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Abstract

For a class of parametric modal regression models with measurement error, a simulation ex-

trapolation estimation procedure is proposed in this paper for estimating the modal regres-

sion coefficients. Large sample properties of the proposed estimation procedure, including

the consistency and asymptotic normality, are thoroughly investigated. Simulation studies

are conducted to evaluate its robustness to potential outliers and the effectiveness in reducing

the bias caused by the measurement error.
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1. Introduction

Modal or mode regression, together with the mean and quantile regression, provides data

analysts a suite of inference tools to describe the data structures and to model the rela-

tionships among variables. Comparing to the well developed mean and quantile regression

techniques, the modal regression is still expanding its territory in applications and theory.

The modal estimation idea germinated over half century ago in Parzen (1962) and Chernoff

(1964) on estimating the mode of a probability density function. Later, similar ideas were

extended to regression setups. For example, Sager and Thisted (1982) discussed the max-

imum likelihood estimation in isotonic mode regression. To our best knowledge, it is Lee

(1989) who considered the linear modal regression by minimizing a proper risk function,
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and as a further development, Lee (1993) reformulated the estimation procedure using the

rectangular kernel and the Epanechnikov kernel. However, in both works, the bandwidths

are fixed, the consistency and the asymptotic normality are achieved by requiring the density

function of the response variable given the predictors to be symmetric about the mode, at

least up to plus and minus the bandwidth. The kernel idea developed in Lee (1989, 1993)

was eventually refined in Kemp and Silva (2012) where the modal regression estimate was

formally defined as the maximizer of the kernel density estimate of the regression error eval-

uated at the origin. Independent of Kemp and Silva (2012)’s work, Yao and Li (2014) also

discussed the same estimation procedure. In addition to the similar large sample results,

Yao and Li (2014) developed the breakdown point theory of the proposed estimator and

provided a data-driven bandwidth selector. Recently, Khardani and Yao (2017) discussed

the modal regression in non-linear setups, weak convergence and asymptotic normality of

the modal regression coefficient estimators are investigated.

The above mentioned literature assume that all variables in the regression models are

observable. However, in real applications, some variables cannot be measured precisely due

to various reasons. Such examples can be easily found in econometrics, biology, nutrition

and toxicology studies, see Carroll et al. (2006) for more examples. Extensive research has

been conducted for the quantile and other traditional robust statistical inference proce-

dures in the measurement error setup, only recently have we witnessed increasing interest

in modal regression models when the covariates are contaminated with measurement errors.

Li and Huang (2019) considers the linear mode regression in the presence of measurement

errors and proposes two estimation methods, the corrected score and the corrected kernel

estimators. The correct score estimator is an application of Novick and Stefanski (2002)’s

estimation procedure by assuming that the measurement error has a normal distribution and

the estimating function is entire with respect to the predictors. In fact, the corrected score

estimator proposed in Novick and Stefanski (2002) and Li and Huang (2019) is a variant of

SIMEX estimation procedure. The corrected kernel estimator is indeed the deconvolution

kernel estimator. Realizing that the modal residual in linear regression after plugging in

the surrogate variable is a convolution of the regression error and the measurement error, a

deconvolution kernel density estimator for the modal regression residual is constructed, and

the modal regression coefficients are then estimated by maximizing the deconvolution kernel

density function. Large sample properties are derived when the measurement error follows

ordinary and super smooth distributions. In nonparametric setup, Zhou et al. (2016) dis-

cussed the modal regression in the presence of measurement error by considering a mixture

of classical and deconvolution kernel estimate for the joint distribution of the response and

predictors.

In this paper, we will focus on the estimation in a class of parametric modal regression
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when the covarites are observed with measurement errors. To reduce the potential biases

introduced by the measurement error, we attempt to apply the classical SIMEX procedure

to estimate the regression coefficients. The commonly used corrected score method should

be considered if the corrected score function can be explicitly obtained. However, in real

applications, the correct score function is often very hard to derive and in this case, SIMEX

is an ideal alternative. In particular, the score functions based on the measurement error free

data are often well established, and recent decades have seen a fast development in computing

capability, these make using SIMEX an efficient way to estimate unknown parameters in most

statistical models involving the measurement errors.

The paper is organized as follows. The parametric modal regression model with mea-

surement error and the SIMEX estimation procedure will be introduced in Section 2; large

sample properties of the proposed estimator will be discussed in Section 3. Finally, simu-

lation studies are conducted in Section 4 to evaluate the finite sample performance of the

proposed SIMEX estimator. All the proofs of the main results are deferred to Appendix.

Throughout this paper, the following notations will be used. For a generic function

g(x; θ), where x is the argument and θ is a parameter, possibly multidimensional, the first

two derivatives of g with respect to x are denoted by f ′(x; θ) and f ′′(x; θ), and the first two

derivatives of g with respect to θ are denoted by ġ(x; θ) or g̈(x; θ), respectively. For any

vector or matrix A, we use A⊗2 to denote AAT , where AT is the transpose of A. For the

sake of simplicity, the multiple integration will be denoted by a single integration sign, and

for a p-dimensional vector u, du = du1 · · · duk.

2. Parametric EV Modal Regression Using SIMEX

To be specific, the parametric modal regression model with measurement error to be

discussed in this paper takes the form

Y = m(X, θ) + ε, W = X + U, (1)

where Y is a 1-dimensional response variable, the true predictor X , being a p-dimensional

real random vector, cannot be observed directly. What we have are the observations from

W , which is related to X through the additive relationship W = X + U with U being the

measurement error, and independent of X and ε. θ is a q-dimensional unknown vector of

parameters to be estimated. We further assume that the measurement error U ∼ Np(0,Σu),

and Σu is a known positive definite matrix.

The key assumption in modal regression is that the marginal density function g(ε) of ε

has a unique mode at 0. When both (Y,X) are available, then g(0), the density function
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g(ε) at 0, can be estimated by

ĝn(0, θ) =
1

nh

n
∑

i=1

K

(

Yi −m(Xi, θ)

h

)

. (2)

The modal estimate of θ is defined as the maximizer of ĝn(0, θ). As for the reasons why

this procedure produce a reasonable estimate for θ, see Yao and Li (2014). It is noted that

ĝn(0, θ) defined above is not the kernel estimate of conditional density function of ε given

X , but rather the kernel estimate of the marginal density function of ε, evaluated at 0. In

the measurement error setup, due to the unavailability of observations on X , one can not

maximize ĝn(0, θ) to get the modal estimate of θ. The naive procedure by simply replacing

Xi’s with Wi’s in the expression of ĝn(0, θ) has been proven to be an undesirable action in

that the resulting estimate are often biased and as a consequence, the statistical inferences

based on the naive estimate are often invalid.

One may consider a corrected score type of methods to avoid the potential bias induced

by the measurement error, that is, find a proper function of (Y, Z) and θ, say S(Y, Z, θ)

such that Eh−1K((Y − m(X, θ))/h) = ES(Y, Z, θ). However, unless in some very special

cases, such as the measurement error has a multivariate Laplace distribution or the modal

regression function m has some particular forms, constructing such functions often poses

great challenges, if not infeasible. In the following, we shall design a SIMEX estimation

procedure to estimate the modal regression parameter θ. The significance of SIMEX is that

one can simply rely on computer and a standard estimation procedure based on (Y,X) to

estimate an estimate of the unknown parameters.

To implement the SIMEX estimation procedure, we preselect a finite sequence of λ-values

λ1, λ2, . . . , λM from an interval Λ = [λ1, λM ], and a sufficiently large positive integer B. Often

times equally spaced λ-values with λ1 = 0 and λM = 2 are used. Then we follow the three

steps below to estimate θ.

Simulation: For λ = λ1, independently generate B sets of normal random numbers of

size n from Np(0,Σu). In particular, for the b-th set, generate Vib i.i.d. ∼ Np(0,Σu),

and calculate Wib(λ) = Xi + Ui +
√
λ1Vib = Wi +

√
λ1Vib, i = 1, . . . , n.

