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Abstract

Modelling longitudinal binary data is challenging but common in practice. Existing

methods on modelling of binary responses take no account of the fact that the correla-

tion coefficient of binary responses must have an upper bound which is smaller than one.

Ignoring this fact can lead to incorrect statistical inferences for longitudinal binary data.

A novel method is proposed to model the mean and within-subject correlation coefficients

for longitudinal binary data, simultaneously, by taking into account the constraints of

the upper bounds. By introducing latent normally distributed random variables, the

correlation coefficients of binary responses are connected to those for the latent vari-

ables, of which the correlation coefficients are modeled accordingly. A joint generalized

estimating equation (GEE) method is developed for this purpose and the resulting cor-

relation coefficients are shown to satisfy the constraints. Asymptotic normality of the

parameter estimators is derived and simulation studies are made under various scenarios,

showing that the proposed joint GEE method works very well even if the working co-

variance structures are misspecified. For illustration, the proposed method is applied to

two real data practices to assess the effects of covariates on the mean and within-subject

correlation coefficients.
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1. Introduction

Binary responses with repeat measurements are very common in many fields such

as medical and biological sciences. Longitudinal normally distributed data have been

studied well, while it is very challenging to model longitudinal binary data. A major

issue is that the joint distribution of correlated binary data does not have an analytically

tractable form. In the literature, various methods were proposed to model the conditional

mean and marginal mean of correlated binary responses. The former was mainly studied

within the framework of generalized linear mixed model (GLMM). For example, Heagerty

(1999) considered a random effect model for longitudinal binary data. Wang and Louis

(2003) developed an intercept random effect model with bridge distribution, and Parzen

et al. (2011) extended the single random intercept model for longitudinal binary data.

Although the GLMM-based approach produces good estimators of the fixed effects and

has good predictions of the random effects, the within-subject correlations of binary

responses remain unclear as they are analytically intractable. It becomes more difficult to

understand how the within-subject correlations are associated with covariates of interest.

The latter was investigated by using generalized estimation equation (GEE) meth-

ods, see, e.g., Liang and Zeger (1986). With unnecessary assumption of distribution, the

GEE methods directly solve estimating equations in order to obtain the estimators of the

marginal mean parameters, which involves the specification of a working covariance ma-

trix for binary responses. It was shown that the GEE estimators of the mean parameters

are consistent even if the working covariance is misspecified. However, misspecification

of the covariance can lead to a great loss of efficiency for the GEE estimators of the mean

parameters (Sutradhar and Das, 1999, 2000). In addition, Crowder (1995) showed that

the asymptotic properties of the parameter estimators may be broken down due to the

uncertainty of the parameters involved in the misspecified working covariance. Daniels

and Zhao (2003) demonstrated that when longitudinal data contain missing values the

mean parameters estimators are biased if the working covariance is misspecified. On

the other hand, the covariance itself may be of scientific interest under certain circum-

stances (Diggle and Verbyla, 1998). Many authors extended the GEE method to model

the mean and covariance for longitudinal data, simultaneously. For example, using a

modified Cholesky decomposition Ye and Pan (2006) proposed a joint GEE approach
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to model the mean and covariance. However, their method only applies to longitudinal

continuous data and is not appropriate for longitudinal binary data. Prentice (1988)

considered regression methods by introducing additional estimating equations for corre-

lation parameters. Prentice and Zhao (1991) further extended the methods to general

multivariate discrete and continuous responses. Carey et al. (1993) considered an alter-

nating logistic regression method for dealing with computational infeasibility when the

cluster size is large.

When applying to longitudinal binary data, however, the aforementioned methods for

modeling conditional mean and marginal mean are not appropriate, because they ignore

an important fact, that is, the correlation coefficient of correlated binary responses has

an upper bound that is smaller than one. As a result, invalid correlation estimators

are produced and statistical inferences are not reliable. In spirit of Oman and Zucker

(2001) who connected the correlation coefficients of binary responses to these of certain

latent normally distributed responses, in this paper we propose a joint GEE method to

estimate the mean and correlation parameters for longitudinal binary data. An appealing

property of the proposed method is that the upper bound constraints of the estimated

correlation coefficients are satisfied. The structure of this paper is as follows. In Section

2, we consider the models for both mean and correlation parameters and then develop

the joint GEE method. The asymptotic normality of the parameter estimators is derived

in Section 3. In Section 4, simulation studies are conducted to assess the performance of

the proposed approach under various scenarios. For illustration, the approach is applied

to the analysis of two real data examples in Section 5. Some concluding remarks are

provided in Section 6.

2. Joint GEE for Mean and Correlation Parameters

2.1. Generalized Estimating Equation

For the jth measurement of the ith subject, let Yij be the binary outcome variable and

xij be the p×1 vector of covariates (j = 1, · · · ,mi and i = 1, · · · , n). The measurements

from different subjects are assumed to be independent. Let Yi = (Yi1, · · · , Yimi)
T be

the mi × 1 vector of responses and Xi = (xi1, · · · , ximi)
T be the mi × p matrix of

covariates for the ith subject, i = 1, · · · , n. Denote the expectation vector of Yi by
3



µi = (µi1, · · · , µimi)
T and the covariance matrix by var(Yi) = Σi = (σijk) with diagonal

elements σ2
ij = ψ2µij(1 − µij). Without loss of generality, the dispersion parameter ψ2

is assumed to be 1 in this paper. In spirit of generalized linear models (GLM), the

expectation µij = E(Yij) = Pr{Yij = 1} is assumed to be associated with explanatory

variables xij through logit or probit link function g(·), such that g(µij) = xTijβ where β

is a p × 1 parameter vector. According to Liang and Zeger (1986), the GEE for mean

parameter β is given by

U1(β, γ) =

n∑
i=1

DT
i Σ−1i (Yi − µi) = 0, (1)

where Di = ∂µi/∂β is the mi × p derivative matrix. Since the covariance matrix Σi is

in general unknown, it was suggested to take a sandwich form like Σi = A
1/2
i Ri(γ)A

1/2
i ,

where Ai = diag{var(Yi)} and Ri(γ) is the mi ×mi correlation matrix of Yi which may

be related to new parameters γ.

