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Abstract

In many complex systems studied in statistical physics, inter-arrival times be-
tween events such as solar flares, trades and neuron voltages follow a heavy-tailed
distribution. The set of event times is fractal-like, being dense in some time win-
dows and empty in others, a phenomenon which has been dubbed “bursty”. A
new model for the inter-exceedance times of such events above high thresholds is
proposed. For high thresholds and infinite-mean waiting times, it is shown that
the times between threshold crossings are Mittag-Leffler distributed, and thus
form a “fractional Poisson Process” which generalizes the standard Poisson Pro-
cess of threshold exceedances. Graphical means of estimating model parameters
and assessing model fit are provided. The inference method is applied to an em-
pirical bursty time series, and it is shown how the memory of the Mittag-Leffler
distribution affects prediction of the time until the next extreme event."

Key words: heavy tails renewal process extreme value theory peaks over
threshold

1. Introduction

Time series displaying temporally inhomogeneous behaviour in terms of
the occurrence of events have received strong interest in the recent statistical
physics literature (Bagrow and Brockmann, 2013; Barabási, 2005; Karsai et al.,
2011; Min et al., 2011; Oliveira and Barabási, 2005; Omi and Shinomoto, 2011;
Vasquez et al., 2006; Vazquez et al., 2007). They have been observed in the
context of earthquakes, sunspots, neuronal activity and human communication
(see Karsai et al., 2012; Meerschaert and Stoev, 2008 for a list of references;
Vajna et al., 2013). Such time series exhibit high activity in some ‘bursty’ inter-
vals, which alternate with other, quiet intervals. Although several mechanisms
are plausible explanations for bursty behaviour (most prominently self-exciting
point process by Hawkes (1971) and renewal Hawkes processes, e.g. Wheatley
et al. (2016), Stindl and Chen (2018)), there seems to be one salient feature
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which very typically indicates the departure from temporal homogeneity: a
heavy-tailed distribution of waiting times (Karsai et al., 2012; Vajna et al.,
2013; Vasquez et al., 2006). As we show below in simulations, a simple renewal
process with heavy-tailed waiting times can capture this type of dynamics. For
many systems, the renewal property is appropriate; a simple test of the absence
of correlations in a succession of waiting times can be undertaken by randomly
reshuffling the waiting times (Karsai et al., 2012).

Often a magnitude, or mark can be assigned to each event in the renewal
process, such as for earthquakes, solar flares or neuron voltages. The Peaks-Over-
Threshold model (POT, see e.g. Coles, 2001) applies a threshold to the magni-
tudes, and fits a Generalized Pareto distribution to the threshold exceedances.
A commonly made assumption in POT models is that times between events are
either fixed or light-tailed, and this entails that the threshold crossing times
form a Poisson process (Hsing et al., 1988). Then as one increases the threshold
ℓ and thus decreases the threshold crossing probability pℓ, the Poisson process
is thinned, i.e. its intensity decreases linearly with pℓ (see e.g. Beirlant et al.,
2006).

As will be shown below, in the heavy-tailed waiting time scenario threshold
crossing times form a fractional Poisson process (Laskin, 2003; Meerschaert et
al., 2011), which is a renewal process with Mittag-Leffler distributed waiting
times. The family of Mittag-Leffler distributions nests the exponential distribu-
tion (Haubold et al., 2011), and hence the fractional Poisson process generalizes
the standard Poisson process. Again as the threshold size ℓ increases and the
threshold crossing probability pℓ decreases, the fractional Poisson process is
thinned: The scale parameter of the Mittag-Leffler inter-arrival times of thresh-
old crossing times increases, but superlinearly; see the Theorem below.

Maxima of events which occur according to a renewal process with heavy-
tailed waiting times have been studied under the names “Continuous Time
Random Maxima process” (CTRM) (Benson et al., 2007; Hees and Scheffler,
2018a, 2018b; Meerschaert and Stoev, 2008), “Max-Renewal process” (Basrak
and Špoljarić, 2015; Silvestrov, 2002; Silvestrov and Teugels, 2004), and “Shock
process” (Anderson, 1987; Esary and Marshall, 1973; Gut and Hüsler, 1999;
Shanthikumar and Sumita, 1985, 1984, 1983). The existing literature focuses
on probabilistic results surrounding these models. In this work, however, we
introduce a method of inference for this type of model, which is seemingly not
available in the literature.