Estimation: For each b = 1, 2, . . . , B, calculate θ̂b(λ1) = argmaxθQn(θ, λ1) where

Qn(θ, λ) =
1

nh

n
∑

i=1

K

(

Yi −m(Wib(λ), θ)

h

)

. (3)

and the average θ̂(λ1) = B−1
∑B

b=1 θ̂b(λ1). Iterate the Simulation-Estimation steps for

λ = λ2, . . . , λM , and obtain the sequence θ̂(λ1), . . . , θ̂(λM).
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Extrapolation: Identify a trend of θ̂(λ) versus λ, then extrapolate the trend to λ = −1

to obtain the SIMEX estimate θ̂(−1).

Motivations and theoretical justification of SIMEX algorithm can be found in the seminal

papers by Cook and Stefanski (1994), Stefanski and Cook (1995) and Carroll et al. (1996).

In general, the simulation and the estimation steps cause no trouble, however, extra caution

should be paid in the extrapolation step, since in most cases, the exact extrapolation function

is not available. Although three alternatives, such as the linear function a+bλ, the quadratic

function a + bλ + cλ2 and the nonlinear function a + c/(d + λ), are often recommended in

literature, they are simply empirical suggestions, except for some special cases. To avoid this

technical difficulty, instead of directly dealing with the issue, most research done in literature

simply assumes the true extrapolation function to be known. See Carroll et al. (1996) and

Yang et al. (2019) for more details.

3. Asymptotic Results of The SIMEX Estimator

In this section, we shall justify the SIMEX algorithm proposed in Section 2 works well in

model (1) by stating some large sample properties, including the consistency and asymptotic

normality, of the proposed estimator of θ. To begin with, for a kernel function K and a

sequence of vanishing positive numbers h, depending on the sample size, denote Kh(t) =

h−1K(t/h), and define

θ(λ, h) = argmaxθEKh(Y −m(W (λ), θ)), (4)

θ(λ) = argmaxθ lim
h→0

EKh(Y −m(W (λ), θ)). (5)

For some technical reasons, see the proofs presented in Appendix, we shall deliberately

choose K to be the standard normal density function. We denote the conditional density

function of ε given X = x as g(ε|X = x). The following is a list of technical conditions

needed for the statement of the main results, as well as their proofs.

C1.
...
m(x, θ) with respect to θ is continuous; m′(x, θ) is continuous with respect to x.

C2. For each λ, E[g(t+m(W (λ), θ)−m(X, θ0))|W (λ)] has up to third order continuous

and bounded derivatives, and

E‖ṁ(W (λ), θ(λ))g′(m(W (λ), θ(λ))−m(X, θ0))‖2 < ∞.

C3. g′(0|X = x) = 0, g′′(0|X = x) < 0, g(k)(ε|X = x) are continuous and bounded for

k = 0, 1, 2, 3 for any x, and for all λ ≥ 0,

∂2

∂θ∂θT
E [g(m(W (λ), θ(λ))−m(X, θ0))|X ]
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is negative definite.

C4. For each λ, for n sufficiently large, the maximizer θ(λ, h) is unique, and is the

solution of

E

[

∂Kh(Y −m(W (λ), θ))

∂θ

]

=
∂EKh(Y −m(W (λ), θ))

∂θ
= 0.

C5. The bandwidth h → 0, nh5 → ∞ as n → ∞.

The above conditions are mild and similar to those assumptions imposed for the linear

model regression in Yao and Li (2014), but they are modified accordingly for the parametric

and measurement error setup.

We start with a theorem regarding the relationship between θ(λ, h) and θ(λ) defined in

(4) and (5), respectively.

Theorem 1. For any fixed λ ∈ [λ1, λM ], θ(λ, h) = θ(λ) +D−1(λ)C(λ)h2 + o(h2), where

C(λ) =
1

2
E

∫

g′′′(m(X + τv, θ(λ))−m(X, θ0)|X)ṁ(X + τv, θ(λ))φ(v)dv,

D(λ) = E

∫

g′′(m(X + τv, θ(λ))−m(X, θ0)|X)(ṁ(X + τv, θ(λ)))⊗2φ(v)dv

and τ =
√
1 + λΣ

1/2
u , and φ(v) is the density function of p-dimensional standard normal

distribution.

The following theorem shows that the distance between θ̂(λ) and θ(λ, h) vanishes as

n → ∞.

Theorem 2. Suppose (C1)-(C5) holds. Then there exits a maximizer θ̂(λ) such that ‖θ̂(λ)−
θ(λ, h)‖ = Op(an), where an = h2 + (nh3)−1/2.

Denote

Λ = (λ1, . . . , λM)T , θ(Λ) = (θT (λ1), . . . , θ
T (λM))T , C(Λ) = (CT (λ1), . . . , C

T (λM))T

D(Λ) = diag(D(λ1), . . . , D(λM)), J(Λ) = diag (J(λ1), . . . , J(λM)) ,

and

Π(Λ) = diag

(

1

4B
√
π
E

[(

ṁ(W (λj), θ(λj, h))

)⊗2

fλ(0|W (λj))

]

)

.

The following theorem claims that θ̂(Λ) is asymptotically multivariate normal.
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Theorem 3. Under the same conditions as in Theorem 2,

√
nh3(θ̂(Λ)− θ(Λ)−D−1(Λ)C(Λ)h2 + o(h2)) =⇒ N(0, J−1(Λ)Π(Λ)J−1(Λ)).

To our surprise, the above theorem actually indicates that θ̂(λ1), . . . , θ̂(λM) are asymp-

totically independent! which seems inconsistent with the results obtained in Yang et al.

(2019) in the single index regression setup. We have double checked some special cases, such

as when the modal regression function is linear, and the measurement error is normal, and

found out it is indeed the case.

To further derive the large sample properties of the SIMEX estimator θ̂SIMEX based on

the above results, we have to know the form of the extrapolation function θ(λ). As we

mentioned in Section 2, no explicit extrapolation function form is available except for some

rare cases. To see this point, we note that θ(λ) is the solution of the following equation

∂

∂θ
Eg(m(W (λ, θ))−m(X, θ0)) = 0

or

E

∫

g′(m(X + u, θ)−m(X, θ0))ṁ(X + u, θ) exp

(

− u′Σ−1
u u

2(1 + λ)

)

du = 0

The justification of this statement can be found in the proof of Theorem 2 in Appendix.

For illustration purpose, assume ε and X are independent and standard normal, the

modal regression function is linear, m(x, θ) = θx, then simple calculation shows

lim
h→0

EKh(Y −m(W (λ), θ)) =
1

√

2π(1 + (θ − θ0)2σ2
x + (1 + λ)σ2

uθ
2)

and θ(λ) is the solution of

∂(1 + (θ − θ0)
2σ2

x + (1 + λ)σ2
uθ

2)

∂θ
= 0,

which gives the exact extrapolation function

θ(λ) =
θ0σ

2
x

σ2
x + (1 + λ)σ2

u

.

Clearly, the exact extrapolation function has the nonlinear form a + c/(d + λ), and indeed

θ(−1) = θ0.

However, in real applications, the density functions of ε and X are unknown, m may

have a complicated form, so there is no way to obtain a manageable form of θ(λ). So, in the

following, we will adopt the strategy used in literature, simply assuming the extrapolation
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function has a parametric form. In the real application, estimated extrapolation function by

fitting the pairs (λj, θ̂(λj)) should be used to approximate the true SIMEX estimator.

Suppose the true extrapolation function θ(λ) has the form G(λ,Γ0), which is twice con-

tinuously differentiable with respect to the unknown parameter Γ0 ∈ R
d for some positive

integer d. We will estimate Γ0 by minimizing the least squares criterion ‖θ̂(Λ)−G(Λ,Γ)‖2,
where

G(Λ,Γ) = [GT (λ1,Γ), G
T (λ2,Γ), . . . , G

T (λM ,Γ)]Tqm×1

or solving the equation ĠT (Λ,Γ)(θ̂(Λ)−G(Λ,Γ)) = 0, where

Ġ(Λ,Γ) = [ĠT (λ1,Γ), Ġ
T (λ2,Γ), . . . , Ġ

T (λM ,Γ)]Tqm×d,

and

Ġ(λj,Γ) =

(

∂Gk(λj,Γ)

∂γl

)

q×d

.