Liang and Zeger (1986) proposed to use a working matrix to replace the unknown

correlation matrix Ri(γ) of Yi and showed that the GEE method produces consistent

estimators of the mean parameters β even if the working correlation matrix is misspec-

ified. Chaganty and Joe (2004) indicated that the working correlation matrix should

be viewed as a weight correlation matrix but cannot be treated as the true correlation

matrix. By using a matrix Cauchy-Schwarz inequality, they further showed that the op-

timal choice of the working correlation matrix for correlated binary responses is the true

correlation matrix, which is unfortunately unknown in practice. Simulation results by

Dziak (2006); Wang et al. (2012) showed that the misspecification of correlation struc-

ture leads to poor performances in variable selection and causes estimation efficiency

problems for correlated binary data. To avoid the misspecification problem, we propose

to model the correlations for binary data using a simple parametric form, which in the

meantime guarantees their upper bounds satisfied.

2.2. Modelling Correlation Matrix

Since Pr{Yij × Yik = 1} ≤ min(µij , µik), it can be shown that the correlation matrix

Ri = (rijk) for correlated binary responses must satisfy

rijk ≤ min{ψij/ψik, ψik/ψij} = rijk,
4



where ψij = (µij/(1 − µij))1/2. Obviously, rijk is a quantity related to the odds ratio.

By studying the relationship between rijk and rijk, Oman and Zucker (2001) conjectured

that

rijk = rijkcijk(γ), (2)

are valid correlation coefficients for certain correlated binary data, where Ci(γ) = (cijk(γ))

may be any normal-model correlation matrix involving parameter γ. When the matrix

Ci(γ) takes compound symmetry (CS), order-one moving average (MA(1)) or order-

one autoregressive (AR(1)) structures, which are all commonly encountered correlation

structures for longitudinal continuous data, Oman and Zucker (2001) gave a theoreti-

cal justification that equation (2) is really a valid correlation coefficient for correlated

binary data. Equation (2) implies that by introducing latent normally distributed ran-

dom variables with the covariance structure MA(1), CS or AR(1), the correlations of

correlated binary variables can be estimated through estimating the correlations of the

latent normally distributed variables, provided the mean is given. In addition, the re-

sulting correlations for binary data guarantee to satisfy the constraints of upper bounds.

However, the estimation of parameter γ remains unclear.

2.3. GEE for Correlation Parameter

For each subject, we now define new variables Wijk = (Yij − Yik)2, which are binary

responses too and are actually the coordinates of the variogram clouds in spatial statistics.

If µij ≤ µik, the expectation and variance of Wijk can be expressed straightforwardly as

E(Wijk) = µij(1− µik) + µik(1− µij) + 2µij(µik − 1)cijk(γ) ≡ fijk + hijkcijk(γ),

and

var(Wijk) = {fijk + hijkcijk(γ)}[1− {fijk + hijkcijk(γ)}].

Let Wi denote the Mi = mi(mi−1)/2-dimensional vector of Wijk without repetition (j 6=

k). We then construct the second GEE in order to estimate the correlation parameter γ,

U2(γ, β) =

n∑
i=1

ETi G
−1
i (Wi − ξi) = 0, (3)

where ξi is the expectation of Wi, Ei = ∂ξi/∂γ is the Mi × 1 derivative matrix, and

Gi is the Mi ×Mi covariance matrix of Wi. Note Gi is in general unknown but can be
5



approximated by a sandwich matrix

Gi = B
1/2
i Vi(α)B

1/2
i ,

where Bi is a diagonal matrix with entries var(Wij) and Vi(α) is a working correlation

matrix of Wi involving parameter α. Obviously, Gi becomes the true covariance matrix

of Wi if Vi takes the true correlation matrix of Wi. In spirit of the GEE for the mean

parameters, we propose to use certain structures such as CS and AR(1) structures to be

the working correlation structure of Vi(α). An appealing property of using the CS or

AR(1) matrix is that its inverse has an analytical form, so that the calculation of the

inverse matrix V −1i becomes straightforward even if mi is large.

We then iteratively use the two GEEs in (1) and (3) to calculate the estimators of

the mean parameters β and the correlation parameter γ. We summarize the calculations

in the following algorithm.

Algorithm 1: Joint GEE for longitudinally correlated binary data

1: Input an initial β̂(0) and a fixed parameter α;

2: Compute all the Wi’s and the estimators of fijk’s and hijk’s;

3: Solve the second GEE U2(γ, β) = 0 in (3) to obtain correlation parameter γ̂(0);

4: Compute correlation matrix R
(0)
i by (2) and form covariance matrix Σ

(0)
i ;

5: Input Σ
(0)
i to the first GEE U1(β, γ) = 0 in (1). Solve the equation to obtain new

estimator β̂(1). Update fijk’s and hijk’s;

6: Repeat steps 3 to 5 until convergence.

For the initial β̂(0), we suggest to use the consistent estimator obtained by ordinary

GEE method (Liang and Zeger, 1986) with independent working structure. When iter-

atively solving the equations, a modified Fisher-scoring algorithm may be applied. For

example, to solve the equation U1(β, γ) = 0, with a starting value β0 we can update the

value of β at the (s+ 1)th iteration through

βs+1 = βs + (

n∑
i=1

DT
i Σ−1i Di)

−1
n∑
i=1

DT
i Σ−1i (Yi − µi),

where µi and Di are evaluated at β = βs and Σi at γs. To solve the equation U2(γ, β) = 0,
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the value of γ can be updated by

γs+1 = γs + (

n∑
i=1

ETi G
−1
i Ei)

−1
n∑
i=1

ETi G
−1
i (Wi − ξi),

where ξi, Ei and Gi are all evaluated at β = βs and γ = γs. Due to those analytical

forms, the algorithm converges very quickly and the solutions become stable.

In the above algorithm, the parameters β and γ are estimated iteratively, meaning

that the estimation processes for estimating β and γ are taken independently, though

theoretically the estimation of γ may be associated with the estimator of β and vice

versa. As an alternative, we also consider a single but large GEE for the full parameters

θ = (βT , γ)T . Denote ηi = (µTi , ξ
T
i )T (i = 1, · · · , n). The full parameter vector θ then

may be estimated by solving the single GEE

n∑
i=1

∂ηTi
∂θ

Ω−1i

 Yi − µi
Wi − ξi

 = 0, (4)

where Ωi is an (mi +Mi)× (mi +Mi) working covariance matrix of (Y Ti ,W
T
i )T , which

has a sandwich form as

Ωi =

 Ai 0

0 Bi

1/2

Ω∗i

 Ai 0

0 Bi

1/2

,

where Ω∗i is a working correlation matrix of (Y Ti ,W
T
i )T . Note that the quasi-Fisher

information matrix for the augmented responses (Y Ti ,W
T
i )T is not necessarily block-

diagonal because its off-diagonal block sub-matrix in general is not exactly zero. The

quasi Fisher-scoring algorithm can then be applied to solving the single GEE through,

e.g., at the (s+ 1)th-step,

θs+1 = θs +

(
n∑
i=1

∂ηTi
∂θ

Ω−1i
∂ηi
∂θ

)−1
θ=θs

 n∑
i=1

∂ηTi
∂θ

Ω−1i

 Yi − µi
Wi − ξi


θ=θs

.