We review the marked renewal process in Section 2.1, and derive a scaling
limit theorem for inter-exceedance times in Section 2.2. We give a statistical
procedure to estimate model parameters via stability plots in Section 3.1 and
3.4, but first we need to discuss inference for the Mittag-Leffler distribution in
Section 3.2 as well as a Likelihood-ratio test to guide the choice, whether a
Mittag-Leffler or an exponential distribution fits better to the inter-exceedance
times. A simulation study of the effectiveness of our statistical procedure is given
in Section 4. In Section 5 we apply our method to a real data set. In Section 6,
we discuss the memory property of the Mittag-Leffler distribution, and how it
affects the predictive distribution for the time until the next threshold crossing
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event. Finally we close with a discussion and conclusion in Section 7. For all sta-
tistical computations we have used R (R Core Team, 2018) and the package CTRE

(Hees and Straka, 2018). Source code for simulations and figures generated in
this manuscript is available online at https://github.com/strakaps/bursty-POT.

2. Probabilistic Model

2.1. Continuous Time Random Exceedances (CTRE)

A Borel-measurable function f : (0, ∞) → (0, ∞) is said be “regularly vary-
ing” at ∞ with parameter (or “index”) ρ if

lim
x→∞

f(λx)
f(x)

= λρ for all λ > 0.

For more details on regular variation and stable limit theorems, we recom-
mend the book by Meerschaert and Sikorskii (2012).

As a model for extreme observations, we use a Marked Renewal Process
(MRP):

Definition (MRP): Let (W, J), (W1, J1), (W2, J2), . . . be iid pairs of random
variables, where the Wk > 0 are interpreted as the waiting times and
Jk ∈ R as the event magnitudes. If W and J are independent, the Marked
Renewal Process is said to be uncoupled. We call the MRP bursty, if
the tail function FW (x) = P (W > t) is regularly varying with index
0 < β < 1.

In the following we denote with xL ∈ [−∞, +∞) and xR ∈ (−∞, +∞]
the left and right endpoint of the distribution of J . We assume that the k-th
magnitude Jk occurs at time Tk = W1 + . . . + Wk. Based on a MRP, we define
the Continuous Time Random Exceedance model (CTRE) as follows:

Definition (CTRE): Given a threshold ℓ ∈ (xL, xR), consider the stopping
time

τ(ℓ) := min{k : Jk > ℓ}, ℓ ∈ (xL, xR).

Define the pair of random variables (X(ℓ), T (ℓ)) via

X(ℓ) = Jτ(ℓ) − ℓ, T (ℓ) =
τ(ℓ)
∑

k=1

Wk.

By restarting the MRP at τ(ℓ), inductively define the two iid sequences
T (ℓ, n) and X(ℓ, n), n ∈ N, called the “inter-exceedance times” (IETs) and
the “exceedances”, respectively. The pair sequence (X(ℓ, n), T (ℓ, n))n∈N

is called a Continuous Time Random Exceedance model (CTRE). If the
underlying MRP is uncoupled, then the CTRE is also called uncoupled.
We call the CTRE bursty, if the tail function of the IETs is regularly
varying with an index 0 < β < 1.

3

https://github.com/strakaps/bursty-POT


+++++++++++++ +++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ +++++++++++++++−2.5

0.0

2.5

5.0

7.5

10.0

0 25000 50000 75000
times

m
ag

ni
tu

de
s

Simulated MRP

+ +++++ ++++ ++++++++++++++++ ++++++++++ + +++ +++++++ ++

1e+02

1e+03

1e+04

1e+05

Jan 1982 Apr 1982 Jul 1982 Okt 1982 Jan 1983
times

m
ag

ni
tu

de
s

HXRBS data

Figure 1: Exceedances (red) and times until Exceedance (durations between blue crosses) for
a given threshold ℓ (dashed line). Upper picture: Simulated data with stable distributed
waiting times. Lower picture: Solar flares during 1982.

In this article, we restrict ourselves to the uncoupled case, where W and
J are independent. Then the two sequences X(ℓ, n)n∈N and T (ℓ, n)n∈N are
independent as well. To see why, note that X(ℓ) is, in distribution, simply
equal to J − ℓ|J > ℓ, independent of any waiting time Wk.
We assume for the rest of the article, that the magnitudes (Ji)i∈N belong to the
the max-domain of attraction of some non-degenerate distribution. This means
there exist an > 0 and dn ∈ R such that

a−1
n (J1 ∨ . . . ∨ Jn − dn) ⇒ A as n → ∞. (1)

Hence, the distribution of A is a generalized extreme value distribution (GEV)
whose distribution function is given by