Suppose Γ̂ is the solution, then by Taylor expansion, we have

0 = ĠT (Λ, Γ̂)(θ̂(Λ)−G(Λ, Γ̂))

= ĠT (Λ,Γ0)(θ̂(Λ)−G(Λ,Γ0)) +
[

T (Λ, Γ̃)− ĠT (Λ, Γ̃)Ġ(Λ, Γ̃)
]

(Γ̂− Γ0),

where Γ̃ is between Γ̂ and Γ0 and

T (Λ,Γ) =

M
∑

j=1

q
∑

k=1









∂Gk(λj ,Γ)

∂γ1∂ΓT (θ̂k(λj)−Gk(λj ,Γ))
...

∂Gk(λj ,Γ)

∂γd∂ΓT (θ̂k(λj)−Gk(λj ,Γ))









d×d

The consistency of Γ̂ to Γ0 implies that

√
nh3

[

ĠT (Λ,Γ0)Ġ(Λ,Γ0) + op(1)
]

(Γ̂− Γ0) =
√
nh3ĠT (Λ,Γ0)(θ̂(Λ)− θ(Λ)).

Therefore, denote H(Λ) = ĠT (Λ,Γ0)Ġ(Λ,Γ0),

√
nh3H(Λ)

[

Γ̂− Γ0 −H−1(Λ)ĠT (Λ,Γ0)(D
−1(Λ)C(Λ)h2 + o(h2))

]

=
√
nh3ĠT (Λ,Γ0)(θ̂(Λ)− θ(Λ))−

√
nh3ĠT (Λ,Γ0)(D

−1(Λ)C(Λ)h2 + o(h2))

=
√
nh3ĠT (Λ,Γ0)(θ̂(Λ)− θ(Λ)−D−1(Λ)C(Λ)h2 + o(h2)).

This implies that, from Theorem 3, if H(Λ) is nonsingular,

√
nh3

[

Γ̂− Γ0 − S(Λ)h2 + o(h2)
]

=⇒ N(0,Σ(Λ)). (6)
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with

Σ(Λ) = H−1(Λ)ĠT (Λ,Γ0)J
−1(Λ)Π(Λ)J−1(Λ)Ġ(Λ,Γ0)H

−1(Λ),

S(Λ) = H−1(Λ)ĠT (Λ,Γ0)D
−1(Λ)C(Λ).

Note that the SIMEX estimate θ̂SIMEX is defined as θ̂SIMEX = G(−1, Γ̂), also note that

G(−1,Γ0) = θ0, so by Taylor expansion again, θ̂SIMEX − θ0 = Ġ(−1, Γ̃)(Γ̂ − Γ0), together

with the asymptotic result (6), we have the following theorem.

Theorem 4. In addition to the conditions in Theorem 3, if we further assume that the true

extrapolation function is G(λ,Γ), H(Λ) is nonsingular and nh7 = O(1), then

√
nh3(θ̂SIMEX − θ0 − Ġ(−1,Γ0)S(Γ0)h

2 + o(h2)) =⇒ N(0, Ġ(−1,Γ0)Σ(Λ)Ġ
T (−1,Γ0)).

From Theorem 4, we can see that the asymptotic mean squared error of θ̂SIMEX is

h4‖Ġ(−1,Γ0)S(Γ0)‖2 + (nh3)−1Trace(G(−1,Γ0)Σ(Λ)Ġ
T (−1,Γ0)), thus an asymptotic opti-

mal bandwidth can be obtained by minimizing the asymptotic mean squared error,

hopt =

[

3Trace(G(−1,Γ0)Σ(Λ)Ġ
T (−1,Γ0))

4n‖Ġ(−1,Γ0)S(Γ0)‖2

]1/7

.

However, hopt depends on some unknown quantities, thus it cannot be applied directly.

Certain approximations are needed. See Yao and Li (2014) for a relevant discussion in the

linear modal case.

4. Numerical Study

To evaluate the finite performance of the proposed SIMEX estimator of the modal regres-

sion coefficient, in this section, we shall conduct a simulation study. Note that the estimation

step in the SIMEX algorithm described in Section 2 requires the maximization of Qn(θ, λ)

with respect to θ for each λ, similar to linear modal regression case, there is no explicit

solution. Instead, we can define a similar EM algorithm as in Yao and Li (2014). For the

sake of completeness, the main steps are listed in the following.

E-Step: For an initial value θ(0), calculate the weights π(j|θ(0)), j = 1, 2, . . . , n

π(j|θ(0)) = φh

(

Yj −m(Wjb(λ), θ
(0))
)

∑n
i=1 φh (Yi −m(Wib(λ), θ(0)))

.
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M-Step: Maximize the new target function

n
∑

j=1

π(j|θ(0)) logφh(Yj −m(Wjb(λ), θ)) (7)

with respect to θ.

Iteration Step: Using the maximizer obtained in the M-step as the new initial value,

and iterate the above E- and M-step until some convergence criterion is met.

It is easy to see, to maximize (7) is equivalent to minimize

n
∑

j=1

π(j|θ(0))(Yj −m(Wjb(λ), θ))
2.

However, for nonlinear function m, the minimizer does not have a close form and numerical

solution should be sought.

This EM algorithm is useful when the dimension q of θ is high. If q is relatively small,

some functions from existing R package can be used to derive the solution.

The data used in the simulation study are generated from the following modal regression

model Y = α exp(βX) + σ(X)ε, where X ∼ U(0, 1), ε ∼ 0.5N(−1, 2.52) + 0.5N(1, 0.52),

X and ε are independent, and σ(X) = γ exp(βX). Since Eε = 0, Mod(ε) = 1, and

Med(ε) = 0.67, so it is easy to see that E[Y |X ] = α exp(βX), Mode[Y |X ] = (α+γ) exp(βX),

Median[Y |X ] = (α + 0.67γ) exp(βX). This model is similar to the one used in Yao and Li

(2014) except for the regression function. In the simulation study, we choose the true values

of the parameters to be α = β = γ = 1. Therefore, the true conditional mean, mode and

median are E[Y |X ] = exp(X), Mode[Y |X ] = 2 exp(X) and Median[Y |X ] = 1.67 exp(X),

respectively. For the measurement error model W = X + U , we choose U ∼ N(0, σ2
u) with

σ2
u = 0.01, 0.02, 0.04. Note that the variance of X is 1/12 ≈ 0.08, so the noise-to-signal ratio

is roughly 12.5%, 25% and 50% respectively. Two sample sizes of n = 200 and 400 are used in

the simulation study. In each scenario, the simulation is repeated 100 times, the mean, bias

and mean squared errors (MSE) are computed to evaluated the finite sample performance of

the estimation procedures. For all SIMEX related algorithm, B = 50, and the λ-values are

10 equally spaced points from [0, 2]. To evaluate the effect of the bandwidth on the estimate,

we choose h = cn−1/7 and c = 0.5, 0.8, 1, 1.2.

In addition to the proposed SIMEX modal regression procedure (S-Modal), we also con-

sider the other five methods for estimating the mean or modal regression parameters:

• Naive Mean Regression Based on LSE (N-Mean). The target function to minimize is
∑n

j=1[Yi − α exp(βWi)]
2.
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• SIMEX mean regression based on LSE (S-Mean). The steps for implementing the

SIMEX mean regression are exactly the same as in the classic SIMEX mean regres-

sion based LSE. In particular, in the estimation step, the following target function is

minimized
∑n

j=1[Yi − α exp(βWik(λ))]
2.

• SIMEX M-estimate based on Huber’s weight ρ-function (S-Huber). Huber’s weight

family of functions is defined as ρ(x) = 0.5x2 if |x| ≤ c, and c|x| − 0.5c2 if |x| > c.