Our simulation studies presented in Section 4 show that the iterative GEE algorithm

yields solutions very close to those by the single GEE for full parameters θ. It implies

that the use of the single but large GEE method is not absolutely necessary. Besides, the

iterative GEEs successfully separate the big estimating equation into two relatively small

equations, largely reducing computational loads with little compromise of the accuracy

of parameter estimators.
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3. Asymptotic Property

Similar to Prentice (1988), the joint asymptotic distribution of the estimators β̂ and

γ̂ through the GEEs (1) and (3) can be obtained. A sketch of the proof is provided in

the Appendix.

Theorem 1. Under regularity conditions, the joint GEE estimators β̂ and γ̂ are asymp-

toticly normally distributed as

√
n

 β̂ − β

γ̂ − γ

→ N

0, n

 Q11 0

Q21 Q22

−1 Λ11 Λ12

Λ21 Λ22

 Q11 QT21

0 Q22

−1
 ,

(5)

where

Q11 =

n∑
i=1

DT
i Σ−1i Di,

Q21 =

n∑
i=1

ETi G
−1
i

∂ξi
∂β

,

Q22 =

n∑
i=1

ETi G
−1
i Ei,

Λ11 = Q11 =

n∑
i=1

DT
i Σ−1i Di,

Λ12 = ΛT21 =

n∑
i=1

DT
i Σ−1i cov(Yi,Wi)G

−1
i Ei and

Λ22 =

n∑
i=1

ETi G
−1
i cov(Wi)G

−1
i Ei.

Note that if only the variance of β̂ is of interest, we may simply calculate Q11 with

the parameters replaced by their estimators. When β̂ and γ̂ are both of interest, their

variances involve the calculation of the whole asymptotic covariance matrix. In this

case, the covariance matrices cov(Yi,Wi) and cov(Wi) may be simply estimated by (Yi−

µ̂i)(Wi − ξ̂i)T and (Wi − ξ̂i)(Wi − ξ̂i)T , respectively, where µ̂i and ξ̂i are evaluated at

(β̂, γ̂), see Liang and Zeger (1986).
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4. Simulation Study

In this section, simulation studies for longitudinally correlated binary data, generated

under the three scenarios AR(1), CS and MA(1) for the normal-model correlation matrix

C(γ), are conducted. For each scenario of the simulations below, 1000 random samples

are generated by the using the models of Oman and Zucker (2001). The generation

mechanisms are described as follows.

• Scenario 1: AR(1) for Ci(γ). Denote qij = Φ−1(µij) (i = 1, · · · , n; j = 1, · · · ,mi)

where µi = (µi1, · · · , µimi
)T is the marginal mean of Yi and Φ−1(.) is the inverse of

the cumulative distribution function of the standard normal distribution. For each

i, we generate mi independent variables εij from standard normal distribution and

mi independent variables Uij from Bernoulli distribution with parameter γ (0 ≤

γ ≤ 1) (j = 1, · · · ,mi). Let Zi1 be a standard normal variable independent with

the Uij and εij and let Zij = UijZi(j−1) + (1 − Uij)εij (j > 1). Furthermore, let

Yij = 1(Zij≤qij) where 1(.) is the indicator function. Then the constructed binary

variables Yij must have the desired within-subject correlations rijk = rijkcijk(γ)

with cijk(γ) = γ|j−k| (j 6= k).

• Scenario 2: CS for Ci(γ). The generation mechanism is the same as the Scenario

1 except that, a) the Bernoulli parameter changes to γ1/2 (0 ≤ γ ≤ 1), and b) an

extra standard normal variable εi0 is generated and let Zij = Uijεi0 + (1−Uij)εij .

Then Yi with Yij = 1(Zij≤qij) have correlations rijk = rijkcijk(γ) with cijk(γ) = γ

(j 6= k).

• Scenario 3: MA(1) for Ci(γ). The generation mechanism is the same as the Scenario

1 but the Bernoulli parameter is replaced by [1 − (1 − 4γ)1/2]/2 (0 ≤ γ ≤ 0.25)

and Zij = Uijεi(j−1) + (1−Uij)εij . Then Yi with Yij = 1(Zij≤qij) have correlations

rijk = rijkcijk(γ) with cijk(γ) = γ for |j − k| = 1 and cijk(γ) = 0 for |j − k| > 1.

We apply the proposed iterative joint GEE methods to fit each of these generated data

sets respectively. We also consider different structures specified to the correlation matrix

Vi(α) in the second GEE U2(γ, β). In what follows, we use abbreviated term “AR(1)-

CS” structures to represent“AR(1) structure specified to Ci(γ) in the first GEE U1(β, γ)
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and CS working correlation structure specified to Vi(α) in the second GEE U2(γ, β)”.

Similarly, Other types of structures are expressed in similar abbreviations.