F (x; ξ) =

{

exp(−(1 + ξx)−1/ξ
+ ) ξ 6= 0

exp(− exp(−x)) ξ = 0

where (.)+ := max{0, .}.
The GEV is subdivided into the Gumbel (ξ = 0), the Weibull (ξ < 0) and

the Fréchet (ξ > 0) family of distributions.
Figure 1 shows a simulated dataset in the top panel, where W has a stable

distribution with tail parameter β = 0.8 (and skewness 1 and location 0), and
where J is from a standard Gumbel distribution. In the bottom panel, we plot
a time series of solar flare intensities derived from a NASA dataset (Dennis et
al., 1991) which we will later examine more closely (see Section 7). Clearly, the
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simulated data exhibit long intervals without any events, whereas in the real-
world dataset events appear continuously. The threshold exceedances, however,
appear to have visually similar statistical behaviour in both models. Observa-
tions below a threshold are commonly discarded in Extreme Value Theory (POT
approach); likewise, the CTRE model interprets these observations as noise and
discards them.

2.2. Scaling limit of Exceedance Times

In this section we state and prove the key theorem, which is founded on the
concept of regular variation.

Theorem: For the magnitudes Jk, let assumption (1) hold. Furthermore, let
the waiting times Wk be in the domain of attraction of a positively skewed
sum-stable law with stability parameter 0 < β < 1; more precisely,

W1 + . . . + Wn

b(n)
⇒ D, n → ∞ (2)

for a function b(n) which is regularly varying at ∞ with parameter 1/β,
and where E[exp(−sD)] = exp(−sβ), s > 0. Write pℓ := P(J > ℓ). Then
the weak convergence

T (ℓ)
b(1/pℓ)

⇒ Zβ as ℓ ↑ xR

holds, where the Mittag-Leffler random variable Zβ is defined on the pos-
itive real numbers via

E[exp(−sZβ)] =
1

1 + sβ
.

Proof of Theorem: Due to assumption (1)

P

(

J1 ∨ . . . ∨ J⌊c⌋ − d(c)

a(c)
≤ x

)

→ F (x; ξ)

⇐⇒ FJ (xa(c) + d(c))⌊c⌋ → F (x; ξ)

⇐⇒ ⌊c⌋ log FJ (ℓc) → log F (x; ξ)

as c → ∞, for any x from the support of F (x; ξ), with ℓc := xa(c) + d(c).
Furthermore, since log(1 − x) ∼ −x for small x it follows

c · p(ℓc) → − log F (x; ξ) as c → ∞,

with p(ℓc) := 1 − F (ℓc). Due to τ(ℓc) ∼ Geo(p(ℓc)) and above equation, it
follows that τ(ℓc)/c converges to an exponential random variable,

τ(ℓc)
c

⇒ E as c → ∞
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with inverse mean λ := − log F (x; ξ). Due to

S(c) :=
⌊c⌋
∑

i=1

Wi

b(c)
⇒ D as c → ∞,

it follows with Gnedenko’s transfer theorem (see Gnedenko (1983)), that

τ(ℓc)
∑

i=1

Wi

b(ℓc)
⇒ Z as c → ∞,

where the distribution of Z has the characteristic function

Ψ(s) =
∫ ∞

0

(ΦD(s))yFE(dy) =
1

1 − log(ΦD(s))/λ

=
1

1 + sβλ−1
=

1
1 + (sλ−1/β)β

where ΦD(s) = exp(−sβ) is the Laplace transform of D and FE(dy) is the
distribution function of E. Hence, Z is Mittag-Leffler distributed with scale
parameter λ−1/β . Rewriting

τ(ℓc)
∑

i=1

Wi

b(1/p(ℓc))
=





τ(ℓc)
∑

i=1

Wi

b(c)





b(c)
b(1/p(ℓc))

and

b(c)
b(1/p(ℓc))

=
b(c)

b(c/(p(ℓc)c))
∼ (p(ℓc) · c)1/β → λ1/β as c → ∞,

the second factor converges to λ1/β , and it follows that Z ∼ ML(β, 1). Since
c → ∞ is equivalent to ℓ ↑ xR, the assertion follows with ℓ := ℓc and pℓ := p(ℓc).

�

For a scale parameter σ > 0, we write ML(β, σ) for the distribution of
σZβ . The Mittag-Leffler distribution with parameter β ∈ (0, 1] is a heavy-tailed
positive distribution for β < 1, with infinite mean. However, as β ↑ 1, ML(β, σ)
converges weakly to the exponential distribution Exp(σ) with mean σ. This
means that although its moments are all infinite, the Mittag-Leffler distribution
may (if β is close to 1) be indistinguishable from the exponential distribution,
for the purposes of applied statistics.