The constant c for 95% efficiency of the regression estimator is 1.345σ, where σ is the

standard deviation of the errors. Therefore, we obtain the estimate by minimizing the

following target function
∑n

i=1 ρ(Yi −m(Zi(λ), θ)).

• SIMEX median regression estimate (S-Median). The steps for implementing the SIMEX

median regression procedure are the same as in the SIMEX mean regression based LSE,

the only difference is to replace the target function to
∑n

j=1 |Yi − α exp(βWik(λ))|.

• Naive-Modal regression estimate (N-Modal). Directly minimizing (2) with Xi replaced

by Wi.

These six methods can be classified into three groups. The first group consists of the Naive

mean regression, the SIMEX mean regression and the SIMEX M-estimate, they are used to

fit the mean regression function α exp(βX); the second group includes the SIMEX median

regression, which is used for estimating the median regression function (α+0.67γ) exp(βX);

the third group, consisting of the proposed SIMEX modal regression and the naive modal

regression, is used for fit the modal regression function (α + γ) exp(βX). The comparison

should be made within each group, but we can assess the robustness cross different proce-

dures. To obtain estimates of the unknown parameters, for S-Median and S-Huber, we use

the function optim from R package MASS, and for other methods, function nlrobe from R

package robustbase is used.

Simulation results are summarized in the Table 1-6 for c = 0.8. For the two mean and

modal regression methods, it is not surprising to see the S-Mean method and the proposed

modal regression procedure performs better in reducing the bias than the naive mean and

modal regressions, which simply ignore the measurement error by treating the error-prone

variable as the true predictor, however, the variances from the SIMEX procedures are rela-

tively larger than their naive counterparts. The SIMEX M-estimate based Huber’s weight

function show noticeable biases in all cases, while the S-Median fits the median regression

function very well. Also, one can notice that the estimates are getting worse when the vari-

ance of the measurement error is getting larger, and performance improves when the sample

size gets larger.
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Table 1: n = 200, σ2

u
= 0.01

N-Mean S-Mean S-Huber S-Median S-Modal N-Modal

Mean 1.084 1.020 1.152 1.595 1.996 2.133

α Bias 0.084 0.020 0.152 -0.075 -0.004 0.133

MSE 0.122 0.133 0.111 0.086 0.128 0.090

Mean 0.929 1.043 1.247 0.939 0.940 0.706

β Bias -0.071 0.043 0.247 -0.060 -0.060 -0.294

MSE 0.311 0.441 0.197 0.076 0.152 0.133

Table 2: n = 200, σ2

u
= 0.02

N-Mean S-Mean S-Huber S-Median S-Modal N-Modal

Mean 1.134 1.030 1.170 1.606 2.010 2.232

α Bias 0.134 0.030 0.170 -0.064 0.010 0.232

MSE 0.135 0.147 0.124 0.107 0.168 0.153

Mean 0.838 1.016 1.208 0.902 0.910 0.603

β Bias -0.162 0.016 0.208 -0.098 -0.090 -0.397

MSE 0.274 0.409 0.178 0.063 0.196 0.208

Table 3: n = 200, σ2

u
= 0.04

N-Mean S-Mean S-Huber S-Median S-Modal N-Modal

Mean 1.202 1.053 1.199 1.505 2.071 2.314

α Bias 0.202 0.053 0.199 -0.165 0.071 0.314

MSE 0.152 0.157 0.137 0.241 0.209 0.212

Mean 0.710 0.948 1.123 0.924 0.837 0.519

β Bias -0.290 -0.052 0.123 -0.076 -0.163 -0.481

MSE 0.278 0.387 0.150 0.078 0.231 0.279
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Table 4: n = 400, σ2

u
= 0.01

N-Mean S-Mean S-Huber S-Median S-Modal N-Modal

Mean 1.102 1.040 1.139 1.568 2.034 2.155

α Bias 0.102 0.040 0.139 -0.102 0.034 0.155

MSE 0.079 0.089 0.070 0.035 0.083 0.070

Mean 0.841 0.952 1.246 0.900 0.937 0.737

β Bias -0.159 -0.048 0.246 -0.100- 0.063 -0.263

MSE 0.207 0.260 0.146 0.045 0.122 0.105

Table 5: n = 400, σ2

u
= 0.02

N-Mean S-Mean S-Huber S-Median S-Modal N-Modal

Mean 1.151 1.052 1.160 1.619 2.017 2.253

α Bias 0.151 0.052 0.160 -0.051 0.017 0.253

MSE 0.088 0.098 0.078 0.077 0.101 0.119

Mean 0.755 0.924 1.204 0.869 0.961 0.615

β Bias -0.245 -0.076 0.204 -0.131 -0.039 -0.385

MSE 0.216 0.271 0.127 0.051 0.102 0.187

Table 6: n = 400, σ2

u
= 0.04

N-Mean S-Mean S-Huber S-Median S-Modal N-Modal

Mean 1.227 1.090 1.214 1.437 1.996 2.358

α Bias 0.227 0.090 0.214 -0.233 -0.004 0.358

MSE 0.112 0.110 0.101 0.306 0.137 0.197

Mean 0.629 0.846 1.099 0.919 0.947 0.497

β Bias -0.371 -0.154 0.099 -0.081 -0.053 -0.503

MSE 0.258 0.273 0.091 0.078 0.140 0.286
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The simulation results for other c-values are also conducted. Similar patterns are ob-

tained, which indicate the proposed estimation procedure is stable, and for the sake of

brevity, the corresponding simulation results are omitted.

5. Appendix

This appendix contains the proofs of all the main results from Section 3. For the sake

of simplicity, we only present the proof of univariate X , the extension to p-dimensional

covariates is straightforward, except for some notational complexity. Thus τ =
√
1 + λσu.

The proof of Theorem 1. First, let us show that θ(λ, h) → θ(λ) as h → 0. Denote

gm(x, v, u; θ, θ0) = g(m(x+ τv, θ)−m(x, θ0) + u|x),
g′m(x, v, u; θ, θ0) = ∂g(t|x)/∂t

∣

∣

∣

t=m(x+τv,θ)−m(x,θ0)+u
.

g′′m and g′′′m are similarly defined. Integrating by parts, we have

EQh(θ, λ) =
1

h
E

∫∫

φ

(

ε+m(X, θ0)−m(X + τv, θ)

h

)

g(ε|X)φ(v)dvdε

= E

∫∫

φ(u)gm(X, v, hu; θ, θ0)φ(v)dvdu =

∫∫∫

φ(u)gm(x, v, hu; θ, θ0)φ(v)f(x)dvdudx.

Therefore,

|EQh(θ, λ)− lim
h→0

EQh(θ, λ)|

≤
∫∫∫

φ(u)|gm(x, v, hu; θ, θ0)− gm(x, v, 0; θ, θ0)|φ(v)f(x)dvdudx

= h

∫∫∫

φ(u) |g′m(x, v, ṽ; θ, θ0)| |u|φ(v)f(x)dvdudx.

By the boundedness of the partial derivative of g, we can easily see that

sup
θ∈Θ

|EQh(θ, λ)− lim
h→0

EQh(θ, λ)| = o(1).

This, together with the uniqueness of the minimizer of limh→0EQh(θ, λ), implies that θ(λ, h) →
θ(λ) as h → 0.

Note that θ(λ, h) is the solution of (4), it satisfies

∂EQh(θ, λ)/∂θ|θ(λ,h) = 0.
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By Taylor expansion, we have

0 =

∫∫∫

φ(u)g′m(x, v, hu; θ(λ, h), θ0)ṁ(x+ τv, θ(λ, h))φ(v)f(x)dvdudx

=

∫∫

g′m(x, v, 0; θ(λ, h), θ0)ṁ(x+ τv, θ(λ, h))φ(v)f(x)dvdx

+
h2

2

∫∫∫

u2φ(u)g′′′m(x, v, ũ; θ(λ, h), θ0)ṁ(x+ τv, θ(λ, h))φ(v)f(x)dvdudx

=

∫∫

g′m(x, v, 0; θ(λ, h), θ0)ṁ(x+ τv, θ(λ, h))φ(v)f(x)dvdx

+

∫∫

g′′m(x, v, 0; θ(λ, h), θ0)ṁ(x+ τv, θ̃(λ))ṁT (x+ τv, θ(λ, h))φ(v)f(x)dvdx ·

(θ(λ, h)− θ(λ))

+
h2

2

∫∫∫

u2φ(u)g′′′m(x, v, ũ; θ(λ, h), θ0)ṁ(x+ τv, θ(λ, h))φ(v)f(x)dvdudx.