Table 1: Simulation results by the joint GEE with AR(1)-Independent, AR(1)-AR(1) structures and

AR(1)-CS structures for Scenario 1

independent AR(1) CS

α - 0.1 0.4 0.7 0.1 0.4 0.7

β̂ 0.794 0.794 0.795 0.795 0.795 0.796 0.796

sd1(β̂) 0.135 0.135 0.135 0.135 0.135 0.135 0.135

sd2(β̂) 0.134 0.134 0.134 0.134 0.135 0.135 0.135

cr(β̂) 0.955 0.955 0.955 0.954 0.954 0.954 0.954

γ̂ 0.300 0.300 0.300 0.301 0.301 0.301 0.302

sd1(γ̂) 0.042 0.041 0.042 0.055 0.046 0.052 0.054

sd2(γ̂) 0.041 0.040 0.041 0.055 0.046 0.052 0.054

cr(γ̂) 0.957 0.959 0.962 0.955 0.960 0.957 0.959

We set the number of subjects and the number of repeated measurements as n = 100

and mi = 10 (i = 1, · · · , n), respectively. The true values of the mean parameter and the

correlation parameter are taken as β = 0.8 and γ = 0.3, separately. The single covariate

xij is generated independently from a uniform distribution U(0, 1) and the mean is

defined by µij = exp{xijβ}/(1 + exp{xijβ}). Table 1 summarizes the simulation results

for Scenario 1 by using the models with AR(1)-Independent, AR(1)-AR(1) and AR(1)-CS

structures, with the parameter α = 0.1, 0.4 and 0.7 in Vi(α) that takes the AR(1) and

CS structures, respectively. The estimated standard deviation (sd1) of the parameter

estimator is calculated through the square root of the asymptotic variance presented in

(5). The empirical standard deviation (sd2) is the standard deviation of 1000 parameter

estimators for the simulated data. The coverage rate is the percentage of 1000 estimators

β̂ or γ̂ that fall into 95% confidence interval. From Table 1, the resulting averages of β̂

and γ̂ are both very close to the true values. The estimated standard deviation differs

little from the empirical standard deviation, showing the validity of the algorithm and the

asymptotic property. The coverage rates are around 95.5% and very close to the nominal
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level. Moreover, the estimators β̂ and γ̂ have little change when varying the structures of

Vi(α) and changing the value of the parameter α, implying that the estimators of β and

γ are robust against the misspecification of the working correlation structure of Vi(α)

and its parameter α.

Table 2: Simulation results by the joint GEE with CS-Independent, CS-CS structures and CS-AR(1)

structures for Scenario 2

independent CS AR(1)

α - 0.1 0.4 0.7 0.1 0.4 0.7

β̂ 0.799 0.800 0.803 0.810 0.799 0.799 0.801

sd1(β̂) 0.168 0.168 0.167 0.166 0.168 0.168 0.168

sd2(β̂) 0.164 0.165 0.166 0.168 0.164 0.164 0.165

cr(β̂) 0.951 0.950 0.948 0.938 0.951 0.950 0.950

γ̂ 0.298 0.298 0.296 0.294 0.298 0.298 0.297

sd1(γ̂) 0.037 0.036 0.056 0.107 0.037 0.037 0.043

sd2(γ̂) 0.037 0.040 0.058 0.113 0.037 0.036 0.043

cr(γ̂) 0.952 0.948 0.939 0.945 0.952 0.951 0.947

The simulation results for correlated binary data generated in Scenario 2 by using

the joint GEE with CS-Independent, CS-CS and CS-AR(1) structures are presented in

Table 2. Again, from Table 2 we see that the average values of the parameter estimators

are very close to their true values and the estimators are very stable when changing the

working correlation structure for Vi(α) and the value of α as well. But the standard

deviation of γ̂ increases from 0.04 to 0.1 when α changes from 0.1 to 0.7. It implies that

misspecification of the correlation structure for Vi(α) in U2(γ, β) has little impact on the

estimators of β and γ, but has some effects on the variance of the estimator γ̂.

Table 3 presents the simulation results for the binary data under Scenario 3 using the

joint GEE with MA(1)-Independent, MA(1)-MA(1) and MA(1)-CS structures, that is,

Ci(γ) having MA(1) structure and Vi(α) having Independent, MA(1) and CS structures,

respectively. We take the same true value β = 0.8 but choose γ = 0.2 this time. From

Table 3, the conclusions made under Scenario 3 are the same as these under Scenarios 1-
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Table 3: Simulation results by the joint GEE with MA(1)-Independent, MA(1)-MA(1) structures and

MA(1)-CS structures for Scenario 2

independent MA(1) CS

α - 0.1 0.4 0.7 0.1 0.4 0.7

β̂ 0.795 0.795 0.795 0.795 0.795 0.796 0.797

sd1(β̂) 0.126 0.126 0.126 0.126 0.126 0.126 0.126

sd2(β̂) 0.123 0.123 0.123 0.123 0.123 0.123 0.124

cr(β̂) 0.966 0.966 0.966 0.966 0.966 0.965 0.966

γ̂ 0.200 0.200 0.200 0.199 0.200 0.199 0.196

sd1(γ̂) 0.038 0.038 0.040 0.057 0.038 0.043 0.074

sd2(γ̂) 0.038 0.038 0.040 0.056 0.038 0.043 0.075

cr(γ̂) 0.943 0.944 0.940 0.959 0.949 0.951 0.949

2. In other words, the joint GEE method yields satisfactory estimators for both β and γ.

Also, the misspecification of the correlation matrix Vi(α) does not affect the estimators

of β and γ, though the standard deviation of γ̂ is somewhat affected.

We now turn to compare the joint GEE method with the single but big GEE approach

in (4), aiming to observe the difference of the two GEE methods in terms of estimation

performance. We choose three cases γ = 0.1, 0.4 and 0.7, reflecting weak, medium

and strong correlations specified to Ci(γ) when generating correlated binary data under

Scenario 1 and Scenario 2, respectively. Since the estimators of β and γ are both robust

against misspecification of the working correlation matrix Vi(α) in (3), we only choose an

AR(1) structure with α = 0.1 for Vi(α) when applying the joint GEE. The two columns

named “AR(1)-AR(1)” and “CS-AR(1)” in Table 4 present simulation results of the joint

GEE for β and γ with their estimated standard deviations in parenthesis. When using

the single but big GEE in (4), we use an AR(1) structure with α = 0.1 to be the working

correlation matrix for Ω∗i , and use the method by Liang and Zeger (1986) to obtain the

standard deviations of θ̂ = (β̂T , γ̂T )T . The simulation results using single GEE for the

binary data generated under two scenarios are provided in the columns with the name

“Single GEE” in Table 4.
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Table 4: Simulation results: Comparison of the joint GEE method to the single GEE approach, where

simulated binary data are generated under Scenario 1 and Scenario 2

Scenario 1 Scenario 2

Single GEE AR(1)-AR(1) Single GEE CS-AR(1)

true γ = 0.1
β̂ 0.792(0.134) 0.795(0.122) 0.790(0.157) 0.796(0.141)

γ̂ 0.100(0.040) 0.100(0.039) 0.099(0.029) 0.099(0.028)

true γ = 0.4
β̂ 0.800(0.162) 0.795(0.141) 0.798(0.202) 0.799(0.175)