We caution the reader that, somewhat confusingly, there is another distri-
bution called the “light-tailed” Mittag-Leffler distribution. This is in fact the
limiting distribution of the renewal process N(t) above (see Meerschaert and
Scheffler (2004)). For a detailed reference on the Mittag-Leffler distribution,
see e.g. Haubold et al. (2011), and for algorithms, see e.g. the R package
MittagLeffleR (Gill and Straka, 2017).
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Remark: If β = 1, the result of the Theorem above is standard, see Equation
(2.2) in Gut and Hüsler (1999). In Anderson (1987) a similar result is
shown with a different choice of scaling constant. Meerschaert and Stoev
(2008) proved a limit theorem for the maxima of iid random variables
separated by infinite mean waiting times. They also show that the hit-
ting time of the limit process is Mittag-Leffler distributed. Basrak and
Špoljarić (2015) describe the asymptotic distribution, under similar as-
sumptions, of all upper orders statistics of the maximum process using
point processes.

Remark: When 0 < β < 1, the renewal process N(t) is not stationary, and
hence the results by Hsing et al. (1988) on the exceedances of stationary
sequences do not apply.

3. Statistical Inference

3.1. Mittag-Leffler Stability Plots

We assume a dataset of the form {(ti, xi), i ∈ I}, where ti are timestamps
and xi are magnitudes. In this article, we focus on modelling the distribution
of threshold exceedance times rather than the exceedances themselves. For the
latter, see the POT approach (Beirlant et al., 2006, p. Ch.5.3; Coles, 2001, p.
Ch.4.; Davison and Smith, 1990; Embrechts et al., 2013 Ch. 6.5.; Leadbetter,
1991; Smith, 1984). With the previous section setting the stage, we assume that
only the large magnitudes (or “shocks”) follow a MRP. The smaller magnitudes
are possibly nuisance data that may be irrelevant with respect to the modelling
of extremes and their waiting times. Accordingly, we assume a threshold ℓ, and
discard all data where xi ≤ ℓ, yielding the thresholded dataset {(t(ℓ)

i , x
(ℓ)
i ) : i ∈

I(ℓ)}, with x
(ℓ)
i = xi − ℓ, where I(ℓ) := {i ∈ I : xi ≥ ℓ} ⊆ I.

However, this raises the question of how high or low the threshold should be
chosen. Recall that with the POT method for the modelling of extremes, the
distribution of the thresholded exceedances converges to a GPD, and the thresh-
old must be chosen high enough so that the exceedances fit a GPD well. The
threshold choice translates into a bias-variance trade-off: low thresholds yield
more data to fit a GPD (low variance), but the distribution of exceedances may
deviate from a GPD distribution (high bias); and high thresholds present the
opposite scenario. It is understood, however, that there is a range of threshold
values that ought to yield similar GPD parameter estimates. In other words,
plots of threshold vs. parameter estimate ought to exhibit that parameter esti-
mates are stable with respect to the choice of threshold.

For inter-exceedance times (IETs), the same idea applies. By the Theorem,
the inter-exceedance times converge to a Mittag-Leffler distribution (MLD), and
importantly, the tail parameter β is independent of (or stable with respect to)
the choice of threshold. For high thresholds, the IET distribution may fit an
MLD well, but few IETs may be left for a fit (high variance). For low thresholds,
their distribution may be not well represented by an MLD; or, too many events
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Figure 2: Hill plots for m=100 simulated Mittag-Leffler datasets with true tail 0.8 and sample
size 200 (first panel) and 10000 (second panel), with number of upper order statistics r on
which the Hill estimator is based on the x-axis. The grey thin lines are the Hill plots for the
different simulation runs and the dark lines are their means. The red dotted line shows the
true tail parameter.

may be interpreted as shocks, resulting in a biased estimate of the parameters of
the limiting MLD. If we had MRP data {(Wi, Ji) : i ∈ I} as defined in Section
2.1, we could apply any tail (and scale) estimator such as e.g. Hill’s estimator
(Hill, 1975) to the Wi and thus infer the distribution of inter-exceedance times.
However, in real-world datasets, the MRP assumption is too strong for low
thresholds. The unknown data generating process is likely more complex, with
dependencies or multiple data generating mechanisms at low thresholds and
structures that may vanish for higher thresholds. Fitting only the IETs means
that the iid assumption applies to exceedances and IETs only.