By the definition of θ(λ), the first term on the right hand side of the last equality is 0. This,

together with the claim θ(λ, h) → θ(λ) we just shown, implies

0 =

∫∫

g′′m(x, v, 0; θ(λ, h), θ0)(ṁ(x+ τv, θ(λ)))⊗2φ(v)f(x)dvdx(θ(λ, h)− θ(λ))(1 + o(1))

+
h2

2

∫∫

g′′′m(x, v, 0; θ(λ, h), θ0)ṁ(x+ τv, θ(λ))φ(v)f(x)dvdx(1 + o(1))

which indeed is the conclusion of Theorem 1.

The proof of Theorem 2. It suffices to show that for an arbitrary number η ∈ [0, 1), there

exists an sufficiently large number C such that

P

{

sup
‖µ‖=C

Qn(θ(λ, h) + anµ) < Qn(θ(λ, h))

}

≥ 1− η (8)

for an = (nh3)−1/2 + h2. Using Taylor expansion, we have

Qn(θ(λ, h) + anµ)−Qn(θ(λ, h))

= anµ
T ∂Qn(θ(λ, h))

∂θ
+

a2n
2
µT ∂

2Qn(θ(λ, h))

∂θ∂θT
µ+

a3n
6
Ln(θ

∗(λ, h), µ), (9)

where θ∗(λ, h) is between θ(λ, h) and θ(λ, h) + anµ, and

Ln(θ(λ, h), µ) = µT

(

µT ∂
3Qn(θ(λ, h))

∂θ∂θT ∂θ1
µ, · · · , µT ∂

3Qn(θ(λ, h))

∂θ∂θT ∂θp
µ

)T

.
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By the definition of θ(λ, h) and (C4), we have E∂Qn(θ(λ, h), λ)/∂θ = 0. Now, we calcu-

late the variance of ∂Qn(θ(λ, h), λ)/∂θ. Note that for standard normal kernel φ,

φ′
h(t) = − t

h3
φ

(

t

h

)

, φ′′
h(t) =

1

h3

(

t2

h2
− 1

)

φ

(

t

h

)

, φ′′′
h (t) =

1

h4

(

3t

h
− t3

h3

)

φ

(

t

h

)

. (10)

Denote Wb(λ) = (W1b(λ), . . . ,Wbn(λ))
′ and εib(λ) = Yi −m(Wib(λ), θ). We have

∂Qn(θ(λ, h))

∂θ
= −1

n

n
∑

i=1

φ′
h(εib(λ))ṁ(Wib(λ), θ),

∂2Qn(θ(λ, h))

∂θ∂θT
=

1

n

n
∑

i=1

φ′′
h(εib(λ))(ṁ(Wib(λ), θ))

⊗2 − 1

n

n
∑

i=1

φ′
h(εib(λ))m̈(Wib(λ), θ).

and

Ln(θ, µ) = −1

n

n
∑

i=1

φ′′′
h (εib(λ))

(

µT ṁ(Wib(λ), θ)

)3

+
3

n

n
∑

i=1

φ′′
h(εib(λ))µ

T m̈(Wib(λ), θ)µµ
T ṁ(Wib(λ), θ)−

1

n

n
∑

i=1

φ′
h(εib(λ))Fi(θ, µ),

where

Fi(θ, µ) = µT

(

µT ∂
3m(Wib(λ), θ)

∂θ∂θT ∂θ1
µ, · · · , µT ∂

3m(Wib(λ), θ)

∂θ∂θT ∂θp
µ

)T

.

The stochastic properties of Qn(θ(λ, h)+anµ)−Qn(θ(λ, h)) depends on the partial deriva-

tives of Qn(θ). In the following we shall derive the asymptotic expansions of conditional

expectations and covariance matrices of these partial derivatives. First, for the conditional

expectation of ∂Qn(θ)/∂θ, we have

E

(

∂Qh(θ(λ, h))

∂θ
|W(λ)

)

= E

(

− 1

n

n
∑

i=1

φ′
h(εi(λ))ṁ(Wib(λ), θ(λ, h))|Wi(λ)

)

= −1

n

n
∑

i=1

∫

φ′
h(εi(λ))ṁ(Wib(λ), θ(λ, h))fλ(εi(λ)|Wi(λ))dεi(λ)

= −1

n

n
∑

i=1

∫

εi(λ)

h3
φ

(

εi(λ)

h

)

ṁ(Wib(λ), θ(λ, h))fλ(ǫ(λ)|Wi(λ))dεi(λ)

= −1

n

n
∑

i=1

∫

1

h
tφ(t)ṁ(Wib(λ), θ(λ, h))(fλ(0|Wi(λ)) + f ′

λ(0|Wi(λ))ht+Op(h
3))dt
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= −1

n

n
∑

i=1

ṁ(Wib(λ), θ(λ, h))f
′
λ(0|Wi(λ))

∫

t2φ(t)dt{1 +Op(h
3)}

= −1

n

n
∑

i=1

ṁ(Wib(λ), θ(λ, h))f
′
λ(0|Wi(λ)) +Op(h

3)

= −1

n

n
∑

i=1

ṁ(Wib(λ), θ(λ))f
′
λ(0|Wi(λ)) +Op(h

3).

The last equality is a consequence of the continuity of ṁ(x, θ) with respect to θ and θ(λ, h) →
θ(λ) by Theorem 1.

In the following, we would like to argue that

1

n

n
∑

i=1

ṁ(Wib(λ), θ(λ))f
′
λ(0|Wi(λ)) = Op

(

1√
n

)

. (11)

First, we claim that, for any t,

f ′
λ(t|W (λ)) = E[g′(t+m(W (λ), θ)−m(X, θ0)|X)|W (λ)]. (12)

In fact, for any t,

P (Y −m(W (λ), θ) ≤ t|W (λ)) = E[P (Y −m(W (λ), θ) ≤ t|W (λ), X)|W (λ)]

= E

[

∫ t+m(W (λ),θ)−m(X,θ0)

−∞

g(v|X)dv
∣

∣

∣
W (λ)

]

which implies

fλ(t|W (λ)) = E
[

g(t+m(W (λ), θ)−m(X, θ0)|X)
∣

∣

∣
W (λ)

]

.

Therefore, (12) can be obtained by taking derivative on the above equality with respect to

t. In particular, if t = 0, we have

f ′
λ(0|W (λ)) = E

[

g′(m(W (λ), θ)−m(X, θ0)|X)

∣

∣

∣

∣

∣

W (λ)

]

.

So,

Eṁ(W (λ), θ(λ))f ′
λ(0|W (λ)) = E

(

ṁ(W (λ), θ(λ))E
[

g′(m(W (λ), θ(λ))−m(X, θ0)|X)
∣

∣

∣
W (λ)

])

= E (ṁ(W (λ), θ(λ))g′(m(W (λ), θ(λ))−m(X, θ0)|X))

=
∂

∂θ
Eg(m(W (λ), θ(λ))−m(X, θ0)|X) = 0
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by the definition of θ(λ). Therefore, the claim (11) follows from the condition (C2). This,

together with the condition nh3 → ∞, implies

E

(

∂Qh(θ(λ, h))

∂θ
|W(λ)

)

= Op(h
2).