γ̂ 0.399(0.042) 0.400(0.042) 0.398(0.040) 0.398(0.040)

true γ = 0.7
β̂ 0.800(0.177) 0.802(0.156) 0.802(0.218) 0.807(0.183)

γ̂ 0.698(0.037) 0.698(0.037) 0.699(0.036) 0.699(0.038)

From Table 4, it is clear that the joint GEE method performs as equally well as the

single but big GEE approach. It confirms that it is feasible to separate the big GEE

estimation into two relatively small GEE estimation procedures. This strategy largely

reduces computational loads especially if mi is large, because the single GEE involves the

calculation of the inverse of Ωi in (4), a very big matrix with size (mi +Mi)× (mi +Mi)

where Mi = mi(mi − 1)/2. In contrast, the joint GEE calculates the inverses of two

matrices with size mi × mi and Mi ×Mi, respectively. On the other hand, the joint

GEE method produces accurate estimators for β and γ whenever the correlations of Yi

are weak, medium or strong. We notice that the standard deviation of β̂ may increase

slightly with the correlation parameter γ.

Table 5: Simulation results: Comparison of the joint GEE method to the ordinary GEE with two working

correlation structures for the binary data generated under Scenario 1

independent model CS model AR(1)-AR(1)

β̂1 0.502(0.069) 0.503(0.066) 0.500(0.060)

β̂2 -1.720(0.256) -1.716(0.246) -1.708(0.221)

β̂3 0.020(0.022) 0.020(0.020) 0.019(0.017)

γ̂ - - 0.697(0.040)
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We now consider the models with multiple covariates by increasing the number of

covariates to three, i.e., xij = (xij1, xij2, xij3)T , and carry out simulation studies in this

case. Note the intercept is ignored in the simulation setup. The first covariate xij1 is

generated by resampling from {1, 2, 3} with replacement. The second one xij2 is taken

as the squares of random samples from the uniform distribution on (0, 1), and the third

covariate xij3 is a random sample from the standard normal distribution but multiplied

by 3. The true values of the mean parameters and the correlation parameter in the

correlation matrix Ci(γ) are chosen as β = (0.5,−1.7, 0.02)T and γ = 0.7, respectively.

The proposed joint GEE method is now used to analyze the simulated binary data under

Scenario 1. In the second GEE, Vi(α) takes AR(1) structure with α = 0.1. To compare

with existing methods, we also apply the ordinary GEE method by Liang and Zeger

(1986) to analyze the same data sets. Specifically, two working correlation structures,

independent and CS structures, are used to approximate the correlation matrices Ri(γ)

in U1(β, γ). The parameter estimators are calculated directly by using the R package

geepack (Højsgaard et al., 2006). These results, together with the ones obtained by the

proposed joint GEE method, are presented in Table 5. From Table 5, we observe that the

proposed joint GEE method is doing better than the ordinary GEE with the two working

correlation structures, independent and CS structures, in terms of not only producing

unbiased estimators of the mean parameters β but also yielding an unbiased estimator

of the correlation parameter γ. On the other hand, the standard deviations of β̂ by

the joint GEE method are notably smaller than those by the ordinary GEE. It implies

that the joint GEE method improves the efficiency of the mean parameter estimators

by the ordinary GEE. Importantly, the proposed GEE method provides the accurate

estimator of the correlation parameter γ, which guarantees that the natural upper bounds

of correlation coefficients of binary data are satisfied. In contrast, the ordinary GEE

method does not address the issue of estimating the correlation coefficients of binary

data. Hence, the proposed GEE method performs much better than the ordinary GEE

approach when analyzing correlated binary data.

Lastly, we consider the scenarios of unbalanced longitudinal binary data. We generate

such data sets by specifying AR(1), CS and MA(1) correlation structures for Ci(γ) and

using the models aforementioned Scenarios 1-3. For each individual, 10 measurement

14



Table 6: Simulation results by the joint GEE with AR(1) structure in Vi(α) for the unbalanced lon-

gitudinal binary data under Scenario 1-3, including the average, estimated standard deviation (sd1),

empirical standard deviation (sd2), and coverage rates(cr)

AR(1)-AR(1) CS-AR(1) MA(1)-AR(1)

true β 0.8 0.8 0.8

β̂ 0.806 0.801 0.803

sd1(β̂) 0.151 0.184 0.141

sd2(β̂) 0.153 0.181 0.142

cr(β̂) 0.954 0.952 0.953

true γ 0.3 0.3 0.2

γ̂ 0.300 0.297 0.200

sd1(γ̂) 0.047 0.045 0.043

sd2(γ̂) 0.047 0.045 0.045

cr(β̂) 0.948 0.944 0.937

times at which observations are taken are randomly sampled from {1, 2, · · · , 15} with

replacement. Let the true values β = 0.8 and γ = 0.3 for AR(1) and CS structures

and γ = 0.2 for MA(1) structure. The single covariate xij is generated from a uniform

distribution U(0, 1). Again, the number of individuals are n = 100 and the simulation

runs are 1000. When using the proposed joint GEE method, the AR(1) structure with

α = 0.1 is specified as the working correlation matrix for Wi. The simulation results

are presented in Table 6, from which it is clear that the proposed joint GEE method

performs also well for unbalanced longitudinal binary data. For example, it leads to the

averaged estimators are very close to truths and the associated coverage rates are close

to 0.95.

5. Real Data Analysis

5.1. Ohio Data Analysis

The Ohio data set is a subset of a six-city study, which was a longitudinal study

of air pollution on health from a Harvard University technical report by Ware et al.
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(1984). The data set was analyzed by Fitzmaurice and Laird (1993), which focused on

the effect of maternal smoking on children’s respiratory illness. The data set contains

binary responses representing the absence or presence of wheezing for 537 children from

ages 7 to 10. Maternal smoking status is denoted by 1 meaning that the mother smoked

regularly and 0 otherwise. Similar to Fitzmaurice and Laird (1993), maternal smoking

is fixed at its first visiting value. The other two covariates are the age of the child and

the interaction effect of the child’s age and the mother’s maternal smoking status. The

model of the marginal mean of the binary response may be expressed as

g(µ) = β0 + β1age+ β2smoke+ β3age× smoke,

where g(·) is the logistic link function and “smoke” is the maternal smoking status.