For high thresholds where few IETs are left, estimating a tail parameter by
fitting a MLD has advantages over e.g. the Hill estimator: since the underlying
distribution of IETs is a MLD, the fits are more accurate. Figure 2 shows Hill
plots for 200 IETs, for two Mittag-Leffler datasets of sizes 200 and 10000 (and an
irrelevant distribution of magnitudes). Clearly the variance is too high to give
useful estimates. For corresponding fits based on the assumption of a Mittag-
Leffler distribution, see Figure 5, top row, yielding more reliable predictions
(more discussion further below).

3.2. Fitting Mittag-Leffler Distributions

Historically, the first method proposed for the estimation of the Mittag-
Leffler distribution parameters was the fractional moment estimator by Kozubowski
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Figure 3: RMSE for the estimation of tail (left column) and scale (right column) parameters
via log-Moment estimator and MLE of a Mittag-Leffler sample with varying sample size n=25,
100, 200, varying tails on the x-axis and fixed scale equal to one, based on 5000 simulation
runs.

(2001). Unlike the first moments, the fractional moments of order p for p < β
exist and are tractable. One drawback of this method is that constant priors
for the tail parameter are needed for the calculation of the estimates. Cahoy
et al. (2010) proposed a moment estimator of the log-transformed data, which
does not require any prior. Furthermore, they performed simulation studies
illustrating that the log-Moment outperforms the fractional moment estimator
with respect to bias and root mean squared error (RMSE).

The Maximum Likelihood Estimator (MLE) for the MLD is not straightfor-
ward to implement, since the MLD density admits no closed form analytical
expression. In the R Package MittagLeffleR (Gill and Straka, 2017), MLE
is implemented via numerical optimization. The MLE slightly outperforms the
log-Moment estimator regarding bias and RMSE for big enough sample sizes,
but is computationally very intensive. Figure 3 shows that both estimators per-
form well, even for small sample sizes. For smaller tails both estimators show an
increasing RMSE for the scale estimation due to an increasing variance. This
results from the fact that in case of very small tails, single very large values can
occur.
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With the above comparisons of estimators for the MLD in mind, we propose
to use the log-Moment estimator, or the MLE when computational resources
are not an issue.

3.3. Weighing the evidence for non-exponential inter-arrival times

Since the exponential distribution is nested in the Mittag-Leffler family of
distributions, a Likelihood-ratio Test (LRT) seems to be an appropriate way to
choose between a model with exponential and Mittag-Leffler inter-exceedance
times. Although the two models are nested, the asymptotic distribution is not
χ2

1-distributed, and Wilk’s Theorem does not hold: under H0, the parameter β
of Mittag-Leffler distribution is equal to 1, and hence lies on the boundary of the
parameter space (0, 1]. Instead, a valid approach is a bootstrapped Likelihood-
ratio test (see e.g. Davison et al., 1997). Figure 4 displays the (simulated)
power for the bootstrapped LRT for Mittag-Leffler distributions with varying
tail parameters based on 1000 simulation runs. As expected, the power decreases
for tail parameters close to one, since the Mittag-Leffler distribution converges
as β ↑ 1 to an exponential distribution; it becomes hard to differentiate a Mittag-
Leffler distribution from an exponential.

3.4. Algorithm for the inference on inter-exceedance times

The Theorem in Section 2.2 implies that for a high threshold ℓ we may ap-
proximate the distribution of T (ℓ) with an ML(β, b(1/pℓ)) distribution, where
the function b(c) varies regularly at ∞ with parameter 1/β. Building on the
POT (Peaks-Over-Threshold) method, we propose the following estimation pro-
cedure for the distribution of inter-exceedance time T (ℓ):

1. Extract the K largest order statistics (i.e. the K largest values, where
e.g. K = 300) x(1), . . . , x(K) together with their timestamps t(1), . . . , t(K−1).

2. Choose a minimum number of exceedances K0 ≤ K, e.g. K0 = 5, and for
each k ranging from K0 to K:

10



a) extract the set Tk of exceedance times between the magnitudes ex-
ceeding the threshold X(k)

b) fit a Mittag-Leffler distribution to Tk, resulting in the parameter es-
timates β̂k and σ̂k.

3. Plot k vs. β̂k. To the right (k ↑ K, low threshold), the asymptotics are off
and bias is high. To the left (k ↓ K0, high threshold), data is scarce and
variance is high. In the middle, look for a region of stability for a parameter
estimate β̂. Choose as β̂ a representative value from this region.