For the conditional covariance matrix of ∂Qn(θ)/∂θ given Wb(λ), we have

Cov

(

∂Qh(θ(λ, h))

∂θ

∣

∣

∣

∣

Wb(λ)

)

= Cov

(

−1

n

n
∑

i=1

φ′
h(εi(λ))ṁ(Wib(λ), θ(λ, h))

∣

∣

∣

∣

Wi(λ)

)

=
1

n2

n
∑

i=1

Cov

{

φ′
h(εi(λ))ṁ(Wib(λ), θ(λ, h))

∣

∣

∣

∣

Wi(λ)

}

=
1

n2

n
∑

i=1

{

E

(

(φ′
h(εi(λ)))

2(ṁ(Wib(λ), θ(λ, h)))
⊗2

∣

∣

∣

∣

Wi(λ)

)

−
(

E

(

φ′
h(εi(λ))ṁ(Wib(λ), θ(λ, h))

∣

∣

∣

∣

Wi(λ)

))⊗2}

=
1

n2

n
∑

i=1

{
∫
(

εi(λ)

h3

)2

φ2

(

εi(λ)

h

)(

ṁ(Wib(λ), θ(λ, h))

)⊗2

fλ(εi(λ)|Wi(λ))dεi(λ)

−
(
∫
(

εi(λ)

h3

)

ṁ(Wib(λ), θ(λ, h))φ

(

εi(λ)

h

)

fλ(εi(λ)|Wi(λ))dεi(λ)

)⊗2}

=
1

n2

n
∑

i=1

{
∫

1

h3
t2φ2(t)

(

ṁ(Wib(λ), θ(λ, h))

)⊗2

(fλ(0|Wi(λ)) + f ′
λ(0|Wi(λ))ht+ op(h))dt

−
(
∫

1

h
tφ(t)ṁ(Wib(λ), θ(λ, h))(fλ(0|Wi(λ)) + f ′

λ(0|Wi(λ))ht+ op(h))dt

)⊗2}

=
1

n2

n
∑

i=1

{

1

h3

(

ṁ(Wib(λ), θ(λ, h))

)⊗2

fλ(0|Wi(λ))

∫

t2φ2(t)dt

−
(

ṁ(Wib(λ), θ(λ, h))f
′
λ(0|Wi(λ))

)⊗2}

{1 + op(1)}

=

{

1

4
√
πnh3

· 1
n

n
∑

i=1

((

ṁ(Wib(λ), θ(λ, h))

)⊗2

fλ(0|Wi(λ))

−1

n
· 1
n

n
∑

i=1

(

ṁ(Wib(λ), θ(λ, h))f
′
λ(0|Wi(λ))

)⊗2}

{1 + op(1)}

=
1

4
√
πnh3

· 1
n

n
∑

i=1

((

ṁ(Wib(λ), θ(λ, h))

)⊗2

fλ(0|Wi(λ)){1 + op(1)}
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=
1

4
√
πnh3

· 1
n

n
∑

i=1

[(

ṁ(Wib(λ), θ(λ, h))

)⊗2

fλ(0|Wi(λ))

]

+ op

(

1

nh3

)

=
1

4
√
πnh3

· 1
n

n
∑

i=1

[(

ṁ(Wib(λ), θ(λ))

)⊗2

fλ(0|Wi(λ))

]

+ op

(

1

nh3

)

Again, the last equality is a consequence of the continuity of ṁ(x, θ) with respect to θ and

θ(λ, h) → θ(λ) by Theorem 1.

Now, let’s consider the asymptotic order of the second derivative of Qn(θ(λ, h)) with

respect to θ.

E

(

∂2Qh(θ(λ, h))

∂θ∂θT

∣

∣

∣

∣

W(λ)

)

= E

[

1

n

n
∑

i=1

φ′′
h(εi(λ))(ṁ(Wib(λ), θ(λ, h)))

⊗2 − 1

n

n
∑

i=1

φ′
h(εi(λ))m̈(Wib(λ), θ(λ, h))

∣

∣

∣

∣

Wi(λ)

]

= E

[

1

n

n
∑

i=1

1

h3

((

εi(λ)

h

)2

− 1

)

φ

(

εi(λ)

h

)

(ṁ(Wib(λ), θ(λ, h)))
⊗2

−1

n

n
∑

i=1

εi(λ)

h3
φ

(

εi(λ)

h

)

m̈(Wib(λ), θ(λ, h))

∣

∣

∣

∣

Wi(λ)

]

=

{

1

n

n
∑

i=1

∫

1

h2
(t2 − 1)φ(t)(ṁ(Wib(λ), θ(λ, h)))

⊗2(fλ(0|Wi(λ)) + f ′
λ(0|Wi(λ))ht

+f ′′
λ (0|Wi(λ))

h2t2

2
+ op(h

2))dt

−1

n

n
∑

i=1

∫

1

h
tφ(t)m̈(Wib(λ), θ(λ, h))(fλ(0|Wi(λ)) + f ′

λ(0|Wi(λ))ht + op(h))dt

}

=

{

1

n

n
∑

i=1

[

(ṁ(Wib(λ), θ(λ, h)))
⊗2f ′′

λ (0|Wi(λ))− m̈(Wib(λ), θ(λ, h))f
′
λ(0|Wi(λ))

]

}

{1 + op(1)}

= J(λ){1 + op(1)}

by the fact θ(λ, h) → θ(λ), where

J(λ) = E

[

(ṁ(Wib(λ), θ(λ)))
⊗2f ′′

λ (0|W (λ))− m̈(Wib(λ), θ(λ))f
′
λ(0|W (λ))

]

=
∂2

∂θ∂θT
E

[

g(m(W (λ), θ(λ))−m(X, θ0)|X)

]

.
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Now let’s consider the variance of each component in the matrix ∂2Qh(θ(λ, h))/∂θ∂θ
T . For

convenience, denote

ṁjk(x, θ) =
∂m(x, θ)

∂θj
· ∂m(x, θ)

∂θk
, m̈jk(x, θ) =

∂2m(x, θ)

∂θj∂θk
.

For a pair (j, k), j, k = 1, 2, . . . , q,

Var

(

∂2Qh(θ(λ, h))

∂θj∂θq
|W(λ)

)

= Var

[

1

n

n
∑

i=1

φ′′
h(εi(λ))ṁjk(Wib(λ), θ(λ, h))−

1

n

n
∑

i=1

φ′
h(εi(λ))m̈jk(Wib(λ), θ(λ, h))

∣

∣

∣

∣

W(λ)

]

=
1

n2

n
∑

i=1

Var

[

φ′′
h(εi(λ))ṁjk(Wib(λ), θ(λ, h))− φ′

h(εi(λ))m̈jk(Wib(λ), θ(λ, h))

∣

∣

∣

∣

Wi(λ)

]

=
1

n2

n
∑

i=1

Var

[

1

h3

((

εi(λ)

h

)2

− 1

)

φ

(

εi(λ)

h

)

ṁjk(Wib(λ), θ(λ, h))

−εi(λ)

h3
φ

(

εi(λ)

h

)

m̈jk(Wib(λ), θ(λ, h))

∣

∣

∣

∣

Wi(λ)

]

=
1

n2

n
∑

i=1

{

E

[

1

h6

((

εi(λ)

h

)2

− 1

)2

φ2

(

εi(λ)

h

)

ṁ2
jk(Wib(λ), θ(λ, h))

+

((

εi(λ)

h3

)2

φ2

(

εi(λ)

h

)

m̈2
jk(Wib(λ), θ(λ, h))

− 2

h3

((

εi(λ)

h

)2

− 1

)

φ2

(

εi(λ)

h

)(

εi(λ)

h3

)

ṁjk(Wib(λ), θ(λ, h))m̈jk(Wib(λ), θ(λ, h))

∣

∣

∣

∣

Wi(λ)

]

−
(

E

[(

1

h3

((

εi(λ)

h

)2

− 1

)

φ

(

εi(λ)

h

)

ṁjk(Wib(λ), θ(λ, h))

+
εi(λ)

h3
φ

(

εi(λ)

h

)

m̈jk(Wib(λ), θ(λ, h))

∣

∣

∣

∣

W (λ)

])2}

=

{

1

nh5

1

n

n
∑

i=1

ṁ2
jk(Wib(λ), θ(λ, h))fλ(0|Wi(λ))

∫

(t2 − 1)2φ2(t)dt

}

{1 + op(1)}

= Op

(

1

nh5

)

.