When modelling the correlation coefficients of the longitudinal binary data, we propose

to use three different types of correlation structures, i.e., AR(1), CS and MA(1), to

approximate the normal-model structure in Ci(γ) in (2) and also to be the working

correlation structure Vi(α) in the second GEE in (3). The working correlation parameter

α is taken as 0.1 and 0.7, measuring the possible low or high correlation for Wi. The

parameter estimators are presented in Table 7-9, respectively.

Table 7-9 show that the children are less likely to get wheezing as they grow whereas

the maternal smoking status increases the possibility of wheezing. This conclusion is

in agreement with Fitzmaurice and Laird (1993)’s. On the other hand, we notice that

the parameter estimators of β̂ and γ̂, particularly their standard deviations, more or

less may vary with the specification of the correlation structure specified to Ci(γ) and

Vi(α), and the parameter values therein, due to the finite sample issue. In order to

select appropriate correlation structures for both Ci(γ) and Vi(α), the quasi-likelihood

under independence model criterion (QIC) introduced by Pan (2001) is applied. From

the simulation studies, see Table 4, it is concluded that the mean parameter β and the

correlation parameter γ can be estimated well by using the proposed GEEs, so that their

model selection criteria can be considered separately as briefed below. Let I denote the

independent model where the working correlation matrix takes the identity matrix, and

the QIC for β̂ is defined as follows

QICβ = −2Q
(
β̂(R); I

)
+ 2trace

(
Ω̂−1I ĉov(β̂(R))

)
, (6)
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where the quasi-likelihood function Q(β̂(R); I) is calculated using the independent co-

variance structure but the mean parameter β is replaced by β̂(R), which is obtained

from a general working correlation structure R. The matrices Ω̂I and ĉov(β̂(R)) are the

estimators of covariance matrix of β̂ under the working correlation matrices I and R,

respectively. With the logistic link, the quasi-likelihood function can be written as

Q(β̂(R); I) =

n∑
i=1

mi∑
j=1

[
Yij log

µ̂ij
1− µ̂ij

+ log(1− µ̂ij)
]
,

where µ̂ij is the fitted value of µij using the estimated coefficients in the GEE model

with the correlation matrix R. Similarly, the QIC for γ̂ takes the form

QICγ = −2

n∑
i=1

Mi∑
j=1

[
Wij log

ξ̂ij

1− ξ̂ij
+ log(1− ξ̂ij)

]
+ 2trace

(
Ω̃−1I ĉov(γ̂)

)
,

where Ω̃I and ĉov(γ̂) are the estimators of the covariance matrices of γ̂ with working

correlation matrices I and Vi(α), respectively. As a general rule, the best correlation

structures for Ci(γ) and Vi(α) are the ones corresponding to the smallest values of QICβ

and QICγ .

Table 7: Ohio Data Analysis: Parameter estimates (standard deviations in parentheses) when Ci(γ)

takes an AR(1) structure and Vi(α) takes the structures AR(1), CS and MA(1)

Vi(α) AR(1) CS MA(1)

α 0.1 0.7 0.1 0.7 0.1 0.7

β̂0 -1.92(0.12) -1.94(0.14) -1.92(0.11) -1.94(0.14) -1.92(0.12) -1.92(0.11)

β̂1 -0.15(0.07) -0.15(0.06) -0.15(0.07) -0.15(0.06) -0.15(0.07) -0.15(0.07)

β̂2 0.29(0.18) 0.26(0.22) 0.29(0.18) 0.25(0.23) 0.29(0.18) 0.30(0.17)

β̂3 0.08(0.11) 0.09(0.09) 0.08(0.11) 0.089(0.09) 0.08(0.11) 0.08(0.11)

γ̂ 0.46(0.06) 0.80(0.06) 0.44(0.06) 0.83(0.05) 0.45(0.06) 0.35(0.08)

QICβ 1831.13 1834.71 1831.00 1835.11 1831.11 1830.20

QICγ 2926.24 3174.13 2926.57 3227.92 2926.24 2941.11

From Table 7-9, it is clear that the joint GEE method with AR(1) structure specified

to Ci(γ) has large values in both QICβ and particularly QICγ when compared to the

method with Ci(γ) having CS or MA(1) structure. See the values of QICβ and QICγ

across Tables 7-9 under each setting of Vi(α). In addition, we notice that the estimator
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Table 8: Ohio Data Analysis: Parameter estimates (standard deviations in parentheses) when Ci(γ)

takes a CS structure and Vi(α) takes the structures AR(1), CS and MA(1)

Vi(α) AR(1) CS MA(1)

α 0.1 0.7 0.1 0.7 0.1 0.7

β̂0 -1.90(0.12) -1.90(0.12) -1.90(0.12) -1.90(0.12) -1.90(0.12) -1.90(0.12)

β̂1 -0.14(0.06) -0.14(0.06) -0.14(0.06) -0.14(0.06) -0.14(0.06) -0.14(0.06)

β̂2 0.31(0.19) 0.31(0.19) 0.31(0.19) 0.31(0.19) 0.31(0.19) 0.31(0.19)

β̂3 0.07(0.09) 0.07(0.09) 0.07(0.09) 0.07(0.09) 0.07(0.09) 0.07(0.09)

γ̂ 0.39(0.06) 0.39(0.06) 0.39(0.06) 0.38(0.06) 0.39(0.06) 0.42(0.06)

QICβ 1830.45 1830.47 1830.45 1830.42 1830.46 1830.68

QICγ 2901.52 2902.47 2901.52 2902.45 2901.52 2905.07

Table 9: Ohio Data Analysis: Parameter estimates (standard deviations in parentheses) when Ci(γ)

takes an MA(1) structure and Vi(α) takes the structures AR(1), CS and MA(1)

Vi(α) AR(1) CS MA(1)

α 0.1 0.7 0.1 0.7 0.1 0.7

β̂0 -1.92(0.11) -1.92(0.11) -1.92(0.11) -1.91(0.10) -1.92(0.11) -1.91(0.10)

β̂1 -0.15(0.07) -0.15(0.07) -0.15(0.07) -0.15(0.07) -0.15(0.07) -0.15(0.07)

β̂2 0.30(0.17) 0.30(0.17) 0.30(0.17) 0.31(0.16) 0.30(0.17) 0.31(0.16)

β̂3 0.09(0.12) 0.09(0.12) 0.09(0.12) 0.08(0.12) 0.09(0.12) 0.08(0.12)