4. Plot k vs. k1/β̂σ̂k. Again, choose a region of stability and a representative
σ̂0 from that region.

The inferred values β̂ and σ̂0 can then be interpreted as follows: Setting
the threshold at X(k), the threshold exceedance times follow a Mittag-Leffler

distribution with shape parameter β̂ and scale parameter σ̂0k−1/β .
To clarify Step 4: Recall that by the theorem, σk/b(1/pℓ) is expected to

stabilize around a constant as k decreases. Since b is regularly varying with pa-
rameter 1/β, we have b(1/pℓ) = p

−1/β
ℓ /L(1/pℓ) for some slowly varying function

L. Approximating pℓ by p̂ℓ := k/n, we have

const ≈ σk/b(1/pℓ) = σk × p
1/β
ℓ L(1/pℓ) ≈ σk × k1/βn−1/βL(n/k)

Assuming that the variation of L(n/k) is minor, we can hence see that σkk1/β

stabilizes.

Remark: We approximated pℓ, the probability that an event is larger than l,
by its relative frequency. One could also approximate this tail probability
via the GPD distribution fitted to the exceedances.

For computationally efficient estimates of the Mittag-Leffler parameters we
have used the method of log-transformed moments. This estimation method
provides point estimates as well as confidence intervals based on sampling vari-
ance (Cahoy, 2013), and has been implemented in the R software package
MittagLeffleR (Gill and Straka, 2017). The stability plots for β̂ and σ̂0 can be
furnished with these confidence intervals, see e.g. Figure 10, to produce (non-
simultaneous) confidence bands. These stability plots were produced with the
R package CTRE (Hees and Straka, 2018). We have verified the validity of our
estimation algorithm via simulations, see Section 4.

4. Simulation Study

To test our inference method via stability plots, we have simulated m = 100
datasets with n = 10000 independent waiting time and magnitude pairs (Wk, Jk)
for waiting times that follow

(i) a stable distribution,
(ii) a Pareto distribution and

11



(iii) an exponential distribution.

The magnitudes are in all scenarios standard Gumbel distributed. In order
to have exact analytical values available for β and σ0, a distribution for Wk

needs to be chosen for which b(n) from (2) is known.

Case (i): For (i) we choose Wk
d
= D, where D is as in (2), then due to

the stability property we have the equality of distribution W1 + . . . + Wn
d
=

b(n)D, for b(n) = n1/β. Using the parametrisation of Samorodnitsky and
Taqqu (1994), a few lines of calculation (see e.g. the vignette on parametri-
sation in Gill and Straka, 2017) show that D must have the stable distribution
Sβ(cos(πβ/2)1/β , +1, 0), which is implemented in the R package stabledist by
Wuertz et al. (2016). By the Theorem, the distribution of T (ℓ) is approximately

ML(β, p
−1/β
ℓ ) = ML(β, k−1/βn1/β),

which means σ0 = n1/β .
Case (ii): In the Pareto example we choose P (W > t) = Ct−β with C =

(1/Γ(1 − β))1/β . We have chosen β = 0.8 in both cases (i) and (ii).
Case (iii): We choose exponentially distributed waiting times with a rate

parameter of 1.
Figure 5 shows the graphical “stability plots” for the estimation of the tail

parameter, where

• rows correspond to cases (i), (ii) and (iii), and
• columns correspond to estimators (log-Moment estimator, Maximum-Likelihood).

We plot the tail parameter estimates β̂(k) against k for each of the m = 100
simulation runs. Thin grey lines represent individual simulation runs, and the
thicker black line is their mean. Recall that k is the index of the order statistics
of Jk at which the threshold ℓ is placed.

The performance of log-Moment and Maximum-Likelihood estimators for
the tail resp. the scale parameter is shown in Figure 5 resp. 6. Both estimators
show good performance, with a slight advantage for the Maximum-Likelihood es-
timator. This advantage is paid for with a higher computational cost. Moreover,
the bottom row in Figure 5 shows clearly that the log-Moment and Maximum-
Likelihood estimators generalize to the exponential case (β = 1) whereas the
Hill-estimator would not.
Notice that any data below a certain threshold is discarded in our approach
and hence need not satisfy the iid assumption. In our simulation study we only
simulated data from iid sequences of (Wk)k∈N; in real data situations it is likely
that there are dependencies or more complex data generating processes which
vanish for higher thresholds. We only need the exceedances and IETs to be iid.