In summary, we obtain

∂Qn(θ(λ, h))

∂θ
= Op

(

1√
nh3

)

,
∂2Qn(θ(λ, h))

∂θ∂θT
= J(λ) + op(1),

which imply that

anµ
T ∂Qn(θ(λ, h))

∂θ
= Op(a

2
n),

a2n
2
µT ∂

2Qn(θ(λ, h))

∂θ∂θT
µ = Op(a

2
n).
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Finally, note that ‖θ∗(λ, h)− θ(λ, h)‖ ≤ lan, then the continuity of Ln(θ, µ) with respect to

θ implies that

Ln(θ
∗(λ, h), µ) = Ln(θ(λ, h), µ) + op(1).

We can further show that

E(Ln(θ(λ, h), µ)|W(λ)) =
1

n

n
∑

i=1

f ′′′
λ (0|Wi(λ))(µ

T ṁ(Wib(λ), θ(λ, h)))
3

+
3

n

n
∑

i=1

f ′′
λ (0|Wi(λ))µ

T m̈(Wib(λ), θ(λ, h))µµ
Tṁ(Wib(λ), θ(λ, h))

−1

n

n
∑

i=1

f ′
λ(0|Wi(λ))F (θ(λ, h), µ) + op(1),

and

Var(Ln(θ(λ, h), µ)|W(λ)) = Op

(

1

nh7

)

.

Therefore, we have a3nLn(θ
∗(λ, h), µ) = op(a

2
n).

Choose µ such that ‖µ‖ sufficiently large, then the second term in (9) dominates other

two terms. Thus, the conclusion of Theorem 2 follows by the condition J(λ) < 0.

The proof of Theorem 3. By Taylor expansion,

0 =
∂Qn(θ̂b(λ))

∂θ
=

∂Qn(θ(λ, h))

∂θ
+

[

∂2Qn(θ(λ, h))

∂θ∂θT
+ Ln

]

(θ̂b(λ)− θ(λ, h)).

where

Ln = − 1

2nh4

n
∑

i=1

[

φ′′′

(

Yi −m(Wib(λ), θ
∗)

h

)

m̈(Wib(λ), θ
∗)ṁT (Wib(λ), θ

∗)

]

(θ̂b(λ)− θ(λ, h)),

and From the proof of Theorem 2, we know that

∂2Qh(θ(λ, h))

∂θ∂θT
= J(λ){1 + op(1)}

and we can also show that Ln = op(1). Therefore,

0 =
1

B

B
∑

b=1

∂Qn(θ(λ, h))

∂θ
+ J(λ){1 + op(1)}

(

1

B

B
∑

b=1

θ̂b(λ)− θ(λ, h)

)

=
1

B

B
∑

b=1

∂Qn(θ(λ, h))

∂θ
+ J(λ){1 + op(1)}

(

θ̂(λ)− θ(λ, h)
)

. (13)
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Define

ξin(λ) =
h
√
h

B
√
n

B
∑

b=1

[φ′
h(ǫib(λ))ṁ(Wib(λ), θ(λ, h))] .

Then from (13), we can write

n
∑

i=1







ξin(λ1)
...

ξin(λM)






=

√
nh3







J(λ1)(1 + op(1))
. . .

J(λM)(1 + op(1))













(θ̂(λ1)− θ(λ1, h))
...

(θ̂(λM)− θ(λM , h))







Note that (ξTin(λ1), . . . , ξ
T
in(λM))T , i = 1, 2, . . . , n are independent and identically distributed

random vectors. In the following, we shall show that the left hand side of the above equality

are jointly asymptotically normal. By Wold technique, it is sufficient to show that for any

q-dimensional real vectors, a1, . . . , aM ,
∑n

i=1

∑M
j=1 a

T
j ξin(λj) is asymptotically normal. For

this purpose, we shall check the Lyapunov condition.

By Cr-inequality and routing calculation, we obtain

nE

(

∣

∣

∣

∣

M
∑

j=1

aT
j ξin(λj)

∣

∣

∣

∣

3
)

≤ nM2
M
∑

j=1

(

E|aT
j ξin(λj)|3

)

≤ nM2

(

h
√
h

B
√
n

)3 M
∑

j=1

B
∑

b=1

(

E|φ′
h(ǫib(λj))a

T
j ṁ(Wib(λj), θ(λj , h))|3

)

=
M2

B2h
√
nh

M
∑

j=1

[

E

∣

∣

∣

∣

φ′

(

ǫib(λj)

h

)

aT
j ṁ(Wib(λj), θ(λ, h))

∣

∣

∣

∣

3]

=
M2

B2h
√
nh

M
∑

j=1

E

∫
∣

∣

∣

∣

φ′

(

v

h

)∣

∣

∣

∣

3

|ajṁ(Wib(λj), θ(λ, h))|3fλ(v|Wi(λ))dv

=
M2

B2
√
nh

M
∑

j=1

E

∫

|φ′(t)|3|ajṁ(Wib(λj), θ(λ, h))|3fλ(th|Wi(λ))dt = O

(

1√
nh

)

by the continuity of ṁ, fλ and convergence of θ(λ, h) to θ(λ). On the other hand, we know

that

Var(
M
∑

j=1

aT
j ξin(λj)) =

M
∑

j=1

M
∑

k=1

aT
j Cov(ξin(λj), ξin(λk))ak

=

M
∑

j=1

aT
j Cov(ξin(λj), ξin(λj))aj +

M
∑

j 6=k=1

aT
j Cov(ξin(λj), ξin(λk))ak.

22



Note that

Cov(ξin(λj), ξin(λj))

=
h3

nB2

B
∑

b=1

B
∑

c=1

Cov (φ′
h(ǫib(λj))ṁ(Wib(λj), θ(λj, h)), φ

′
h(ǫic(λj))ṁ(Wic(λj), θ(λj, h)))

=
h3

nB2

B
∑

b=1

Cov (φ′
h(ǫib(λj))ṁ(Wib(λj), θ(λj, h)), φ

′
h(ǫib(λj))ṁ(Wib(λj), θ(λj, h)))

+
h3

nB2

B
∑

b6=c=1

Cov (φ′
h(ǫib(λj))ṁ(Wib(λj), θ(λj, h)), φ

′
h(ǫic(λj))ṁ(Wic(λj), θ(λj , h)))

=
h3

nB
Cov (φ′

h(ǫi1(λj))ṁ(Wi1(λj), θ(λj , h)), φ
′
h(ǫi1(λj))ṁ(Wi1(λj), θ(λj, h)))

+
h3(B − 1)

nB
Cov (φ′

h(ǫi1(λj))ṁ(Wi1(λj), θ(λj, h)), φ
′
h(ǫi2(λj))ṁ(Wi2(λj), θ(λj , h)))

Now we consider the first term on the right side of the above equality.

Cov (φ′
h(ǫib(λj))ṁ(Wib(λj), θ(λj, h)), φ

′
h(ǫib(λj))ṁ(Wib(λj), θ(λj, h)))

= E
(

φ′2
h(ǫib(λj))(ṁ(Wib(λj), θ(λj, h)))

⊗2
)

− (Eφ′
h(ǫib(λj))ṁ(Wib(λj), θ(λj, h)))

⊗2

=
1

h3
E

[(

ṁ(Wib(λj), θ(λj , h))

)⊗2

fλj
(0|Wib(λj))ν2

]

+ o

(

1

h3

)

−
[

Eṁ(Wib(λj), θ(λj, h))f
′
λj
(0|Wib(λj))

]⊗2

+O(h).