γ̂ 0.39(0.06) 0.38(0.06) 0.39(0.06) 0.29(0.05) 0.39(0.06) 0.29(0.15)

QICβ 1830.18 1830.13 1830.18 1829.54 1830.18 1829.54

QICγ 1417.74 1417.82 1417.76 1423.32 1417.74 1447.51
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γ̂ with Ci(γ) taking an AR(1) structure is not as stable as the one with CS or MA(1)

structure when varying α in Vi(α). We thus conclude that AR(1) structure is not a good

working structure for Ci(γ) in this case. In contrast, the joint GEE method with Ci(γ)

having CS or MA(1) structure is doing better in the sense of relatively small values of

QICβ and QICγ . In these two cases, the resulting mean parameter estimators are very

close to these by Fitzmaurice and Laird (1993). We also observe that in these cases

γ̂ remains stable when α increases from 0.1 to 0.7, with an exception that a MA(1)

structure with α = 0.7 is specified to Vi(α), see Tables 8-9. The reason is that α = 0.7

is almost identical to the boundary value 0.7071 of MA(1), and beyond this value the

MA(1) covariance matrix is no longer positive definite. Our simulations show that the

estimator γ̂ changes substantially when α in MA(1) is more than 0.65. Note that the

QICβ ’s from the model with MA(1) specified to Ci(γ) are very close to those by the

model with Ci(γ) having a CS structure, implying that MA(1) is also a good structure

for Ci(γ). When estimating the parameter γ, as indicated by QICγ either AR(1), CS

or MA(1) structure can be specified to Vi(α) as long as a small value of α is chosen

(e.g., α = 0.1), where Ci(γ) takes either CS or MA(1) structure. In this case, both the

parameter estimators β̂ and γ̂, as well as their standard deviations, are robust against

the working correlation structure in the second GEE. The resulting estimator γ̂ of the

correlation parameter in the normal-model for this data set is around 0.4 with standard

deviation 0.06.

5.2. CGI Data Analysis

The Clinical Global Impression (CGI) is widely accepted measurement of illness sever-

ity in a variety of psychiatric disorders. The CGI data set we analyse contains longitu-

dinal binary responses representing if the CGI improvement (CGI-I) is responded (1 for

yes and 0 otherwise) in a follow-up study after certain treatments. In total, there were

454 patients whose number of repeated measurements varies from 1 to 7, leading to 2805

unbalanced longitudinal observations.

The explanatory variables include: treatment (TRX), Race, Sex, Age, Body Mass

Index (BMI), Severity of Illness (SEV) and Time. The TRX contains three types of

treatment, which are Dose 1, Dose 2 and Placebo denoted by TRX1, TRX2, TRX3

respectively. The Race contains White, Black, Oriental and Other denoted by Race1,
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Race2, Race3 and Race4 respectively. As the TRX and Race each have more than two

categories, so that a dummy variable is introduced to each category to represent the

category’s appearance/disapperance. Sex is set a binary variable, 0 for female and 1 for

male. The SEV is a variable taking the numbers from 0 to 7, where 0 refers to “Not

assessed” and 1 to 7 refer to “Not at ill” to “Extremely ill”. The aim is to assess the

treatment effects on the CGI-I responses, by taking into account of other explanatory

variables including Race, Sex, Age, BMI, SEV and Time. A logistic model

logit(µ) = β0 + β1TRX1 + β2TRX2 + β3Race2 + β4Race3 + β5Race4 + β6Sex

+ β7Age+ β8BMI + β9SEV + β10Time+ β11TRX1× Sex+ β12TRX2× Sex,

is use to model the mean for the CGI data. The proposed joint GEE methods with

AR(1) and CS specified to Ci(γ) and AR(1), CS and MA(1) to Vi(α) are applied. Table

10 presents the numerical results for the CGI data analysis with α = 0.1. Other values

of α were also considered and the results are very similar and so omitted here.

From Table 10, the estimators of the mean parameters β, as well as their standard

deviations, are close whatever structures are specified to matrices Ci(γ) and Vi(α), im-

plying that they are robust against misspecification of the structures of Ci(γ) and Vi(α).

In contrast, the estimator of the correlation parameter γ seems to have some changes

with different structures specified to Ci(γ) but is robust against to the choice of the

structure for Vi(α). This is reasonable because γ in Ci(γ) represents a different degree

of correlation in different correlation structures.

On the other hand, in terms of the QIC values the model with AR(1)-CS structure

yields the smallest value of QICβ (1390.85) for the mean parameter β while the model

with CS-CS structure achieves the lowest value of QICγ (4314.03) for the correlation

parameter γ. For the overall performance of both the estimators of β and γ, we sug-

gest to consider QICβ,γ = ωQICβ + (1 − ω)QICγ , where ω is a weight taking value in

[0, 1], measuring either the mean or correlation is more important. Since the mean and

correlation are treated equally important in this paper, it is reasonable to set ω = 0.5.

As a result, the model with AR(1)-CS structure, meaning Ci(γ) and Vi(α) specified

with AR(1) and CS structures respectively, turns to be the best one, since it has the

smallest QICβ,γ (2853.13). Based on the model with AR(1)-CS structure, the results

presented in Table 10 show that, for the females Dose 2 seems likely to be more effective
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Table 10: CGI data. Parameter estimates(standard deviances) based on the models with AR(1) and CS

specified to Ci(γ) and AR(1), CS and MA(1) to Vi(α) where α = 0.1

structure AR(1)-AR(1) AR(1)-CS AR(1)-MA(1) CS-AR(1) CS-CS CS-MA(1)

Intercept 9.88(0.86) 9.92(0.86) 9.88(0.86) 9.88(0.85) 9.96(0.85) 9.90(0.86)

TRX1 -0.25(0.32) -0.25(0.31) -0.25(0.32) -0.16(0.31) -0.17(0.31) -0.16(0.32)

TRX2 0.22(0.32) 0.22(0.31) 0.22(0.32) 0.25(0.31) 0.25(0.30) 0.25(0.31)

Race2 0.03(0.31) 0.02(0.30) 0.03(0.31) -0.02(0.31) -0.02(0.30) -0.02(0.31)

Race3 -0.94(0.66) -0.97(0.65) -0.93(0.66) -0.48(0.65) -0.54(0.64) -0.52(0.65)

Race4 -0.09(0.32) -0.08(0.32) -0.10(0.32) 0.27(0.32) 0.25(0.32) 0.27(0.32)

