; full-value property-tax rate; pupil-teacher ratio by town; proportion of blacks by
town; percentage of lower status of the population. It has been found two directions are good to estimate the central
subspace. After these preparations, we fit the DCOV-based SVSmodel using the SQP+LQA algorithm and theMMRN
algorithm. There is little difference on their predictive performance, but the computing time for these two methods
is very different. As we observe, the total optimization time is about 2464 seconds for the SQP+LQA algorithm and
about 52.34 seconds for the MMRN algorithm. Our algorithm is approximately 47 times faster than the competitor.
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6. Conclusion
In the article, we notice that the empirical distance covariance can have a difference of convex functions decompo-

sition. Based on this observation, we leverage the MM principle to design powerful and versatile algorithms uniformly
for DCOV-based SDR and DCOV-based SVS models. The proposed algorithms take one single Riemannian Newton’s
step at each iterate to tackle the Manifold constraints. The simulation studies show our proposed algorithms are highly
efficient and very stable even in large n and large p scenarios. Furthermore, we establish the convergence property of
our proposed algorithms under mild conditions.

As a possible future work, we plan to design a new algorithm with the aim to handle the large p small n scenarios
directly rather than incorporate it in the framework of sequential SDR (Yin and Hilafu, 2015).
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Appendix
Proof of Lemma 1. For part (a), for any x > 0, we have the second derivative f ′′(x) = − 1

4(� +
√

x)2
√

x
≤ 0 and

immediately obtain that f (x) is concave in x > 0.
For part (b), recall that g(x) = x − � log

(

1 + x
�

)

is convex and increasing in x > 0, and ℎ(A) = ‖Ac‖2 is convex
in A ∈ ℝn×p. By the composition property we know function g(ℎ(A)) is convex. Thus, we complete our proof.

Proof of Proposition 1. For part (i), it only needs to prove that akl(
) − � log
(

1 +
akl(
)
�

)

is convex with respect to


. This proof follows immediately from the part (b) of Lemma 1 when you take A = 
⊤ and c = Zk −Zl.
For part (ii), recall that

0 ≤ 2n (

⊤Z,Y) − 2n,�(


⊤Z,Y) = 1
n2

n
∑

k,l=1
� log

(

1 +
‖
⊤(Zk −Zl)‖2

�

)

≤ 1
n2

n
∑

k,l=1
� log

(

1 +
sup
∈St(d,p) ‖
⊤(Zk −Zl)‖2

�

)

The suprema in the rightmost side are achieved and finite because St(d, p) is bounded. Then, the rightmost side
monotonically decreases to 0 as � goes to 0.
Proof of Proposition 2. Multiplying the equation (3.11) by 
̃⊤ from the left and using the relations 
̃⊤
̃ = Id and

̃⊤
̃⟂ = 0 yield

UH = 
̃⊤Hess g�(
̃)[�],
= 
̃⊤Q� − 
̃⊤�S − sym(
̃⊤Q� − 
̃⊤�S),
= skew(
̃⊤Q� − 
̃⊤�S).

(A.1)

Similarly, we multiply the equation (3.11) by 
̃⊤⟂ from the left to obtain

VH = 
̃⊤⟂Hess g�(
̃)[�],
= 
̃⊤⟂Q� − 
̃⊤⟂�S.

(A.2)

Substituting the expression (3.12) of 
 into (A.1) and (A.2), we can immediately obtain equations (3.14) and (3.15).
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Proof of Proposition 3. From equations (3.14) and (3.15) together with the properties of these operators andU⊤ = −U,
veck(UH ) and vec(VH ) are calculated as follows:

veck(UH ) =
1
2
D⊤d vec(UH )

= 1
2
D⊤d vec

(

skew(
̃⊤Q
̃U + 
̃⊤Q
̃⟂V − US)
)

= 1
4
D⊤d (Id2 − Td)vec

(


̃⊤Q
̃U + 
̃⊤Q
̃⟂V − US
)

= 1
4
D⊤d vec

(


̃⊤Q
̃U − U⊤
̃⊤Q
̃ − US + SU⊤
)

+ 1
4
D⊤d (Id2 − Td)vec

(


̃⊤Q
̃⟂V
)

= 1
4
D⊤d vec

(


̃⊤Q
̃U + U
̃⊤Q
̃ − US − SU
)

+ 1
4
D⊤d (Id2 − Td)vec

(


̃⊤Q
̃⟂V
)

= 1
4
D⊤d

[

Id ⊗ (
̃⊤Q
̃ − S) + (
̃⊤Q
̃ − S)⊗ Id
]

Ddveck(U)

+ 1
4
D⊤d (Id2 − Td)

(

Id ⊗ 
̃⊤Q
̃⟂
)

vec(V)

= H11veck(U) +H12vec(V),

and

vec(VH ) = vec
(


̃⊤⟂Q
̃U + 
̃⊤⟂Q
̃⟂V − VS
)

= (Id ⊗ 
̃⊤⟂Q
̃)vec(U) + (Id ⊗ 
̃⊤⟂Q
̃⟂ − S⊗ Id)vec(V)
= (Id ⊗ 
̃⊤⟂Q
̃)Ddveck(U) + (Id ⊗ 
̃⊤⟂Q
̃⟂ − S⊗ Id)vec(V)
= H21veck(U) +H22vec(V).