5. Data example

We now want to apply the proposed method to a real data example, the solar
flare data which was already mentioned in Section 1 and can be seen in Figure 1.
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Figure 5: Stability Plots for m=100 simulation runs for stable distributed waiting times with
a tail parameter of 0.8 (top row), Pareto distributed waiting times with tail parameter 0.8
(middle row) and exponentially distributed waiting times (lower row). Left column: log-
Moment estimator, right column: MLE. The grey thin lines are the stability plots for the
different simulation runs and the dark lines are their means. The red dotted line shows the
true tail parameter.
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Figure 6: Stability Plots for m=100 simulation runs for stable distributed waiting times with
a tail parameter of 0.8 (top row), Pareto distributed waiting times with tail parameter 0.8
(middle row) and exponentially distributed waiting times (lower row). Left column: log-
Moment estimator, right column: MLE. The grey thin lines are the stability plots for the
different simulation runs and the dark lines are their means. The red dotted line shows the
true scale parameter.
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The data were extracted from the “complete Hard X Ray Burst Spectrometer
event list”, a comprehensive reference for all measurements of the Hard X Ray
Burst Spectrometer on NASA’s Solar Maximum Mission from the time of launch
on Feb 14, 1980 to the end of the mission in Dec 1989. 12,772 events were
detected, with the “vast majority being solar flares”. To assure stationarity and
due to missing values during the years 1983 and 1984, we based our analysis just
on the year 1982, in which 2,488 events happened. The list includes the start
time, peak time, duration, and peak rate of each event. We have used “start
time” as the variable for event times, and “peak rate” as the variable for event
magnitudes.

Before we apply the approach described in Section 5 to the solar flare data,
we first have to check if all model assumptions are fulfilled. The CTRE model is
based on three main assumptions, which are repeated below. For each assump-
tion, we suggest one means of checking if it holds:

iid: After removing the “noise observations” below the smallest threshold ℓ0,
the pair sequence (T (ℓ0, i), X(ℓ0, i)) is iid. An indication if this is true
is given by an auto-correlation plot. Since we are expecting the inter-
exceedance times to be Mittag-Leffler distributed and hence to have in-
finite mean but finite log-moments, we first take the logarithms of the
times.

Uncoupled: Each T (ℓ, i) is independent of each X(ℓ, i). We propose an empir-
ical copula plot to check for any dependence.

ML(β, σ) distribution of T (ℓ, i): Apply a cutoff at the lowest threshold ℓ0,
extract the threshold crossing times, and create a QQ Plot for the Mittag-
Leffler distribution. Use a Log-moment estimate of the tail parameter for
the theoretical / population quantiles of the plot.

Remark: The ACF plots of course can just give an indication whether there are
dependencies, since they actually just measure linear dependencies. Fur-
thermore, if one calculates the ACF for the logarithmic inter-exceedance
times, the ACF indicates on the original scale a multiplicative dependence.

Figures 7, 8 and 9 show the diagnostic plots for a minimum threshold chosen
at the 100th order statistic. There is some residual autocorrelation for the
sequence of threshold exceedance times that is not accounted for by the CTRE
model.

Figure 10 shows the stability plots for the solar flare data, on the left for the
tail parameter and on the right for the scale parameter. The dark grey ranges
correspond to 95% confidence intervals, which are derived from the asymptotic
normality of the Log-moment estimators (Cahoy, 2013) and the δ-method (Gill
and Straka, 2017); dashed lines show the deduced true values of β resp. σ0.
The stability plot for the tail stabilizes nicely around 0.9 (dashed line), while
the scale parameter stabilizes less obviously near 3 × 107 (dashed line). The
growth of the scale parameter for lower threshold appears to be closer to linear
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Figure 7: Diagnostic plots for the solar flare data based on the 100 upper order statistics:
auto-correlation and cross-correalation function.
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Figure 10: Stability plots for the tail and scale parameter of the Mittag-Leffler distribution
of the Solar Flare dataset. Dotted horizontal lines are at β = 0.9 and σ0 = 3 × 107 seconds
≈ 0.95 years.

in pℓ, rather than proportional to p
1/0.9
ℓ as suggested by the Mittag-Leffler fits.

The reason for this is likely that the overall goodness of fit as compared to an
exponential distribution is improved due to the peaked shape of the Mittag-
Leffler distribution near 0, rather than its tail behaviour at ∞. The reported
fit should hence come with the caveat that a Mittag-Leffler distribution models
exceedance times well only up to certain time-scales. More research is needed
into the modelling of scale transitions, where inter-exceedance times appear to
have different power laws across different time scales.