For the second term, first denote by the non-differentiable condition, the conditional density

function of εi givenXi,Wi1(λj),Wi2(λj)) is the same as the as the conditional density function

of εi given Xi. Then

Cov (φ′
h(ǫi1(λj))ṁ(Wi1(λj), θ(λj, h)), φ

′
h(ǫi2(λj))ṁ(Wi2(λj), θ(λj, h)))

= E
(

φ′
h(ǫi1(λj))φ

′
h(ǫi2(λj))ṁ(Wi1(λj), θ(λj, h))ṁ

T (Wi2(λj), θ(λj, h))
)

− [Eφ′
h(ǫi1(λj))ṁ(Wi1(λj), θ(λj , h))]

[

Eφ′
h(ǫi2(λj))ṁ

T (Wi2(λj), θ(λj , h))
]

=
1

h6
E

[
∫

(εi +m(Xi, θ0)−m(Wi1(λj), θ(λj, h)))φ

(

εi +m(Xi, θ0)−m(Wi1(λj), θ(λj, h))

h

)

(εi +m(Xi, θ0)−m(Wi2(λj), θ(λj, h)))φ

(

εi +m(Xi, θ0)−m(Wi2(λj), θ(λj, h))

h

)

ṁ(Wi1(λj), θ(λj, h))ṁ
T (Wi2(λj), θ(λj, h))gε(εi|Xi)dεi

]

−
[

Eṁ(Wib(λj), θ(λj, h))f
′
λj
(0|Wib(λj))

]⊗2

+O(h)
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=
1

h4
E

[ ∫

wφ(w) (wh+m(Wi1(λj), θ(λj , h))−m(Wi2(λj), θ(λj, h)))

φ

(

w +
m(Wi1(λj), θ(λj, h))−m(Wi2(λj), θ(λj, h))

h

)

ṁ(Wi1(λj), θ(λj, h))ṁ
T (Wi2(λj), θ(λj, h))

gε(wh+m(Xi, θ0)−m(Wi1(λj), θ(λj , h))|Xi)dw

]

−
[

Eṁ(Wib(λj), θ(λj, h))f
′
λj
(0|Wib(λj))

]⊗2

+O(h)

=
1

h4
E

[
∫∫∫∫

wφ(w)
(

wh+m(Xi + u+
√

λjv1, θ(λj, h))−m(Xi + u+
√

λjv2, θ(λj , h))
)

φ

(

w +
m(Xi + u+

√

λjv1, θ(λj, h))−m(Xi + u+
√

λjv2, θ(λj, h))

h

)

ṁ(Xi + u+
√

λjv1, θ(λj , h))ṁ
T (Xi + u+

√

λjv2, θ(λj, h))

gε(wh+m(Xi, θ0)−m(Xi + u+
√

λjv1, θ(λj, h))|Xi)φ(u)φ(v1)φ(v2)dwdudv1dv2

]

−
[

Eṁ(Wib(λj), θ(λj, h))f
′
λj
(0|Wib(λj))

]⊗2

+O(h)

=
1

h3
E

[
∫∫∫∫

wφ(w) ·
(

wh+m(Xi + u+
√

λj(v2 + vh), θ(λj, h))−m(Xi + u+
√

λjv2, θ(λj, h))
)

φ

(

w +
m(Xi + u+

√

λj(v2 + vh), θ(λj, h))−m(Xi + u+
√

λjv2, θ(λj, h))

h

)

ṁ(Xi + u+
√

λj(v2 + vh), θ(λj , h))ṁ
T (Xi + u+

√

λjv2, θ(λj, h))

gε(wh+m(Xi, θ0)−m(Xi + u+
√

λj(v2 + vh), θ(λj, h))|Xi)

φ(u)φ(v2 + vh)φ(v2)dwdudvdv2

]

−
[

Eṁ(Wib(λj), θ(λj, h))f
′
λj
(0|Wib(λj))

]⊗2

+O(h)

=
1

h2
E

[
∫∫∫∫

wφ(w)
√

λjv
T
(

wh+m′(Xi + u+
√

λjv2 + λ̃j , θ(λj, h))
)

φ
(

w + vTm′(Xi + u+
√

λjv2 + λ̃j, θ(λj , h))
)

ṁ(Xi + u+
√

λj(v2 + vh), θ(λj , h))ṁ
T (Xi + u+

√

λjv2, θ(λj, h))

gε(wh+m(Xi, θ0)−m(Xi + u+
√

λj(v2 + vh), θ(λj, h))|Xi)
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φ(u)φ(v2 + vh)φ(v2)dwdudvdv2

]

−
[

Eṁ(Wib(λj), θ(λj, h))f
′
λj
(0|Wib(λj))

]⊗2

+O(h)

=
1

h2
E

[
∫∫∫∫

wφ(w)
√

λjv
T
(

m′(Xi + u+
√

λjv2, θ(λj))
)

φ
(

w + vTm′(Xi + u+
√

λjv2, θ(λj))
)

ṁ(Xi + u+
√

λjv2, θ(λj))ṁ
T (Xi + u+

√

λjv2, θ(λj))

gε(m(Xi, θ0)−m(Xi + u+
√

λjv2, θ(λj))|Xi)

φ(u)φ(v2)φ(v2)dwdudvdv2

]

−
[

Eṁ(Wib(λj), θ(λj, h))f
′
λj
(0|Wib(λj))

]⊗2

+O(h)

which is the order of o(1/h3). Therefore, we have

Cov(ξin(λj), ξin(λj)) =
1

nB
E

[(

ṁ(W (λj), θ(λj, h))

)⊗2

fλ(0|W (λj))ν2

]

+ o

(

1

n

)

(14)

uniformly for all i and λj .

For j 6= k, similar to the above derivation, we have

Cov(ξin(λj), ξin(λk))

=
h3

nB
Cov (φ′

h(ǫi1(λj))ṁ(Wi1(λj), θ(λj, h)), φ
′
h(ǫi1(λk))ṁ(Wi1(λk), θ(λk, h)))

+
h3(B − 1)

nB
Cov (φ′

h(ǫi1(λj))ṁ(Wi1(λj), θ(λj, h)), φ
′
h(ǫi2(λk))ṁ(Wi2(λk), θ(λk, h)))

= o(1/n) (15)

uniformly for all i, λj and λk.

From (14) and (15), we eventually obtain

Var(

M
∑

j=1

aT
j ξin(λj)) =

M
∑

j=1

aT
j

h3

nB

[

1

h3
E

[(

ṁ(W (λj), θ(λj, h))

)⊗2

fλ(0|W (λj))ν2

]

+ o

(

1

h3

)

]

aj

+
M
∑

j 6=k=1

aT
j

h3

nB
o

(

1

h3

)

ak

=
1

nB

M
∑

j=1

aT
j

[

E

[(

ṁ(W (λj), θ(λj, h))

)⊗2

fλ(0|W (λj))ν2

]

]

aj + o

(

1

n

)
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which further implies

Var

[

n
∑

i=1

M
∑

j=1

aT
j ξin(λj)

]

=
1

B

M
∑

j=1

aT
j

[

E

[(

ṁ(W (λj), θ(λj, h))

)⊗2

fλ(0|W (λj))ν2

]

]

aj + o(1).

By Lyapunov condition CLT, we obtain

n
∑

i=1

M
∑

j=1

aT
j ξin(λj) =⇒ N

(

0,
1

B

M
∑

j=1

aT
j

[

E

[(

ṁ(W (λj), θ(λj , h))

)⊗2

fλ(0|W (λj))ν2

]

]

aj

)

which implies, by Wold technique,

n
∑

i=1

(

ξTin(λ1), · · · , ξTin(λM)
)T

=⇒ N (0,Π(Λ))

with

Π(Λ) = diag

(

B−1E

[(

ṁ(W (λj), θ(λj, h))

)⊗2

fλ(0|W (λj))ν2

]

)

.

Denote J(Λ) = diag (J(λ1), . . . , J(λM)). Then we eventually obtain that

√
nh3(θ̂(Λ)− θ(Λ, h)) =⇒ N(0, J−1(Λ)Π(Λ)J−1(Λ))

Combining the result from Theorem 1, Theorem 3 follows.
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