Sex -0.07(0.35) -0.07(0.34) -0.07(0.35) -0.06(0.35) -0.07(0.35) -0.06(0.35)

Age -0.00(0.01) -0.00(0.01) -0.00(0.01) -0.00(0.01) -0.00(0.01) -0.00(0.01)

BMI -0.01(0.01) -0.01(0.01) -0.01(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)

SEV -3.11(0.18) -3.11(0.18) -3.11(0.18) -3.03(0.18) -3.05(0.18) -3.04(0.18)

Time 0.15(0.03) 0.15(0.03) 0.15(0.03) 0.13(0.03) 0.13(0.03) 0.13(0.03)

TRX1×Sex -0.25(0.48) -0.25(0.47) -0.25(0.48) -0.30(0.48) -0.29(0.47) -0.31(0.48)

TRX2×Sex -1.07(0.49) -1.08(0.48) -1.06(0.49) -1.10(0.49) -1.10(0.49) -1.10(0.49)

γ̂ 0.78(0.09) 0.74(0.07) 0.78(0.09) 0.65(0.11) 0.62(0.08) 0.65(0.11)

QICβ 1392.48 1390.85 1392.55 1397.58 1395.63 1397.06

QICγ 4325.96 4315.41 4326.37 4326.21 4314.03 4325.61

QICβ,γ 2859.22 2853.13 2859.46 2861.895 2854.83 2861.335
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than Placebo because the estimated coefficient of TRX2 is positive although it is not

statistically significant, while for the males Dose 2 is not as effective as Placebo. An

interesting phenomenon is that both the female and male patients in Dose 1 (TRX1) are

less likely to respond their CGI improvements than those in Placebo group. It seems

that the black patients have little difference with the white patients in responding the

CGI improvements, while the oriental patients and others are less likely to respond than

white patients. Females are more likely to respond than males. Increasing Age, BMI

or SEV can reduce the probability to respond the treatment, whereas the responding

becomes more likely with time increasing. Among those, SEV and Time are significant

covariates. Note that the parameter estimator corresponding to Age being −0.00 is actu-

ally −1.8× 10−3 here. Furthermore, γ̂ = 0.74 with standard deviation 0.07, leading the

maximum within-subject correlation coefficient between two adjacent binary measure-

ments to 0.69, implies that the correlation coefficient for the longitudinal binary data is

strong and should not be simply ignored.

6. Discussions

In this paper we proposed a GEE-based approach to estimate the mean parameters

and within-subject correlation parameters, simultaneously, for longitudinal binary data.

We also considered the asymptotic normality of the parameter estimators under certain

mild conditions. A parametric form of the within-subject correlation coefficients is con-

sidered so that the resulting correlation coefficients for correlated binary data satisfy

their natural upper bounds. Such correlation coefficients are connected to C(γ), the cor-

relation matrix from a latent normal-model so that the modelling reduces to modelling

of the normal-model correlation coefficients. The choice of the structure for C(γ) is im-

portant because as we already see from the real data analysis in the previous section it

may affect the estimator of γ and particularly its standard deviation. We proposed to

use the QIC to select the most appropriate correlation structure for C(γ), but alternative

criteria may be good too. For the correlation matrix V (α) of the augmented random

variables W , we suggested to use independent, CS or AR(1) structure as its working

correlation structure. The reason is that the inverse of V (α) has an explicit form in

these cases, so that its calculation becomes straightforward, which is helpful especially
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when the dimension of V (α) is high. Also, the estimators of mean parameters β and

correlation coefficient γ are robust against the misspecification of the working structure

of V (α), indicating that the proposed method works efficiently.
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Appendix A. Proof of asymptotic normality

Proof of Theorem 1. According to Taylor expansion, we can have n1/2(β̂ − β)

n1/2(γ̂ − γ)

 =

 −n−1 ∂U1(β,γ)
∂βT −n−1 ∂U1(β,γ)

∂γ

−n−1 ∂U2(γ,β)
∂βT −n−1 ∂U2(γ,β)

∂γ

−1  n−1/2U1(β, γ)

n−1/2U2(γ, β)

+ op(n).

(A.1)

The first element of the inverse matrix in (A.1) can be expressed as

−n−1 ∂U1(β, γ)

∂βT
=− n−1

n∑
i=1

∂

∂βT
(DT

i )Σ−1i (Yi − µi)

− n−1
n∑
i=1

DT
i

∂

∂βT
(Σ−1i )(Yi − µi)

+ n−1
n∑
i=1

DT
i Σ−1i Di.

(A.2)

The first two terms of right hand in (A.2) are op(1) if we assume their variances are finite,

because they involve the sum of n independent variables with zero mean. In consequence,

only the third term dominates and

−n−1 ∂U1(β, γ)

∂βT
= n−1

n∑
i=1

DT
i Σ−1i Di + op(1).

In a similar manner, we have

−n−1 ∂U1(β, γ)

∂γ
= op(1),

−n−1 ∂U2(γ, β)

∂βT
= n−1

n∑
i=1

ETi G
−1
i

∂ξi
∂βT

+ op(1),

−n−1 ∂U2(γ, β)

∂γ
= n−1

n∑
i=1

ETi G
−1
i Ei + op(1).
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So the inverse matrix in (A.1) converges to the matrix

n

 ∑n
i=1D

T
i Σ−1i Di 0∑n

i=1E
T
i G
−1
i

∂ξi
∂βT

∑n
i=1E

T
i G
−1
i Ei

−1 ,
as n → ∞. On the other hand, the score functions

[
n−1/2U1(β, γ)T , n−1/2U2(γ, β)T

]T
have an asymptotic normal distribution with zero mean and covariance matrix

lim
n→∞

n−1

 ∑n
i=1D

T
i Σ−1i cov(Yi)Σ

−1
i Di

∑n
i=1D

T
i Σ−1i cov(Yi,Wi)G

−1
i Ei∑n

i=1E
T
i G
−1
i cov(Wi, Yi)Σ

−1
i Di

∑n
i=1E

T
i G
−1
i cov(Wi)G

−1
i Ei

 .

It is assumed that we model the covariance of Yi correctly. Thus, the first element of

the asymptotic covariance matrix reduces to
∑n
i=1D

T
i Σ−1i Di. Denote the Qs and Λs as

introduced in the Theorem and then the proof is completed.
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