This completes our proof.
Proof of Proposition 4. When the Riemannian Newton’s vector � is an ascent direction of g�(
), we assert that there
exists an integer t > 0 satisfying

g�(Retr
(�t�)) ≥ g�(
) + ��t‖�‖2F.

The assertation could be proved by applying the standard argument for Armijo condition in vector spaces, see Nocedal
and Wright (2006, Lemma 3.1). Combining the property of the surrogate function, we then immediately obtain

2n,�(Retr
(�
t�)⊤Z,Y) ≥ g�(Retr
(�t�)) ≥ g�(
) + ��t‖�‖2F = 2n,�(


⊤Z,Y) + ��t‖�‖2F.

Thus, we complete the proof.
Proof of Proposition 5. Since the sequence

{

2n,�(

(t)⊤Z,Y)

}

is increasing and bounded above, 2n,�(

(t+1)⊤Z,Y) −

2n,�(

(t)⊤Z,Y) converges to 0. According to the Proposition 4, there exists an integer st > 0 satisfying

2n,�(

(t+1)⊤Z,Y) − 2n,�(


(t)⊤Z,Y) ≥ ��st‖�(t)‖2F.

The above inequality implies that ‖�(t)‖F converges to zero. Recall that Hess g�(
(t))[�(t)] = −grad g�(
(t)), and we
have grad g�(
(t)) converges to zero. Because g�(
) minorizes 2n,�(


⊤Z,Y) at the point 
(t), the Riemannian gradient
of 2n,�(


⊤Z,Y) and g�(
) are equal when evaluated at 
(t). Thus, we prove the conclusion that grad2n,�(

(t)⊤Z,Y)

converges to zero.
Proof of Proposition 6. Since 2n (
̂

⊤
� Z,Y) ≤ 2n (
̂

⊤Z,Y) by the definition of 
̂, we have

0 ≤ 2n (
̂
⊤Z,Y) − 2n (
̂

⊤
� Z,Y) ≤ 2n (
̂

⊤Z,Y) − 2n,�(
̂
⊤Z,Y)
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+2n,�(
̂
⊤
� Z,Y) − 2n (
̂

⊤
� Z,Y)

≤ |2n (
̂
⊤Z,Y) − 2n,�(
̂

⊤Z,Y)|

+|2n,�(
̂
⊤
� Z,Y) − 2n (
̂

⊤
� Z,Y)|

The right side of the above inequality goes to zero because 2n,�(

⊤Z,Y) converges to 2n (


⊤Z,Y) uniformly on the

Stiefel manifold. Then, for a limit point 
∗ of the sequence
{


̂�m
}

m≥1
with �m ↓ 0, we have

lim
m→∞

2n (
̂
⊤
�m
Z,Y) = 2n (


∗⊤Z,Y) = 2n (
̂
⊤Z,Y) = max


∈St(p,d)
2n (


⊤Z,Y).

by the continuity of 2n (

⊤Z,Y). Thus, we complete our proof.

Proof of Theorem 1. For the first part, we have

‖
̂(t)� − 
̂‖F ≤ ‖
̂(t)� − 
̂�‖F + ‖
̂� − 
̂‖F,

where 
̂� is a maximizer of 2n,�(

⊤Z,Y) over the Stiefel manifold, and 
̂ is a limit point of

{


̂�
}

�≥0 as � ↓ 0. By
Proposition 5, we know the first term becomes arbitrarily small for sufficiently large t, whereas the second term does
so for sufficiently small � by Proposition 6. The limit point 
̂ is a maximizer of 2n (


⊤Z,Y) over the Stiefel manifold
by Proposition 6. For the second part, we have

|2n,�(
̂
(t)⊤
� Z,Y) − 2n (
̂

⊤Z,Y)| ≤ |2n,�(
̂
(t)⊤
� Z,Y) − 2n,�(
̂

⊤
� Z,Y)|

+|2n,�(
̂
⊤
� Z,Y) − 2n (
̂

⊤
� Z,Y)|

+|2n (
̂
⊤
� Z,Y) − 2n (
̂

⊤Z,Y)|.

The first and third term in the right-hand side vanish respectively by the continuity of 2n,�(

⊤Z,Y) and 2n (


⊤Z,Y);
the second term by the uniform convergence of 2n,�(


⊤Z,Y) to 2n (

⊤Z,Y), as shown in the proof of Proposition 1.

Thus, we have completed our proof.
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