The fit with a Mittag-Leffler distribution (β = 0.9) seems to be good (see
Figure 9), although there are signs that the power-law tail tapers off for very
large inter-threshold crossing times. There is no apparent dependence between
threshold exceedance times and event magnitudes seen in the copula plot (see
Figure 8). We also conduct a bootstrapped LRT for the null hypothesis of
exponentially distributed inter-arrival times and received a p-value of p < 0.01.

6. Predicting the time of the next threshold crossing

According to Figure 10, for a threshold ℓ at the k-th order statistic, the
estimated threshold exceedance time distribution is approximately

T (ℓ) ∼ ML(β̂, k−1/β̂ σ̂0),

where β̂ = 0.9 and σ̂0 = 3.0 × 107sec. Unlike the exponential distribution, the
Mittag-Leffler distribution is not memoryless, and the probability density of the
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time t until the next threshold crossing will depend on the time t0 elapsed since
the last threshold crossing. This density is approximately equal to

p(t|β, σ0, ℓ, t0) =
f(t + t0|β, k−1/βσ0)

P[Tℓ > t0]

where f( · |β, k−1/βσ0) is the probability density of ML(β, k−1/βσ0). The more
time has passed without a threshold crossing, the more the probability distribu-
tion shifts towards larger values for the next crossing (see Figure 11, left panel).
The hazard rate

h(t) =
f(t|β, k−1/βσ0))

∫ ∞

t
f(τ |β, k−1/βσ0)) dτ

approximates the risk of a threshold crossing per unit time, and is a decreasing
function for the Mittag-Leffler distribution.

The closer β is to 1, the more the hazard rate mimics that of an exponential
distribution (a constant function, see Figure 11, right panel).

7. Discussion & Conclusion

We proposed a new model and inference procedure for the inter-exceedance
times of “bursty” time series, which have been studied intensively in statistical
physics. Burstiness is characterized by power-law waiting times between events,
and we have shown that the Mittag-Leffler distribution arises naturally as a
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scaling limit for the inter-exceedance times of high thresholds. Moreover, we
have derived the following non-linear scaling behaviour: σ ∼ p

−1/β
ℓ , where σ

is the scale parameter of the distribution of threshold exceedance times, pℓ is
the fraction of magnitudes above the threshold ℓ, and β the exponent of the
power law. This “anomalous” scaling behaviour in the bursty setting entails
two phenomena:

i) a heavy tail of the inter-arrival time distribution of threshold crossings
(long rests), and

ii) a high propensity for more threshold crossing events immediately after
each threshold crossing event (bursts).

The Mittag-Leffler distribution captures both phenomena, due to its heavy
tail as well as its stretched exponential (peaked) asymptotics for small times.
It generalizes the exponential distribution, and in the solar flare data example,
this generalization is warranted, because the likelihood-ratio test is strongly
significant.

When we introduced the CTRE model, we assumed that all events are iid.
This assumption is likely sufficient but not necessary for our limit theorem to
hold. Moreover, any data below a (minimum) threshold ℓ0 is discarded for
CTREs, and hence need not satisfy the iid assumption. For the purposes of
statistical inference, we merely require that the IETs are iid.

The CTRE approach to model “non-Poissonian” threshold crossing times
should be contrasted with the well-documented approach of clusters of extremes,
see e.g. Ferro and Segers (2003). When the underlying stochastic process is
stationary, the exceedances of high thresholds form, asymptotically, a Cluster
Poisson Process. This result was established in (Hsing et al., 1988). In the
setting of this article, however, clustering-like dynamics occur due to the non-
stationarity of the underlying renewal-reward process, which has infinite-mean
renewal times. Hence CTRE and Cluster Poisson Process should not be viewed
as competing methods, as the underlying data generating processes are quite
different. To differentiate between the two models we use the term bursty which
is standard in the context of heavy-tailed inter-arrival times in the physics com-
munity (e.g. Barabási, 2005; Karsai et al., 2012; Vajna et al., 2013; Vasquez
et al., 2006)). In weighing the evidence for either of the two data generating
processes, criteria could be developed, based e.g. on measures of surprise (Lee
et al., 2015), which may prove to be valuable for future applied statisticians.

Finally, we note that assuming a purely scale-free pattern for event times
may be too rigid an assumption, which unnecessarily limits the applicability
of CTREs. Often, the heavy-tailed character of the inter-arrival time distribu-
tion holds at short to intermediate time scales, and is truncated (or tempered,
reverting to an exponential distribution) at very long time scales (see e.g. Meer-
schaert et al., 2012; and Aban et al., 2006). In such situations, a “tempered”
Mittag-Leffler distribution may provide a better fit, which we aim to introduce
in follow-up work.
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